1
|
Bellec A, Sow MD, Pont C, Civan P, Mardoc E, Duchemin W, Armisen D, Huneau C, Thévenin J, Vernoud V, Depège-Fargeix N, Maunas L, Escale B, Dubreucq B, Rogowsky P, Bergès H, Salse J. Tracing 100 million years of grass genome evolutionary plasticity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1243-1266. [PMID: 36919199 DOI: 10.1111/tpj.16185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/29/2023] [Accepted: 02/24/2023] [Indexed: 05/17/2023]
Abstract
Grasses derive from a family of monocotyledonous plants that includes crops of major economic importance such as wheat, rice, sorghum and barley, sharing a common ancestor some 100 million years ago. The genomic attributes of plant adaptation remain obscure and the consequences of recurrent whole genome duplications (WGD) or polyploidization events, a major force in plant evolution, remain largely speculative. We conducted a comparative analysis of omics data from ten grass species to unveil structural (inversions, fusions, fissions, duplications, substitutions) and regulatory (expression and methylation) basis of genome plasticity, as possible attributes of plant long lasting evolution and adaptation. The present study demonstrates that diverged polyploid lineages sharing a common WGD event often present the same patterns of structural changes and evolutionary dynamics, but these patterns are difficult to generalize across independent WGD events as a result of non-WGD factors such as selection and domestication of crops. Polyploidy is unequivocally linked to the evolutionary success of grasses during the past 100 million years, although it remains difficult to attribute this success to particular genomic consequences of polyploidization, suggesting that polyploids harness the potential of genome duplication, at least partially, in lineage-specific ways. Overall, the present study clearly demonstrates that post-polyploidization reprogramming is more complex than traditionally reported in investigating single species and calls for a critical and comprehensive comparison across independently polyploidized lineages.
Collapse
Affiliation(s)
- Arnaud Bellec
- INRAE/CNRGV US 1258, 24 Chemin de Borde Rouge, 31320, Auzeville-Tolosane, France
| | - Mamadou Dia Sow
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Caroline Pont
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Peter Civan
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Emile Mardoc
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | | | - David Armisen
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Cécile Huneau
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Johanne Thévenin
- INRAE/AgroParisTech-UMR 1318. Bat 2. Centre INRA de Versailles, route de Saint Cyr, 78026, Versailles CEDEX, France
| | - Vanessa Vernoud
- INRAE/CNRS/ENS/Univ. Lyon-UMR 879, 46 allée d'Italie, 69364, Lyon Cedex 07, France
| | | | - Laurent Maunas
- Arvalis-Institut du végétal, 21 chemin de Pau, 64121 Montardon, France
| | - Brigitte Escale
- Arvalis-Institut du végétal, 21 chemin de Pau, 64121 Montardon, France
- Direction de l'agriculture de Polynésie française, Route de l'Hippodrome, 98713, Papeete, France
| | - Bertrand Dubreucq
- INRAE/AgroParisTech-UMR 1318. Bat 2. Centre INRA de Versailles, route de Saint Cyr, 78026, Versailles CEDEX, France
| | - Peter Rogowsky
- INRAE/CNRS/ENS/Univ. Lyon-UMR 879, 46 allée d'Italie, 69364, Lyon Cedex 07, France
| | - Hélène Bergès
- INRAE/CNRGV US 1258, 24 Chemin de Borde Rouge, 31320, Auzeville-Tolosane, France
| | - Jerome Salse
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| |
Collapse
|
2
|
Li C, Jin H, Zhang W, Qin T, Zhang X, Pu Z, Yang Z, Lim KJ, Wang Z. Whole-Transcriptome Analysis Reveals Long Noncoding RNAs Involved in Female Floral Development of Hickory ( Carya cathayensis Sarg.). Front Genet 2022; 13:910488. [PMID: 35646060 PMCID: PMC9130753 DOI: 10.3389/fgene.2022.910488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022] Open
Abstract
Hickory, an endemic woody oil and fruit tree species in China, is of great economic value. However, hickory has a long juvenile period and an inconsistent flowering of males and females, thus influencing the bearing rates and further limiting fruits yield. Currently, it is reported that long noncoding RNAs (lncRNAs) play critical regulatory roles in biological processes. However, the role of lncRNAs in the development of hickory female flowers remains unclear. In this study, a total of 6,862 putative lncRNAs were identified from the female flower transcriptomes in three different growth stages of hickory. We proposed that lncRNAs might play an important role in phytohormone signaling processes for flower formation, especially in the abscisic acid and jasmonic acid pathways, according to the results of our Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. Moreover, we predicted the interactions among four microRNAs (miRNAs), three lncRNAs, and four genes. We proposed that facing the changing environment, LNC_002115 competes with PHOSPHATE2 (PHO2) for the binding sites on cca-miR399f, and protects PHO2 from suppression. In addition, cis-acting LNC_002115 regulates the expression of the SHORT VEGETATIVE PHASE (SVP) by influencing ABRE-binding factor (ABF). In brief, LNC_002115 regulates hickory female floral development by impacting both PHO2 and SVP. This study was the first to identify lncRNAs involved in hickory female floral development, and provided new insight to elucidate how lncRNAs and their targets play a role in female floral development in hickory, thus unfolding the opportunities for functional characterization of blossom-related lncRNAs in further studies.
Collapse
|
3
|
Xanthopoulou A, Moysiadis T, Bazakos C, Karagiannis E, Karamichali I, Stamatakis G, Samiotaki M, Manioudaki M, Michailidis M, Madesis P, Ganopoulos I, Molassiotis A, Tanou G. The perennial fruit tree proteogenomics atlas: a spatial map of the sweet cherry proteome and transcriptome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1319-1336. [PMID: 34842310 DOI: 10.1111/tpj.15612] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Genome-wide transcriptome analysis provides systems-level insights into plant biology. Due to the limited depth of quantitative proteomics our understanding of gene-protein-complex stoichiometry is largely unknown in plants. Recently, the complexity of the proteome and its cell-/tissue-specific distribution have boosted the research community to the integration of transcriptomics and proteomics landscapes in a proteogenomic approach. Herein, we generated a quantitative proteome and transcriptome abundance atlas of 15 major sweet cherry (Prunus avium L., cv 'Tragana Edessis') tissues represented by 29 247 genes and 7584 proteins. Additionally, 199 984 alternative splicing events, particularly exon skipping and alternative 3' splicing, were identified in 23 383 transcribed regions of the analyzed tissues. Common signatures as well as differences between mRNA and protein quantities, including genes encoding transcription factors and allergens, within and across the different tissues are reported. Using our integrated dataset, we identified key putative regulators of fruit development, notably genes involved in the biosynthesis of anthocyanins and flavonoids. We also provide proteogenomic-based evidence for the involvement of ethylene signaling and pectin degradation in cherry fruit ripening. Moreover, clusters of genes and proteins with similar and different expression and suppression trends across diverse tissues and developmental stages revealed a relatively low RNA abundance-to-protein correlation. The present proteogenomic analysis allows us to identify 17 novel sweet cherry proteins without prior protein-level annotation evidenced in the currently available databases. To facilitate use by the community, we also developed the Sweet Cherry Atlas Database (https://grcherrydb.com/) for viewing and data mining these resources. This work provides new insights into the proteogenomics workflow in plants and a rich knowledge resource for future investigation of gene and protein functions in Prunus species.
Collapse
Affiliation(s)
- Aliki Xanthopoulou
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, 57001, Greece
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece
| | - Theodoros Moysiadis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, 57001, Greece
- Department of Computer Science, School of Sciences and Engineering, University of Nicosia, Nicosia, 2417, Cyprus
| | - Christos Bazakos
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece
- Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Evangelos Karagiannis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, 57001, Greece
| | - Ioanna Karamichali
- Institute of Applied Biosciences, CERTH, Thessaloniki-Thermi, 57001, Greece
| | - George Stamatakis
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, 16672, Greece
| | - Martina Samiotaki
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, 16672, Greece
| | - Maria Manioudaki
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, 57001, Greece
| | - Michail Michailidis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, 57001, Greece
| | - Panagiotis Madesis
- Institute of Applied Biosciences, CERTH, Thessaloniki-Thermi, 57001, Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece
- Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, 57001, Greece
| | - Georgia Tanou
- Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece
- Institute of Soil and Water Resources, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece
| |
Collapse
|
4
|
Patturaj M, Munusamy A, Kannan N, Ramasamy Y. Biologia Futura: progress and future perspectives of long non-coding RNAs in forest trees. Biol Futur 2021; 73:43-53. [PMID: 34843103 DOI: 10.1007/s42977-021-00108-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
Forest trees are affected by climate change, anthropogenic pressure, as well as abiotic and biotic stresses. Conventional tree breeding has so far been limited to enhance overall productivity, and our understanding of the genetic basis of quantitative traits is still inadequate. Quantum leaps in next-generation sequencing technologies and bioinformatics have permitted the exploration and identification of various non-coding regions of the genome other than protein coding genes. These genomic regions produce various types of non-coding RNAs and regulate myriads of biological functions at epigenetic, transcriptional and translational levels. Recently, long non-coding RNAs (lncRNAs) which act as molecular switch have been identified to be pivotal molecules in forest trees. This review focuses on progress made in regulatory mechanisms in various developmental phases like wood formation, adventitious rooting and flowering and stress responses. It was predicted that complex regulatory interactions among lncRNA, miRNA and gene exist. LncRNAs can function as a sponge for miRNAs, reducing the suppressive effect of miRNAs on target mRNAs and perhaps adding a new layer of regulatory interactions among non-coding RNA classes in trees. Furthermore, network analysis revealed the interactions of lncRNA and genes during the expression of several important genes. The insights generated about lncRNAs in forest trees would enable improvement of economically important traits including the devastating abiotic and biotic stresses. In addition, solid understanding on the wide range of regulatory functions of lncRNAs on traits influencing biomass productivity and adaptation would aid the applications of biotechnology in genetic improvement of forest trees.
Collapse
Affiliation(s)
- Maheswari Patturaj
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002, India
| | - Aiswarya Munusamy
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002, India
| | - Nithishkumar Kannan
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002, India
| | - Yasodha Ramasamy
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002, India.
| |
Collapse
|
5
|
Identification of Long Non-Coding RNAs Associated with Tomato Fruit Expansion and Ripening by Strand-Specific Paired-End RNA Sequencing. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7120522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As emerging essential regulators in plant development, long non-coding RNAs (lncRNAs) have been extensively investigated in multiple horticultural crops, as well as in different tissues of plants. Tomato fruits are an indispensable part of people’s diet and are consumed as fruits and vegetables. Meanwhile, tomato is widely used as a model to study the ripening mechanism in fleshy fruit. Although increasing evidence shows that lncRNAs are involved in lots of biological processes in tomato plants, the comprehensive identification of lncRNAs in tomato fruit during its expansion and ripening and their functions are partially known. Here, we performed strand-specific paired-end RNA sequencing (ssRNA-seq) of tomato Heinz1706 fruits at five different developmental stages, as well as flowers and leaves. We identified 17,674 putative lncRNAs by referencing the recently released SL4.0 and annotation ITAG4.0 in tomato plants. Many lncRNAs show different expression patterns in fleshy fruit at different developmental stages compared with leaves or flowers. Our results indicate that lncRNAs play an important role in the regulation of tomato fruit expansion and ripening, providing informative lncRNA candidates for further studies in tomato fruits. In addition, we also summarize the recent advanced progress in lncRNAs mediated regulation on horticultural fruits. Hence, our study updates the understanding of lncRNAs in horticultural plants and provides resources for future studies relating to the expansion and ripening of tomato fruits.
Collapse
|
6
|
Song X, Hu J, Wu T, Yang Q, Feng X, Lin H, Feng S, Cui C, Yu Y, Zhou R, Gong K, Yu T, Pei Q, Li N. Comparative analysis of long noncoding RNAs in angiosperms and characterization of long noncoding RNAs in response to heat stress in Chinese cabbage. HORTICULTURE RESEARCH 2021; 8:48. [PMID: 33642591 PMCID: PMC7917108 DOI: 10.1038/s41438-021-00484-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/30/2020] [Accepted: 12/13/2020] [Indexed: 05/08/2023]
Abstract
Long noncoding RNAs (lncRNAs) are widely present in different species and play critical roles in response to abiotic stresses. However, the functions of lncRNAs in Chinese cabbage under heat stress remain unknown. Here, we first conducted a global comparative analysis of 247,242 lncRNAs among 37 species. The results indicated that lncRNAs were poorly conserved among different species, and only 960 lncRNAs were homologous to 524 miRNA precursors. We then carried out lncRNA sequencing for a genome-wide analysis of lncRNAs and their target genes in Chinese cabbage at different stages of heat treatment. In total, 18,253 lncRNAs were identified, of which 1229 differentially expressed (DE) lncRNAs were characterized as being heat-responsive. The ceRNA network revealed that 38 lncRNAs, 16 miRNAs, and 167 mRNAs were involved in the heat response in Chinese cabbage. Combined analysis of the cis- and trans-regulated genes indicated that the targets of DE lncRNAs were significantly enriched in the "protein processing in endoplasmic reticulum" and "plant hormone signal transduction" pathways. Furthermore, the majority of HSP and PYL genes involved in these two pathways exhibited similar expression patterns and responded to heat stress rapidly. Based on the networks of DE lncRNA-mRNAs, 29 and 22 lncRNAs were found to interact with HSP and PYL genes, respectively. Finally, the expression of several critical lncRNAs and their targets was verified by qRT-PCR. Overall, we conducted a comparative analysis of lncRNAs among 37 species and performed a comprehensive analysis of lncRNAs in Chinese cabbage. Our findings expand the knowledge of lncRNAs involved in the heat stress response in Chinese cabbage, and the identified lncRNAs provide an abundance of resources for future comparative and functional studies.
Collapse
Affiliation(s)
- Xiaoming Song
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China.
- Food Science and Technology Department, University of Nebraska-Lincoln, Lincoln, NE, USA.
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Jingjing Hu
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China
| | - Tong Wu
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China
| | - Qihang Yang
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xuehuan Feng
- Food Science and Technology Department, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Hao Lin
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuyan Feng
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China
| | - Chunlin Cui
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China
| | - Ying Yu
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China
| | - Rong Zhou
- Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Ke Gong
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China
| | - Tong Yu
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China
| | - Qiaoying Pei
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China
| | - Nan Li
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China.
| |
Collapse
|
7
|
Li Y, Duan X, Wu C, Yu J, Liu C, Wang J, Zhang X, Yan G, Jiang F, Li T, Zhang K, Li W. Ubiquitination of S 4-RNase by S-LOCUS F-BOX LIKE2 Contributes to Self-Compatibility of Sweet Cherry 'Lapins'. PLANT PHYSIOLOGY 2020; 184:1702-1716. [PMID: 33037127 PMCID: PMC7723103 DOI: 10.1104/pp.20.01171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/16/2020] [Indexed: 05/15/2023]
Abstract
Recent studies have shown that loss of pollen-S function in S4' pollen from sweet cherry (Prunus avium) is associated with a mutation in an S haplotype-specific F-box4 (SFB4) gene. However, how this mutation leads to self-compatibility is unclear. Here, we examined this mechanism by analyzing several self-compatible sweet cherry varieties. We determined that mutated SFB4 (SFB4') in S4' pollen (pollen harboring the SFB4' gene) is approximately 6 kD shorter than wild-type SFB4 due to a premature termination caused by a four-nucleotide deletion. SFB4' did not interact with S-RNase. However, a protein in S4' pollen ubiquitinated S-RNase, resulting in its degradation via the 26S proteasome pathway, indicating that factors in S4' pollen other than SFB4 participate in S-RNase recognition and degradation. To identify these factors, we used S4-RNase as a bait to screen S4' pollen proteins. Our screen identified the protein encoded by S 4 -SLFL2, a low-polymorphic gene that is closely linked to the S-locus. Further investigations indicate that SLFL2 ubiquitinates S-RNase, leading to its degradation. Subcellular localization analysis showed that SFB4 is primarily localized to the pollen tube tip, whereas SLFL2 is not. When S 4 -SLFL2 expression was suppressed by antisense oligonucleotide treatment in wild-type pollen tubes, pollen still had the capacity to ubiquitinate S-RNase; however, this ubiquitin-labeled S-RNase was not degraded via the 26S proteasome pathway, suggesting that SFB4 does not participate in the degradation of S-RNase. When SFB4 loses its function, S4-SLFL2 might mediate the ubiquitination and degradation of S-RNase, which is consistent with the self-compatibility of S4' pollen.
Collapse
Affiliation(s)
- Yang Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, 100193 Beijing, China
| | - Xuwei Duan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, 100097 Beijing, China
| | - Chuanbao Wu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, 100193 Beijing, China
| | - Jie Yu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, 100193 Beijing, China
| | - Chunsheng Liu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, 100193 Beijing, China
| | - Jing Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, 100097 Beijing, China
| | - Xiaoming Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, 100097 Beijing, China
| | - Guohua Yan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, 100097 Beijing, China
| | - Feng Jiang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, 100193 Beijing, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, 100193 Beijing, China
| | - Kaichun Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, 100097 Beijing, China
| | - Wei Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, 100193 Beijing, China
| |
Collapse
|