1
|
Li P, Qiu Y, Wang R, Zhang B, Ma Y, Sun X, Gao J, Jiang Y. The homeodomain leucine zipper protein RhHB22 promotes petal senescence by repressing ascorbic acid biosynthesis in rose. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1704-1717. [PMID: 39679950 DOI: 10.1093/jxb/erae503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/15/2024] [Indexed: 12/17/2024]
Abstract
Premature petal senescence dramatically reduces flower quality and value. Ethylene and reactive oxygen species (ROS) are key players in accelerating rose petal senescence, but the molecular mechanism by which ethylene antagonizes ROS scavenging is not well understood. Here, we showed that ethylene reduces ascorbic acid (AsA) production, leading to the accumulation of ROS and hastening petal senescence. Ethylene treatment suppressed the expression of GDP-l-galactose phosphorylase 1 (RhGGP1), encoding the rate-controlling enzyme in AsA biosynthesis. A HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP) II transcription factor, RhHB22, directly bound to the promoter of RhGGP1 and inhibited its transcription. RhHB22 is induced by ethylene, and silencing of RhHB22 increased RhGGP1 expression and AsA production, resulting in reduced H2O2 accumulation and delayed petal senescence. Additionally, the delayed petal senescence symptoms of RhHB22-silenced plants were suppressed by silencing RhGGP1. Moreover, the expression of RhGGP1, which is suppressed by ethylene in wild-type petals, was significantly compromised in RhHB22-silenced petals. These findings uncover the transcriptional regulatory mechanism by which ethylene promotes ROS accumulation and petal senescence by inhibiting AsA biosynthesis, enhance our understanding of ethylene-induced petal senescence, and provide novel insights for improving the longevity of cut flowers.
Collapse
Affiliation(s)
- Ping Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yuexuan Qiu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Rui Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Bingjie Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yanxing Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiaoming Sun
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yunhe Jiang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Pan J, Sohail H, Sharif R, Hu Q, Song J, Qi X, Chen X, Xu X. Cucumber JASMONATE ZIM-DOMAIN 8 interaction with transcription factor MYB6 impairs waterlogging-triggered adventitious rooting. PLANT PHYSIOLOGY 2024; 197:kiae351. [PMID: 38918826 DOI: 10.1093/plphys/kiae351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 06/27/2024]
Abstract
Waterlogging is a serious abiotic stress that drastically decreases crop productivity by damaging the root system. Jasmonic acid (JA) inhibits waterlogging-induced adventitious root (AR) formation in cucumber (Cucumis sativus L.). However, we still lack a profound mechanistic understanding of how JA governs AR formation under waterlogging stress. JASMONATE ZIM-DOMAIN (JAZ) proteins are responsible for repressing JA signaling in a transcriptional manner. In this study, we showed that overexpressing CsJAZ8 inhibited the formation of ARs triggered by waterlogging. Molecular analyses revealed that CsJAZ8 inhibited the activation of the R2R3-MYB transcription factor CsMYB6 via direct interaction. Additionally, silencing of CsMYB6 negatively impacted AR formation under waterlogging stress, as CsMYB6 could directly bind to the promoters of 1-aminocyclopropane-1-carboxylate oxidase 2 gene CsACO2 and gibberellin 20-oxidase gene CsGA20ox2, facilitating the transcription of these genes. The overexpression of CsACO2 and CsGA20ox2 led to increased levels of ethylene and gibberellin, which facilitated AR formation under waterlogging conditions. On the contrary, silencing these genes resulted in contrasting phenotypes of AR formation. These results highlight that the transcriptional cascade of CsJAZ8 and CsMYB6 plays a critical role in regulating hormonal-mediated cucumber waterlogging-triggered AR formation by inhibiting ethylene and gibberellin accumulation. We anticipate that our findings will provide insights into the molecular mechanisms that drive the emergence of AR in cucumber plants under waterlogging stress.
Collapse
Affiliation(s)
- Jiawei Pan
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hamza Sohail
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Rahat Sharif
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qiming Hu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jia Song
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaohua Qi
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xuehao Chen
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xuewen Xu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
3
|
Hadish JA, Hargarten HL, Zhang H, Mattheis JP, Ficklin SP, Honaas LA. Transcriptomics of long-term, low oxygen storage coupled with ethylene signaling interference suggests neofunctionalization of hypoxia response pathways in apple ( Malus domestica). PLANT DIRECT 2024; 8:e70025. [PMID: 39712348 PMCID: PMC11660084 DOI: 10.1002/pld3.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 12/24/2024]
Abstract
Research on how plants respond to hypoxia has concentrated on model organisms where tissues can only survive hypoxic conditions for a few hours to a few days. In contrast, hypoxic conditions are used commercially as a method to prolong the shelf life of Malus domestica (apple) fruit for up to a year of storage without substantial changes in fruit quality, not to mention a lack of tissue death. This ability of apples to withstand protracted hypoxic conditions is an interesting adaptation that has had limited molecular investigation despite its economic importance. Here, we investigate the long-term apple hypoxia response using a time-course RNA-seq analysis of several postharvest storage conditions. We use phylogenetics, differential expression, and regulatory networks to identify genes that regulate and are regulated by the hypoxia response. We identify potential neofunctionalization of core-hypoxia response genes in apples, including novel regulation of group VII ethylene response factor (ERF VII) and plant cysteine oxidase (PCO) family members.
Collapse
Affiliation(s)
- John A. Hadish
- Molecular Plant Science ProgramWashington State UniversityPullmanWAUSA
- Department of HorticultureWashington State UniversityPullmanWAUSA
| | - Heidi L. Hargarten
- USDA Agricultural Research Service Physiology and Pathology of Tree Fruits ResearchWenatcheeWAUSA
| | - Huiting Zhang
- Department of HorticultureWashington State UniversityPullmanWAUSA
- USDA Agricultural Research Service Physiology and Pathology of Tree Fruits ResearchWenatcheeWAUSA
| | - James P. Mattheis
- USDA Agricultural Research Service Physiology and Pathology of Tree Fruits ResearchWenatcheeWAUSA
| | - Stephen P. Ficklin
- Molecular Plant Science ProgramWashington State UniversityPullmanWAUSA
- Department of HorticultureWashington State UniversityPullmanWAUSA
| | - Loren A. Honaas
- USDA Agricultural Research Service Physiology and Pathology of Tree Fruits ResearchWenatcheeWAUSA
| |
Collapse
|
4
|
Chatti K, Kmeli N, Bettaieb I, Hamdi J, Gaaied S, Mlouka R, Mars M, Bouktila D. Genome-Wide Analysis of the Common Fig (Ficus carica L.) R2R3-MYB Genes Reveals Their Structure, Evolution, and Roles in Fruit Color Variation. Biochem Genet 2024:10.1007/s10528-024-10960-w. [PMID: 39508995 DOI: 10.1007/s10528-024-10960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024]
Abstract
The R2R3-MYB transcription factor (TF) family is crucial for regulating plant growth, stress response, and fruit ripening. Although this TF family has been examined in a multitude of plants, the R2R3-MYB TFs in Ficus carica, a Mediterranean fruit species, have yet to be characterized. This study identified and classified 63 R2R3-MYB genes (FcMYB1 to FcMYB63) in the F. carica genome. We analyzed these genes for physicochemical properties, conserved motifs, phylogenetic relationships, gene architecture, selection pressure, and gene expression profiles and networks. The genes were classified into 29 clades, with members of the same clade showing similar exon-intron structures and motif compositions. Of the 54 orthologous gene pairs shared with mulberry (Morus notabilis), 52 evolved under negative selection, while two pairs (FcMYB55/MnMYB20 and FcMYB59/MnMYB31) experienced diversifying selection. RNA-Seq analysis showed that FcMYB26, FcMYB33, and FcMYB34 were significantly overexpressed in fig fruit peel during maturation phase III. Weighted gene co-expression network analysis (WGCNA) indicated that these genes are part of an expression module associated with the anthocyanin pathway. RT-qPCR validation confirmed these findings and revealed that the Tunisian cultivars 'Zidi' and 'Soltani' have cultivar-specific R2R3-FcMYB genes highly overexpressed during the final stage of fruit maturation and color acquisition. These genes likely influence cultivar-specific pigment synthesis. This study provides a comprehensive overview of the R2R3-MYB TF family in fig, offering a framework for selecting genes related to fruit peel color in breeding programs.
Collapse
Affiliation(s)
- Khaled Chatti
- Laboratory of Genetics, Biodiversity and Bioressources Exploitation (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, 5000, Monastir, Tunisia
| | - Narjes Kmeli
- Laboratory of Genetics, Biodiversity and Bioressources Exploitation (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, 5000, Monastir, Tunisia
| | - Inchirah Bettaieb
- Laboratory of Genetics, Biodiversity and Bioressources Exploitation (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, 5000, Monastir, Tunisia
| | - Jihen Hamdi
- Laboratory of Genetics, Biodiversity and Bioressources Exploitation (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, 5000, Monastir, Tunisia
| | - Sonia Gaaied
- Laboratory of Agrobiodiversity and Ecotoxicology (LR02AGR21), Higher Institute of Agronomy of Chott-Mariem, University of Sousse, 4042, Sousse, Tunisia
| | - Rania Mlouka
- Laboratory of Agrobiodiversity and Ecotoxicology (LR02AGR21), Higher Institute of Agronomy of Chott-Mariem, University of Sousse, 4042, Sousse, Tunisia
| | - Messaoud Mars
- Laboratory of Agrobiodiversity and Ecotoxicology (LR02AGR21), Higher Institute of Agronomy of Chott-Mariem, University of Sousse, 4042, Sousse, Tunisia
| | - Dhia Bouktila
- Laboratory of Genetics, Biodiversity and Bioressources Exploitation (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, 5000, Monastir, Tunisia.
| |
Collapse
|
5
|
Liu Q, Li S, Li T, Wei Q, Zhang Y. The Characterization of R2R3-MYB Genes in Water Lily Nymphaea colorata Reveals the Involvement of NcMYB25 in Regulating Anthocyanin Synthesis. PLANTS (BASEL, SWITZERLAND) 2024; 13:2990. [PMID: 39519909 PMCID: PMC11548254 DOI: 10.3390/plants13212990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Nymphaea colorata, valued for its diverse flower colors and attractive shapes, is a popular ornamental aquatic plant. Anthocyanins provide color to flowers, and their biosynthesis is regulated by the R2R3-MYB transcription factor. In this study, we identified and analyzed the R2R3-MYB genes in N. colorata, focusing on their structure, evolution, expression patterns, regulatory mechanisms, and biological functions. We also investigated the role of the NcMYB25 gene in anthocyanin biosynthesis. There were 59 R2R3-MYB genes in N. colorata, distributed across 14 chromosomes. Among these, 14 genes were involved in segmental duplications and 6 in tandem duplications. Multiple R2R3-MYB transcription factors appeared to play a role in biological processes in N. colorata, including NcMYB48 in flavonoid synthesis, NcMYB33 in lignin synthesis, NcMYB23 in cold stress response, and NcMYB54 in osmotic stress response. Additionally, we identified 92 miRNAs in N. colorata, with 43 interacting with 35 R2R3-MYB genes. The NcMYB25 protein is localized in the nucleus and possesses transcriptional activation activity. Overexpression of the NcMYB25 gene in an apple pericarp resulted in anthocyanin accumulation. These findings provide insight into the evolutionary trajectory of the R2R3-MYB genes in N. colorata and highlight the regulatory function of the NcMYB25 gene in anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Qi Liu
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an 710061, China; (Q.L.)
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Shujuan Li
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an 710061, China; (Q.L.)
| | - Tuanjie Li
- Longcaoping Forestry Bureau of Shaanxi Province, Hanzhong 723400, China
| | - Qian Wei
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an 710061, China; (Q.L.)
| | - Yan Zhang
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an 710061, China; (Q.L.)
| |
Collapse
|
6
|
Xu Y, Wang R, Ma Y, Li M, Bai M, Wei G, Wang J, Feng L. Metabolite and Transcriptome Profiling Analysis Provides New Insights into the Distinctive Effects of Exogenous Melatonin on Flavonoids Biosynthesis in Rosa rugosa. Int J Mol Sci 2024; 25:9248. [PMID: 39273197 PMCID: PMC11395435 DOI: 10.3390/ijms25179248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Although the petals of Rosa rugosa are rich in flavonoids and their bioactivity has a significant impact on human health, the flavonoid content decreases during flower development. In this study, R. rugosa 'Feng hua' was used to investigate the effects of the melatonin foliar spray on enhancing the quality of rose by focusing on major flavonoids. The results showed that the contents of total flavonoids in rose petals at the full bloom stage induced by melatonin obeyed a bell-shaped curve, with a maximum at 0.3 mM, indicating the concentration-dependent up-regulation of flavonoid biosynthesis. In the treatment with 0.3 mM melatonin, metabolomic analyses showed that the concentrations of ten main flavonoids were identified to be increased by melatonin induction, with high levels and increases observed in three flavonols and two anthocyanins. KEGG enrichment of transcriptomic analysis revealed a remarkable enrichment of DEGs in flavonoid and flavonol biosynthesis, such as Rr4CL, RrF3H, and RrANS. Furthermore, functional validation using virus-induced gene silencing technology demonstrated that Rr4CL3 is the crucial gene regulating flavonoid biosynthesis in response to the stimulant of melatonin. This study provides insights into the exogenous melatonin regulation mechanism of biosynthesis of flavonoids, thereby offering potential industrial applications.
Collapse
Affiliation(s)
- Yong Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Ruotong Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Yuanxiao Ma
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Meng Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Mengjuan Bai
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Guo Wei
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jianwen Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Liguo Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Yang T, Wang Y, Li Y, Liang S, Yang Y, Huang Z, Li Y, Gao J, Ma N, Zhou X. The transcription factor RhMYB17 regulates the homeotic transformation of floral organs in rose (Rosa hybrida) under cold stress. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2965-2981. [PMID: 38452221 PMCID: PMC11103112 DOI: 10.1093/jxb/erae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
Low temperatures affect flower development in rose (Rosa hybrida), increasing petaloid stamen number and reducing normal stamen number. We identified the low-temperature-responsive R2R3-MYB transcription factor RhMYB17, which is homologous to Arabidopsis MYB17 by similarity of protein sequences. RhMYB17 was up-regulated at low temperatures, and RhMYB17 transcripts accumulated in floral buds. Transient silencing of RhMYB17 by virus-induced gene silencing decreased petaloid stamen number and increased normal stamen number. According to the ABCDE model of floral organ identity, class A genes APETALA 1 (AP1) and AP2 contribute to sepal and petal formation. Transcription factor binding analysis identified RhMYB17 binding sites in the promoters of rose APETALA 2 (RhAP2) and APETALA 2-LIKE (RhAP2L). Yeast one-hybrid assays, dual-luciferase reporter assays, and electrophoretic mobility shift assays confirmed that RhMYB17 directly binds to the promoters of RhAP2 and RhAP2L, thereby activating their expression. RNA sequencing further demonstrated that RhMYB17 plays a pivotal role in regulating the expression of class A genes, and indirectly influences the expression of the class C gene. This study reveals a novel mechanism for the homeotic transformation of floral organs in response to low temperatures.
Collapse
Affiliation(s)
- Tuo Yang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yi Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yuqi Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Shangyi Liang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yunyao Yang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Ziwei Huang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yonghong Li
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Xiaofeng Zhou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Meng L, Yang H, Yang J, Wang Y, Ye T, Xiang L, Chan Z, Wang Y. Tulip transcription factor TgWRKY75 activates salicylic acid and abscisic acid biosynthesis to synergistically promote petal senescence. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2435-2450. [PMID: 38243353 DOI: 10.1093/jxb/erae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/17/2024] [Indexed: 01/21/2024]
Abstract
WRKY transcription factors play a central role in controlling plant organ senescence; however, it is unclear whether and how they regulate petal senescence in the widely grown ornamental plant tulip (Tulipa gesneriana). In this study, we report that TgWRKY75 promotes petal senescence by enhancing the synthesis of both abscisic acid (ABA) and salicylic acid (SA) in tulip and in transgenic Arabidopsis. The expression level of TgWRKY75 was up-regulated in senescent petals, and exogenous ABA or SA treatment induced its expression. The endogenous contents of ABA and SA significantly increased during petal senescence and in response to TgWRKY75 overexpression. Two SA synthesis-related genes, TgICS1 and TgPAL1, were identified as direct targets of TgWRKY75, which binds to their promoters. In parallel, TgWRKY75 activated the expression of the ABA biosynthesis-related gene TgNCED3 via directly binding to its promoter region. Site mutation of the W-box core motif located in the promoters of TgICS1, TgPAL1, and TgNCED3 eliminated their interactions with TgWRKY75. In summary, our study demonstrates a dual regulation of ABA and SA biosynthesis by TgWRKY75, revealing a synergistic process of tulip petal senescence through feedback regulation between TgWRKY75 and the accumulation of ABA and SA.
Collapse
Affiliation(s)
- Lin Meng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
- Hubei Hongshan Laboratory, Wuhan 30070, PR China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Haipo Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
- Hubei Hongshan Laboratory, Wuhan 30070, PR China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jinli Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yaping Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Tiantian Ye
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Lin Xiang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhulong Chan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
- Hubei Hongshan Laboratory, Wuhan 30070, PR China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yanping Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan 430070, PR China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
9
|
Gao H, Ma J, Zhao Y, Zhang C, Zhao M, He S, Sun Y, Fang X, Chen X, Ma K, Pang Y, Gu Y, Dongye Y, Wu J, Xu P, Zhang S. The MYB Transcription Factor GmMYB78 Negatively Regulates Phytophthora sojae Resistance in Soybean. Int J Mol Sci 2024; 25:4247. [PMID: 38673832 PMCID: PMC11050205 DOI: 10.3390/ijms25084247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Phytophthora root rot is a devastating disease of soybean caused by Phytophthora sojae. However, the resistance mechanism is not yet clear. Our previous studies have shown that GmAP2 enhances sensitivity to P. sojae in soybean, and GmMYB78 is downregulated in the transcriptome analysis of GmAP2-overexpressing transgenic hairy roots. Here, GmMYB78 was significantly induced by P. sojae in susceptible soybean, and the overexpressing of GmMYB78 enhanced sensitivity to the pathogen, while silencing GmMYB78 enhances resistance to P. sojae, indicating that GmMYB78 is a negative regulator of P. sojae. Moreover, the jasmonic acid (JA) content and JA synthesis gene GmAOS1 was highly upregulated in GmMYB78-silencing roots and highly downregulated in overexpressing ones, suggesting that GmMYB78 could respond to P. sojae through the JA signaling pathway. Furthermore, the expression of several pathogenesis-related genes was significantly lower in GmMYB78-overexpressing roots and higher in GmMYB78-silencing ones. Additionally, we screened and identified the upstream regulator GmbHLH122 and downstream target gene GmbZIP25 of GmMYB78. GmbHLH122 was highly induced by P. sojae and could inhibit GmMYB78 expression in resistant soybean, and GmMYB78 was highly expressed to activate downstream target gene GmbZIP25 transcription in susceptible soybean. In conclusion, our data reveal that GmMYB78 triggers soybean sensitivity to P. sojae by inhibiting the JA signaling pathway and the expression of pathogenesis-related genes or through the effects of the GmbHLH122-GmMYB78-GmbZIP25 cascade pathway.
Collapse
Affiliation(s)
- Hong Gao
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Jia Ma
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Yuxin Zhao
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Chuanzhong Zhang
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Ming Zhao
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Shengfu He
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Yan Sun
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Xin Fang
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Xiaoyu Chen
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Kexin Ma
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Yanjie Pang
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Yachang Gu
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Yaqun Dongye
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Junjiang Wu
- Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Soybean Cultivation of Ministry of Agriculture, Harbin 150030, China;
| | - Pengfei Xu
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Shuzhen Zhang
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| |
Collapse
|
10
|
Shu H, Sun S, Wang X, Chen J, Yang C, Zhang G, Han H, Li Z, Liang T, Liu R. Thidiazuron combined with cyclanilide modulates hormone pathways and ROS systems in cotton, increasing defoliation at low temperatures. FRONTIERS IN PLANT SCIENCE 2024; 15:1333816. [PMID: 38633458 PMCID: PMC11021790 DOI: 10.3389/fpls.2024.1333816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
Low temperatures decrease the thidiazuron (TDZ) defoliation efficiency in cotton, while cyclanilide (CYC) combined with TDZ can improve the defoliation efficiency at low temperatures, but the mechanism is unknown. This study analyzed the effect of exogenous TDZ and CYC application on cotton leaf abscissions at low temperatures (daily mean temperature: 15°C) using physiology and transcriptomic analysis. The results showed that compared with the TDZ treatment, TDZ combined with CYC accelerated cotton leaf abscission and increased the defoliation rate at low temperatures. The differentially expressed genes (DEGs) in cotton abscission zones (AZs) were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to compare the enriched GO terms and KEGG pathways between the TDZ treatment and TDZ combined with CYC treatment. TDZ combined with CYC could induce more DEGs in cotton leaf AZs at low temperatures, and these DEGs were related to plant hormone and reactive oxygen species (ROS) pathways. CYC is an auxin transport inhibitor. TDZ combined with CYC not only downregulated more auxin response related genes but also upregulated more ethylene and jasmonic acid (JA) response related genes at low temperatures, and it decreased the indole-3-acetic acid (IAA) content and increased the JA and 1-aminocyclopropane-1-carboxylic acid (ACC) contents, which enhanced cotton defoliation. In addition, compared with the TDZ treatment alone, TDZ combined with CYC upregulated the expression of respiratory burst oxidase homologs (RBOH) genes and the hydrogen peroxide content in cotton AZs at low temperatures, which accelerated cotton defoliation. These results indicated that CYC enhanced the TDZ defoliation efficiency in cotton by adjusting hormone synthesis and response related pathways (including auxin, ethylene, and JA) and ROS production at low temperatures.
Collapse
Affiliation(s)
- Hongmei Shu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Shangwen Sun
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Xiaojing Wang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Jian Chen
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Changqin Yang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Guowei Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Huanyong Han
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Zhikang Li
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Ting Liang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Ruixian Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| |
Collapse
|
11
|
Yuan Y, Zeng L, Kong D, Mao Y, Xu Y, Wang M, Zhao Y, Jiang CZ, Zhang Y, Sun D. Abscisic acid-induced transcription factor PsMYB306 negatively regulates tree peony bud dormancy release. PLANT PHYSIOLOGY 2024; 194:2449-2471. [PMID: 38206196 PMCID: PMC10980420 DOI: 10.1093/plphys/kiae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/08/2023] [Accepted: 12/02/2023] [Indexed: 01/12/2024]
Abstract
Bud dormancy is a crucial strategy for perennial plants to withstand adverse winter conditions. However, the regulatory mechanism of bud dormancy in tree peony (Paeonia suffruticosa) remains largely unknown. Here, we observed dramatically reduced and increased accumulation of abscisic acid (ABA) and bioactive gibberellins (GAs) GA1 and GA3, respectively, during bud endodormancy release of tree peony under prolonged chilling treatment. An Illumina RNA sequencing study was performed to identify potential genes involved in the bud endodormancy regulation in tree peony. Correlation matrix, principal component, and interaction network analyses identified a downregulated MYB transcription factor gene, PsMYB306, the expression of which positively correlated with 9-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (PsNCED3) expression. Protein modeling analysis revealed 4 residues within the R2R3 domain of PsMYB306 to possess DNA binding capability. Transcription of PsMYB306 was increased by ABA treatment. Overexpression of PsMYB306 in petunia (Petunia hybrida) inhibited seed germination and plant growth, concomitant with elevated ABA and decreased GA contents. Silencing of PsMYB306 accelerated cold-triggered tree peony bud burst and influenced the production of ABA and GAs and the expression of their biosynthetic genes. ABA application reduced bud dormancy release and transcription of ENT-KAURENOIC ACID OXIDASE 1 (PsKAO1), GA20-OXIDASE 1 (PsGA20ox1), and GA3-OXIDASE 1 (PsGA3ox1) associated with GA biosynthesis in PsMYB306-silenced buds. In vivo and in vitro binding assays confirmed that PsMYB306 specifically transactivated the promoter of PsNCED3. Silencing of PsNCED3 also promoted bud break and growth. Altogether, our findings suggest that PsMYB306 negatively modulates cold-induced bud endodormancy release by regulating ABA production.
Collapse
Affiliation(s)
- Yanping Yuan
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lingling Zeng
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Derong Kong
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanxiang Mao
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingru Xu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meiling Wang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yike Zhao
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Crops Pathology and Genetics Research Unit, USDA-ARS, Davis, CA 95616, USA
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Daoyang Sun
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
12
|
Kushwaha A, Mishra V, Tripathi DK, Gupta R, Singh VP. Epigenetics governs senescence. PLANT REPRODUCTION 2024; 37:33-36. [PMID: 37594548 DOI: 10.1007/s00497-023-00479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/28/2023] [Indexed: 08/19/2023]
Abstract
Petal is one of the most esthetic and essential parts of a flower that fascinates the pollinators to enhance pollination. Petal senescence is a highly controlled and organized natural phenomenon assisted by phytohormones and gene regulation. It is an inelastically programmed event preceding to which petals give rise to color and scent that captivate pollinators, representing a flower's maturity for sexual reproduction. Till today, many genes involved in the petal senescence through genetic as well as epigenetic changes in response to hormones have been identified. In most of the species, petal senescence is controlled by ethylene, whereas others are independent of this hormone. It has also been proved that the increase in the carbohydrate contents like mannitol, inositol and trehalose delayed the senescence in tulips and Gladiolus. An increased sugar content prevents the biosynthesis of EIN3-like mRNA and further upregulates several senescence correlated genes. A wide range of different transcription factors as well as regulators are disparately expressed in ethylene insensitive and ethylene sensitive petal senescence. DcHB30, a downregulating factor, which upon linking physically to DcWRKY75 leads to the upregulation of ethylene promoting petal senescence. Here we describe the role of ethylene in petal senescence through epigenetic changes. Studies show that ethylene causes petal senescence through epigenetic changes. Feng et al. (Plant Physiol 192:546-564, 2023) observed that ARABIDOPSIS HOMOLOG OF TRITHORAX1 (DcATX1) promotes trimethylation of histone 3 (H3) at 4th lysine (H3K4me3) in Carnation. H3K4me3 further stimulates the expression of genes of ethylene biosynthesis and senescence, leading to senescence in Carnation.
Collapse
Affiliation(s)
- Ajayraj Kushwaha
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Vipul Mishra
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab Amity, Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, 02707, South Korea.
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India.
| |
Collapse
|
13
|
Zhang Z, Yuan L, Dang J, Zhang Y, Wen Y, Du Y, Liang Y, Wang Y, Liu T, Li T, Hu X. 5-Aminolevulinic acid improves cold resistance through regulation of SlMYB4/SlMYB88-SlGSTU43 module to scavenge reactive oxygen species in tomato. HORTICULTURE RESEARCH 2024; 11:uhae026. [PMID: 38495031 PMCID: PMC10940124 DOI: 10.1093/hr/uhae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/14/2024] [Indexed: 03/19/2024]
Abstract
Cold stress severely affects the growth and quality of tomato. 5-Aminolevulinic acid (ALA) can effectively improve tomato's cold stress tolerance. In this study, a tomato glutathione S-transferase gene, SlGSTU43, was identified. Results showed that ALA strongly induced the expression of SlGSTU43 under cold stress. SlGSTU43-overexpressing lines showed increased resistance to cold stress through an enhanced ability to scavenge reactive oxygen species. On the contrary, slgstu43 mutant lines were sensitive to cold stress, and ALA did not improve their cold stress tolerance. Thus, SlGSTU43 is a key gene in the process of ALA improving tomato cold tolerance. Through yeast library screening, SlMYB4 and SlMYB88 were preliminarily identified as transcription factors that bind to the SlGSTU43 promoter. Electrophoretic mobility shift, yeast one-hybrid, dual luciferase, and chromatin immunoprecipitation assays experiments verified that SlMYB4 and SlMYB88 can bind to the SlGSTU43 promoter. Further experiments showed that SlMYB4 and SlMYB88 are involved in the process of ALA-improving tomato's cold stress tolerance and they positively regulate the expression of SlGSTU43. The findings provide new insights into the mechanism by which ALA improves cold stress tolerance. SlGSTU43, as a valuable gene, could be added to the cold-responsive gene repository. Subsequently, it could be used in genetic engineering to enhance the cold tolerance of tomato.
Collapse
Affiliation(s)
- Zhengda Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Luqiao Yuan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Jiao Dang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Yuhui Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Yongshuai Wen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Yu Du
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yufei Liang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ya Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tao Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| |
Collapse
|
14
|
Rao X, Qian Z, Xie L, Wu H, Luo Q, Zhang Q, He L, Li F. Genome-Wide Identification and Expression Pattern of MYB Family Transcription Factors in Erianthus fulvus. Genes (Basel) 2023; 14:2128. [PMID: 38136950 PMCID: PMC10743048 DOI: 10.3390/genes14122128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
MYB family genes have many functions and are widely involved in plant abiotic-stress responses. Erianthus fulvus is an important donor material for stress-resistance genes in sugarcane breeding. However, the MYB family genes in E. fulvus have not been systematically investigated. In this study, 133 EfMYB genes, including 48 Ef1R-MYB, 84 EfR2R3-MYB and 1 Ef3R-MYB genes, were identified in the E. fulvus genome. Among them, the EfR2R3-MYB genes were classified into 20 subgroups. In addition, these EfMYB genes were unevenly distributed across 10 chromosomes. A total of 4 pairs of tandemly duplicated EfMYB genes and 21 pairs of segmentally duplicated EfMYB genes were identified in the E. fulvus genome. Protein-interaction analysis predicted that 24 EfMYB proteins had potential interactions with 14 other family proteins. The EfMYB promoter mainly contains cis-acting elements related to the hormone response, stress response, and light response. Expression analysis showed that EfMYB39, EfMYB84, and EfMYB124 could be significantly induced using low-temperature stress. EfMYB30, EfMYB70, EfMYB81, and EfMYB101 responded positively to drought stress. ABA treatment significantly induced EfMYB1, EfMYB30, EfMYB39, EfMYB84, and EfMYB130. All nine genes were induced using MeJA treatment. These results provide comprehensive information on EfMYB genes and can serve as a reference for further studies of gene function.
Collapse
Affiliation(s)
- Xibing Rao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
| | - Zhenfeng Qian
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
| | - Linyan Xie
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
| | - Huaying Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
| | - Quan Luo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
| | - Qiyue Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
| | - Lilian He
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
| | - Fusheng Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Kunming 650201, China
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
15
|
Wang Y, Shi L, Feng W, Fu Y, Li C. Arabidopsis MYB21 Negatively Regulates KTN1 to Fine-Tune the Filament Elongation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3884. [PMID: 38005781 PMCID: PMC10675564 DOI: 10.3390/plants12223884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
The growth process of the stamen filament is crucial for plant reproduction. However, the molecular mechanisms underlying the regulation of filament growth remain largely unclear. Our study has identified that MYB21 is involved in the regulation of filament growth in Arabidopsis. In comparison to the wild type, the cell length of the filaments is notably reduced in the myb21 mutant. Moreover, we found that KTN1, which encodes a microtubule-severing enzyme, is significantly upregulated in the myb21 mutant. Additionally, yeast one-hybrid assays demonstrated that MYB21 can bind to the promoter region of KTN1, suggesting that MYB21 might directly regulate the expression of KTN1. Finally, transcriptional activity experiments showed that MYB21 is capable of suppressing the driving activity of the KTN1 promoter. This study indicates that the MYB21-KTN1 module may play a precise regulatory role in the growth of Arabidopsis filament cells.
Collapse
Affiliation(s)
| | | | | | | | - Changjiang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (Y.W.); (L.S.); (W.F.); (Y.F.)
| |
Collapse
|
16
|
Jing W, Gong F, Liu G, Deng Y, Liu J, Yang W, Sun X, Li Y, Gao J, Zhou X, Ma N. Petal size is controlled by the MYB73/TPL/HDA19-miR159-CKX6 module regulating cytokinin catabolism in Rosa hybrida. Nat Commun 2023; 14:7106. [PMID: 37925502 PMCID: PMC10625627 DOI: 10.1038/s41467-023-42914-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/25/2023] [Indexed: 11/06/2023] Open
Abstract
The size of plant lateral organs is determined by well-coordinated cell proliferation and cell expansion. Here, we report that miR159, an evolutionarily conserved microRNA, plays an essential role in regulating cell division in rose (Rosa hybrida) petals by modulating cytokinin catabolism. We uncover that Cytokinin Oxidase/Dehydrogenase6 (CKX6) is a target of miR159 in petals. Knocking down miR159 levels results in the accumulation of CKX6 transcripts and earlier cytokinin clearance, leading to a shortened cell division period and smaller petals. Conversely, knocking down CKX6 causes cytokinin accumulation and a prolonged developmental cell division period, mimicking the effects of exogenous cytokinin application. MYB73, a R2R3-type MYB transcription repressor, recruits a co-repressor (TOPLESS) and a histone deacetylase (HDA19) to form a suppression complex, which regulates MIR159 expression by modulating histone H3 lysine 9 acetylation levels at the MIR159 promoter. Our work sheds light on mechanisms for ensuring the correct timing of the exit from the cell division phase and thus organ size regulation by controlling cytokinin catabolism.
Collapse
Affiliation(s)
- Weikun Jing
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
- School of Food and Medicine, Shenzhen Polytechnic, Shenzhen, Guangdong, 518055, China
| | - Feifei Gong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Guoqin Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yinglong Deng
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jiaqi Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Wenjing Yang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaoming Sun
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yonghong Li
- School of Food and Medicine, Shenzhen Polytechnic, Shenzhen, Guangdong, 518055, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaofeng Zhou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
17
|
Van de Poel B, de Vries J. Evolution of ethylene as an abiotic stress hormone in streptophytes. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2023; 214:105456. [PMID: 37780400 PMCID: PMC10518463 DOI: 10.1016/j.envexpbot.2023.105456] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 10/03/2023]
Abstract
All land plants modulate their growth and physiology through intricate signaling cascades. The majority of these are at least modulated-and often triggered-by phytohormones. Over the past decade, it has become apparent that some phytohormones have an evolutionary origin that runs deeper than plant terrestrialization-many emerged in the streptophyte algal progenitors of land plants. Ethylene is such a case. Here we synthesize the current knowledge on the evolution of the phytohormone ethylene and speculate about its deeply conserved role in adjusting stress responses of streptophytes for more than half a billion years of evolution.
Collapse
Affiliation(s)
- Bram Van de Poel
- Molecular Plant Hormone Physiology lab, Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
- KU Leuven Plant Institute (LPI), University of Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| |
Collapse
|
18
|
Chen C, Ma Y, Zuo L, Xiao Y, Jiang Y, Gao J. The CALCINEURIN B-LIKE 4/CBL-INTERACTING PROTEIN 3 module degrades repressor JAZ5 during rose petal senescence. PLANT PHYSIOLOGY 2023; 193:1605-1620. [PMID: 37403193 PMCID: PMC10517193 DOI: 10.1093/plphys/kiad365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023]
Abstract
Flower senescence is genetically regulated and developmentally controlled. The phytohormone ethylene induces flower senescence in rose (Rosa hybrida), but the underlying signaling network is not well understood. Given that calcium regulates senescence in animals and plants, we explored the role of calcium in petal senescence. Here, we report that the expression of calcineurin B-like protein 4 (RhCBL4), which encodes a calcium receptor, is induced by senescence and ethylene signaling in rose petals. RhCBL4 interacts with CBL-interacting protein kinase 3 (RhCIPK3), and both positively regulate petal senescence. Furthermore, we determined that RhCIPK3 interacts with the jasmonic acid response repressor jasmonate ZIM-domain 5 (RhJAZ5). RhCIPK3 phosphorylates RhJAZ5 and promotes its degradation in the presence of ethylene. Our results reveal that the RhCBL4-RhCIPK3-RhJAZ5 module mediates ethylene-regulated petal senescence. These findings provide insights into flower senescence, which may facilitate innovations in postharvest technology for extending rose flower longevity.
Collapse
Affiliation(s)
- Changxi Chen
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yanxing Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lanxin Zuo
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yue Xiao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yunhe Jiang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
19
|
Chen C, Hussain N, Ma Y, Zuo L, Jiang Y, Sun X, Gao J. The ARF2-MYB6 module mediates auxin-regulated petal expansion in rose. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4489-4502. [PMID: 37158672 DOI: 10.1093/jxb/erad173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/06/2023] [Indexed: 05/10/2023]
Abstract
In cut rose (Rosa hybrida), the flower-opening process is closely associated with vase life. Auxin induces the expression of transcription factor genes that function in petal growth via cell expansion. However, the molecular mechanisms underlying the auxin effect during flower opening are not well understood. Here, we identified the auxin-inducible transcription factor gene RhMYB6, whose expression level is high during the early stages of flower opening. Silencing of RhMYB6 delayed flower opening by controlling petal cell expansion through down-regulation of cell expansion-related genes. Furthermore, we demonstrated that the auxin response factor RhARF2 directly interacts with the promoter of RhMYB6 and represses its transcription. Silencing of RhARF2 resulted in larger petal size and delayed petal movement. We also showed that the expression of genes related to ethylene and petal movement showed substantial differences in RhARF2-silenced petals. Our results indicate that auxin-regulated RhARF2 is a critical player that controls flower opening by governing RhMYB6 expression and mediating the crosstalk between auxin and ethylene signaling.
Collapse
Affiliation(s)
- Changxi Chen
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Nisar Hussain
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yanxing Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lanxin Zuo
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yunhe Jiang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaoming Sun
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
20
|
Hu R, Wang J, Yang H, Wei D, Tang Q, Yang Y, Tian S, Wang Z. Comparative transcriptome analysis reveals the involvement of an MYB transcriptional activator, SmMYB108, in anther dehiscence in eggplant. FRONTIERS IN PLANT SCIENCE 2023; 14:1164467. [PMID: 37521920 PMCID: PMC10382176 DOI: 10.3389/fpls.2023.1164467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/16/2023] [Indexed: 08/01/2023]
Abstract
Male sterility is a highly attractive agronomic trait as it effectively prevents self-fertilization and facilitates the production of high-quality hybrid seeds in plants. Timely release of mature pollen following anther dehiscence is essential for stamen development in flowering plants. Although several theories have been proposed regarding this, the specific mechanism of anther development in eggplant remains elusive. In this study, we selected an R2R3-MYB transcription factor gene, SmMYB108, that encodes a protein localized primarily in the nucleus by comparing the transcriptomics of different floral bud developmental stages of the eggplant fertile line, F142. Quantitative reverse transcription polymerase chain reaction revealed that SmMYB108 was preferentially expressed in flowers, and its expression increased significantly on the day of flowering. Overexpression of SmMYB108 in tobacco caused anther dehiscence. In addition, we found that SmMYB108 primarily functions as a transcriptional activator via C-terminal activation (amino acid 262-317). Yeast one-hybrid and dual-luciferase reporter assays revealed that genes (SmMYB21, SmARF6, and SmARF8) related to anther development targeted the SmMYB108 promoter. Overall, our results provide insights into the molecular mechanisms involved in the regulation of anther development by SmMYB108.
Collapse
Affiliation(s)
- Ruolin Hu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Jiali Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Huiqing Yang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Dayong Wei
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Qinglin Tang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Yang Yang
- The Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Shibing Tian
- The Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Zhimin Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| |
Collapse
|
21
|
Wang Y, Fan Z, Zhai Y, Huang H, Vainstein A, Ma H. Polygalacturonase gene family analysis identifies FcPG12 as a key player in fig (Ficus carica L.) fruit softening. BMC PLANT BIOLOGY 2023; 23:320. [PMID: 37316788 DOI: 10.1186/s12870-023-04315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND The fig (Ficus carica L.) tree has high economic value. However, its fruit have a short shelf life due to rapid softening. Polygalacturonases (PGs) are essential hydrolases, responsible for the pectin degradation that plays a key role in fruit softening. However, fig PG genes and their regulators have not yet been characterized. RESULTS In this study, 43 FcPGs were identified in the fig genome. They were non-uniformly distributed on 13 chromosomes, and tandem repeat PG gene clusters were found on chromosomes 4 and 5. Ka/Ks calculation and collinear analysis indicated negative selection as the main driver of FcPG family expansion. Fourteen FcPGs were found expressed in fig fruit with FPKM values > 10, of which seven were positively correlated, and three, negatively correlated with fruit softening. Eleven FcPGs were upregulated and two downregulated in response to ethephon treatment. FcPG12, a member of the tandem repeat cluster on chromosome 4, was selected for further analyses due to its sharp increment in transcript abundance during fruit softening and its response to ethephon treatment. Transient overexpression of FcPG12 led to decreased fig fruit firmness and increased PG enzyme activity in the tissue. Two ethylene response factor (ERF)-binding GCC-box sites were found on the FcPG12 promoter. Yeast one-hybrid and dual luciferase assays showed that FcERF5 binds directly to the FcPG12 promoter and upregulates its expression. Transient overexpression of FcERF5 upregulated FcPG12 expression, thereby increasing PG activity and fruit softening. CONCLUSIONS Our study identified FcPG12 as a key PG gene in fig fruit softening, and its direct positive regulation by FcERF5. The results provide new information on the molecular regulation of fig fruit softening.
Collapse
Affiliation(s)
- Yuan Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhiyi Fan
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yanlei Zhai
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hantang Huang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Alexander Vainstein
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Huiqin Ma
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
22
|
Li J, Pan W, Liang J, Liu C, Li D, Yang Y, Qu L, Gazzarrini S, Yi M, Wu J. BASIC PENTACYSTEINE2 fine-tunes corm dormancy release in Gladiolus. PLANT PHYSIOLOGY 2023; 191:2489-2505. [PMID: 36659854 PMCID: PMC10069901 DOI: 10.1093/plphys/kiad026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Bud dormancy is an important trait in geophytes that largely affects their flowering process and vegetative growth after dormancy release. Compared with seed dormancy, the regulation of bud dormancy is still largely unclear. Abscisic acid (ABA) acts as the predominant hormone that regulates the whole dormancy process. In Gladiolus (Gladiolus hybridus), cold storage promotes corm dormancy release (CDR) by repressing ABA biosynthesis and signaling. However, the mechanisms governing ABA-related processes during CDR via epigenetics are poorly understood. Here, we show that class I BASIC PENTACYSTEINE2, (GhBPC2) directly binds to 9-CIS-EPOXYCAROTENOID DIOXYGENASE (GhNCED) and ABA INSENSITIVE5 (GhABI5) loci and down-regulates their expression to accelerate CDR. During CDR, histone modifications change dramatically at the GhBPC2-binding loci of GhABI5 with an increase in H3K27me3 and a decrease in H3K4me3. GhBPC2 is involved in both H3K27me3 and H3K4me3 and fine-tunes GhABI5 expression by recruiting polycomb repressive complex 2 (PRC2) and the chromatin remodeling factor EARLY BOLTING IN SHORT DAYS (GhEBS). These results show GhBPC2 epigenetically regulates CDR in Gladiolus by mediating GhABI5 expression with PRC2 and GhEBS.
Collapse
Affiliation(s)
- Jingru Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Wenqiang Pan
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Jiahui Liang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chang Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Danqing Li
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Institute of Landscape Architecture, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yingdong Yang
- Institute of Floriculture, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Lianwei Qu
- Institute of Floriculture, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Sonia Gazzarrini
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON Canada
| | - Mingfang Yi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
23
|
Recent Advances in Research into Jasmonate Biosynthesis and Signaling Pathways in Agricultural Crops and Products. Processes (Basel) 2023. [DOI: 10.3390/pr11030736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Jasmonates (JAs) are phospholipid-derived hormones that regulate plant development and responses to environmental stress. The synthesis of JAs and the transduction of their signaling pathways are precisely regulated at multiple levels within and outside the nucleus as a result of a combination of genetic and epigenetic regulation. In this review, we focus on recent advances in the regulation of JA biosynthesis and their signaling pathways. The biosynthesis of JAs was found to be regulated with an autocatalytic amplification mechanism via the MYC2 regulation pathway and inhibited by an autonomous braking mechanism via the MYC2-targeting bHLH1 protein to terminate JA signals in a highly ordered manner. The biological functions of JAs mainly include the promotion of fruit ripening at the initial stage via ethylene-dependent and independent ways, the regulation of mature coloring via regulating the degradation of chlorophyll and the metabolism of anthocyanin, and the improvement of aroma components via the regulation of fatty acid and aldehyde alcohol metabolism in agricultural crops. JA signaling pathways also function in the enhancement of biotic and abiotic stress resistance via the regulation of secondary metabolism and the redox system, and they relieve cold damage to crops through improving the stability of the cell membrane. These recently published findings indicate that JAs are an important class of plant hormones necessary for regulating plant growth and development, ripening, and the resistance to stress in agricultural crops and products.
Collapse
|
24
|
Casey M, Marchioni I, Lear B, Cort AP, Baldwin A, Rogers HJ, Stead AD. Senescence in dahlia flowers is regulated by a complex interplay between flower age and floret position. FRONTIERS IN PLANT SCIENCE 2023; 13:1085933. [PMID: 36714770 PMCID: PMC9880482 DOI: 10.3389/fpls.2022.1085933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Mechanisms regulating flower senescence are not fully understood in any species and are particularly complex in composite flowers. Dahlia (Dahlia pinnata Cav.) florets develop sequentially, hence each composite flower head includes florets of different developmental stages as the whole flower head ages. Moreover, the wide range of available cultivars enables assessment of intraspecific variation. Transcriptomes were compared amongst inner (younger) and outer (older) florets of two flower head ages to assess the effect of floret vs. flower head ageing. More gene expression, including ethylene and cytokinin pathway expression changed between inner and outer florets of older flower heads than between inner florets of younger and older flower heads. Additionally, based on Arabidopsis network analysis, different patterns of co-expressed ethylene response genes were elicited. This suggests that changes occur in young inner florets as the whole flower head ages that are different to ageing florets within a flower head. In some species floral senescence is orchestrated by the plant growth regulator ethylene. However, there is both inter and intra-species variation in its importance. There is a lack of conclusive data regarding ethylene sensitivity in dahlia. Speed of senescence progression, effects of ethylene signalling perturbation, and patterns of ethylene biosynthesis gene expression differed across three dahlia cultivars ('Sylvia', 'Karma Prospero' and 'Onesta') suggesting differences in the role of ethylene in their floral senescence, while effects of exogenous cytokinin were less cultivar-specific.
Collapse
Affiliation(s)
- Matthew Casey
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Ilaria Marchioni
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Dipartimento di Scienze Agrarie, Alimentari e Agro-alimentari, Università di Pisa, Pisa, Italy
| | - Bianca Lear
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Alex P. Cort
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Ashley Baldwin
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Hilary J. Rogers
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Anthony D. Stead
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| |
Collapse
|
25
|
Wang Y, Yang T, Li Y, Hou J, He J, Ma N, Zhou X. Genome-wide identification and expression analysis of MIKC C genes in rose provide insight into their effects on flower development. FRONTIERS IN PLANT SCIENCE 2022; 13:1059925. [PMID: 36407632 PMCID: PMC9666904 DOI: 10.3389/fpls.2022.1059925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The MIKCC-type gene family plays important roles in plant growth, development, and tolerance of biotic and abiotic stress, especially during floral organ differentiation. However, there have been no studies of MIKCC-type genes in rose, and functional differentiation of family members has not been explored. In this study, we identified 42 MIKCC-type genes in rose, classified the genes into 12 subfamilies, and constructed a phylogenetic tree. We performed expression analysis of these genes, and found that expression patterns correlated with the predicted subfamily, indicating that the features of MIKCC-type genes were broadly conserved during evolution. Collinear analysis of MIKCC genes among Rosaceae species confirmed the occurrence of whole genome duplications (WGD) and revealed some species-specific MIKCC genes. Transcriptome analysis showed that the expression of some MIKCC-type genes responded to low temperatures (4°C, 24 h) during flower organ differentiation. These conserved, duplicated, and novel expression patterns of MIKCC-type genes may have facilitated the adaptation of rose to various internal and external environmental changes. The results of this study provide a theoretical basis for future functional analysis of the MIKCC genes in rose and investigation of the evolutionary pattern of the MIKCC gene family in the Rosaceae genome.
Collapse
|
26
|
Wu Y, Zuo L, Ma Y, Jiang Y, Gao J, Tao J, Chen C. Protein Kinase RhCIPK6 Promotes Petal Senescence in Response to Ethylene in Rose ( Rosa Hybrida). Genes (Basel) 2022; 13:1989. [PMID: 36360225 PMCID: PMC9689952 DOI: 10.3390/genes13111989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/06/2022] [Accepted: 10/26/2022] [Indexed: 05/19/2024] Open
Abstract
Cultivated roses have the largest global market share among ornamental crops. Postharvest release of ethylene is the main cause of accelerated senescence and decline in rose flower quality. To understand the molecular mechanism of ethylene-induced rose petal senescence, we analyzed the transcriptome of rose petals during natural senescence as well as with ethylene treatment. A large number of differentially expressed genes (DEGs) were observed between developmental senescence and the ethylene-induced process. We identified 1207 upregulated genes in the ethylene-induced senescence process, including 82 transcription factors and 48 protein kinases. Gene Ontology enrichment analysis showed that ethylene-induced senescence was closely related to stress, dehydration, and redox reactions. We identified a calcineurin B-like protein (CBL) interacting protein kinase (CIPK) family gene in Rosa hybrida, RhCIPK6, that was regulated by age and ethylene induction. Reducing RhCIPK6 expression through virus-induced gene silencing significantly delayed petal senescence, indicating that RhCIPK6 mediates petal senescence. In the RhCIPK6-silenced petals, several senescence associated genes (SAGs) and transcription factor genes were downregulated compared with controls. We also determined that RhCIPK6 directly binds calcineurin B-like protein 3 (RhCBL3). Our work thus offers new insights into the function of CIPKs in petal senescence and provides a genetic resource for extending rose vase life.
Collapse
Affiliation(s)
- Yanqing Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Lanxin Zuo
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yanxing Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yunhe Jiang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Changxi Chen
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
27
|
Li F, Gao Y, Jin C, Wen X, Geng H, Cheng Y, Qu H, Liu X, Feng S, Zhang F, Ruan J, Yang C, Zhang L, Wang J. The chromosome-level genome of Gypsophila paniculata reveals the molecular mechanism of floral development and ethylene insensitivity. HORTICULTURE RESEARCH 2022; 9:uhac176. [PMID: 36204200 PMCID: PMC9533222 DOI: 10.1093/hr/uhac176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
Gypsophila paniculata, belonging to the Caryophyllaceae of the Caryophyllales, is one of the most famous worldwide cut flowers. It is commonly used as dried flowers, whereas the underlying mechanism of flower senescence has not yet been addressed. Here, we present a chromosome-scale genome assembly for G. paniculata with a total size of 749.58 Mb. Whole-genome duplication signatures unveil two major duplication events in its evolutionary history: an ancient one occurring before the divergence of Caryophyllaceae and a more recent one shared with Dianthus caryophyllus. The integrative analyses combining genomic and transcriptomic data reveal the mechanisms regulating floral development and ethylene response of G. paniculata. The reduction of AGAMOUS expression probably caused by sequence polymorphism and the mutation in miR172 binding site of PETALOSA are associated with the double flower formation in G. paniculata. The low expression of ETHYLENE RESPONSE SENSOR (ERS) and the reduction of downstream ETHYLENE RESPONSE FACTOR (ERF) gene copy number collectively lead to the ethylene insensitivity of G. paniculata, affecting flower senescence and making it capable of making dried flowers. This study provides a cornerstone for understanding the underlying principles governing floral development and flower senescence, which could accelerate the molecular breeding of the Caryophyllaceae species.
Collapse
Affiliation(s)
- Fan Li
- Corresponding authors. E-mail: ; ;
| | | | | | | | - Huaiting Geng
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, 650200, Kunming, China
- School of Agriculture, Yunnan University, 650504, Kunming, China
| | - Ying Cheng
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, 650200, Kunming, China
- School of Agriculture, Yunnan University, 650504, Kunming, China
| | - Haoyue Qu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Xing Liu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Shan Feng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
- National R&D Center for Citrus Postharvest Technology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Fan Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
- National R&D Center for Citrus Postharvest Technology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jiwei Ruan
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, 650200, Kunming, China
| | - Chunmei Yang
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, 650200, Kunming, China
| | | | | |
Collapse
|
28
|
Huang S, Zhang L, Cai T, Zhao Y, Liu J, Wu P, Ma X, Shuai P. Transcriptome Level Analysis of Genes of Exogenous Ethylene Applied under Phosphorus Stress in Chinese Fir. PLANTS (BASEL, SWITZERLAND) 2022; 11:2036. [PMID: 35956517 PMCID: PMC9370400 DOI: 10.3390/plants11152036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/23/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) is a widely grown gymnosperm in China. Phosphorus (P) is an indispensable nutrient for the growth of Chinese fir. Inorganic phosphate (Pi) deficiency exists in soils of many Chinese fir planting area regions, and the trees themselves have limited efficiency in utilizing P from the soil. Ethylene is important in regulation responses to nutrient deficiencies. However, little is known about how ethylene signals participate in Pi stress in Chinese fir. A total of six different treatments were performed to reveal the transcript levels of Chinese fir under Pi, ethephon (an ethylene-releasing compound), and CoCl2 (cobalt chloride, an ethylene biosynthesis inhibitor) treatments. We assembled a full-length reference transcriptome containing 22,243 unigenes as a reference for UMI RNA-seq (Digital RNA-seq). There were 586 Differentially Expressed Genes (DEGs) in the Pi starvation (NP) group, while DEGs from additional ethephon or CoCl2 in NP were 708 and 292, respectively. Among the DEGs in each treatment, there were 83 TFs in these treatment groups. MYB (v-myb avian myeloblastosis viral oncogene homolog) family was the most abundant transcription factors (TFs). Three ERF (Ethylene response factor) family genes were identified when only ethylene content was imposed as a variable. Enrichment analysis indicated that the ascorbate and aldarate metabolism pathway plays a key role in resistance to Pi deficiency. This study provides insights for further elucidating the regulatory mechanism of Pi deficiency in Chinese fir.
Collapse
Affiliation(s)
- Shuotian Huang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lixia Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tingting Cai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuxuan Zhao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiao Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengfei Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Xiangqing Ma
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Peng Shuai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| |
Collapse
|
29
|
Wang B, Li S, Zou L, Guo X, Liang J, Liao W, Peng M. Natural variation MeMYB108 associated with tolerance to stress-induced leaf abscission linked to enhanced protection against reactive oxygen species in cassava. PLANT CELL REPORTS 2022; 41:1573-1587. [PMID: 35608655 PMCID: PMC9270272 DOI: 10.1007/s00299-022-02879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Natural variation of the MeMYB108 exon was associated with reactive oxygen scavengers led to alleviate leaf abscission under drought in cassava. The reactive oxygen scavengers play important roles in regulating the cassava (Manihot esculenta Crantz) leaf abscission induced by stresses. To date, the relationship between natural variations of MYB genes and reactive oxygen scavengers under drought in cassava genotypes remains unclear. Here, we reported the transcription factor MeMYB108 played an important role in regulating leaf abscission exposed to drought in cassava. The expression levels of MeMYB108 in abscission zones of cassava leaf pulvinus were higher in cassava genotype SC124, which were less easy to shed leaves under stress than cassava genotype SC8 when the leaf abscission induced by the same drought condition. Compared with wild type and interference expression plants, overexpression of MeMYB108 significantly reduced the drought-induced leaf abscission rate under drought. The consecutively 2-year analysis of reactive oxygen scavengers showed significant differences among different cassava genotypes under drought-induced leaf abscission, indicating the relevance between reactive oxygen scavengers and leaf abscission. Correlation analysis revealed the natural variation of the MeMYB108 exon was associated with reactive oxygen scavengers during drought-induced leaf abscission. Association analysis between pairwise LD of DNA polymorphism indicated the MeMYB108 allele enhanced the tolerance of cassava to drought-induced leaf abscission. Complementation transgenic lines containing the elite allele of MeMYB108 SC124 decreased the leaf abscission rate induced by drought conditions, demonstrating natural variation in MeMYB108 contributed to leaf abscission tolerance induced by drought in cassava. Further studies showed MeMYB108 played an active role in the tolerance of cassava to drought-induced leaf abscission by inducing scavenging of reactive oxygen species.
Collapse
Affiliation(s)
- Bin Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shuxia Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Liangping Zou
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xin Guo
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Jiaxin Liang
- College of Life Sciences, Heilongjiang University, Heilongjing, 150080, China
| | - Wenbin Liao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| | - Ming Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| |
Collapse
|
30
|
Wu Y, Wen J, Xia Y, Zhang L, Du H. Evolution and functional diversification of R2R3-MYB transcription factors in plants. HORTICULTURE RESEARCH 2022; 9:uhac058. [PMID: 35591925 PMCID: PMC9113232 DOI: 10.1093/hr/uhac058] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/24/2022] [Indexed: 05/31/2023]
Abstract
R2R3-MYB genes (R2R3-MYBs) form one of the largest transcription factor gene families in the plant kingdom, with substantial structural and functional diversity. However, the evolutionary processes leading to this amazing functional diversity have not yet been clearly established. Recently developed genomic and classical molecular technologies have provided detailed insights into the evolutionary relationships and functions of plant R2R3-MYBs. Here, we review recent genome-level and functional analyses of plant R2R3-MYBs, with an emphasis on their evolution and functional diversification. In land plants, this gene family underwent a large expansion by whole genome duplications and small-scale duplications. Along with this population explosion, a series of functionally conserved or lineage-specific subfamilies/groups arose with roles in three major plant-specific biological processes: development and cell differentiation, specialized metabolism, and biotic and abiotic stresses. The rapid expansion and functional diversification of plant R2R3-MYBs are highly consistent with the increasing complexity of angiosperms. In particular, recently derived R2R3-MYBs with three highly homologous intron patterns (a, b, and c) are disproportionately related to specialized metabolism and have become the predominant subfamilies in land plant genomes. The evolution of plant R2R3-MYBs is an active area of research, and further studies are expected to improve our understanding of the evolution and functional diversification of this gene family.
Collapse
Affiliation(s)
- Yun Wu
- Department of Landscape Architecture, School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wen
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hai Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| |
Collapse
|
31
|
Li F, Wu Q, Liao B, Yu K, Huo Y, Meng L, Wang S, Wang B, Du M, Tian X, Li Z. Thidiazuron Promotes Leaf Abscission by Regulating the Crosstalk Complexities between Ethylene, Auxin, and Cytokinin in Cotton. Int J Mol Sci 2022; 23:ijms23052696. [PMID: 35269837 PMCID: PMC8910847 DOI: 10.3390/ijms23052696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 01/27/2023] Open
Abstract
Thidiazuron (TDZ) is widely used as a defoliant to induce leaf abscission in cotton. However, the underlying molecular mechanism is still unclear. In this study, RNA-seq and enzyme-linked immunosorbent assays (ELISA) were performed to reveal the dynamic transcriptome profiling and the change of endogenous phytohormones upon TDZ treatment in leaf, petiole, and abscission zone (AZ). We found that TDZ induced the gene expression of ethylene biosynthesis and signal, and promoted ethylene accumulation earlier in leaf than that in AZ. While TDZ down-regulated indole-3-acetic acid (IAA) biosynthesis genes mainly in leaf and IAA signal and transport genes. Furthermore, the IAA content reduced more sharply in the leaf than that in AZ to change the auxin gradient for abscission. TDZ suppressed CTK biosynthesis genes and induced CTK metabolic genes to reduce the IPA accumulation for the reduction of ethylene sensitivity. Furthermore, TDZ regulated the gene expression of abscisic acid (ABA) biosynthesis and signal and induced ABA accumulation between 12-48 h, which could up-regulate ABA response factor genes and inhibit IAA transporter genes. Our data suggest that TDZ orchestrates metabolism and signal of ethylene, auxin, and cytokinin, and also the transport of auxin in leaf, petiole, and AZ, to control leaf abscission.
Collapse
Affiliation(s)
- Fangjun Li
- Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (F.L.); (B.L.); (K.Y.); (Y.H.); (L.M.); (S.W.); (B.W.); (X.T.); (Z.L.)
| | - Qian Wu
- Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Baopeng Liao
- Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (F.L.); (B.L.); (K.Y.); (Y.H.); (L.M.); (S.W.); (B.W.); (X.T.); (Z.L.)
| | - Keke Yu
- Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (F.L.); (B.L.); (K.Y.); (Y.H.); (L.M.); (S.W.); (B.W.); (X.T.); (Z.L.)
| | - Yini Huo
- Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (F.L.); (B.L.); (K.Y.); (Y.H.); (L.M.); (S.W.); (B.W.); (X.T.); (Z.L.)
| | - Lu Meng
- Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (F.L.); (B.L.); (K.Y.); (Y.H.); (L.M.); (S.W.); (B.W.); (X.T.); (Z.L.)
- High Latitude Crops Institute, Shanxi Agriculture University, Datong 037008, China
| | - Songman Wang
- Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (F.L.); (B.L.); (K.Y.); (Y.H.); (L.M.); (S.W.); (B.W.); (X.T.); (Z.L.)
| | - Baomin Wang
- Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (F.L.); (B.L.); (K.Y.); (Y.H.); (L.M.); (S.W.); (B.W.); (X.T.); (Z.L.)
| | - Mingwei Du
- Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (F.L.); (B.L.); (K.Y.); (Y.H.); (L.M.); (S.W.); (B.W.); (X.T.); (Z.L.)
- Correspondence: ; Tel.: +86-10-6273-3049
| | - Xiaoli Tian
- Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (F.L.); (B.L.); (K.Y.); (Y.H.); (L.M.); (S.W.); (B.W.); (X.T.); (Z.L.)
| | - Zhaohu Li
- Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (F.L.); (B.L.); (K.Y.); (Y.H.); (L.M.); (S.W.); (B.W.); (X.T.); (Z.L.)
| |
Collapse
|
32
|
Yao J, Li R, Cheng Y, Li Z. A combined transcriptomic and proteomic analysis of chrysanthemum provides new insights into petal senescence. PLANTA 2021; 255:22. [PMID: 34918180 DOI: 10.1007/s00425-021-03808-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Numerous transcription factor genes and methylation-related genes were differentially expressed in senescent petals compared with control petals. Studying petal senescence is crucial for extending the postharvest longevity of cut flowers, but petal senescence remains relatively unexplored compared to well-studied leaf senescence. In this study, a combined transcriptomic and proteomic analysis of senescent (22 days after cutting) and control (0 day after cutting) petals was performed to investigate the molecular processes underlying petal senescence of chrysanthemum (Chrysanthemum morifolium Ramat.), an important cut flower crop worldwide. A total of 11,324 differentially expressed genes (DEGs), including 4888 up-regulated and 6436 down-regulated genes, and 403 differentially expressed proteins (DEPs), including 210 up-regulated and 193 down-regulated proteins, were identified at transcript and protein levels, respectively. A cross-comparison of transcriptomic and proteomic data identified 257 consistent DEGs/DEPs, including 122 up-regulated and 135 down-regulated DEGs/DEPs. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that "cutin, suberine and wax biosynthesis" is a main pathway for both DEGs and DEPs, especially for down-regulated DEGs/DEPs. Functional analysis indicated that chrysanthemum genes mainly encoding putative cytochrome P450s, non-specific lipid-transfer proteins, subtilisin-like proteases, AAA-ATPases, proteins essential for cuticular wax biosynthesis, and proteins in hormone signal transduction or ubiquitination were differentially expressed at both transcript and protein levels. In addition, numerous transcription factor genes and methylation-related genes were also differentially expressed, inferring an involvement of transcriptional and epigenetic regulation in petal senescence. These results provide a valuable resource of studying chrysanthemum senescence and significant insights into petal senescence.
Collapse
Affiliation(s)
- Juanni Yao
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Rui Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China.
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
33
|
Transcriptome and Metabolome Analyses Provide Insights into the Stomium Degeneration Mechanism in Lily. Int J Mol Sci 2021; 22:ijms222212124. [PMID: 34830002 PMCID: PMC8619306 DOI: 10.3390/ijms222212124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
Abstract
Lily (Lilium spp.) is a widely cultivated horticultural crop that has high ornamental and commercial value but also the serious problem of pollen pollution. However, mechanisms of anther dehiscence in lily remain largely unknown. In this study, the morphological characteristics of the stomium zone (SZ) from different developmental stages of ‘Siberia’ lily anthers were investigated. In addition, transcriptomic and metabolomic data were analyzed to identify the differentially expressed genes (DEGs) and secondary metabolites involved in stomium degeneration. According to morphological observations, SZ lysis occurred when flower buds were 6–8 cm in length and was completed in 9 cm. Transcriptomic analysis identified the genes involved in SZ degeneration, including those associated with hormone signal transduction, cell structure, reactive oxygen species (ROS), and transcription factors. A weighted co-expression network showed strong correlations between transcription factors. In addition, TUNEL (TdT-mediated dUTP nick-end labeling) assays showed that programmed cell death was important during anther SZ degeneration. Jasmonates might also have key roles in anther dehiscence by affecting the expression of the genes involved in pectin lysis, water transport, and cysteine protease. Collectively, the results of this study improve our understanding of anther dehiscence in lily and provide a data platform from which the molecular mechanisms of SZ degeneration can be revealed.
Collapse
|
34
|
Jing W, Zhao Q, Zhang S, Zeng D, Xu J, Zhou H, Wang F, Liu Y, Li Y. RhWRKY33 Positively Regulates Onset of Floral Senescence by Responding to Wounding- and Ethylene-Signaling in Rose Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:726797. [PMID: 34804083 PMCID: PMC8602865 DOI: 10.3389/fpls.2021.726797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Rose plants are one of the most important horticultural crops, whose commercial value mainly depends on long-distance transportation, and wounding and ethylene are the main factors leading to their quality decline and accelerated senescence in the process. However, underlying molecular mechanisms of crosstalk between wounding and ethylene in the regulation of flower senescence remain poorly understood. In relation to this, transcriptome analysis was performed on rose flowers subjected to various treatments, including control, wounding, ethylene, and wounding- and ethylene- (EW) dual treatment. A large number of differentially expressed genes (DEGs) were identified, ranging from 2,442 between the ethylene- and control-treated groups to 4,055 between the EW- and control-treated groups. Using weighted gene co-expression network analysis (WGCNA), we identified a hub gene RhWRKY33 (rchiobhmchr5g0071811), accumulated in the nucleus, where it may function as a transcription factor. Moreover, quantitative reverse transcription PCR (RT-qPCR) results showed that the expression of RhWRKY33 was higher in the wounding-, ethylene, and EW-treated petals than in the control-treated petals. We also functionally characterized the RhWRKY33 gene through virus-induced gene silencing (VIGS). The silencing of RhWRKY33 significantly delayed the senescence process in the different treatments (control, wounding, ethylene, and EW). Meanwhile, we found that the effect of RhWRKY33-silenced petals under ethylene and EW dual-treatment were stronger than those under wounding treatment in delaying the petal senescence process, implying that RhWRKY33 is closely involved with ethylene and wounding mediated petal senescence. Overall, the results indicate that RhWRKY33 positively regulates the onset of floral senescence mediated by both ethylene and wounding signaling, but relies heavily on ethylene signaling.
Collapse
Affiliation(s)
- Weikun Jing
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen, China
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, China
| | - Qingcui Zhao
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen, China
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, China
| | - Shuai Zhang
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen, China
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, China
| | - Daxing Zeng
- School of Construction Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Jiehua Xu
- School of Construction Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Hougao Zhou
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Fenglan Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yang Liu
- School of Construction Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Yonghong Li
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen, China
| |
Collapse
|
35
|
Du Y, Luo S, Zhao J, Feng Z, Chen X, Ren W, Liu X, Wang Z, Yu L, Li W, Qu Y, Liu J, Zhou L. Genome and transcriptome-based characterization of high energy carbon-ion beam irradiation induced delayed flower senescence mutant in Lotus japonicus. BMC PLANT BIOLOGY 2021; 21:510. [PMID: 34732128 PMCID: PMC8564971 DOI: 10.1186/s12870-021-03283-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/20/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Flower longevity is closely related to pollen dispersal and reproductive success in all plants, as well as the commercial value of ornamental plants. Mutants that display variation in flower longevity are useful tools for understanding the mechanisms underlying this trait. Heavy-ion beam irradiation has great potential to improve flower shapes and colors; however, few studies are available on the mutation of flower senescence in leguminous plants. RESULTS A mutant (C416) exhibiting blossom duration eight times longer than that of the wild type (WT) was isolated in Lotus japonicus derived from carbon ion beam irradiation. Genetic assays supported that the delayed flower senescence of C416 was a dominant trait controlled by a single gene, which was located between 4,616,611 Mb and 5,331,876 Mb on chromosome III. By using a sorting strategy of multi-sample parallel genome sequencing, candidate genes were narrowed to the gene CUFF.40834, which exhibited high identity to ethylene receptor 1 in other model plants. A physiological assay demonstrated that C416 was insensitive to ethylene precursor. Furthermore, the dynamic changes of phytohormone regulatory network in petals at different developmental stages was compared by using RNA-seq. In brief, the ethylene, jasmonic acid (JA), and salicylic acid (SA) signaling pathways were negatively regulated in C416, whereas the brassinosteroid (BR) and cytokinin signaling pathways were positively regulated, and auxin exhibited dual effects on flower senescence in Lotus japonicus. The abscisic acid (ABA) signaling pathway is positively regulated in C416. CONCLUSION So far, C416 might be the first reported mutant carrying a mutation in an endogenous ethylene-related gene in Lotus japonicus, rather than through the introduction of exogenous genes by transgenic techniques. A schematic of the flower senescence of Lotus japonicus from the perspective of the phytohormone regulatory network was provided based on transcriptome profiling of petals at different developmental stages. This study is informative for elucidating the molecular mechanism of delayed flower senescence in C416, and lays a foundation for candidate flower senescence gene identification in Lotus japonicus. It also provides another perspective for the improvement of flower longevity in legume plants by heavy-ion beam.
Collapse
Affiliation(s)
- Yan Du
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Shanwei Luo
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Jian Zhao
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730000, People's Republic of China
| | - Zhuo Feng
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Xia Chen
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Weibin Ren
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Xiao Liu
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Zhuanzi Wang
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
| | - Lixia Yu
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
| | - Wenjian Li
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
| | - Ying Qu
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- Kejin Innovation Institute of Heavy Ion Beam Biological Industry, Baiyin, 730900, People's Republic of China
| | - Jie Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Libin Zhou
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China.
- Kejin Innovation Institute of Heavy Ion Beam Biological Industry, Baiyin, 730900, People's Republic of China.
| |
Collapse
|
36
|
Li Z, Zhou W, Wang P, Chen Y, Huo S, Wang J, Tian D, Niu J, Zhao Y, Song X. Transcriptome Analysis Reveals the Senescence Process Controlling the Flower Opening and Closure Rhythm in the Waterlilies ( Nymphaea L.). FRONTIERS IN PLANT SCIENCE 2021; 12:701633. [PMID: 34671367 PMCID: PMC8521120 DOI: 10.3389/fpls.2021.701633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Most waterlily flowers open at dawn and close after noon usually for three to four days, and thereafter wilt. The short lifespan of flowers restricts the development of the flower postharvest industry. The termination of flower movements is a key event during flower aging process. However, it is still unclear when the senescence process initiates and how it terminates the movement rhythm. In this study, we observed that the opening diameter of flowers was the smallest on the fourth (last) flowering day. Subsequent transcriptome profiles generated from petals at different flowering stages showed that the multiple signaling pathways were activated at the last closure stage (Time 3, T3) of the flowers, including Ca2+, reactive oxygen species and far red light signaling pathways, as well as auxin, ethylene and jasmonic acid signaling pathways. Moreover, In terms of cell metabolism regulation, the genes related to hydrolase (protease, phospholipase, nuclease) were upregulated at T3 stage, indicating that petals entered the senescence stage at that time; and the genes related to water transport and cell wall modification were also differentially regulated at T3 stage, which would affect the ability of cell expand and contract, and eventually lead to petal not open after the fourth day. Collectively, our data provided a new insight into the termination of flower opening in the waterlilies, and a global understanding of the senescence process of those opening-closure rhythm flowers.
Collapse
Affiliation(s)
- Zhaoji Li
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Weijuan Zhou
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Peng Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yanfu Chen
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Shaojie Huo
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Jian Wang
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Daike Tian
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Centre, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Jun Niu
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Ying Zhao
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Xiqiang Song
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| |
Collapse
|
37
|
Luo J, Li R, Xu X, Niu H, Zhang Y, Wang C. SMRT and Illumina RNA Sequencing and Characterization of a Key NAC Gene LoNAC29 during the Flower Senescence in Lilium oriental 'Siberia'. Genes (Basel) 2021; 12:genes12060869. [PMID: 34204040 PMCID: PMC8227295 DOI: 10.3390/genes12060869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 02/04/2023] Open
Abstract
Lily (Lilium spp.) is an important cut flower around the world. Flower senescence in lilies is characterized by the wilting and abscission of tepals, which results in a decrease in flower quality and huge economic loss. However, the mechanism underlying flower senescence in lilies is largely unknown. In this study, single-molecule, real-time (SMRT) and Illumina sequencing were carried out in L. oriental ‘Siberia’. Sequencing yielded 73,218 non-redundant transcripts, with an N50 of 3792 bp. These data were further integrated with three published transcriptomes through cogent analysis, which yielded 62,960 transcripts, with an increase in N50 of 3935 bp. Analysis of differentially expressed genes showed that 319 transcription factors were highly upregulated during flower senescence. The expression of twelve NAC genes and eleven senescence-associated genes (SAGs) showed that LoNAC29 and LoSAG39 were highly expressed in senescent flowers. Transient overexpression of LoNAC29 and LoSAG39 in tepals of lily notably accelerated flower senescence, and the promoter activity of LoSAG39 was strongly induced by LoNAC29. This work supported new evidence for the molecular mechanism of flower senescence and provided better sequence data for further study in lilies.
Collapse
Affiliation(s)
- Jing Luo
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (R.L.); (X.X.); (H.N.); (Y.Z.)
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
| | - Ruirui Li
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (R.L.); (X.X.); (H.N.); (Y.Z.)
| | - Xintong Xu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (R.L.); (X.X.); (H.N.); (Y.Z.)
| | - Hairui Niu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (R.L.); (X.X.); (H.N.); (Y.Z.)
| | - Yujie Zhang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (R.L.); (X.X.); (H.N.); (Y.Z.)
| | - Caiyun Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (R.L.); (X.X.); (H.N.); (Y.Z.)
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
- Correspondence: ; Tel.: +86-027-87282010
| |
Collapse
|
38
|
Hua B, Chang J, Wu M, Xu Z, Zhang F, Yang M, Xu H, Wang L, Chen X, Wu S. Mediation of JA signalling in glandular trichomes by the woolly/SlMYC1 regulatory module improves pest resistance in tomato. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:375-393. [PMID: 32888338 PMCID: PMC7868972 DOI: 10.1111/pbi.13473] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 07/26/2020] [Accepted: 08/07/2020] [Indexed: 05/24/2023]
Abstract
Almost all plants form trichomes, which protect them against insect herbivores by forming a physical barrier and releasing chemical repellents. Glandular trichomes produce a variety of specialized defensive metabolites, including volatile terpenes. Previous studies have shown that the defence hormone jasmonic acid (JA) affects trichome development and induces terpene synthases (TPSs) but the underlying molecular mechanisms remain unclear. Here, we characterized a loss-of-function allele of the HD-ZIP IV transcription factor woolly (wo) and analysed its role in mediating JA signalling in tomato. We showed that knockout of wo led to extensive trichome defects, including structural and functional changes in type VI glandular trichomes, and a dramatic reduction in terpene levels. We further found that wo directly binds to TPS gene promoters to recruit SlMYC1, a JA signalling modulator, and that together these transcription factors promote terpene biosynthesis in tomato trichomes. The wo/SlMYC1 regulatory module is inhibited by SlJAZ2 through a competitive binding mechanism, resulting in a fine-tuned JA response in tomato trichomes. Enhanced expression of SlMYC1 substantially increased terpene levels and improved tomato resistance to spider mites. Interestingly, we also found that SlMYC1 plays an additional role in glandular cell division and expansion in type VI trichomes, independent of JA. Together, our results reveal a novel, JA-mediated regulatory mechanism that promotes insect resistance in tomato.
Collapse
Affiliation(s)
- Bing Hua
- College of HorticultureFAFU‐UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiang Chang
- College of HorticultureFAFU‐UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Minliang Wu
- College of HorticultureFAFU‐UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zhijing Xu
- College of HorticultureFAFU‐UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Fanyu Zhang
- College of HorticultureFAFU‐UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Meina Yang
- College of HorticultureFAFU‐UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Huimin Xu
- College of HorticultureFAFU‐UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ling‐Jian Wang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyShanghaiChina
| | - Xiao‐Ya Chen
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyShanghaiChina
| | - Shuang Wu
- College of HorticultureFAFU‐UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
39
|
Dong J, Cao L, Zhang X, Zhang W, Yang T, Zhang J, Che D. An R2R3-MYB Transcription Factor RmMYB108 Responds to Chilling Stress of Rosa multiflora and Conferred Cold Tolerance of Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:696919. [PMID: 34386027 PMCID: PMC8353178 DOI: 10.3389/fpls.2021.696919] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/30/2021] [Indexed: 05/19/2023]
Abstract
A sudden cooling in the early spring or late autumn negatively impacts the plant growth and development. Although a number of studies have characterized the role of the transcription factors (TFs) of plant R2R3-myeloblastosis (R2R3-MYB) in response to biotic and abiotic stress, plant growth, and primary and specific metabolisms, much less is known about their role in Rosa multiflora under chilling stress. In the present study, RmMYB108, which encodes a nuclear-localized R2R3-MYB TF with a self-activation activity, was identified based on the earlier published RNA-seq data of R. multiflora plants exposed to short-term low-temperature stress and also on the results of prediction of the gene function referring Arabidopsis. The RmMYB108 gene was induced by stress due to chilling, salt, and drought and was expressed in higher levels in the roots than in the leaves. The heterologous expression of RmMYB108 in Arabidopsis thaliana significantly enhanced the tolerance of transgenic plants to freezing, water deficit, and high salinity, enabling higher survival and growth rates, earlier flowering and silique formation, and better seed quantity and quality compared with the wild-type (WT) plants. When exposed to a continuous low-temperature stress at 4°C, transgenic Arabidopsis lines-overexpressing RmMYB108 showed higher activities of superoxide dismutase and peroxidase, lower relative conductivity, and lower malondialdehyde content than the WT. Moreover, the initial fluorescence (F o) and maximum photosynthetic efficiency of photosystem II (F v/F m) changed more dramatically in the WT than in transgenic plants. Furthermore, the expression levels of cold-related genes involved in the ICE1 (Inducer of CBF expression 1)-CBFs (C-repeat binding factors)-CORs (Cold regulated genes) cascade were higher in the overexpression lines than in the WT. These results suggest that RmMYB108 was positively involved in the tolerance responses when R. multiflora was exposed to challenges against cold, freeze, salt, or drought and improved the cold tolerance of transgenic Arabidopsis by reducing plant damage and promoting plant growth.
Collapse
Affiliation(s)
- Jie Dong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Lei Cao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Xiaoying Zhang
- Horticultural Research Institute, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Wuhua Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Tao Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Jinzhu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- *Correspondence: Jinzhu Zhang,
| | - Daidi Che
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Daidi Che,
| |
Collapse
|
40
|
Wang Y, Ye H, Bai J, Ren F. The regulatory framework of developmentally programmed cell death in floral organs: A review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:103-112. [PMID: 33307422 DOI: 10.1016/j.plaphy.2020.11.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/30/2020] [Indexed: 05/27/2023]
Abstract
Developmentally programmed cell death (dPCD) is a tightly controlled biological process. In recent years, vital roles of dPCD on regulating floral organ growth and development have been reported. It is well known that flower is an essential organ for reproduction and a turning point of plants' life cycle. Hence, uncovering the complex molecular networks which regulates dPCD processes in floral organs is utmost important. So far, our understanding of dPCD on floral organ growth and development is just starting. Herein, we summarize the important factors that involved in the tapetal degeneration, pollen tube rupture, receptive synergid cell death, nucellar degradation, and antipodal cell degradation. Meanwhile, the known factors that involved in transmitting tract formation and self-incompatibility-induced PCD were also introduced. Furthermore, the genes that associated with anther dehiscence and petal senescence and abscission were reviewed as well. The functions of various types of factors involved in floral dPCD processes are highlighted principally. The regulatory panorama described here can provide us some insights about flower-specific dPCD process.
Collapse
Affiliation(s)
- Yukun Wang
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan.
| | - Hong Ye
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Jianfang Bai
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, PR China
| | - Fei Ren
- School of Agricultural Science and Engineering, Shaoguan University, 288 Daxue Road, Shaoguan, 512000, PR China.
| |
Collapse
|
41
|
Fan Y, Liu J, Zou J, Zhang X, Jiang L, Liu K, Lü P, Gao J, Zhang C. The RhHB1/ RhLOX4 module affects the dehydration tolerance of rose flowers ( Rosa hybrida) by fine-tuning jasmonic acid levels. HORTICULTURE RESEARCH 2020; 7:74. [PMID: 32377364 PMCID: PMC7195446 DOI: 10.1038/s41438-020-0299-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 05/14/2023]
Abstract
Phytohormones are key factors in plant responsiveness to abiotic and biotic stresses, and maintaining hormone homeostasis is critically important during stress responses. Cut rose (Rosa hybrida) flowers experience dehydration stress during postharvest handling, and jasmonic acid (JA) levels change as a result of this stress. However, how JA is involved in dehydration tolerance remains unclear. We investigated the functions of the JA- and dehydration-induced RhHB1 gene, which encodes a homeodomain-leucine zipper I γ-clade transcription factor, in rose flowers. Silencing RhHB1 decreased petal dehydration tolerance and resulted in a persistent increase in JA-Ile content and reduced dehydration tolerance. An elevated JA-Ile level had a detrimental effect on rose petal dehydration tolerance. RhHB1 was shown to lower the transient induction of JA-Ile accumulation in response to dehydration. In addition to transcriptomic data, we obtained evidence that RhHB1 suppresses the expression of the lipoxygenase 4 (RhLOX4) gene by directly binding to its promoter both in vivo and in vitro. We propose that increased JA-Ile levels weaken the capacity for osmotic adjustment in petal cells, resulting in reduced dehydration tolerance. In conclusion, a JA feedback loop mediated by an RhHB1/RhLOX4 regulatory module provides dehydration tolerance by fine-tuning bioactive JA levels in dehydrated flowers.
Collapse
Affiliation(s)
- Youwei Fan
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Jitao Liu
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
- Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou, Guangdong 510642 China
| | - Jing Zou
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Xiangyu Zhang
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Liwei Jiang
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Kun Liu
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Peitao Lü
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Junping Gao
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Changqing Zhang
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
42
|
Molecular Evidences for the Interactions of Auxin, Gibberellin, and Cytokinin in Bent Peduncle Phenomenon in Rose ( Rosa sp.). Int J Mol Sci 2020; 21:ijms21041360. [PMID: 32085472 PMCID: PMC7072929 DOI: 10.3390/ijms21041360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/08/2020] [Accepted: 02/14/2020] [Indexed: 12/03/2022] Open
Abstract
In roses (Rosa sp.), peduncle morphology is an important ornamental feature. The common physiological abnormality known as the bent peduncle phenomenon (BPP) seriously decreases the quality of rose flowers and thus the commercial value. Because the molecular mechanisms underlying this condition are poorly understood, we analysed the transcriptional profiles and cellular structures of bent rose peduncles. Numerous differentially expressed genes involved in the auxin, cytokinin, and gibberellin signaling pathways were shown to be associated with bent peduncle. Paraffin sections showed that the cell number on the upper sides of bent peduncles was increased, while the cells on the lower sides were larger than those in normal peduncles. We also investigated the large, deformed sepals that usually accompany BPP and found increased expression level of some auxin-responsive genes and decreased expression level of genes that are involved in cytokinin and gibberellin synthesis in these sepals. Furthermore, removal of the deformed sepals partially relieved BPP. In summary, our findings suggest that auxin, cytokinin, and gibberellin all influence the development of BPP by regulating cell division and expansion. To effectively reduce BPP in roses, more efforts need to be devoted to the molecular regulation of gibberellins and cytokinins in addition to that of auxin.
Collapse
|
43
|
Zhang S, Zhao Q, Zeng D, Xu J, Zhou H, Wang F, Ma N, Li Y. Erratum: Author Correction: RhMYB108, an R2R3-MYB transcription factor, is involved in ethylene- and JA-induced petal senescence in rose plants. HORTICULTURE RESEARCH 2019; 6:139. [PMID: 31885871 PMCID: PMC6932989 DOI: 10.1038/s41438-019-0230-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
[This corrects the article DOI: 10.1038/s41438-019-0221-8.].
Collapse
Affiliation(s)
- Shuai Zhang
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong 518055 China
- Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055 Guangdong China
| | - Qingcui Zhao
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong 518055 China
- Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055 Guangdong China
| | - Daxing Zeng
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong 518055 China
- Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055 Guangdong China
| | - Jiehua Xu
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong 518055 China
- Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055 Guangdong China
| | - Hougao Zhou
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510642 China
| | - Fenglan Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510642 China
| | - Nan Ma
- China Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yonghong Li
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong 518055 China
- Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055 Guangdong China
| |
Collapse
|