1
|
Ren C, Aini N, Kuang Y, Lin Y, Liang Z. Sensing, Adapting and Thriving: How Fruit Crops Combat Abiotic Stresses. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40205704 DOI: 10.1111/pce.15504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025]
Abstract
Production of high-yield and high-quality fruits is always the long-term objective of fruit crop cultivation, which, however, is challenged by various abiotic stresses such as drought, extreme temperatures and high salinity, and the adverse impacts of abiotic stresses on fruit crops are exacerbated by climate change in recent years. To cope with these environmental stressors, fruit crops have evolved adaptative strategies involving physiological changes and molecular regulation. In this review, we summarise the relevent changes in photosynthesis, osmotic and reactive oxygen species (ROS) equilibrium, metabolism and protein homeostasis in response to abiotic stresses. Moreover, perception of environmental stimuli as well as recent progress of underlying regulatory mechanisms is also discussed. Based on our current knowledge, possible strategies for stress resilience improvement in fruit crops are accordingly proposed. In addition, we also discuss the challenges in identification of key nodes in plant responses to multiple stresses and development of stress-resilient fruit crops, and addressing these issues in the future would advance our understanding of how fruit crops combat abiotic stresses and facilitate the breeding of superior fruit crops that can adapt to and thrive in the changing environments.
Collapse
Affiliation(s)
- Chong Ren
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nuremanguli Aini
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yangfu Kuang
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanping Lin
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenchang Liang
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Pan F, Li H, Qu M, An X, Yang J, Fu Y. Melatonin enhances salt tolerance by promoting CcCAD10-mediated lignin biosynthesis in pigeon pea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:81. [PMID: 40119910 DOI: 10.1007/s00122-025-04846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 01/31/2025] [Indexed: 03/25/2025]
Abstract
Melatonin plays a crucial role in enhancing plant resistance to salt stress by regulating biosynthesis of specialized metabolites. Phenylpropanoids, especially lignin, contribute to all aspects of plant responses toward biotic and abiotic stresses. However, the crosstalk between melatonin and lignin is largely unknown in pigeon pea under salt stress. In this study, the cinnamyl alcohol dehydrogenase CcCAD10 was identified to be involved in melatonin treatment and salt stress. The content of lignin was significantly increased in CcCAD10 over-expression (OE) lines, the enhanced antioxidant enzyme activities, indicating enhanced salt resistance. As a parallel branch of the lignin synthesis pathway, the content of flavonoids was further determined. The accumulations of luteolin, genistin, genistein, biochain A, apigenin and isovitexin were down-regulated in CcCAD10-OE hairy root. The results indicate that CcCAD10-OE mediated carbon flow from the phenylalanine pathway is redirected to the lignin pathway at the expense of less carbon flow in the flavonoid pathway, enhancing the salt-tolerance. Furthermore, we found the exogenous melatonin stimulated endogenous melatonin production mainly by upregulating the expression of CcASMT2 gene. This study reveals a novel mechanism by which melatonin enhances salt tolerance in pigeon pea, which laid a foundation for exploring the molecular mechanism of melatonin in salt stress response.
Collapse
Affiliation(s)
- Feng Pan
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Hongquan Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Ming Qu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Xiaoli An
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Jie Yang
- China College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yujie Fu
- College of Forestry, Beijing Forestry University, Beijing, 100083, China.
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China.
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, 155100, China.
| |
Collapse
|
3
|
Li S, Wang X, Gao L, Tian Y, Ma S. Functional Characterization of CsBAS1, CsSND1, and CsIRX6 in Cucumber Defense Against Meloidogyne incognita. Int J Mol Sci 2025; 26:2133. [PMID: 40076769 PMCID: PMC11900111 DOI: 10.3390/ijms26052133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Vascular tissue development plays a pivotal role in plant growth and defense against biotic stress. Root-knot nematodes, particularly Meloidogyne incognita (M. incognita), are globally distributed phytopathogens that cause severe economic losses in a variety of vascular plants. In this study, three vascular bundle development-related genes, including CsBAS1, CsSND1, and CsIRX6, were identified in cucumber. Tissue-specific expression analysis revealed that CsSND1 and CsIRX6 were highly expressed in roots. Infection with M. incognita showed dynamic expression changes for CsBAS1, CsSND1, and CsIRX6. Specially, CsIRX6 and CsSND1 were upregulated at 14 days post-inoculation (dpi), while CsBAS1 was downregulated at both 7 dpi and 14 dpi. Tissue localization studies using promoter-GUS constructs demonstrated pCsBAS1-GUS and pCsSND1-GUS activity in galls and specific vascular tissues, while CsIRX6 mRNA was detected in giant cells (GCs) at 14 dpi using in situ methods. Virus-induced gene silencing (VIGS) of CsBAS1, CsSND1, and CsIRX6 revealed their distinct roles in nematode-induced gall formation. Silencing CsBAS1 and CsSND1 resulted in increased root growth and gall size, whereas silencing CsIRX6 led to reduced gall size. These findings highlight the functional significance of CsBAS1, CsSND1, and CsIRX6 in cucumber defense against M. incognita, offering insights into the interplay between vascular development and plant defense mechanisms.
Collapse
Affiliation(s)
- Shihui Li
- Beijing Key Laboratory of Growth and Development Regulation for Protected Vegetable Crops, College of Horticulture, China Agriculture University, Beijing 100193, China; (S.L.); (X.W.); (L.G.)
| | - Xueyun Wang
- Beijing Key Laboratory of Growth and Development Regulation for Protected Vegetable Crops, College of Horticulture, China Agriculture University, Beijing 100193, China; (S.L.); (X.W.); (L.G.)
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Development Regulation for Protected Vegetable Crops, College of Horticulture, China Agriculture University, Beijing 100193, China; (S.L.); (X.W.); (L.G.)
| | - Yongqiang Tian
- Beijing Key Laboratory of Growth and Development Regulation for Protected Vegetable Crops, College of Horticulture, China Agriculture University, Beijing 100193, China; (S.L.); (X.W.); (L.G.)
| | - Si Ma
- Beijing Key Laboratory of Growth and Development Regulation for Protected Vegetable Crops, College of Horticulture, China Agriculture University, Beijing 100193, China; (S.L.); (X.W.); (L.G.)
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
4
|
Li Y, He W, Liu Y, Mei C, Wang H, Song X. ClBRN1 from Chrysanthemum lavandulifolium enhances the stress resistance of transgenic Arabidopsis. PeerJ 2024; 12:e18620. [PMID: 39677964 PMCID: PMC11646423 DOI: 10.7717/peerj.18620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024] Open
Abstract
Background Chrysanthemum (Chrysanthemum×morifolium Ramat.) is a particularly important autumn perennial flower for potted plant, flower bed and border, and cut flower with high ornamental value. However, abiotic stress can affect the ornamental quality of Chrysanthemum. NAC (NAM, ATAF1-2, and CUC2) transcription factors (TFs) play an important role in regulating plant growth and development, as well as responding to abiotic stresses. Methods In this study, the ClBRN1 (Chrysanthemum lavandulifolium BEARSKIN gene) was isolated from the Chrysanthemum model plant C. lavandulifolium. And analyze the function of the gene through bioinformatics, subcellular localization and overexpression. Results Bioinformatics analysis showed that the ClBRN1 gene was a member of the NAC TFs family, with a CDS (coding sequence) length of 1,080 bp and encoding 359 amino acids. The subcellular localization results found that the gene was located in the nucleus and cell membrane. Furthermore, the transgenic results in Arabidopsis thaliana showed that the gene significantly reduces plant height while improving salt and low temperature tolerance. Observation of paraffin sections of Arabidopsis stems also revealed that the secondary cell wall of overexpressing Arabidopsis stems was significantly thicker than that of wild-type. The above results indicate that the ClBRN1 gene may play an important role in regulating plant resistance to abiotic stress. This study will provide new insights for molecular breeding of resistant chrysanthemums in the future.
Collapse
Affiliation(s)
- Yanxi Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Wenting He
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yueyue Liu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Chendi Mei
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hai Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xuebin Song
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
5
|
Dokka N, Rathinam M, Sreevathsa R. Lignin lite: Boosting plant power through selective downregulation. PLANT, CELL & ENVIRONMENT 2024; 47:4945-4962. [PMID: 39115273 DOI: 10.1111/pce.15060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 11/06/2024]
Abstract
SUMMARY STATEMENTThis article explores the dual benefits of reducing lignin content in plants, which streamlines biofuel production while maintaining robust defence mechanisms. It discusses how plants compensate for lower lignin levels through alternative defence strategies, recent biotechnological advances in lignin modification, and the implications for agriculture and industry.
Collapse
Affiliation(s)
- Narasimham Dokka
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Maniraj Rathinam
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Rohini Sreevathsa
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
| |
Collapse
|
6
|
Li H, Guo J, Li K, Gao Y, Li H, Long L, Chu Z, Du Y, Zhao X, Zhao B, Lan C, Botella JR, Zhang X, Jia KP, Miao Y. Regulation of lignin biosynthesis by GhCAD37 affects fiber quality and anther vitality in upland cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2846-2860. [PMID: 39559968 DOI: 10.1111/tpj.17149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/13/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Cotton stands as a pillar in the textile industry due to its superior natural fibers. Lignin, a complex polymer synthesized from phenylalanine and deposited in mature cotton fibers, is believed to be essential for fiber quality, although the precise effects remain largely unclear. In this study, we characterized two ubiquitously expressed cinnamyl alcohol dehydrogenases (CAD), GhCAD37A and GhCAD37D (GhCAD37A/D), in Gossypium hirsutum. GhCAD37A/D possess CAD enzymatic activities, to catalyze the generation of monolignol products during lignin biosynthesis. Analysis of transgenic cotton knockout and overexpressing plants revealed that GhCAD37A/D are important regulators of fiber quality, positively impacting breaking strength but negatively affecting fiber length and elongation percentage by modulating lignin biosynthesis in fiber cells. Moreover, GhCAD37A/D are shown to modulate anther vitality and affect stem lodging trait in cotton by influencing lignin biosynthesis in the vascular bundles of anther and stem, respectively. Additionally, our study revealed that Ghcad37A/D knockout plants displayed red stem xylem, likely due to the overaccumulation of aldehyde intermediates in the phenylpropanoid metabolism pathway, as indicated by metabolomics analysis. Thus, our work illustrates that GhCAD37A/D are two important enzymes of lignin biosynthesis in different cotton organs, influencing fiber quality, anther vitality, and stem lodging.
Collapse
Affiliation(s)
- Haipeng Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
- Sanya Institute of Henan University, Sanya, Hainan, 572025, China
| | - Jinggong Guo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
- Sanya Institute of Henan University, Sanya, Hainan, 572025, China
| | - Kun Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
- Sanya Institute of Henan University, Sanya, Hainan, 572025, China
| | - Yuwen Gao
- Sanya Institute of Henan University, Sanya, Hainan, 572025, China
| | - Hang Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
| | - Lu Long
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
| | - Zongyan Chu
- Sanya Institute of Henan University, Sanya, Hainan, 572025, China
| | - Yubei Du
- Kaifeng Academy of Agriculture and Forestry, Kaifeng, China
| | - Xulong Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
| | - Bing Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
| | - Chen Lan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
| | - José Ramón Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Xuebin Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
| | - Kun-Peng Jia
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
- Sanya Institute of Henan University, Sanya, Hainan, 572025, China
| | - Yuchen Miao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
- Sanya Institute of Henan University, Sanya, Hainan, 572025, China
| |
Collapse
|
7
|
Li L, Chen G, Sun Q, Wang Q, Wang S, Wang H, Ni Z, Jiang C, Li L, Li T. Evaluation of Salt Resistance of Six Apple Rootstocks. Int J Mol Sci 2024; 25:12568. [PMID: 39684281 DOI: 10.3390/ijms252312568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Apples (Malus domestica Borkh) are important fruits in China; however, salt stress is severe in northern regions, and the key to plant resistance to salt stress lies in the rootstock. Therefore, it is necessary to explore rootstocks with strong salt resistance for the development of the apple industry. This study used tissue culture seedlings of six apple rootstocks, namely, '71-3-150', '54-118', 'M9T337', 'GM256', 'ML176', and 'ML2', as experimental materials. The seedlings were treated with a medium containing 150 mM NaCl, and the physiological indicators and related gene expression responses of several rootstocks were studied after salt stress. The results showed that salt stress affects the growth of both the aboveground and underground parts of plants. Through physiological indicators and the related gene expression responses of rootstocks, it was observed that salt stress significantly increased Na+ contents in different rootstocks. Simultaneously, the activity of various antioxidant enzymes and the expression levels of related genes also increased. In summary, by analyzing the parameters of various physiological indicators, it can be concluded that among the studied rootstocks, the '71-3-150' and '54-118' rootstocks have the strongest resistance to salt stress, while the 'M9T337' and 'GM256' rootstocks exhibit moderate resistance, and the 'ML176' and 'ML2' rootstocks have the weakest resistance.
Collapse
Affiliation(s)
- Lun Li
- Frontiers Science Center for Molecular Design Breeding, College of Horticulture, China Agricultural University, Beijing 100193, China
- Shandong Institute of Pomology, Taian 271000, China
| | - Guolin Chen
- College of Horticulture and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Qingrong Sun
- Shandong Institute of Pomology, Taian 271000, China
| | - Qing Wang
- College of Horticulture and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Sen Wang
- Shandong Institute of Pomology, Taian 271000, China
| | - Haibo Wang
- Shandong Institute of Pomology, Taian 271000, China
| | - Zhihua Ni
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| | - Caina Jiang
- Frontiers Science Center for Molecular Design Breeding, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Linguang Li
- Frontiers Science Center for Molecular Design Breeding, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Tianhong Li
- Frontiers Science Center for Molecular Design Breeding, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
8
|
Zhou Y, Feng C, Wang Y, Yun C, Zou X, Cheng N, Zhang W, Jing Y, Li H. Understanding of Plant Salt Tolerance Mechanisms and Application to Molecular Breeding. Int J Mol Sci 2024; 25:10940. [PMID: 39456729 PMCID: PMC11507592 DOI: 10.3390/ijms252010940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Soil salinization is a widespread hindrance that endangers agricultural production and ecological security. High salt concentrations in saline soils are primarily caused by osmotic stress, ionic toxicity and oxidative stress, which have a negative impact on plant growth and development. In order to withstand salt stress, plants have developed a series of complicated physiological and molecular mechanisms, encompassing adaptive changes in the structure and function of various plant organs, as well as the intricate signal transduction networks enabling plants to survive in high-salinity environments. This review summarizes the recent advances in salt perception under different tissues, physiological responses and signaling regulations of plant tolerance to salt stress. We also examine the current knowledge of strategies for breeding salt-tolerant plants, including the applications of omics technologies and transgenic approaches, aiming to provide the basis for the cultivation of salt-tolerant crops through molecular breeding. Finally, future research on the application of wild germplasm resources and muti-omics technologies to discover new tolerant genes as well as investigation of crosstalk among plant hormone signaling pathways to uncover plant salt tolerance mechanisms are also discussed in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yan Jing
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (Y.Z.); (C.F.); (Y.W.); (C.Y.); (X.Z.); (N.C.); (W.Z.)
| | - Haiyan Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (Y.Z.); (C.F.); (Y.W.); (C.Y.); (X.Z.); (N.C.); (W.Z.)
| |
Collapse
|
9
|
Huang E, Tang J, Song S, Yan H, Yu X, Luo C, Chen Y, Ji H, Chen A, Zhou J, Liao H. Caffeic acid O-methyltransferase from Ligusticum chuanxiong alleviates drought stress, and improves lignin and melatonin biosynthesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1458296. [PMID: 39359625 PMCID: PMC11445181 DOI: 10.3389/fpls.2024.1458296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024]
Abstract
Drought stress is a major constraint on plant growth and agricultural productivity. Caffeic acid O-methyltransferase (COMT), an enzyme involved in the methylation of various substrates, plays a pivotal role in plant responses to abiotic stress. The involvement of COMTs in drought response, particularly through the enhancement of lignin and melatonin biosynthesis, remains poorly understood. In this study, LcCOMT was firstly proposed to be associated with the biosynthesis of both lignin and melatonin, as demonstrated through sequence comparison, phylogenetic analysis, and conserved motif identification. In vitro enzymatic assays revealed that LcCOMT effectively methylates N-acetylserotonin to melatonin, albeit with a higher Km value compared to caffeic acid. Site-directed mutagenesis of residues Phe171 and Asp269 resulted in a significant reduction in catalytic activity for caffeic acid, with minimal impact on N-acetylserotonin, underscoring the specificity of these residues in substrate binding and catalysis. Under drought conditions, LcCOMT expression was significantly upregulated. Overexpression of LcCOMT gene in Arabidopsis plants conferred enhanced drought tolerance, characterized by elevated lignin and melatonin levels, increased chlorophyll and carotenoid content, heightened activities of antioxidant enzymes peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD), and reduced malondialdehyde (MDA) and hydrogen peroxide (H2O2) accumulation. This study is among the few to demonstrate that COMT-mediated drought tolerance is achieved through the simultaneous promotion of lignin and melatonin biosynthesis. LcCOMT represents the first functionally characterized COMT in Apiaceae family, and it holds potential as a target for genetic enhancement of drought tolerance in future crop improvement strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Li JW, Zhou P, Hu ZH, Teng RM, Wang YX, Li T, Xiong AS, Li XH, Chen X, Zhuang J. CsPAT1, a GRAS transcription factor, promotes lignin accumulation by antagonistic interacting with CsWRKY13 in tea plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1312-1326. [PMID: 38319894 DOI: 10.1111/tpj.16670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/21/2024] [Accepted: 01/27/2024] [Indexed: 02/08/2024]
Abstract
Lignin is an important component of plant cell walls and plays crucial roles in the essential agronomic traits of tea quality and tenderness. However, the molecular mechanisms underlying the regulation of lignin biosynthesis in tea plants remain unclear. CsWRKY13 acts as a negative regulator of lignin biosynthesis in tea plants. In this study, we identified a GRAS transcription factor, phytochrome A signal transduction 1 (CsPAT1), that interacts with CsWRKY13. Silencing CsPAT1 expression in tea plants and heterologous overexpression in Arabidopsis demonstrated that CsPAT1 positively regulates lignin accumulation. Further investigation revealed that CsWRKY13 directly binds to the promoters of CsPAL and CsC4H and suppresses transcription of CsPAL and CsC4H. CsPAT1 indirectly affects the promoter activities of CsPAL and CsC4H by interacting with CsWRKY13, thereby facilitating lignin biosynthesis in tea plants. Compared with the expression of CsWRKY13 alone, the co-expression of CsPAT1 and CsWRKY13 in Oryza sativa significantly increased lignin biosynthesis. Conversely, compared with the expression of CsPAT1 alone, the co-expression of CsPAT1 and CsWRKY13 in O. sativa significantly reduced lignin accumulation. These results demonstrated the antagonistic regulation of the lignin biosynthesis pathway by CsPAT1 and CsWRKY13. These findings improve our understanding of lignin biosynthesis mechanisms in tea plants and provide insights into the role of the GRAS transcription factor family in lignin accumulation.
Collapse
Affiliation(s)
- Jing-Wen Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ping Zhou
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Hang Hu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Rui-Min Teng
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yong-Xin Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Tong Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Xing-Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xuan Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Wang Q, Liu N, Yang R, Zhang X, Wang Y, Li Y, Prusky D, Bi Y, Han Y. Essential role of ABA signaling and related transcription factors in phenolic acid and lignin synthesis during muskmelon wound healing. FRONTIERS IN PLANT SCIENCE 2024; 15:1404477. [PMID: 38835857 PMCID: PMC11149543 DOI: 10.3389/fpls.2024.1404477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024]
Abstract
Abscisic acid (ABA) is a key phytohormone involved in wound healing in fruits and vegetables, while fluridone (FLD) is its synthetic inhibitor. However, it is unknown whether ABA signaling and downstream transcription factors are involved in the synthesis of phenolic acids and lignin monomers in muskmelon wounds, and the underlying mechanisms. In our study, exogenous ABA promoted endogenous ABA synthesis by increasing the levels of β-carotenoid and zeaxanthin, activating 9-cis-epoxycarotenoid dioxygenase (NCED) and zeaxanthin epoxidase (ZEP), facilitated ABA signaling by increasing the expression levels of protein phosphatases type 2C (CmPP2C) and ABA-responsive element binding factors (CmABF), upregulated the expression levels of CmMYB1 and CmWRKY1, and ABA induced phenylpropanoid metabolism by activating phenylalanine ammonia-lyase (PAL), 4-coenzyme A ligase (4CL), and cinnamyl alcohol dehydrogenase (CAD), which further increased the synthesis of phenolic acids and lignin monomers in muskmelon wounds during healing. Taken together, exogenous ABA induced phenylpropanoid metabolism and increased the synthesis of phenolic acid and lignin monomer in muskmelon wounds during healing, and may be involved in endogenous ABA synthesis and signaling and related transcription factors.
Collapse
Affiliation(s)
- Qihui Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Ning Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Ruirui Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Xuejiao Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Ying Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion, Israel
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Ye Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
12
|
Chen C, Zhang Z, Lei YY, Chen WJ, Zhang ZH, Li XM, Dai HY. MdMYB44-like positively regulates salt and drought tolerance via the MdPYL8-MdPP2CA module in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:24-41. [PMID: 38102874 DOI: 10.1111/tpj.16584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/15/2023] [Accepted: 11/25/2023] [Indexed: 12/17/2023]
Abstract
Abscisic acid (ABA) is involved in salt and drought stress responses, but the underlying molecular mechanism remains unclear. Here, we demonstrated that the overexpression of MdMYB44-like, an R2R3-MYB transcription factor, significantly increases the salt and drought tolerance of transgenic apples and Arabidopsis. MdMYB44-like inhibits the transcription of MdPP2CA, which encodes a type 2C protein phosphatase that acts as a negative regulator in the ABA response, thereby enhancing ABA signaling-mediated salt and drought tolerance. Furthermore, we found that MdMYB44-like and MdPYL8, an ABA receptor, form a protein complex that further enhances the transcriptional inhibition of the MdPP2CA promoter by MdMYB44-like. Significantly, we discovered that MdPP2CA can interfere with the physical association between MdMYB44-like and MdPYL8 in the presence of ABA, partially blocking the inhibitory effect of the MdMYB44-like-MdPYL8 complex on the MdPP2CA promoter. Thus, MdMYB44-like, MdPYL8, and MdPP2CA form a regulatory loop that tightly modulates ABA signaling homeostasis under salt and drought stress. Our data reveal that MdMYB44-like precisely modulates ABA-mediated salt and drought tolerance in apples through the MdPYL8-MdPP2CA module.
Collapse
Affiliation(s)
- Cui Chen
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Zhen Zhang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Ying-Ying Lei
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Wen-Jun Chen
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Zhi-Hong Zhang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Xiao-Ming Li
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Hong-Yan Dai
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| |
Collapse
|
13
|
Yang J, Yi J, Ma S, Wang Y, Song J, Li S, Feng Y, Sun H, Gao C, Yang R, Li Z, Cao Y, Yang P. Integrated physiological, metabolomic, and transcriptomic analyses elucidate the regulation mechanisms of lignin synthesis under osmotic stress in alfalfa leaf (Medicago sativa L.). BMC Genomics 2024; 25:174. [PMID: 38350871 PMCID: PMC10865589 DOI: 10.1186/s12864-024-10039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/22/2024] [Indexed: 02/15/2024] Open
Abstract
Alfalfa, an essential forage crop known for its high yield, nutritional value, and strong adaptability, has been widely cultivated worldwide. The yield and quality of alfalfa are frequently jeopardized due to environmental degradation. Lignin, a constituent of the cell wall, enhances plant resistance to abiotic stress, which often causes osmotic stress in plant cells. However, how lignin responds to osmotic stress in leaves remains unclear. This study explored the effects of osmotic stress on lignin accumulation and the contents of intermediate metabolites involved in lignin synthesis in alfalfa leaves. Osmotic stress caused an increase in lignin accumulation and the alteration of core enzyme activities and gene expression in the phenylpropanoid pathway. We identified five hub genes (CSE, CCR, CADa, CADb, and POD) and thirty edge genes (including WRKYs, MYBs, and UBPs) by integrating transcriptome and metabolome analyses. In addition, ABA and ethylene signaling induced by osmotic stress regulated lignin biosynthesis in a contradictory way. These findings contribute to a new theoretical foundation for the breeding of high-quality and resistant alfalfa varieties.
Collapse
Affiliation(s)
- Jing Yang
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China
| | - Jiangnan Yi
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China
| | - Shihai Ma
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China
| | - Yafang Wang
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China
| | - Jiaxing Song
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China
| | - Shuo Li
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China
| | - Yueyan Feng
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China
| | - Haoyang Sun
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China
| | - Cai Gao
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China
| | - Rongchen Yang
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China
| | - Zhongxing Li
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China
| | - Yuman Cao
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China.
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China.
| |
Collapse
|
14
|
Ma B, Zhang J, Guo S, Xie X, Yan L, Chen H, Zhang H, Bu X, Zheng L, Wang Y. RtNAC055 promotes drought tolerance via a stomatal closure pathway linked to methyl jasmonate/hydrogen peroxide signaling in Reaumuria trigyna. HORTICULTURE RESEARCH 2024; 11:uhae001. [PMID: 38419969 PMCID: PMC10901477 DOI: 10.1093/hr/uhae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/30/2023] [Indexed: 03/02/2024]
Abstract
The stomata regulate CO2 uptake and efficient water usage, thereby promoting drought stress tolerance. NAC proteins (NAM, ATAF1/2, and CUC2) participate in plant reactions following drought stress, but the molecular mechanisms underlying NAC-mediated regulation of stomatal movement are unclear. In this study, a novel NAC gene from Reaumuria trigyna, RtNAC055, was found to enhance drought tolerance via a stomatal closure pathway. It was regulated by RtMYC2 and integrated with jasmonic acid signaling and was predominantly expressed in stomata and root. The suppression of RtNAC055 could improve jasmonic acid and H2O2 production and increase the drought tolerance of transgenic R. trigyna callus. Ectopic expression of RtNAC055 in the Arabidopsis atnac055 mutant rescued its drought-sensitive phenotype by decreasing stomatal aperture. Under drought stress, overexpression of RtNAC055 in poplar promoted ROS (H2O2) accumulation in stomata, which accelerated stomatal closure and maintained a high photosynthetic rate. Drought upregulated the expression of PtRbohD/F, PtP5CS2, and PtDREB1.1, as well as antioxidant enzyme activities in heterologous expression poplars. RtNAC055 promoted H2O2 production in guard cells by directly binding to the promoter of RtRbohE, thus regulating stomatal closure. The stress-related genes RtDREB1.1/P5CS1 were directly regulated by RtNAC055. These results indicate that RtNAC055 regulates stomatal closure by maintaining the balance between the antioxidant system and H2O2 level, reducing the transpiration rate and water loss, and improving photosynthetic efficiency and drought resistance.
Collapse
Affiliation(s)
- Binjie Ma
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan Province, China
| | - Jie Zhang
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shuyu Guo
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xinlei Xie
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Lang Yan
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan Province, China
| | - Huijing Chen
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan Province, China
| | - Hongyi Zhang
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xiangqi Bu
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Linlin Zheng
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yingchun Wang
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
15
|
Zhang S, Han Y, Zeng Q, Wang C, Wang H, Zhang J, Cai M, Lu J, Chen T. Whole-Transcriptome Sequencing Reveals the Global Molecular Responses and NAC Transcription Factors Involved in Drought Stress in Dendrobium catenatum. Antioxidants (Basel) 2024; 13:94. [PMID: 38247518 PMCID: PMC10812421 DOI: 10.3390/antiox13010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Dendrobium catenatum is a highly drought-tolerant herb, which usually grows on cliffs or in the branches of trees, yet the underlying molecular mechanisms for its tolerance remain poorly understood. We conducted a comprehensive study utilizing whole-transcriptome sequencing approaches to investigate the molecular response to extreme drought stress in D. catenatum. A large number of differentially expressed mRNAs, lncRNAs, and circRNAs have been identified, and the NAC transcription factor family was highly enriched. Meanwhile, 46 genes were significantly up-regulated in the ABA-activated signaling pathway. In addition to the 89 NAC family members accurately identified in this study, 32 members were found to have different expressions between the CK and extreme drought treatment. They may regulate drought stress through both ABA-dependent and ABA-independent pathways. Moreover, the 32 analyzed differentially expressed DcNACs were found to be predominantly expressed in the floral organs and roots. The ceRNA regulatory network showed that DcNAC87 is at the core of the ceRNA network and is regulated by miR169, miR393, and four lncRNAs. These investigations provided valuable information on the role of NAC transcription factors in D. catenatum's response to drought stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiangjie Lu
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China; (S.Z.); (Y.H.); (Q.Z.); (C.W.); (H.W.); (J.Z.); (M.C.)
| | - Tao Chen
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China; (S.Z.); (Y.H.); (Q.Z.); (C.W.); (H.W.); (J.Z.); (M.C.)
| |
Collapse
|
16
|
Wu F, Qu D, Zhang X, Sun Y, Wang J, Zhu D, Yang L, Liu X, Tian W, Wang L, Liu Q, Su H. PaLectinL7 enhances salt tolerance of sweet cherry by regulating lignin deposition in connection with PaCAD1. TREE PHYSIOLOGY 2023; 43:1986-2000. [PMID: 37581589 DOI: 10.1093/treephys/tpad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023]
Abstract
Lectin receptor-like kinases (LecRLKs), a large family of plant receptor-like kinases, play an important role in plant response to abiotic stresses. However, little information is available about the roles of LecRLKs in the salt stress response of sweet cherry (Prunus avium). Here, an L-type LecRLK gene (PaLectinL7) was characterized from sweet cherry. Subcellular localization analysis revealed that PaLectinL7 is a plasma membrane protein. The expression of PaLectinL7 was up-regulated by salt, drought and exogenously gibberellin treatments. Overexpression of PaLectinL7 in the roots of Gisela 6 enhanced its tolerance to salt stress. Additionally, transcriptome analysis showed that lignin metabolic-related genes were regulated by PaLectinL7 overexpression. Meanwhile, the lignin contents and associated enzymes (CAD and COMT) rose concurrently with PaLectinL7 overexpression under salt stress. We also found that PaCAD1, a key enzyme involved in lignin metabolism, interacted with PaLectinL7 and could be phosphorylated by PaLectinL7 in vitro, suggesting that PaLectinL7 may regulate the enzyme activity of PaCAD1. Therefore, these results indicated that PaLectinL7, as a membrane-bound regulator, promoted lignin deposition by regulating the activities of enzymes related to lignin metabolism, thus enhancing salt tolerance.
Collapse
Affiliation(s)
- Fanlin Wu
- School of Agriculture, Ludong University, Hongqi Road, Zhifu District, Yantai City, Yantai 264025, China
| | - Dehui Qu
- School of Agriculture, Ludong University, Hongqi Road, Zhifu District, Yantai City, Yantai 264025, China
| | - Xu Zhang
- Yantai Academy of Agricultural Sciences, Gangcheng West Street, Fushan District, Yantai City, Yantai 264025, China
| | - Yao Sun
- School of Agriculture, Ludong University, Hongqi Road, Zhifu District, Yantai City, Yantai 264025, China
| | - Jingtao Wang
- College of Life Sciences, Ludong University, Hongqi Road, Zhifu District, Yantai City, Yantai 264025, China
| | - Dongzi Zhu
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Longtan Road, Taishan District, Tai'an City, Taian 271000, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Ningxia Road, Laoshan District, Qingdao 266071, China
| | - Xiao Liu
- School of Agriculture, Ludong University, Hongqi Road, Zhifu District, Yantai City, Yantai 264025, China
| | - Wei Tian
- School of Agriculture, Ludong University, Hongqi Road, Zhifu District, Yantai City, Yantai 264025, China
| | - Lei Wang
- College of Life Sciences, Ludong University, Hongqi Road, Zhifu District, Yantai City, Yantai 264025, China
| | - Qingzhong Liu
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Longtan Road, Taishan District, Tai'an City, Taian 271000, China
| | - Hongyan Su
- College of Agriculture and Forestry Sciences, Linyi University, Shuangling Road, Lanshan District, Linyi City 276000, China
| |
Collapse
|
17
|
Peng Y, Cao H, Cui L, Wang Y, Wei L, Geng S, Yang L, Huang Y, Bie Z. CmoNAC1 in pumpkin rootstocks improves salt tolerance of grafted cucumbers by binding to the promoters of CmoRBOHD1, CmoNCED6, CmoAKT1;2 and CmoHKT1;1 to regulate H 2O 2, ABA signaling and K +/Na + homeostasis. HORTICULTURE RESEARCH 2023; 10:uhad157. [PMID: 37719275 PMCID: PMC10500151 DOI: 10.1093/hr/uhad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/04/2023] [Indexed: 09/19/2023]
Abstract
The NAC transcription factor is a type of plant-specific transcription factor that can regulate plant salt tolerance, but the underlying mechanism is unclear in grafted vegetables. H2O2 and ABA in pumpkin rootstocks can be transported to cucumber scion leaves, promoting stomatal closure to improve salt tolerance of grafted cucumbers. Despite these observations, the regulatory mechanism is unknown. Here, our research revealed that CmoNAC1 is a key transcription factor that regulates H2O2 and ABA signaling in pumpkin roots under salt stress. The function of CmoNAC1 was analyzed using root transformation and RNA-seq, and we found that pumpkin CmoNAC1 promoted the production of H2O2 and ABA via CmoRBOHD1 and CmoNCED6, respectively, and regulated K+/Na+ homeostasis via CmoAKT1;2, CmoHKT1;1, and CmoSOS1 to improve salt tolerance of grafted cucumbers. Root knockout of CmoNAC1 resulted in a significant decrease in H2O2 (52.9% and 32.1%) and ABA (21.8% and 42.7%) content and K+/Na+ ratio (81.5% and 56.3%) in leaf and roots of grafted cucumber, respectively, while overexpression showed the opposite effect. The root transformation experiment showed that CmoNCED6 could improve salt tolerance of grafted cucumbers by regulating ABA production and K+/Na+ homeostasis under salt stress. Finally, we found that CmoNAC1 bound to the promoters of CmoRBOHD1, CmoNCED6, CmoAKT1;2, and CmoHKT1;1 using yeast one-hybrid, luciferase, and electrophoretic mobility shift assays. In conclusion, pumpkin CmoNAC1 not only binds to the promoters of CmoRBOHD1 and CmoNCED6 to regulate the production of H2O2 and ABA signals in roots, but also binds to the promoters of CmoAKT1;2 and CmoHKT1;1 to increase the K+/Na+ ratio, thus improving salt tolerance of grafted cucumbers.
Collapse
Affiliation(s)
- Yuquan Peng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Haishun Cao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, 510640 Guangzhou, China
| | - Lvjun Cui
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Ying Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Lanxing Wei
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Shouyu Geng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Li Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yuan Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Zhilong Bie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
- Hubei Hongshan Laboratory, 430070 Wuhan, China
| |
Collapse
|
18
|
Yang J, Xu J, Zhang Y, Cui J, Hu H, Xue J, Zhu L. Two R2R3-MYB transcription factors from Chinese cedar (Cryptomeria fortunei Hooibrenk) are involved in the regulation of secondary cell wall formation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107879. [PMID: 37422947 DOI: 10.1016/j.plaphy.2023.107879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/06/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
As the most abundant renewable energy source, wood comprises the secondary cell wall (SCW). SCW biosynthesis involves lignin and cellulose deposition. Increasing studies have illustrated that R2R3-MYB transcription factors (TFs) play pivotal roles in affecting lignin accumulation and SCW formation. Nevertheless, the regulatory roles of R2R3-MYBs are still unresolved in Cryptomeria fortunei Hooibrenk cambium and wood formation. To dissect the potentials of CfMYBs, we successfully cloned and intensively studied the functions of CfMYB4 and CfMYB5 in SCW formation and abiotic stress response. They both contained the conserved MYB domain capable of forming a special structure that could bind to the core motifs of downstream genes. The phylogenetic tree implied that two CfMYBs clustered into different evolutionary branches. They were predominantly expressed in the stem and were localized to the nucleus. Furthermore, CfMYB4 functioned as an activator to enhance lignin and cellulose accumulation, and increase the SCW thickness by elevating the expression levels of SCW-related genes. By contrast, CfMYB5 negatively regulated lignin and cellulose biosynthesis, and decreased SCW formation by reducing the expression of SCW biosynthetic genes. Our data not only highlight the regulatory functions of CfMYBs in lignin deposition but also provide critical insights into the development of strategies for the genetic improvement of Cryptomeria fortunei wood biomass.
Collapse
Affiliation(s)
- Junjie Yang
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Jin Xu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yingting Zhang
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiebing Cui
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Hailiang Hu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinyu Xue
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Lijuan Zhu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
19
|
Li X, Ma Z, Song Y, Shen W, Yue Q, Khan A, Tahir MM, Wang X, Malnoy M, Ma F, Bus V, Zhou S, Guan Q. Insights into the molecular mechanisms underlying responses of apple trees to abiotic stresses. HORTICULTURE RESEARCH 2023; 10:uhad144. [PMID: 37575656 PMCID: PMC10421731 DOI: 10.1093/hr/uhad144] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 07/13/2023] [Indexed: 08/15/2023]
Abstract
Apple (Malus[Formula: see text]domestica) is a popular temperate fruit crop worldwide. However, its growth, productivity, and quality are often adversely affected by abiotic stresses such as drought, extreme temperature, and high salinity. Due to the long juvenile phase and highly heterozygous genome, the conventional breeding approaches for stress-tolerant cultivars are time-consuming and resource-intensive. These issues may be resolved by feasible molecular breeding techniques for apples, such as gene editing and marker-assisted selection. Therefore, it is necessary to acquire a more comprehensive comprehension of the molecular mechanisms underpinning apples' response to abiotic stress. In this review, we summarize the latest research progress in the molecular response of apples to abiotic stressors, including the gene expression regulation, protein modifications, and epigenetic modifications. We also provide updates on new approaches for improving apple abiotic stress tolerance, while discussing current challenges and future perspectives for apple molecular breeding.
Collapse
Affiliation(s)
- Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ziqing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Song
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenyun Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qianyu Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur 22620, Pakistan
| | - Muhammad Mobeen Tahir
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaofei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271000, China
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige 38098, Italy
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Vincent Bus
- The New Zealand Institute for Plant and Food Research Limited, Havelock North 4157, New Zealand
| | - Shuangxi Zhou
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
20
|
Li S, Jing X, Tan Q, Wen B, Fu X, Li D, Chen X, Xiao W, Li L. The NAC transcription factor MdNAC29 negatively regulates drought tolerance in apple. FRONTIERS IN PLANT SCIENCE 2023; 14:1173107. [PMID: 37484477 PMCID: PMC10359905 DOI: 10.3389/fpls.2023.1173107] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/05/2023] [Indexed: 07/25/2023]
Abstract
Drought stress is an adverse stimulus that affects agricultural production worldwide. NAC transcription factors are involved in plant development and growth but also play different roles in the abiotic stress response. Here, we isolated the apple MdNAC29 gene and investigated its role in regulating drought tolerance. Subcellular localization experiments showed that MdNAC29 was localized to the nucleus and transcription was induced by the PEG treatment. Over-expression of MdNAC29 reduced drought tolerance in apple plants, calli, and tobacco, and exhibited higher relative conductivity, malondialdehyde (MDA) content, and lower chlorophyll content under drought stress. The transcriptomic analyses revealed that MdNAC29 reduced drought resistance by modulating the expression of photosynthesis and leaf senescence-related genes. The qRT-PCR results showed that overexpression of MdNAC29 repressed the expression of drought-resistance genes. Yeast one-hybrid and dual-luciferase assays demonstrated that MdNAC29 directly repressed MdDREB2A expression. Moreover, the yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated that MdNAC29 interacted with the MdPP2-B10 (F-box protein), which responded to drought stress, and MdPP2-B10 enhanced the repressive effect of MdNAC29 on the transcriptional activity of the MdDREB2A. Taken together, our results indicate that MdNAC29 is a negative regulator of drought resistance, and provide a theoretical basis for further molecular mechanism research.
Collapse
Affiliation(s)
- Sen Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiuli Jing
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Qiuping Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Binbin Wen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
21
|
Liu X, Gao T, Liu C, Mao K, Gong X, Li C, Ma F. Fruit crops combating drought: Physiological responses and regulatory pathways. PLANT PHYSIOLOGY 2023; 192:1768-1784. [PMID: 37002821 PMCID: PMC10315311 DOI: 10.1093/plphys/kiad202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Drought is a common stress in agricultural production. Thus, it is imperative to understand how fruit crops respond to drought and to develop drought-tolerant varieties. This paper provides an overview of the effects of drought on the vegetative and reproductive growth of fruits. We summarize the empirical studies that have assessed the physiological and molecular mechanisms of the drought response in fruit crops. This review focuses on the roles of calcium (Ca2+) signaling, abscisic acid (ABA), reactive oxygen species signaling, and protein phosphorylation underlying the early drought response in plants. We review the resulting downstream ABA-dependent and ABA-independent transcriptional regulation in fruit crops under drought stress. Moreover, we highlight the positive and negative regulatory mechanisms of microRNAs in the drought response of fruit crops. Lastly, strategies (including breeding and agricultural practices) to improve the drought resistance of fruit crops are outlined.
Collapse
Affiliation(s)
- Xiaomin Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tengteng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
22
|
Dabravolski SA, Isayenkov SV. The regulation of plant cell wall organisation under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1118313. [PMID: 36968390 PMCID: PMC10036381 DOI: 10.3389/fpls.2023.1118313] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Plant cell wall biosynthesis is a complex and tightly regulated process. The composition and the structure of the cell wall should have a certain level of plasticity to ensure dynamic changes upon encountering environmental stresses or to fulfil the demand of the rapidly growing cells. The status of the cell wall is constantly monitored to facilitate optimal growth through the activation of appropriate stress response mechanisms. Salt stress can severely damage plant cell walls and disrupt the normal growth and development of plants, greatly reducing productivity and yield. Plants respond to salt stress and cope with the resulting damage by altering the synthesis and deposition of the main cell wall components to prevent water loss and decrease the transport of surplus ions into the plant. Such cell wall modifications affect biosynthesis and deposition of the main cell wall components: cellulose, pectins, hemicelluloses, lignin, and suberin. In this review, we highlight the roles of cell wall components in salt stress tolerance and the regulatory mechanisms underlying their maintenance under salt stress conditions.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Karmiel, Israel
| | - Stanislav V. Isayenkov
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics, National Academy of Science (NAS) of Ukraine, Kyiv, Ukraine
| |
Collapse
|
23
|
Karmanov A, Shaposhnikova L, Kocheva L, Rachkova N, Belyy V, Lutoev V. Structural features of stress lignin of aspen (Populus tremula L.) growing under increased background radiation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
24
|
Choi SJ, Lee Z, Kim S, Jeong E, Shim JS. Modulation of lignin biosynthesis for drought tolerance in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1116426. [PMID: 37152118 PMCID: PMC10157170 DOI: 10.3389/fpls.2023.1116426] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
Lignin is a complex polymer that is embedded in plant cell walls to provide physical support and water protection. For these reasons, the production of lignin is closely linked with plant adaptation to terrestrial regions. In response to developmental cues and external environmental conditions, plants use an elaborate regulatory network to determine the timing and location of lignin biosynthesis. In this review, we summarize the canonical lignin biosynthetic pathway and transcriptional regulatory network of lignin biosynthesis, consisting of NAC and MYB transcription factors, to explain how plants regulate lignin deposition under drought stress. Moreover, we discuss how the transcriptional network can be applied to the development of drought tolerant plants.
Collapse
|
25
|
Jia C, Guo B, Wang B, Li X, Yang T, Li N, Wang J, Yu Q. Integrated metabolomic and transcriptomic analysis reveals the role of phenylpropanoid biosynthesis pathway in tomato roots during salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1023696. [PMID: 36570882 PMCID: PMC9773889 DOI: 10.3389/fpls.2022.1023696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
As global soil salinization continues to intensify, there is a need to enhance salt tolerance in crops. Understanding the molecular mechanisms of tomato (Solanum lycopersicum) roots' adaptation to salt stress is of great significance to enhance its salt tolerance and promote its planting in saline soils. A combined analysis of the metabolome and transcriptome of S. lycopersicum roots under different periods of salt stress according to changes in phenotypic and root physiological indices revealed that different accumulated metabolites and differentially expressed genes (DEGs) associated with phenylpropanoid biosynthesis were significantly altered. The levels of phenylpropanoids increased and showed a dynamic trend with the duration of salt stress. Ferulic acid (FA) and spermidine (Spd) levels were substantially up-regulated at the initial and mid-late stages of salt stress, respectively, and were significantly correlated with the expression of the corresponding synthetic genes. The results of canonical correlation analysis screening of highly correlated DEGs and construction of regulatory relationship networks with transcription factors (TFs) for FA and Spd, respectively, showed that the obtained target genes were regulated by most of the TFs, and TFs such as MYB, Dof, BPC, GRAS, and AP2/ERF might contribute to the regulation of FA and Spd content levels. Ultimately, FA and Spd attenuated the harm caused by salt stress in S. lycopersicum, and they may be key regulators of its salt tolerance. These findings uncover the dynamics and possible molecular mechanisms of phenylpropanoids during different salt stress periods, providing a basis for future studies and crop improvement.
Collapse
Affiliation(s)
- Chunping Jia
- College of Life Science and Technology, Xinjiang University, Urumqi, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Bin Guo
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Xin Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Qinghui Yu
- College of Life Science and Technology, Xinjiang University, Urumqi, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| |
Collapse
|
26
|
Liu L, Li X, Guo W, Shi J, Chen W, Lei Y, Ma Y, Dai H. MdWRKY120 Enhance Apple Susceptibility to Alternaria alternata. PLANTS (BASEL, SWITZERLAND) 2022; 11:3389. [PMID: 36501429 PMCID: PMC10004717 DOI: 10.3390/plants11233389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Alternaria alternata (A. alternata) is a common pathogen that greatly influences apples' quantity and quality. However, chemical treatments produce increased health risks along with decreased food and environmental safety. Advancements in plant molecular biology, such as transgenic technology, have increased apple trees' resistance to pathogens and have therefore attracted widespread attention. WRKY transcription factors are involved in abiotic and biotic stress regulation; however, their biological role in non-model plants such as apple, is still unknown. In this investigation, MdWRKY120 was isolated from the 'GL-3' apple to determine its function during Alternaria alternate infection. The MdWRKY120-GFP fusion protein was located in the nucleus. MdWRKY120 in yeast cells exhibited activating transcriptional activity, meaning it is a transcription activator. MdWRKY120 overexpression transgenic plants were more sensitive to A. alternata, while RNAi transgenic plants showed increased resistance to A. alternata. This investigation demonstrates that MdWRKY120 enhances the susceptibility of apples to A. alternata.
Collapse
Affiliation(s)
- Lifu Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- School of Horticulture, Liaoning Vocational College of Ecological Engineering, Shenyang 110101, China
| | - Xiaoming Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Wei Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiajun Shi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Wenjun Chen
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yingying Lei
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yue Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Hongyan Dai
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
27
|
Shi J, Jiang Q, Zhang S, Dai X, Wang F, Ma Y. MIR390 Is Involved in Regulating Anthracnose Resistance in Apple. PLANTS (BASEL, SWITZERLAND) 2022; 11:3299. [PMID: 36501336 PMCID: PMC9736487 DOI: 10.3390/plants11233299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
As an important cash crop in China, apple has a good flavor and is rich in nutrients. Fungal attacks have become a major obstacle in apple cultivation. Colletotrichum gloeosporioides is one of the most devastating fungal pathogens in apple. Thus, discovering resistance genes in response to C. gloeosporioides may aid in designing safer control strategies and facilitate the development of apple resistance breeding. A previous study reported that 'Hanfu' autotetraploid apple displayed higher C. gloeosporioides resistance than 'Hanfu' apple, and the expression level of mdm-MIR390b was significantly upregulated in autotetraploid plants compared to that in 'Hanfu' plants, as demonstrated by digital gene expression (DGE) analysis. It is still unclear, however, whether mdm-MIR390b regulates apple anthracnose resistance. Apple MIR390b was transformed into apple 'GL-3' plants to identify the functions of mdm-MIR390b in anthracnose resistance. C. gloeosporioides treatment analysis indicated that the overexpression of mdm-MIR390b reduced fungal damage to apple leaves and fruit. Physiology analysis showed that mdm-MIR390b increased C. gloeosporioides resistance by improving superoxide dismutase (SOD) and peroxidase (POD) activity to alleviate the damage caused by O2- and H2O2. Our results demonstrate that mdm-MIR390b can improve apple plants' anthracnose resistance.
Collapse
Affiliation(s)
- Jiajun Shi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Qiu Jiang
- Liaoning Institute of Pomology, Xiongyue 115009, China
| | - Shuyuan Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xinyu Dai
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Feng Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yue Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
28
|
Li S, Chang L, Sun R, Dong J, Zhong C, Gao Y, Zhang H, Wei L, Wei Y, Zhang Y, Wang G, Sun J. Combined transcriptomic and metabolomic analysis reveals a role for adenosine triphosphate-binding cassette transporters and cell wall remodeling in response to salt stress in strawberry. FRONTIERS IN PLANT SCIENCE 2022; 13:996765. [PMID: 36147238 PMCID: PMC9486094 DOI: 10.3389/fpls.2022.996765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/28/2022] [Indexed: 05/25/2023]
Abstract
Strawberry (Fragaria × ananassa Duch) are sensitive to salt stress, and breeding salt-tolerant strawberry cultivars is the primary method to develop resistance to increased soil salinization. However, the underlying molecular mechanisms mediating the response of strawberry to salinity stress remain largely unknown. This study evaluated the salinity tolerance of 24 strawberry varieties, and transcriptomic and metabolomic analysis were performed of 'Sweet Charlie' (salt-tolerant) and 'Benihoppe' (salt-sensitive) to explore salt tolerance mechanisms in strawberry. Compared with the control, we identified 3412 differentially expressed genes (DEGs) and 209 differentially accumulated metabolites (DAMs) in 'Benihoppe,' and 5102 DEGs and 230 DAMs in 'Sweet Charlie.' DEGs Gene Ontology (GO) enrichment analyses indicated that the DEGs in 'Benihoppe' were enriched for ion homeostasis related terms, while in 'Sweet Charlie,' terms related to cell wall remodeling were over-represented. DEGs related to ion homeostasis and cell wall remodeling exhibited differential expression patterns in 'Benihoppe' and 'Sweet Charlie.' In 'Benihoppe,' 21 ion homeostasis-related DEGs and 32 cell wall remodeling-related DEGs were upregulated, while 23 ion homeostasis-related DEGs and 138 cell wall remodeling-related DEGs were downregulated. In 'Sweet Charlie,' 72 ion homeostasis-related DEGs and 275 cell wall remodeling-related DEGs were upregulated, while 11 ion homeostasis-related DEGs and 20 cell wall remodeling-related DEGs were downregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed only four KEGG enriched pathways were shared between 'Benihoppe' and 'Sweet Charlie,' including flavonoid biosynthesis, phenylalanine metabolism, phenylpropanoid biosynthesis and ubiquinone, and other terpenoid-quinone biosynthesis. Integrating the results of transcriptomic and metabolomics analyses showed that adenosine triphosphate-binding cassette (ABC) transporters and flavonoid pathway genes might play important roles in the salt stress response in strawberry, and DAMs and DEGs related to ABC transporter and flavonoid pathways were differentially expressed or accumulated. The results of this study reveal that cell wall remodeling and ABC transporters contribute to the response to salt stress in strawberry, and that related genes showed differential expression patterns in varieties with different salt tolerances. These findings provide new insights into the underlying molecular mechanism of strawberry response to salt stress and suggest potential targets for the breeding of salt-tolerant strawberry varieties.
Collapse
Affiliation(s)
- Shuangtao Li
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Linlin Chang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Rui Sun
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Jing Dong
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Chuanfei Zhong
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Yongshun Gao
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Hongli Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Lingzhi Wei
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Yongqing Wei
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Yuntao Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Guixia Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Jian Sun
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| |
Collapse
|
29
|
Han X, Zhao Y, Chen Y, Xu J, Jiang C, Wang X, Zhuo R, Lu MZ, Zhang J. Lignin biosynthesis and accumulation in response to abiotic stresses in woody plants. FORESTRY RESEARCH 2022; 2:9. [PMID: 39525415 PMCID: PMC11524291 DOI: 10.48130/fr-2022-0009] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 06/13/2022] [Indexed: 11/16/2024]
Abstract
Woody plants have to experience various abiotic stresses due to their immobility and perennial characteristics. However, woody plants have evolved a series of specific regulation pathways in physiological and molecular mechanisms to deal with adverse environments. Compared with herbaceous plants, perennial woody plants have the advantages of developed roots and hard stems, and increased secondary xylem, which can strengthen the vascular system of the plants. The lignification process involves the lignin deposition on the cell wall by oxidation and polymerization of lignin monomer, which plays an important role in abiotic stress tolerance. This review focuses on recent progress in the biosynthesis, content, and accumulation of lignin in response to various abiotic stresses in plants. The role of transcription factors is also discussed in regulating lignin biosynthesis to enhance abiotic stress tolerance via changing cell wall lignification. Although woody plants shared similar lignin biosynthesis mechanisms with herbaceous plants, the temporal and spatial expression and stress response profiles of lignin biosynthetic genes provide the basis for the differences in stress tolerance of various species. An in-depth understanding of the role of lignin in the abiotic stress tolerance of woody plants will lay the foundation for the next step in tree resistance breeding through genetic engineering.
Collapse
Affiliation(s)
- Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Yanqiu Zhao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Yinjie Chen
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Jing Xu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Cheng Jiang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Xiaqin Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
30
|
Kim D, Jeon SJ, Yanders S, Park SC, Kim HS, Kim S. MYB3 plays an important role in lignin and anthocyanin biosynthesis under salt stress condition in Arabidopsis. PLANT CELL REPORTS 2022; 41:1549-1560. [PMID: 35562569 DOI: 10.1007/s00299-022-02878-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Nuclear-localized Arabidopsis MYB3 functions as a transcriptional repressor for regulation of lignin and anthocyanin biosynthesis under high salt conditions. Salinity stress is a major factor which reduces plant growth and crop yield worldwide. To improve growth of crops in high salinity environments, plant responses to salinity stress must be tightly controlled. Here, to further understand the regulation of plant responses under high salinity conditions, the function of the MYB3 transcription factor was studied as a repressor to control accumulation of lignin and anthocyanin under salt stress conditions. Nuclear-localized MYB3 forms a homodimer. It is ubiquitously expressed, especially in vascular tissues, with expression highly induced by NaCl in tissues such as roots, leaves, stems, and flowers. myb3 mutant plants exhibited longer root growth in high NaCl conditions than wild-type plants. However, several NaCl responsive genes were not significantly altered in myb3 compared to wild-type. Interestingly, high accumulation of lignin and anthocyanin occurred in myb3 under NaCl treatment, as well as increased expression of genes involved in lignin and anthocyanin biosynthesis, such as phenylalanine ammonia lyase 1 (PAL1), cinnamate 4-hydroxylase (C4H), catechol-O-methyltransferase (COMT), 4-coumaric acid-CoA ligase (4CL3), dihydroflavonol reductase (DFR), and leucoanthocyanidin dioxygenase (LDOX). According to yeast two-hybrid screenings, various transcription factors, including anthocyanin regulators Transparent Testa 8 (TT8) and Enhancer of Glabra 3 (EGL3), were isolated as MYB3 interacting proteins. MYB3 was characterized as a transcriptional repressor, with its repressor domain located in the C-terminus. Overall, these results suggest that nuclear-localized MYB3 functions as a transcriptional repressor to control lignin and anthocyanin accumulation under salinity stress conditions.
Collapse
Affiliation(s)
- Daewon Kim
- Division of Applied Life Sciences, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju, 52828, Republic of Korea
- Division of Plant Science, C.S. Bond Life Science Center, University of Missouri, Columbia, MO, 65211, USA
| | - Su Jeong Jeon
- Division of Applied Life Sciences, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Samantha Yanders
- Division of Plant Science, C.S. Bond Life Science Center, University of Missouri, Columbia, MO, 65211, USA
| | - Sung-Chul Park
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| | - Sewon Kim
- Division of Applied Life Sciences, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju, 52828, Republic of Korea.
- National Institute of Agricultural Science, RDA, Jeonju, 54874, Republic of Korea.
| |
Collapse
|
31
|
Wang H, Li Z, Ren H, Zhang C, Xiao D, Li Y, Hou X, Liu T. Regulatory interaction of BcWRKY33A and BcHSFA4A promotes salt tolerance in non-heading Chinese cabbage [ Brassica campestris (syn. Brassica rapa) ssp. chinensis]. HORTICULTURE RESEARCH 2022; 9:uhac113. [PMID: 35836472 PMCID: PMC9273956 DOI: 10.1093/hr/uhac113] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/27/2022] [Indexed: 06/05/2023]
Abstract
Salinity is a universal environmental stress that causes yield reduction in plants. WRKY33, which has been extensively studied in plant defense against necrotrophic pathogens, has recently been found to be important in salt-responsive pathways. However, the underlying molecular mechanisms controlling the involvement of WRKY33 in salt tolerance have not been fully characterized. Here, we explored the function of BcWRKY33A in non-heading Chinese cabbage (NHCC). Under salt stress, BcWRKY33A expression is significantly induced in roots. As a nuclear protein, BcWRKY33A has strong transcriptional activation activity. Overexpression of BcWRKY33A confers salt tolerance in Arabidopsis, whereas silencing of BcWRKY33A causes salt sensitivity in NHCC. Furthermore, BcHSFA4A, a protein that interacts with BcWRKY33A, could directly bind to the HSE motif within the promoters of BcZAT12 and BcHSP17.6A, which are involved in the plant response to salt stress. Finally, we found that BcWRKY33A could enhance the transcriptional activity of BcHSFA4A and affect its downstream genes (e.g. BcZAT12 and BcHSP17.6A), and co-overexpression of BcWRKY33A and BcHSFA4A could promote the expression of salt-related genes, suggesting that the regulatory interaction between BcWRKY33A and BcHSFA4A improves salt tolerance in plants. Overall, our results provide insight into the molecular framework of the BcWRKY33A-BcHSFA4A signaling pathway, which also aids in our understanding of the molecular mechanism of salt tolerance in plants.
Collapse
Affiliation(s)
- Huiyu Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhubo Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Haibo Ren
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Changwei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Dong Xiao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
32
|
Li X, Huang H, Rizwan HM, Wang N, Jiang J, She W, Zheng G, Pan H, Guo Z, Pan D, Pan T. Transcriptome Analysis Reveals Candidate Lignin-Related Genes and Transcription Factors during Fruit Development in Pomelo ( Citrus maxima). Genes (Basel) 2022; 13:845. [PMID: 35627230 PMCID: PMC9140673 DOI: 10.3390/genes13050845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
Juice sac granulation (a physiological disorder) leads to large postharvest losses of pomelo (Citrus maxima). Previous studies have shown that juice sac granulation is closely related to lignin accumulation, while the molecular mechanisms underlying this disorder remain elusive in pomelo. Our results showed that the lignin content in NC (near the core) and FC (far away from the core) juice sacs overall increased from 157 DPA (days post anthesis) to 212 DPA and reached a maximum at 212 DPA. Additionally, the lignin content of NC juice sacs was higher than that of FC juice sacs. In this study, we used transcriptome-based weighted gene co-expression network analysis (WGCNA) to address how lignin formation in NC and FC juice sacs is generated during the development of pomelo. After data assembly and bioinformatic analysis, we found a most correlated module (black module) to the lignin content, then we used the 11 DEGs in this module as hub genes for lignin biosynthesis. Among these DEGs, PAL (phenylalanine ammonia lyase), HCT (hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase), 4CL2 (4-coumarate: CoA ligase), C4H (cinnamate 4-hydroxylase), C3'H (p-coumarate 3-hydroxylase), and CCoAOMT1 (caffeoyl CoA 3-Omethyltransferase) were the most distinct DEGs in granulated juice sacs. Co-expression analysis revealed that the expression patterns of several transcription factors such as MYB, NAC, OFP6, and bHLH130 are highly correlated with lignin formation. In addition, the expression patterns of the DEGs related to lignin biosynthesis and transcription factors were validated by qRT-PCR, and the results were highly concordant with the RNA-seq results. These results would be beneficial for further studies on the molecular mechanism of lignin accumulation in pomelo juice sacs and would help with citrus breeding.
Collapse
Affiliation(s)
- Xiaoting Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (H.M.R.); (N.W.); (J.J.); (W.S.); (G.Z.); (H.P.); (Z.G.); (T.P.)
| | - Hantang Huang
- College of Horticulture, China Agricultural University, Beijing 100083, China;
| | - Hafiz Muhammad Rizwan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (H.M.R.); (N.W.); (J.J.); (W.S.); (G.Z.); (H.P.); (Z.G.); (T.P.)
| | - Naiyu Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (H.M.R.); (N.W.); (J.J.); (W.S.); (G.Z.); (H.P.); (Z.G.); (T.P.)
| | - Jingyi Jiang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (H.M.R.); (N.W.); (J.J.); (W.S.); (G.Z.); (H.P.); (Z.G.); (T.P.)
| | - Wenqin She
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (H.M.R.); (N.W.); (J.J.); (W.S.); (G.Z.); (H.P.); (Z.G.); (T.P.)
| | - Guohua Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (H.M.R.); (N.W.); (J.J.); (W.S.); (G.Z.); (H.P.); (Z.G.); (T.P.)
| | - Heli Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (H.M.R.); (N.W.); (J.J.); (W.S.); (G.Z.); (H.P.); (Z.G.); (T.P.)
| | - Zhixiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (H.M.R.); (N.W.); (J.J.); (W.S.); (G.Z.); (H.P.); (Z.G.); (T.P.)
| | - Dongming Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (H.M.R.); (N.W.); (J.J.); (W.S.); (G.Z.); (H.P.); (Z.G.); (T.P.)
| | - Tengfei Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (H.M.R.); (N.W.); (J.J.); (W.S.); (G.Z.); (H.P.); (Z.G.); (T.P.)
| |
Collapse
|
33
|
Zhao W, Ding L, Liu J, Zhang X, Li S, Zhao K, Guan Y, Song A, Wang H, Chen S, Jiang J, Chen F. Regulation of lignin biosynthesis by an atypical bHLH protein CmHLB in Chrysanthemum. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2403-2419. [PMID: 35090011 DOI: 10.1093/jxb/erac015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Stem mechanical strength is one of the most important agronomic traits that affects the resistance of plants against insects and lodging, and plays an essential role in the quality and yield of plants. Several transcription factors regulate mechanical strength in crops. However, mechanisms of stem strength formation and regulation remain largely unexplored, especially in ornamental plants. In this study, we identified an atypical bHLH transcription factor CmHLB (HLH PROTEIN INVOLVED IN LIGNIN BIOSYNTHESIS) in chrysanthemum, belonging to a small bHLH sub-family - the PACLOBUTRAZOL RESISTANCE (PRE) family. Overexpression of CmHLB in chrysanthemum significantly increased mechanical strength of the stem, cell wall thickness, and lignin content, compared with the wild type. In contrast, CmHLB RNA interference lines exhibited the opposite phenotypes. RNA-seq analysis indicated that CmHLB promoted the expression of genes involved in lignin biosynthesis. Furthermore, we demonstrated that CmHLB interacted with Chrysanthemum KNOTTED ARABIDOPSIS THALIANA7 (CmKNAT7) through the KNOX2 domain, which has a conserved function, i.e. it negatively regulates secondary cell wall formation of fibres and lignin biosynthesis. Collectively, our results reveal a novel role for CmHLB in regulating lignin biosynthesis by interacting with CmKNAT7 and affecting stem mechanical strength in Chrysanthemum.
Collapse
Affiliation(s)
- Wenqian Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lian Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiayou Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xue Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Song Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Kunkun Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yunxiao Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Haibin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
34
|
Deciphering the Role of Ion Channels in Early Defense Signaling against Herbivorous Insects. Cells 2021; 10:cells10092219. [PMID: 34571868 PMCID: PMC8470099 DOI: 10.3390/cells10092219] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
Plants and insect herbivores are in a relentless battle to outwit each other. Plants have evolved various strategies to detect herbivores and mount an effective defense system against them. These defenses include physical and structural barriers such as spines, trichomes, cuticle, or chemical compounds, including secondary metabolites such as phenolics and terpenes. Plants perceive herbivory by both mechanical and chemical means. Mechanical sensing can occur through the perception of insect biting, piercing, or chewing, while chemical signaling occurs through the perception of various herbivore-derived compounds such as oral secretions (OS) or regurgitant, insect excreta (frass), or oviposition fluids. Interestingly, ion channels or transporters are the first responders for the perception of these mechanical and chemical cues. These transmembrane pore proteins can play an important role in plant defense through the induction of early signaling components such as plasma transmembrane potential (Vm) fluctuation, intracellular calcium (Ca2+), and reactive oxygen species (ROS) generation, followed by defense gene expression, and, ultimately, plant defense responses. In recent years, studies on early plant defense signaling in response to herbivory have been gaining momentum with the application of genetically encoded GFP-based sensors for real-time monitoring of early signaling events and genetic tools to manipulate ion channels involved in plant-herbivore interactions. In this review, we provide an update on recent developments and advances on early signaling events in plant-herbivore interactions, with an emphasis on the role of ion channels in early plant defense signaling.
Collapse
|
35
|
Zhang Q, Li M, Xia CY, Zhang WJ, Yin ZG, Zhang YL, Fang QX, Liu YC, Zhang MY, Zhang WH, Du JD, Du YL. Transcriptome-based analysis of salt-related genes during the sprout stage of common bean (Phaseolus vulgaris) under salt stress conditions. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1954091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Qi Zhang
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Ming Li
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Chun Yang Xia
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Wen Jing Zhang
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Zhen Gong Yin
- Bean Crops Laboratory, Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - You Li Zhang
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Qing Xi Fang
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Yang Cheng Liu
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Ming Yu Zhang
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Wen Hui Zhang
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Ji Dao Du
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, PR China
| | - Yan Li Du
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, PR China
| |
Collapse
|