1
|
Kanzaki G. Nephron number variability in Japanese subjects: an autopsy-based study and its implications for chronic kidney disease: clinical scientist award address 2024. Clin Exp Nephrol 2025:10.1007/s10157-025-02662-3. [PMID: 40252154 DOI: 10.1007/s10157-025-02662-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/07/2025] [Indexed: 04/21/2025]
Abstract
The number of nephrons is a key determinant of blood pressure regulation and chronic kidney disease (CKD) progression. Although traditional estimates suggest approximately one million nephrons per kidney, modern stereological approaches reveal substantial variability, that is influenced by ethnicity, birth weight, and other early life factors. This review evaluates the century-long evolution of nephron number research, variations across racial and ethnic groups, and explores how factors, such as body size, aging, and lifestyle risks, influence nephron endowment. Techniques for nephron quantification, from design-based stereology to emerging in vivo imaging, are also discussed. Recent research suggests markedly lower nephron counts in Japanese populations, especially among individuals with hypertension or CKD. The autopsy-based investigation in the present study included 27 middle-aged to older Japanese men (9 normotensive, 9 hypertensive, and 9 participants with CKD) who underwent dissector-fractionator stereology to quantify non-sclerosed glomeruli. Normotensive men had an average of approximately 640,399 non-sclerosed glomeruli. In contrast, the hypertensive participants had approximately 392,108 non-sclerosed glomeruli and those with CKD had only 268, 043. These findings underscore the potential influence of limited nephron reserves on hypertension and CKD in Japan. Current evidence suggests that nephron number estimates can guide therapeutic decisions and predict CKD outcomes, while advancements in real-time imaging offer potential avenues for non-invasive nephron assessment. Collectively, these developments highlight the central importance of nephron quantity in nephrology and enable targeted interventions aimed at preserving kidney function and mitigating the CKD burden.
Collapse
Affiliation(s)
- Go Kanzaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan.
| |
Collapse
|
2
|
Oba R, Ueno H, Oishi A, Nagahama K, Kanzaki G, Tsuboi N, Yokoo T, Nagase M. Upregulation of Piezo2 and increased extracellular matrix protein in diabetic kidney disease mice. Hypertens Res 2025; 48:1514-1528. [PMID: 39833555 DOI: 10.1038/s41440-024-02082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/22/2025]
Abstract
Mechanical forces such as glomerular hyperfiltration are crucial in the pathogenesis and progression of diabetic kidney disease. Piezo2 is a mechanosensitive cation channel and plays a major role in various biological and pathophysiological phenomena. We previously reported Piezo2 expression in mouse and rat kidneys and its alteration by dehydration and hypertension. To elucidate the alteration of Piezo2 expression and its consequences in a mouse model of diabetic kidney disease, we used high salt-fed male KK-Ay mice, an accelerated genetic model of diabetic kidney disease. KK-Ay mice exhibited marked obesity, hyperglycemia, elevated blood pressure, higher creatinine clearance, and overt albuminuria. Histopathological analysis revealed glomerular hypertrophy, mesangial expansion, macrophage infiltration, tubular vacuolization, and interstitial fibrosis. The mRNA and protein expression analyses revealed (1) increased fibronectin protein expression in the glomerular areas, (2) upregulated Piezo2 expression in the glomerular mesangial cells and interstitial region, (3) increased Piezo2 and the fibronectin-coding gene Fn1 mRNA, and (4) a strong correlation of Piezo2 expression with that of Fn1 in the kidneys of diabetic kidney disease mice. Piezo2 upregulation and fibronectin accumulation were alleviated by an angiotensin II receptor blocker. In accordance with these in vivo results, in vitro study demonstrated that Piezo2 overexpression increased fibronectin production in HEK293T cells. In conclusion, we demonstrated that Piezo2 expression was upregulated in glomerular mesangial cells in a mouse model of diabetic kidney disease. Our results suggest that Piezo2 contributes to the progression of diabetic kidney disease by mediating glomerular fibronectin production, leading to glomerulosclerosis. Hyperfiltration is crucial in the pathogenesis of diabetic kidney disease. We showed that Piezo2 expression is upregulated in mesangial cells of diabetic kidney disease mice with glomerular fibronectin accumulation. Piezo2 overexpression increased fibronectin production in HEK293T cells. Piezo2 may contribute to diabetic kidney disease progression by mediating glomerular fibronectin production.
Collapse
Affiliation(s)
- Rina Oba
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Hitoshi Ueno
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Atsuro Oishi
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Kiyotaka Nagahama
- Department of Pathology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Go Kanzaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Nobuo Tsuboi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Miki Nagase
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.
| |
Collapse
|
3
|
Peng H, Wu L, Chen Q, Chen S, Wu S, Shi X, Ma J, Yang H, Li X. Association between kidney function and Parkinson's disease risk: a prospective study from the UK Biobank. BMC Public Health 2024; 24:2225. [PMID: 39148063 PMCID: PMC11328353 DOI: 10.1186/s12889-024-19709-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative influenced by various clinical factors. The potential relationship between renal function and the risk of PD remains poorly understood. This study aims to explore the association between kidney function and the risk of developing PD. METHODS A population-based cohort study was conducted using data from 400,571 UK Biobank participants. Renal function was assessed using the estimated glomerular filtration rate (eGFR), calculated from serum creatinine and cystatin C levels. The association between eGFR levels and PD risk was evaluated using univariate and multivariate Cox regression analyses, Restricted Cubic Spline (RCS) analysis, and Kaplan-Meier analysis. Additionally, a clinical prediction model was developed and its diagnostic accuracy was evaluated using ROC analysis. A heatmap was also constructed to examine the relationship between clinical factors and gray matter volume in various brain regions. RESULTS Over a median observation period of 13.8 years, 2740 PD events were recorded. Cox regression and Kaplan-Meier analyses revealed a significant association between decreased eGFR and increased PD risk, particularly in participants with eGFR < 30 ml/min/1.73 m2. This association was confirmed across three adjusted models. RCS analysis demonstrated a nonlinear relationship between decreasing eGFR and increasing PD risk. Furthermore, changes in eGFR were correlated with alterations in subcortical gray matter volume in regions such as the frontal cortex, striatum, and cerebellum. The clinical prediction model showed high diagnostic accuracy with AUC values of 0.776, 0.780, and 0.824 for 4-, 8-, and 16-year predictions, respectively. CONCLUSION Renal insufficiency is significantly associated with an increased risk of PD, highlighting the importance of maintaining good kidney function as a potential preventive measure against PD.
Collapse
Affiliation(s)
- Haoran Peng
- Department of Neurology, People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Longyu Wu
- Department of Neurology, People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Qiao Chen
- Department of Nursing, Air Force Meical Center, PLA, 30 Fucheng Road, Haidian District, Beijing, 100000, China
| | - Siyuan Chen
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Shaopu Wu
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Xiaoxue Shi
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Jianjun Ma
- Department of Neurology, People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Hongqi Yang
- Department of Neurology, People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Xue Li
- Department of Neurology, People's Hospital of Henan University, Zhengzhou, Henan, 450003, China.
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China.
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China.
- Department of Neurology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China.
| |
Collapse
|
4
|
Iordan L, Gaita L, Timar R, Avram V, Sturza A, Timar B. The Renoprotective Mechanisms of Sodium-Glucose Cotransporter-2 Inhibitors (SGLT2i)-A Narrative Review. Int J Mol Sci 2024; 25:7057. [PMID: 39000165 PMCID: PMC11241663 DOI: 10.3390/ijms25137057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Chronic kidney disease (CKD) is a noncommunicable condition that has become a major healthcare burden across the globe, often underdiagnosed and associated with low awareness. The main cause that leads to the development of renal impairment is diabetes mellitus and, in contrast to other chronic complications such as retinopathy or neuropathy, it has been suggested that intensive glycemic control is not sufficient in preventing the development of diabetic kidney disease. Nevertheless, a novel class of antidiabetic agents, the sodium-glucose cotransporter-2 inhibitors (SGLT2i), have shown multiple renoprotective properties that range from metabolic and hemodynamic to direct renal effects, with a major impact on reducing the risk of occurrence and progression of CKD. Thus, this review aims to summarize current knowledge regarding the renoprotective mechanisms of SGLT2i and to offer a new perspective on this innovative class of antihyperglycemic drugs with proven pleiotropic beneficial effects that, after decades of no significant progress in the prevention and in delaying the decline of renal function, start a new era in the management of patients with CKD.
Collapse
Affiliation(s)
- Liana Iordan
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Laura Gaita
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Romulus Timar
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Vlad Avram
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Adrian Sturza
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Bogdan Timar
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
5
|
Klomp LS, Levtchenko E, Westland R. Developmental Causes of Focal Segmental Glomerulosclerosis. GLOMERULAR DISEASES 2024; 4:95-104. [PMID: 38952413 PMCID: PMC11216339 DOI: 10.1159/000538345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/08/2024] [Indexed: 07/03/2024]
Abstract
Background Focal segmental glomerulosclerosis (FSGS) is a histological pattern of glomerular damage that includes idiopathic conditions as well as genetic and non-genetic forms. Among these various etiologies, different phenotypes within the spectrum of congenital anomalies of the kidney and urinary tract (CAKUT) have been associated with FSGS. Summary Until recently, the main pathomechanism of how congenital kidney and urinary tract defects lead to FSGS was attributed to a reduced number of nephrons, resulting in biomechanical stress on the remaining glomeruli, detachment of podocytes, and subsequent inability to maintain normal glomerular architecture. The discovery of deleterious single-nucleotide variants in PAX2, a transcription factor crucial in normal kidney development and a known cause of papillorenal syndrome, in individuals with adult-onset FSGS without congenital kidney defects has shed new light on developmental defects that become evident during podocyte injury. Key Message In this mini-review, we challenge the assumption that FSGS in CAKUT is caused by glomerular hyperfiltration alone and hypothesize a multifactorial pathogenesis that includes overlapping cellular mechanisms that are activated in both damaged podocytes as well as nephron progenitor cells.
Collapse
Affiliation(s)
- Luna Shane Klomp
- Department of Pediatric Nephrology, Emma Children's Hospital - Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Elena Levtchenko
- Department of Pediatric Nephrology, Emma Children's Hospital - Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Rik Westland
- Department of Pediatric Nephrology, Emma Children's Hospital - Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Perschinka F, Boyer N, Forni LG, Joannidis M. Renal function in very old critically ill patients. Curr Opin Crit Care 2023; 29:534-541. [PMID: 37861208 DOI: 10.1097/mcc.0000000000001088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
PURPOSE OF REVIEW Current demographic change leads to higher number of elderly patients admitted to an ICU. Among other organs also the kidneys show age-related changes, which are associated with a decline in various aspects of renal function. The purpose of this review is to provide an overview of structural and functional changes in elderly and also to specifically address the increased risk of acute kidney injury (AKI) in this population. RECENT FINDINGS Ageing in the kidneys is affected by many different factors, such as low grade chronic inflammation, called inflammageing, and various comorbidities. Nevertheless, a decrease of glomerular filtration rate (GFR) occurs independent of the presence of comorbidities and a steady decline of GFR has been reported in both healthy men and women. Pharmacodynamic of many drugs is altered by these changes. Additionally the rate of diuretic resistance appears to be increased. The cause of AKI occurrence in older age is, multifactorial and includes preventable triggers (hypovolemia, hypotension, nephrotoxins) as well as changes associated with aging. SUMMARY Age-related alterations of the kidneys were found at microscopic and macroscopic levels of the cell. These changes lead to a reduced renal reserve and subsequently to an increased vulnerability of aged kidneys when an additional stressor is added. Age is an independent risk factor for developing AKI. Physicians should take into account the altered renal function in elderly patients and take renal protective measures at an early stage.
Collapse
Affiliation(s)
- Fabian Perschinka
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Naomi Boyer
- Department of Critical Care, Royal Surrey Foundation Trust
| | - Lui G Forni
- Department of Critical Care, Royal Surrey Foundation Trust
- School of Medicine, Faculty of Health Sciences, University of Surrey, Guildford, Surrey, UK
| | - Michael Joannidis
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
Nishiyama A, Kitada K. Possible renoprotective mechanisms of SGLT2 inhibitors. Front Med (Lausanne) 2023; 10:1115413. [PMID: 36968844 PMCID: PMC10033659 DOI: 10.3389/fmed.2023.1115413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/31/2023] [Indexed: 03/11/2023] Open
Abstract
Treatment with a sodium glucose cotransporter 2 (SGLT2) inhibitor in patients with chronic kidney disease reduces the renal risk independent of changes in blood glucose concentrations and blood pressure. However, the precise mechanism responsible for this SGLT2 inhibitor-induced renoprotective effect is unclear. We have previously shown that SGLT2 inhibitors induce antihypertensive effects with decreased sympathetic nerve activity, which is associated with transient natriuresis. Furthermore, treatment with an SGLT2 inhibitor improves renal ischemia by producing vascular endothelial growth factor-a in the renal tubules. Other studies have suggested that ketone body production, changes in glomerular hemodynamics, and intrarenal metabolic changes and a reduction in oxidative stress due to decreased tubulointerstitial glucose levels may also be involved in the renoprotective effects of SGLT2 inhibitors. In this review, we summarize the mechanism responsible for the SGLT2 inhibitor-induced renoprotective effects, including our recent hypothesis regarding an “aestivation-like response,” which is a biological defense response to starvation.
Collapse
|
8
|
Fluid homeostasis induced by sodium-glucose cotransporter 2 inhibitors: novel insight for better cardio-renal outcomes in chronic kidney disease. Hypertens Res 2023; 46:1195-1201. [PMID: 36849579 DOI: 10.1038/s41440-023-01220-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/07/2023] [Accepted: 02/02/2023] [Indexed: 03/01/2023]
Abstract
Hypertension in chronic kidney disease (CKD) patients is a risk factor for end-stage renal disease, cardiovascular events, and mortality. Thus, the prevention and appropriate management of hypertension in these patients are essential strategies for better cardio-renal outcomes. In this review, we show novel risk factors for hypertension with CKD, several promising prognostic markers and treatment for cardio-renal outcomes. Of note, the clinical use of sodium-glucose cotransporter 2 (SGLT2) inhibitors has recently expanded to non-diabetic patients with CKD and heart failure as well as diabetic patients. SGLT2 inhibitors have an antihypertensive effect, but are also associated with a low risk of hypotension. This unique mechanism of blood pressure regulation by SGLT2 inhibitors may partially depend on body fluid homeostasis, which is mediated by the autoregulation property between "accelerator" (diuretic action) and "brake" (increase in anti-diuretic hormone vasopressin and fluid intake). Mineralocorticoid receptor (MR) blockers are used in the treatment of essential hypertension and hyperaldosteronism. Recently, a new MR blocker, finerenone, has been launched as a treatment for CKD with type 2 diabetes. These advances in relation to hypertension in CKD may contribute to the reduction of renal and cardiovascular events.
Collapse
|
9
|
Haruhara K, Kanzaki G, Tsuboi N. Nephrons, podocytes and chronic kidney disease: Strategic antihypertensive therapy for renoprotection. Hypertens Res 2023; 46:299-310. [PMID: 36224286 PMCID: PMC9899692 DOI: 10.1038/s41440-022-01061-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/06/2022] [Accepted: 09/05/2022] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is one of the strongest risk factors for hypertension, and hypertension can exacerbate the progression of CKD. Thus, the management of CKD and antihypertensive therapy are inextricably linked. Research over the past decades has shown that the human kidney is more diverse than initially thought. Subjects with low nephron endowment are at increased risk of developing CKD and hypertension, which is consistent with the theory of the developmental origins of health and disease. Combined with other lifetime risks of CKD, hypertension may lead to a vicious cycle consisting of podocyte injury, glomerulosclerosis and further loss of nephrons. Of note, recent studies have shown that the number of nephrons correlates well with the number of podocytes, suggesting that these two components are intrinsically linked and may influence each other. Both nephrons and podocytes have no or very limited regenerative capacity and are destined to decrease throughout life. Therefore, one of the best strategies to slow the progression of CKD is to maintain the "numbers" of these essential components necessary to preserve renal function. To this end, both the achievement of an optimal blood pressure and a maximum reduction in urinary protein excretion are essential. Lifestyle modifications and antihypertensive drug therapy must be carefully individualized to address the potential diversity of the kidneys.
Collapse
Affiliation(s)
- Kotaro Haruhara
- grid.411898.d0000 0001 0661 2073Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Go Kanzaki
- grid.411898.d0000 0001 0661 2073Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Nobuo Tsuboi
- grid.411898.d0000 0001 0661 2073Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Mogi M, Maruhashi T, Higashi Y, Masuda T, Nagata D, Nagai M, Bokuda K, Ichihara A, Nozato Y, Toba A, Narita K, Hoshide S, Tanaka A, Node K, Yoshida Y, Shibata H, Katsurada K, Kuwabara M, Kodama T, Shinohara K, Kario K. Update on Hypertension Research in 2021. Hypertens Res 2022; 45:1276-1297. [PMID: 35790879 PMCID: PMC9255494 DOI: 10.1038/s41440-022-00967-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 12/16/2022]
Abstract
In 2021, 217 excellent manuscripts were published in Hypertension Research. Editorial teams greatly appreciate the authors' contribution to hypertension research progress. Here, our editorial members have summarized twelve topics from published work and discussed current topics in depth. We hope you enjoy our special feature, "Update on Hypertension Research in 2021".
Collapse
Affiliation(s)
- Masaki Mogi
- Department of Pharmacology, Ehime University Graduate School of Medicine, 454 Shitsukawa, Tohon, Ehime, 791-0295, Japan.
| | - Tatsuya Maruhashi
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Yukihito Higashi
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takahiro Masuda
- Division of Nephrology, Department of Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Daisuke Nagata
- Division of Nephrology, Department of Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Michiaki Nagai
- Department of Cardiology, Hiroshima City Asa Hospital, 1-2-1 Kameyamaminami Asakita-ku, Hiroshima, 731-0293, Japan
| | - Kanako Bokuda
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Atsuhiro Ichihara
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Yoichi Nozato
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Ayumi Toba
- Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Keisuke Narita
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Satoshi Hoshide
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Atsushi Tanaka
- Department of Cardiovascular Medicine, Saga University, 5-1-1, Nabeshima, Saga, 849-8501, Japan
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, 5-1-1, Nabeshima, Saga, 849-8501, Japan
| | - Yuichi Yoshida
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, 1-1, 1-1 Idaigaoka, Hasama-machi, Yufu city, Oita, 879-5593, Japan
| | - Hirotaka Shibata
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, 1-1, 1-1 Idaigaoka, Hasama-machi, Yufu city, Oita, 879-5593, Japan
| | - Kenichi Katsurada
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Masanari Kuwabara
- Department of Cardiology, Toranomon Hospital, 2-2-2, Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Takahide Kodama
- Department of Cardiology, Toranomon Hospital, 2-2-2, Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Keisuke Shinohara
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
11
|
Denic A, Rule AD, Glassock RJ. Healthy and unhealthy aging on kidney structure and function: human studies. Curr Opin Nephrol Hypertens 2022; 31:228-234. [PMID: 35067600 PMCID: PMC9035051 DOI: 10.1097/mnh.0000000000000780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review is intended to provide an up-to-date analysis of the structural and functional alterations of the kidneys that accompany healthy and unhealthy aging in humans. Macro- and micro- structural changes and glomerular filtration rate (whole kidney and single nephron) accompanying aging will be stressed. RECENT FINDINGS Comparative findings concerning distribution of anatomic changes of the kidney healthy and unhealthy aging are reviewed. Challenges concerning definition of chronic kidney disease (CKD) in otherwise healthy aging patients are discussed. The complex interactions of CKD and aging are discussed. The role of podocyte dysbiosis in kidney aging is reviewed. SUMMARY Kidney aging is a complex phenomenon often difficult to distinguish from CKD. Nonetheless, phenotypes of healthy and unhealthy aging are evident. Much more information concerning the molecular characteristics of normal kidney aging and its relevance to chronic kidney disease is needed.
Collapse
Affiliation(s)
- Aleksandar Denic
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Andrew D. Rule
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Richard J. Glassock
- Department of Medicine, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
12
|
Morozov D, Parvin N, Conaway M, Oxley G, Baldelomar EJ, Cwiek A, deRonde K, Beeman SC, Charlton JR, Bennett KM. Estimating Nephron Number from Biopsies: Impact on Clinical Studies. J Am Soc Nephrol 2022; 33:39-48. [PMID: 34758983 PMCID: PMC8763172 DOI: 10.1681/asn.2021070998] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/15/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Accumulating evidence supports an association between nephron number and susceptibility to kidney disease. However, it is not yet possible to directly measure nephron number in a clinical setting. Recent clinical studies have used glomerular density from a single biopsy and whole kidney cortical volume from imaging to estimate nephron number and single nephron glomerular filtration rate. However, the accuracy of these estimates from individual subjects is unknown. Furthermore, it is not clear how sample size or biopsy location may influence these estimates. These questions are critical to study design, and to the potential translation of these tools to estimate nephron number in individual subjects. METHODS We measured the variability in estimated nephron number derived from needle or virtual biopsies and cortical volume in human kidneys declined for transplantation. We performed multiple needle biopsies in the same kidney, and examined the three-dimensional spatial distribution of nephron density by magnetic resonance imaging. We determined the accuracy of a single-kidney biopsy to predict the mean nephron number estimated from multiple biopsies from the same kidney. RESULTS A single needle biopsy had a 15% chance and virtual biopsy had a 60% chance of being within 20% of the whole-kidney nephron number. Single needle biopsies could be used to detect differences in nephron number between large cohorts of several hundred subjects. CONCLUSIONS The number of subjects required to accurately detect differences in nephron number between populations can be predicted on the basis of natural intrakidney variability in glomerular density. A single biopsy is insufficient to accurately predict nephron number in individual subjects.
Collapse
Affiliation(s)
- Darya Morozov
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Neda Parvin
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Mark Conaway
- Division of Translational Research and Applied Statistics in the Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - Gavin Oxley
- University of Virginia, Charlottesville, Virginia
| | - Edwin J. Baldelomar
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Aleksandra Cwiek
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - Kim deRonde
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia
| | - Scott C. Beeman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona
| | | | - Kevin M. Bennett
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
13
|
Pain in Hemodialysis Patients: Prevalence, Intensity, Location, and Functional Interference in Daily Activities. Healthcare (Basel) 2021; 9:healthcare9101375. [PMID: 34683055 PMCID: PMC8544358 DOI: 10.3390/healthcare9101375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 11/24/2022] Open
Abstract
Although pain is a frequent complaint of patients with chronic kidney disease who undergo hemodialysis, few studies have assessed the functional interference of pain in activities of daily living (ADLs). Hence, the aim of this study was to evaluate the prevalence, location, intensity, and functional interference of pain in ADLs of chronic kidney disease patients undergoing hemodialysis and to estimate the association of specific pain sites with severe functional interference by pain in ADLs. This cross-sectional study included patients with chronic kidney disease undergoing hemodialysis. The prevalence, intensity, and functional interference of pain in ADLs were assessed using the brief pain inventory. Poisson regression was used to calculate the prevalence ratio. A total of 65 patients participated in the study. The overall prevalence of pain was 89.23%; the prevalence of headache was 18.46% and that of pain in the trunk was 55.38%, upper limbs was 35.38%, and lower limbs was 60.00%. The prevalence of moderate and severe pain at the time of hemodialysis was 13.85% and 21.54%, respectively. A high prevalence of severe functional interference of pain in general activity (61.54%), mobility (56.92%), and disposition (55.38%) was observed. Pain is a frequent complaint in patients undergoing hemodialysis, mainly musculoskeletal and intradialytic, and it interferes with ADLs and incapacitates the patient. Pain was highly prevalent in the upper and lower limbs and the trunk. Furthermore, a higher prevalence of severe pain at the time of hemodialysis and functional interference of pain, mainly in general activity, mobility, and disposition, were observed.
Collapse
|
14
|
Bhunu B, Riccio I, Intapad S. Insights into the Mechanisms of Fetal Growth Restriction-Induced Programming of Hypertension. Integr Blood Press Control 2021; 14:141-152. [PMID: 34675650 PMCID: PMC8517636 DOI: 10.2147/ibpc.s312868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/30/2021] [Indexed: 12/21/2022] Open
Abstract
In recent decades, both clinical and animal studies have shown that fetal growth restriction (FGR), caused by exposure to adverse uterine environments, is a risk factor for hypertension as well as for a variety of adult diseases. This observation has shaped and informed the now widely accepted theory of developmental origins of health and disease (DOHaD). There is a plethora of evidence supporting the association of FGR with increased risk of adult hypertension; however, the underlying mechanisms responsible for this correlation remain unclear. This review aims to explain the current advances in the field of fetal programming of hypertension and a brief narration of the underlying mechanisms that may link FGR to increased risk of adult hypertension. We explain the theory of DOHaD and then provide evidence from both clinical and basic science research which support the theory of fetal programming of adult hypertension. In addition, we have explored the underlying mechanisms that may link FGR to an increased risk of adult hypertension. These mechanisms include epigenetic changes, metabolic disorders, vascular dysfunction, neurohormonal impairment, and alterations in renal physiology and function. We further describe sex differences seen in the developmental origins of hypertension and provide insights into the opportunities and challenges present in this field.
Collapse
Affiliation(s)
- Benjamin Bhunu
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Isabel Riccio
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Suttira Intapad
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| |
Collapse
|