1
|
Iwata S, Ashida K, Demiya M, Nagayama A, Hasuzawa N, Yoshinobu S, Sonezaki A, Yasuda J, Motomura S, Katsuki Y, Sugi K, Nomura M. Preserved seasonal variation in glycemic control in patients with type 2 diabetes mellitus during COVID-19: a 3-year-long retrospective cohort study in older adults in Japan. BMC Endocr Disord 2024; 24:70. [PMID: 38755559 PMCID: PMC11100128 DOI: 10.1186/s12902-024-01602-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic has changed our lifestyle by imposing restrictions, such as physical distancing. The effect of COVID-19 prevalence on seasonal variations in glycemic control in patients with diabetes mellitus (DM) remains unknown. METHODS This single-center retrospective cohort study evaluated glycemic control in patients with type 2 DM who visited Sugi Cardiovascular Hospital in December 2021. We evaluated the clinical findings of all patients treated regularly between March 1, 2019, and December 31, 2021, including the periods both before and after the COVID-19 pandemic. All the standard treatments were approved. Furthermore, seasonal changes in hemoglobin A1c (HbA1c) levels were evaluated using stratified analyses based on age. RESULTS This study analyzed 86 patients (mean age, 69.6 ± 9.2 years; men, 57). Median HbA1c (National Glycohemoglobin Standardization Program [Union of Clinical Chemistry]) levels in spring (March) were 7.70% (interquartile range (IQR):7.23%-8.30%) [60.6 mmol/mol (IQR:55.4-67.2 mmol/mol)], 7.35% (IQR:6.90%-7.90%) [56.8 mmol/mol (IQR:51.9-62.8 mmol/mol)], and 7.50% (IQR:7.10%-8.00%) [58.5 mmol/mol (IQR:54.1-63.9 mmol/mol)] in 2019, 2020, and 2021, respectively. During these periods, HbA1c levels and body mass index (BMI) revealed significant seasonal variations "high in spring" and "low in autumn." Median HbA1c levels in spring (March) and autumn (September) were 7.86% [61.2 mmol/mol] and 7.48% [57.4 mmol/mol] in 2019 (P < 0.001), 7.50% [57.7 mmol/mol] and 7.17% [54.2 mmol/mol] in 2020 (P < 0.001), and 7.61% [58.3 mmol/mol] and 7.19% [53.8 mmol/mol] in 2021 (P < 0.001). Seasonal variations in HbA1c levels and BMI were maintained over the past 3 years, including the pandemic period. None of the patients in this study developed COVID-19 during the study period. CONCLUSIONS Seasonal variations in glycemic control in patients with DM were not influenced by lifestyle modifications associated with COVID-19. Maintenance of physical activity is necessary to prevent the development of sarcopenia. Moreover, seasonal variations in glycemic metabolism should be considered an independent factor for DM management. Additional extensive multifacility investigations are necessary to corroborate our findings.
Collapse
Affiliation(s)
- Shimpei Iwata
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
- Sugi Cardiovascular Hospital, 950-1 Taguma, Ohmuta, Fukuoka, 837-0916, Japan
| | - Kenji Ashida
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan.
| | - Mutsuyuki Demiya
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
| | - Ayako Nagayama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
| | - Nao Hasuzawa
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
| | - Satoko Yoshinobu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
| | - Aya Sonezaki
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
| | - Junichi Yasuda
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
| | - Seiichi Motomura
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
| | - Yoshio Katsuki
- Sugi Cardiovascular Hospital, 950-1 Taguma, Ohmuta, Fukuoka, 837-0916, Japan
| | - Kenzo Sugi
- Sugi Cardiovascular Hospital, 950-1 Taguma, Ohmuta, Fukuoka, 837-0916, Japan
| | - Masatoshi Nomura
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
| |
Collapse
|
2
|
Rossios K, Antza C, Kachtsidis V, Kotsis V. The Modern Environment: The New Secondary Cause of Hypertension? MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2095. [PMID: 38138198 PMCID: PMC10744418 DOI: 10.3390/medicina59122095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/15/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
The most important risk factor for cardiovascular disease, the leading cause of death worldwide, is hypertension. Although most cases of hypertension are thought to be essential, the multifactorial associations of the environmental influence on blood pressure seem to play an important role and should be more closely investigated. This review attempts to focus on the recent literature that examines the environmental effects on arterial blood pressure and its management. Seasonal variability and the role of ambient temperature, either occupational or recreational noise pollution, as well as obesity due to environment-caused dietary habits, are recognized as important risk factors, affecting the onset as well as the regulation of hypertension. Furthermore, the effects of seasonal fluctuations in blood pressure, noise pollution, and obesity seem to share a similar pathogenesis, and as such to all further react together, leading to increased blood pressure. The activation of the autonomous nervous system plays a key role and causes an increase in stress hormones that generates oxidative stress on the vascular system and, thus, vasoconstriction. In this review, by focusing on the association of the environmental impact with arterial blood pressure, we come to the question of whether most cases of hypertension-if not all-should, indeed, be considered primary or secondary.
Collapse
Affiliation(s)
- Konstantinos Rossios
- Cardiology Clinic, Papageorgiou Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Christina Antza
- Hypertension Center, 3rd Department of Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.A.); (V.K.)
| | - Vasileios Kachtsidis
- Hypertension Center, 3rd Department of Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.A.); (V.K.)
| | - Vasilios Kotsis
- Hypertension Center, 3rd Department of Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.A.); (V.K.)
| |
Collapse
|
3
|
Tsao TM, Hwang JS, Chen CY, Lin ST, Tsai MJ, Su TC. Urban climate and cardiovascular health: Focused on seasonal variation of urban temperature, relative humidity, and PM 2.5 air pollution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115358. [PMID: 37595350 DOI: 10.1016/j.ecoenv.2023.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023]
Abstract
Seasonal effects on subclinical cardiovascular functions (CVFs) are an important emerging health issue for people living in urban environment. The objectives of this study were to demonstrate the effects of seasonal variations of temperature, relative humidity, and PM2.5 air pollution on CVFs. A total of 86 office workers in Taipei City were recruited, their arterial pressure waveform was recorded by cuff sphygmomanometer using an oscillometric blood pressure (BP) device for CVFs assessment. Results of paried t-test with Bonferroni correction showed significantly increased systolic and diastolic BP (SBP, DBP), central end-systolic and diastolic BP (cSBP, cDBP) and systemic vascular resistance, but decreased heart rate (HR), stroke volume (SV), cardio output (CO), and cardiac index in winter compared with other seasons. After controlling for related confounding factors, SBP, DBP, cSBP, cDBP, LV dp/dt max, and brachial-ankle pulse wave velocity (baPWV) were negatively associated with, and SV was positively associated with seasonal temperature changes. Seasonal changes of air pollution in terms of PM2.5 were significantly positively associated with DBP and cDBP, as well as negatively associated with HR and CO. Seasonal changes of relative humidity were significantly negatively associated with DBP, and cDBP, as well as positively associated with HR, CO, and baPWV. This study provides evidence of greater susceptibility to cardiovascular events in winter compared with other seasons, with ambient temperature, relative humidity, and PM2.5 as the major factors of seasonal variation of CVFs.
Collapse
Affiliation(s)
- Tsung-Ming Tsao
- The Experimental Forest, College of Bio-Resource and Agriculture, National Taiwan University, Nantou County, 55750, Taiwan
| | - Jing-Shiang Hwang
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan
| | - Chung-Yen Chen
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin 640203, Taiwan; Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei 10055, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Sung-Tsun Lin
- The Experimental Forest, College of Bio-Resource and Agriculture, National Taiwan University, Nantou County, 55750, Taiwan; Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei 10055, Taiwan
| | - Ming-Jer Tsai
- The Experimental Forest, College of Bio-Resource and Agriculture, National Taiwan University, Nantou County, 55750, Taiwan; School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617, Taiwan
| | - Ta-Chen Su
- The Experimental Forest, College of Bio-Resource and Agriculture, National Taiwan University, Nantou County, 55750, Taiwan; Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei 10055, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; Divisions of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan.
| |
Collapse
|