1
|
De Bartolo A, Angelone T, Rocca C. Elucidating emerging signaling pathways driving endothelial dysfunction in cardiovascular aging. Vascul Pharmacol 2025; 158:107462. [PMID: 39805379 DOI: 10.1016/j.vph.2025.107462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
The risk for developing cardiovascular diseases dramatically increases in older individuals, and aging vasculature plays a crucial role in determining their morbidity and mortality. Aging disrupts endothelial balance between vasodilators and vasoconstrictors, impairing function and promoting pathological vascular remodeling. In this Review, we discuss the impact of key and emerging molecular pathways that transduce aberrant inflammatory signals (i.e., chronic low-grade inflammation-inflammaging), oxidative stress, and mitochondrial dysfunction in aging vascular compartment. We focus on the interplay between these events, which contribute to generating a vicious cycle driving the progressive alterations in vascular structure and function during cardiovascular aging. We also discuss the primary role of senescent endothelial cells and vascular smooth muscle cells, and the potential link between vascular and myeloid cells, in impairing plaque stability and promoting the progression of atherosclerosis. The aim of this summary is to provide potential novel insights into targeting these processes for therapeutic benefit.
Collapse
Affiliation(s)
- Anna De Bartolo
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy; National Institute of Cardiovascular Research (INRC), Bologna, Italy.
| | - Carmine Rocca
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy; National Institute of Cardiovascular Research (INRC), Bologna, Italy.
| |
Collapse
|
2
|
Chi H, Ma L, Zeng F, Wang X, Peng P, Bai X, Zhang T, Yin W, Yu Y, Yang L, Zhou Q, Wei C, Shi W. Senolytic Treatment Alleviates Corneal Allograft Rejection Through Upregulation of Angiotensin-Converting Enzyme 2 (ACE2). Invest Ophthalmol Vis Sci 2025; 66:15. [PMID: 39913165 PMCID: PMC11806429 DOI: 10.1167/iovs.66.2.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/01/2025] [Indexed: 02/07/2025] Open
Abstract
Purpose Allograft rejection remains a major cause of failure in high-risk corneal transplants, but the underlying mechanisms are not fully understood. This study aimed to investigate the contribution of transplantation stress-induced cellular senescence to corneal allograft rejection and to elucidate the associated molecular mechanisms. Methods Age-matched murine corneal transplantation models were established. Cellular senescence was evaluated using senescence-associated β-galactosidase (SA-β-Gal) staining, western blot, and immunofluorescence staining. The role of cellular senescence in corneal allograft rejection was analyzed using p16 knockout mice and adoptive transfer experiments. Senolytic treatment with ABT-263 was administered intraperitoneally to evaluate its effects on corneal allograft rejection. RNA sequencing and pharmacological approaches were employed to identify the underlying mechanisms. Results Surgical injury induced a senescence-like phenotype in both donor corneas and recipient corneal beds, characterized by an increased accumulation of SA-β-Gal-positive cells in the corneal endothelium and stroma and elevated expression of senescence markers p16 and p21. Using genetic and adoptive transfer models, transplantation stress-induced senescence was shown to exacerbate corneal allograft rejection. Importantly, clearance of senescent cells by ABT-263 significantly suppressed ocular alloresponses and immune rejection. Mechanistically, RNA sequencing and loss-of-function experiments demonstrated that the anti-rejection effects of senolytic treatment were closely dependent on angiotensin-converting enzyme 2 (ACE2). Conclusions These findings highlight transplantation stress-induced senescence as a pivotal pathogenic factor in corneal allograft rejection. Senolytic therapy emerges as a potential novel strategy to mitigate transplant rejection and improve corneal allograft survival.
Collapse
Affiliation(s)
- Hao Chi
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Li Ma
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Fanxing Zeng
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, Jinan, China
| | - Xiaolei Wang
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Peng Peng
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Xiaofei Bai
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Ting Zhang
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, Jinan, China
| | - Wenhui Yin
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Yaoyao Yu
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Chao Wei
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Jinan, China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, Jinan, China
| |
Collapse
|
3
|
Xin M, Xu A, Tian J, Wang L, He Y, Jiang H, Yang B, Li B, Sun Y. Anthocyanins as natural bioactives with anti-hypertensive and atherosclerotic potential: Health benefits and recent advances. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155889. [PMID: 39047414 DOI: 10.1016/j.phymed.2024.155889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Hypertension is a highly prevalent chronic metabolic illness affecting individuals of all age groups. Furthermore, it is a significant risk factor for the development of atherosclerosis (AS), as a correlation between hypertension and AS has been observed. However, the effective treatments for either of these disorders appear to be uncommon. METHODS A systematic search of articles published in PubMed, Web of Science, ScienceDirect, Scopus, and Google Scholar databases over the last decade was performed using the following keywords: hypertension, AS, anthocyanins, antioxidants, gut microbes, health benefits, and bioactivity. RESULTS The available research indicates that anthocyanin consumption can achieve antioxidant effects by inducing the activation of intracellular nuclear factor erythroid 2-related factor (Nrf2) and the expression of antioxidant genes. Moreover, previous reports showed that anthocyanins can enhance the human body's ability to fight against inflammation and cancer through the inhibition of inflammatory factors and the regulation of related signaling pathways. They can also protect the blood vessels and nervous system by regulating the production and function of endothelial nitric oxide synthase (eNOS). Gut microorganisms play an important role in various chronic diseases. Our research has also investigated the role of anthocyanins in the metabolism of the gut microbiota, leading to significant breakthroughs. This study not only presents a unique strategy for reducing the risk of cardiovascular diseases (CVDs) without the need for medicine but also provides insights into the development and utilization of intestinal probiotic dietary supplements. CONCLUSION In this review, different in vitro and in vivo studies have shown that anthocyanins slow down the onset and progression of hypertension and AS through different mechanisms. In addition, gut microbial metabolites also play a crucial role in diseases through the gut-liver axis.
Collapse
Affiliation(s)
- Meili Xin
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Aihua Xu
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Liang Wang
- Zhejiang Lanmei Technology Co., Ltd., Zhuji, Zhejiang 311800, China
| | - Ying He
- Zhejiang Lanmei Technology Co., Ltd., Zhuji, Zhejiang 311800, China
| | - Hongzhou Jiang
- Anhui Ziyue Biotechnology Co., Ltd, Wuhu, Anhui,241000, China
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China.
| | - Yongxin Sun
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
4
|
de Cavanagh EMV, Inserra F, Ferder L. Renin-angiotensin system inhibitors positively impact on multiple aging regulatory pathways: Could they be used to protect against human aging? Physiol Rep 2024; 12:e16094. [PMID: 38924381 PMCID: PMC11200104 DOI: 10.14814/phy2.16094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
The renin-angiotensin system (RAS)-a classical blood pressure regulator-largely contributes to healthy organ development and function. Besides, RAS activation promotes age-related changes and age-associated diseases, which are attenuated/abolished by RAS-blockade in several mammalian species. RAS-blockers also increase rodent lifespan. In previous work, we discussed how RAS-blockade downregulates mTOR and growth hormone/IGF-1 signaling, and stimulates AMPK activity (together with klotho, sirtuin, and vitamin D-receptor upregulation), and proposed that at least some of RAS-blockade's aging benefits are mediated through regulation of these intermediaries and their signaling to mitochondria. Here, we included RAS-blockade's impact on other aging regulatory pathways, that is, TGF-ß, NF-kB, PI3K, MAPK, PKC, Notch, and Wnt, all of which affect mitochondria. No direct evidence is available on RAS/RAS-blockade-aging regulatory pathway-mitochondria interactions. However, existing results allow to conjecture that RAS-blockers neutralize mitochondrial dysfunction by acting on the discussed pathways. The reviewed evidence led us to propose that the foundation is laid for conducting clinical trials aimed at testing whether angiotensin-converting enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARB)-even at subclinical doses-offer the possibility to live longer and in better health. As ACEi and ARB are low cost and well-tolerated anti-hypertension therapies in use for over 35 years, investigating their administration to attenuate/prevent aging effects seems simple to implement.
Collapse
Affiliation(s)
| | - Felipe Inserra
- Department of MedicineMaimonides UniversityBuenos AiresArgentina
- Master of Vascular Mechanics and Arterial Hypertension, Postgraduate DepartmentAustral UniversityPilarArgentina
| | - León Ferder
- Department of MedicineMaimonides UniversityBuenos AiresArgentina
| |
Collapse
|
5
|
Mogi M, Ikegawa Y, Haga S, Hoshide S, Kario K. Hypertension facilitates age-related diseases. ~ Is hypertension associated with a wide variety of diseases?~. Hypertens Res 2024; 47:1246-1259. [PMID: 38491107 DOI: 10.1038/s41440-024-01642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
Hypertension, a disease whose prevalence increases with age, induces pathological conditions of ischemic vascular disorders such as cerebral infarction and myocardial infarction due to accelerated arteriosclerosis and circulatory insufficiency of small arteries and sometimes causes hemorrhagic conditions such as cerebral hemorrhage and ruptured aortic aneurysm. On the other hand, as it is said that aging starts with the blood vessels, impaired blood flow associated with vascular aging is the basis for the development of many pathological conditions, and ischemic changes in target organs associated with vascular disorders result in tissue dysfunction and degeneration, inducing organ hypofunction and dysfunction. Therefore, we hypothesized that hypertension is associated with all age-related vascular diseases, and attempted to review the relationship between hypertension and diseases for which a relationship has not been previously well reported. Following our review, we hope that a collaborative effort to unravel age-related diseases from the perspective of hypertension will be undertaken together with experts in various specialties regarding the relationship of hypertension to all pathological conditions.
Collapse
Affiliation(s)
- Masaki Mogi
- Department of Pharmacology, Ehime University Graduate School of Medicine, Matsuyama, Japan.
| | - Yasuhito Ikegawa
- Department of Pharmacology, Ehime University Graduate School of Medicine, Matsuyama, Japan
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Matsuyama, Japan
| | - Shunsuke Haga
- Department of Pharmacology, Ehime University Graduate School of Medicine, Matsuyama, Japan
- Department of Urology, Ehime University Graduate School of Medicine, Matsuyama, Japan
| | - Satoshi Hoshide
- Division of Cardiovascular Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Kazuomi Kario
- Division of Cardiovascular Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| |
Collapse
|
6
|
Ávila-Martínez DV, Mixtega-Ruiz WK, Hurtado-Capetillo JM, Lopez-Franco O, Flores-Muñoz M. Counter-regulatory RAS peptides: new therapy targets for inflammation and fibrotic diseases? Front Pharmacol 2024; 15:1377113. [PMID: 38666016 PMCID: PMC11044688 DOI: 10.3389/fphar.2024.1377113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
The renin-angiotensin system (RAS) is an important cascade of enzymes and peptides that regulates blood pressure, volume, and electrolytes. Within this complex system of reactions, its counter-regulatory axis has attracted attention, which has been associated with the pathophysiology of inflammatory and fibrotic diseases. This review article analyzes the impact of different components of the counter-regulatory axis of the RAS on different pathologies. Of these peptides, Angiotensin-(1-7), angiotensin-(1-9) and alamandine have been evaluated in a wide variety of in vitro and in vivo studies, where not only they counteract the actions of the classical axis, but also exhibit independent anti-inflammatory and fibrotic actions when binding to specific receptors, mainly in heart, kidney, and lung. Other functional peptides are also addressed, which despite no reports associated with inflammation and fibrosis to date were found, they could represent a potential target of study. Furthermore, the association of agonists of the counter-regulatory axis is analyzed, highlighting their contribution to the modulation of the inflammatory response counteracting the development of fibrotic events. This article shows an overview of the importance of the RAS in the resolution of inflammatory and fibrotic diseases, offering an understanding of the individual components as potential treatments.
Collapse
Affiliation(s)
- Diana V Ávila-Martínez
- Laboratorio de Medicina Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - Wendy K Mixtega-Ruiz
- Laboratorio de Medicina Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
- Doctorado en Ciencias Biológicas, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | | | - Oscar Lopez-Franco
- Laboratorio de Medicina Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - Mónica Flores-Muñoz
- Laboratorio de Medicina Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| |
Collapse
|