1
|
Dwivedi A, Scalsky RJ, Harris DG, Stabler TC, Shrestha B, Joshi S, Gandhi C, Munro JB, Ifeonu OO, Ouedraogo A, Tiono AB, Coulibaly D, Ouattara A, Richie TL, Sim BKL, Plowe CV, Lyke KE, Takala-Harrison S, Hoffman SL, Thera MA, Sirima SB, Laurens MB, Silva JC. Protective targets of PfSPZ vaccines identified from whole-genome sieve analysis of isolates from malaria vaccine efficacy trials in West Africa. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.04.25323352. [PMID: 40093207 PMCID: PMC11908318 DOI: 10.1101/2025.03.04.25323352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Identification of antigens targeted by a protective response is a central quest in malaria vaccinology. Whole-genome sieve analysis (SAWG) in samples collected from placebo-controlled field trials of Plasmodium falciparum (Pf) sporozoite (SPZ) vaccines may enable identification of Pf pre-erythrocytic antigens. We applied SAWG to genomic data generated from Pf isolates collected during two field trials measuring the efficacy, in malaria-exposed African adults, of two PfSPZ vaccines. These randomized, double-blind, placebo-controlled trials were conducted in regions of Mali and Burkina Faso characterized by high seasonal transmission, where parasite genetic diversity is high. Genomic sites in which the vaccine allelic state was significantly underrepresented among breakthrough infections in vaccinees relative to placebo recipients were termed "target sites". Protein-coding loci containing target sites that changed amino acids were termed "target loci". The SAWG conducted on clinical trial samples from the Burkina Faso and Mali trials identified 138 and 80 single-copy protein-coding target loci in the Burkinabe and Malian data sets, respectively, with twelve common to both, a number significantly higher than expected (E = 3.9; 99%CI = [0, 9]). Among these was the thrombospondin-related anonymous protein locus, which encodes PfSSP2|TRAP, one of the most abundant and well-characterized pre-erythrocytic stage antigen as well as other genes encoding membrane-associated proteins of unknown function. These results identify SAWG as a potentially powerful tool for identifying protective vaccine antigens in recombining pathogens with large genome size and reveals potential new protective Pf antigens.
Collapse
Affiliation(s)
- Ankit Dwivedi
- Institute for Genome Sciences, University of Maryland School of Medicine; Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine; Baltimore, MD 21201, USA
| | - Ryan J. Scalsky
- Institute for Genome Sciences, University of Maryland School of Medicine; Baltimore, MD 21201, USA
| | - David G. Harris
- Department of Computer Science, University of Maryland College Park; College Park, MD 20742, USA
| | | | - Biraj Shrestha
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, MD 21201, USA
| | - Sudhaunshu Joshi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, MD 21201, USA
| | - Chakshu Gandhi
- Institute for Genome Sciences, University of Maryland School of Medicine; Baltimore, MD 21201, USA
| | - James B. Munro
- Institute for Genome Sciences, University of Maryland School of Medicine; Baltimore, MD 21201, USA
| | - Olukemi O. Ifeonu
- Institute for Genome Sciences, University of Maryland School of Medicine; Baltimore, MD 21201, USA
| | | | - Alfred B. Tiono
- Groupe de Recherche Action en Santé; Ouagadougou, Burkina Faso
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako; Bamako, Mali
| | - Amed Ouattara
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, MD 21201, USA
| | | | | | - Christopher V. Plowe
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, MD 21201, USA
| | - Kirsten E. Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, MD 21201, USA
| | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, MD 21201, USA
| | | | - Mahamadou A. Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako; Bamako, Mali
| | | | - Matthew B. Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, MD 21201, USA
| | - Joana C. Silva
- Institute for Genome Sciences, University of Maryland School of Medicine; Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine; Baltimore, MD 21201, USA
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (NOVA); 1349-008 Lisboa, Portugal
| |
Collapse
|
2
|
Pellon-Cardenas O, Rout P, Hassan S, Fokas E, Ping H, Patel I, Patel J, Plotsker O, Wu A, Kumar R, Akther M, Logerfo A, Wu S, Wagner DE, Boffelli D, Walton KD, Manieri E, Tong K, Spence JR, Bessman NJ, Shivdasani RA, Verzi MP. Dynamic Reprogramming of Stromal Pdgfra-expressing cells during WNT-Mediated Transformation of the Intestinal Epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634326. [PMID: 39896606 PMCID: PMC11785226 DOI: 10.1101/2025.01.22.634326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Stromal fibroblasts regulate critical signaling gradients along the intestinal crypt-villus axis1 and provide a niche that supports adjacent epithelial stem cells. Here we report that Pdgfra-expressing fibroblasts secrete ligands that promote a regenerative-like state in the intestinal mucosa during early WNT-mediated tumorigenesis. Using a mouse model of WNT-driven oncogenesis and single-cell RNA sequencing (RNA-seq) of mesenchyme cell populations, we revealed a dynamic reprogramming of Pdgfra+ fibroblasts that facilitates WNT-mediated tissue transformation. Functional assays of potential mediators of cell-to-cell communication between these fibroblasts and the oncogenic epithelium revealed that TGFB signaling is notably induced in Pdgfra+ fibroblasts in the presence of oncogenic epithelium, and TGFB was essential to sustain regenerative-like growth of organoids ex vivo. Genetic reduction of Cdx2 in the β-catenin mutant epithelium elevated the fetal-like/regenerative transcriptome and accelerated WNT-dependent onset of oncogenic transformation of the tissue in vivo. These results demonstrate that Pdgfra+ fibroblasts are activated during WNT-driven oncogenesis to promote a regenerative state in the epithelium that precedes and facilitates formation of tumors.
Collapse
Affiliation(s)
| | - P Rout
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - S Hassan
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - E Fokas
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - He Ping
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - I Patel
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - J Patel
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - O Plotsker
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - A Wu
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - R Kumar
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - M Akther
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - A Logerfo
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - S Wu
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - D E Wagner
- Department of Obstetrics, University of California, San Francisco, San Francisco, CA, USA
| | - D Boffelli
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA
| | - K D Walton
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - E Manieri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - K Tong
- Department of Medical Sciences, Hackensack Meridian Health School of Medicine, Nutley, NJ, USA
| | - J R Spence
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - N J Bessman
- Department of Medicine, New Jersey Medical School, Rutgers, Newark, NJ, USA
| | - R A Shivdasani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - M P Verzi
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick NJ, USA
- Human Genetics Institute of New Jersey, Rutgers University, New Brunswick NJ, USA
- Lead contact
| |
Collapse
|
3
|
Gracia B, Montes P, Huang M, Chen J, Karras GI. HSP90 buffers deleterious genetic variations in BRCA1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623783. [PMID: 39605638 PMCID: PMC11601394 DOI: 10.1101/2024.11.15.623783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Protein-folding chaperone HSP90 buffers genetic variation in diverse organisms, but the clinical significance of HSP90 buffering in disease remains unclear. Here, we show that HSP90 buffers mutations in the BRCT domain of BRCA1. HSP90-buffered BRCA1 mutations encode protein variants that retain interactions with partner proteins and rely on HSP90 for protein stability and function in cell survival. Moreover, HSP90-buffered BRCA1 variants confer PARP inhibitor resistance in cancer cell lines. Low-level HSP90 inhibition alleviates this resistance, revealing a cryptic and mutant-specific HSP90-contingent synthetic lethality. Hence, by stabilizing metastable variants across the entirety of the BRCT domain, HSP90 reduces the clinical severity of BRCA1 mutations allowing them to accumulate in populations. We estimate that HSP90 buffers 11% to 28% of known human BRCA1- BRCT missense mutations. Our work extends the clinical significance of HSP90 buffering to a prevalent class of variations in BRCA1 , pioneering its importance in cancer predisposition and therapy resistance.
Collapse
|
4
|
Leventhal MJ, Zanella CA, Kang B, Peng J, Gritsch D, Liao Z, Bukhari H, Wang T, Pao PC, Danquah S, Benetatos J, Nehme R, Farhi S, Tsai LH, Dong X, Scherzer CR, Feany MB, Fraenkel E. An integrative systems-biology approach defines mechanisms of Alzheimer's disease neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585262. [PMID: 38559190 PMCID: PMC10980014 DOI: 10.1101/2024.03.17.585262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Despite years of intense investigation, the mechanisms underlying neuronal death in Alzheimer's disease, the most common neurodegenerative disorder, remain incompletely understood. To define relevant pathways, we integrated the results of an unbiased, genome-scale forward genetic screen for age-associated neurodegeneration in Drosophila with human and Drosophila Alzheimer's disease-associated multi-omics. We measured proteomics, phosphoproteomics, and metabolomics in Drosophila models of Alzheimer's disease and identified Alzheimer's disease human genetic variants that modify expression in disease-vulnerable neurons. We used a network optimization approach to integrate these data with previously published Alzheimer's disease multi-omic data. We computationally predicted and experimentally demonstrated how HNRNPA2B1 and MEPCE enhance tau-mediated neurotoxicity. Furthermore, we demonstrated that the screen hits CSNK2A1 and NOTCH1 regulate DNA damage in Drosophila and human iPSC-derived neural progenitor cells. Our work identifies candidate pathways that could be targeted to ameliorate neurodegeneration in Alzheimer's disease.
Collapse
Affiliation(s)
- Matthew J Leventhal
- MIT Ph.D. Program in Computational and Systems Biology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Camila A Zanella
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Byunguk Kang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Spatial Technology Platform, Broad Institute of Harvard and MIT, Cambridge, MA USA
| | - Jiajie Peng
- Precision Neurology Program, Brigham and Women's Hospital and Harvard Medical school, Boston, MA, USA
- APDA Center for Advanced Parkinson's Disease Research, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - David Gritsch
- Precision Neurology Program, Brigham and Women's Hospital and Harvard Medical school, Boston, MA, USA
- APDA Center for Advanced Parkinson's Disease Research, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhixiang Liao
- Precision Neurology Program, Brigham and Women's Hospital and Harvard Medical school, Boston, MA, USA
- APDA Center for Advanced Parkinson's Disease Research, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hassan Bukhari
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tao Wang
- Precision Neurology Program, Brigham and Women's Hospital and Harvard Medical school, Boston, MA, USA
- APDA Center for Advanced Parkinson's Disease Research, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Present address: School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Ping-Chieh Pao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Serwah Danquah
- Spatial Technology Platform, Broad Institute of Harvard and MIT, Cambridge, MA USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Joseph Benetatos
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ralda Nehme
- Spatial Technology Platform, Broad Institute of Harvard and MIT, Cambridge, MA USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Samouil Farhi
- Spatial Technology Platform, Broad Institute of Harvard and MIT, Cambridge, MA USA
| | - Li-Huei Tsai
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Xianjun Dong
- Precision Neurology Program, Brigham and Women's Hospital and Harvard Medical school, Boston, MA, USA
- APDA Center for Advanced Parkinson's Disease Research, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Clemens R Scherzer
- Precision Neurology Program, Brigham and Women's Hospital and Harvard Medical school, Boston, MA, USA
- APDA Center for Advanced Parkinson's Disease Research, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Present address: Stephen and Denise Adams Center of Yale School of Medicine, CT, USA
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ernest Fraenkel
- MIT Ph.D. Program in Computational and Systems Biology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Lead contact
| |
Collapse
|
5
|
Zhang ZJ, Cole CG, Coyne MJ, Lin H, Dylla N, Smith RC, Waligurski E, Ramaswamy R, Woodson C, Burgo V, Little JC, Moran D, Rose A, McMillin M, McSpadden E, Sundararajan A, Sidebottom AM, Pamer EG, Comstock LE. Comprehensive analyses of a large human gut Bacteroidales culture collection reveal species and strain level diversity and evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584156. [PMID: 38496653 PMCID: PMC10942478 DOI: 10.1101/2024.03.08.584156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Species of the Bacteroidales order are among the most abundant and stable bacterial members of the human gut microbiome with diverse impacts on human health. While Bacteroidales strains and species are genomically and functionally diverse, order-wide comparative analyses are lacking. We cultured and sequenced the genomes of 408 Bacteroidales isolates from healthy human donors representing nine genera and 35 species and performed comparative genomic, gene-specific, mobile gene, and metabolomic analyses. Families, genera, and species could be grouped based on many distinctive features. However, we also show extensive DNA transfer between diverse families, allowing for shared traits and strain evolution. Inter- and intra-specific diversity is also apparent in the metabolomic profiling studies. This highly characterized and diverse Bacteroidales culture collection with strain-resolved genomic and metabolomic analyses can serve as a resource to facilitate informed selection of strains for microbiome reconstitution.
Collapse
Affiliation(s)
- Zhenrun J Zhang
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
- Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave, Chicago, IL, 60637, USA
| | - Cody G Cole
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
- Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave, Chicago, IL, 60637, USA
| | - Michael J Coyne
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
- Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave, Chicago, IL, 60637, USA
| | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
| | - Nicholas Dylla
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
| | - Rita C Smith
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
| | - Emily Waligurski
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
- Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave, Chicago, IL, 60637, USA
| | - Ramanujam Ramaswamy
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
| | - Che Woodson
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
| | - Victoria Burgo
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
| | - Jessica C Little
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
| | - David Moran
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
| | - Amber Rose
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
| | - Mary McMillin
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
| | - Emma McSpadden
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
| | - Anitha Sundararajan
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
| | - Ashley M Sidebottom
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
| | - Eric G Pamer
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
- Department of Medicine, Section of Infectious Diseases & Global Health, University of Chicago Medicine, 5841 South Maryland Ave, Chicago, IL, 60637, USA
- Department of Pathology, University of Chicago Medicine, 5841 South Maryland Ave, Chicago, IL, 60637, USA
- Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave, Chicago, IL, 60637, USA
| | - Laurie E Comstock
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
- Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave, Chicago, IL, 60637, USA
| |
Collapse
|
6
|
Clarke DN, Martin AC. EGFR-dependent actomyosin patterning coordinates morphogenetic movements between tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573057. [PMID: 38187543 PMCID: PMC10769333 DOI: 10.1101/2023.12.22.573057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The movements that give rise to the body's structure are powered by cell shape changes and rearrangements that are coordinated at supracellular scales. How such cellular coordination arises and integrates different morphogenetic programs is unclear. Using quantitative imaging, we found a complex pattern of adherens junction (AJ) levels in the ectoderm prior to gastrulation onset in Drosophila. AJ intensity exhibited a double-sided gradient, with peaks at the dorsal midline and ventral neuroectoderm. We show that this dorsal-ventral AJ pattern is regulated by epidermal growth factor (EGF) signaling and that this signal is required for ectoderm cell movement during mesoderm invagination and axis extension. We identify AJ levels and junctional actomyosin as downstream effectors of EGFR signaling. Overall, our study demonstrates a mechanism of coordination between tissue folding and convergent extension that facilitates embryo-wide gastrulation movements.
Collapse
Affiliation(s)
| | - Adam C Martin
- Dept. of Biology, Massachusetts Institute of Technology
| |
Collapse
|
7
|
Zheng X, Wu B, Liu Y, Simmons SK, Kim K, Clarke GS, Ashiq A, Park J, Wang Z, Tong L, Wang Q, Xu X, Levin JZ, Jin X. Massively parallel in vivo Perturb-seq reveals cell type-specific transcriptional networks in cortical development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558077. [PMID: 37790302 PMCID: PMC10542124 DOI: 10.1101/2023.09.18.558077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Systematic analysis of gene function across diverse cell types in vivo is hindered by two challenges: obtaining sufficient cells from live tissues and accurately identifying each cell's perturbation in high-throughput single-cell assays. Leveraging AAV's versatile cell type tropism and high labeling capacity, we expanded the resolution and scale of in vivo CRISPR screens: allowing phenotypic analysis at single-cell resolution across a multitude of cell types in the embryonic brain, adult brain, and peripheral nervous system. We undertook extensive tests of 86 AAV serotypes, combined with a transposon system, to substantially amplify labeling and accelerate in vivo gene delivery from weeks to days. Using this platform, we performed an in utero genetic screen as proof-of-principle and identified pleiotropic regulatory networks of Foxg1 in cortical development, including Layer 6 corticothalamic neurons where it tightly controls distinct networks essential for cell fate specification. Notably, our platform can label >6% of cerebral cells, surpassing the current state-of-the-art efficacy at <0.1% (mediated by lentivirus), and achieve analysis of over 30,000 cells in one experiment, thus enabling massively parallel in vivo Perturb-seq. Compatible with various perturbation techniques (CRISPRa/i) and phenotypic measurements (single-cell or spatial multi-omics), our platform presents a flexible, modular approach to interrogate gene function across diverse cell types in vivo, connecting gene variants to their causal functions.
Collapse
Affiliation(s)
- Xinhe Zheng
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA, USA
| | - Boli Wu
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA, USA
| | - Yuejia Liu
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA, USA
| | - Sean K. Simmons
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kwanho Kim
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Grace S. Clarke
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA, USA
| | - Abdullah Ashiq
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA, USA
| | - Joshua Park
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA, USA
| | - Zhilin Wang
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA, USA
| | - Liqi Tong
- Center for Neural Circuit Mapping, Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Qizhao Wang
- Center for Neural Circuit Mapping, Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Xiangmin Xu
- Center for Neural Circuit Mapping, Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Joshua Z. Levin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xin Jin
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA, USA
| |
Collapse
|
8
|
Elgammal YM, Zahran MA, Abdelsalam MM. A new strategy for the early detection of alzheimer disease stages using multifractal geometry analysis based on K-Nearest Neighbor algorithm. Sci Rep 2022; 12:22381. [PMID: 36572791 PMCID: PMC9792538 DOI: 10.1038/s41598-022-26958-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's Disease (AD) is considered one of the most diseases that much prevalent among elderly people all over the world. AD is an incurable neurodegenerative disease affecting cognitive functions and were characterized by progressive and collective functions deteriorating. Remarkably, early detection of AD is essential for the development of new and invented treatment strategies. As Dementia causes irreversible damage to the brain neurons and leads to changes in its structure that can be described adequately within the framework of multifractals. Hence, the present work focus on developing a promising and efficient computing technique to pre-process and classify the AD disease especially in the early stages using multifractal geometry to extract the most changeable features due to AD. Then, A machine learning classification algorithm (K-Nearest Neighbor) has been implemented in order to classify and detect the main four early stages of AD. Two datasets have been used to ensure the validation of the proposed methodology. The proposed technique has achieved 99.4% accuracy and 100% sensitivity. The comparative results show that the proposed classification technique outperforms is recent techniques in terms of performance measures.
Collapse
Affiliation(s)
- Yasmina M Elgammal
- Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - M A Zahran
- Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mohamed M Abdelsalam
- Computers Engineering and Control Systems Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
9
|
Ahamad S, Ali H, Secco I, Giacca M, Gupta D. Anti-Fungal Drug Anidulafungin Inhibits SARS-CoV-2 Spike-Induced Syncytia Formation by Targeting ACE2-Spike Protein Interaction. Front Genet 2022; 13:866474. [PMID: 35401674 PMCID: PMC8990323 DOI: 10.3389/fgene.2022.866474] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022] Open
Abstract
Drug repositioning continues to be the most effective, practicable possibility to treat COVID-19 patients. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus enters target cells by binding to the ACE2 receptor via its spike (S) glycoprotein. We used molecular docking-based virtual screening approaches to categorize potential antagonists, halting ACE2-spike interactions by utilizing 450 FDA-approved chemical compounds. Three drug candidates (i.e., anidulafungin, lopinavir, and indinavir) were selected, which show high binding affinity toward the ACE2 receptor. The conformational stability of selected docked complexes was analyzed through molecular dynamics (MD) simulations. The MD simulation trajectories were assessed and monitored for ACE2 deviation, residue fluctuation, the radius of gyration, solvent accessible surface area, and free energy landscapes. The inhibitory activities of the selected compounds were eventually tested in-vitro using Vero and HEK-ACE2 cells. Interestingly, besides inhibiting SARS-CoV-2 S glycoprotein induced syncytia formation, anidulafungin and lopinavir also blocked S-pseudotyped particle entry into target cells. Altogether, anidulafungin and lopinavir are ranked the most effective among all the tested drugs against ACE2 receptor-S glycoprotein interaction. Based on these findings, we propose that anidulafungin is a novel potential drug targeting ACE2, which warrants further investigation for COVID-19 treatment.
Collapse
Affiliation(s)
- Shahzaib Ahamad
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Hashim Ali
- School of Cardiovascular Medicine and Sciences, British Heart Foundation Centre of Research Excellence, King’s College London, London, United Kingdom
- Division of Virology, Department of Pathology, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Ilaria Secco
- School of Cardiovascular Medicine and Sciences, British Heart Foundation Centre of Research Excellence, King’s College London, London, United Kingdom
| | - Mauro Giacca
- School of Cardiovascular Medicine and Sciences, British Heart Foundation Centre of Research Excellence, King’s College London, London, United Kingdom
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
10
|
Stoffel NU, Uyoga MA, Mutuku FM, Frost JN, Mwasi E, Paganini D, van der Klis FRM, Malhotra IJ, LaBeaud AD, Ricci C, Karanja S, Drakesmith H, King CH, Zimmermann MB. Iron Deficiency Anemia at Time of Vaccination Predicts Decreased Vaccine Response and Iron Supplementation at Time of Vaccination Increases Humoral Vaccine Response: A Birth Cohort Study and a Randomized Trial Follow-Up Study in Kenyan Infants. Front Immunol 2020; 11:1313. [PMID: 32754150 PMCID: PMC7369313 DOI: 10.3389/fimmu.2020.01313] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Iron deficiency may impair adaptive immunity and is common among African infants at time of vaccination. Whether iron deficiency impairs vaccine response and whether iron supplementation improves humoral vaccine response is uncertain. Methods: We performed two studies in southern coastal Kenya. In a birth cohort study, we followed infants to age 18 mo and assessed whether anemia or iron deficiency at time of vaccination predicted vaccine response to three-valent oral polio, diphtheria-tetanus-whole cell pertussis-Haemophilus influenzae type b vaccine, ten-valent pneumococcal-conjugate vaccine and measles vaccine. Primary outcomes were anti-vaccine-IgG and seroconversion at age 24 wk and 18 mo. In a randomized trial cohort follow-up, children received a micronutrient powder (MNP) with 5 mg iron daily or a MNP without iron for 4 mo starting at age 7.5 mo and received measles vaccine at 9 and 18 mo; primary outcomes were anti-measles IgG, seroconversion and avidity at age 11.5 mo and 4.5 y. Findings: In the birth cohort study, 573 infants were enrolled and 303 completed the study. Controlling for sex, birthweight, anthropometric indices and maternal antibodies, hemoglobin at time of vaccination was the strongest positive predictor of: (A) anti-diphtheria and anti-pertussis-IgG at 24 wk (p = 0.0071, p = 0.0339) and 18 mo (p = 0.0182, p = 0.0360); (B) anti-pertussis filamentous hemagglutinin-IgG at 24 wk (p = 0.0423); and (C) anti-pneumococcus 19 IgG at 18 mo (p = 0.0129). Anemia and serum transferrin receptor at time of vaccination were the strongest predictors of seroconversion against diphtheria (p = 0.0484, p = 0.0439) and pneumococcus 19 at 18 mo (p = 0.0199, p = 0.0327). In the randomized trial, 155 infants were recruited, 127 and 88 were assessed at age 11.5 mo and 4.5 y. Compared to infants that did not receive iron, those who received iron at time of vaccination had higher anti-measles-IgG (p = 0.0415), seroconversion (p = 0.0531) and IgG avidity (p = 0.0425) at 11.5 mo. Interpretation: In Kenyan infants, anemia and iron deficiency at time of vaccination predict decreased response to diphtheria, pertussis and pneumococcal vaccines. Primary response to measles vaccine may be increased by iron supplementation at time of vaccination. These findings argue that correction of iron deficiency during early infancy may improve vaccine response.
Collapse
Affiliation(s)
- Nicole U Stoffel
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, Laboratory of Human Nutrition, ETH Zürich, Zurich, Switzerland
| | - Mary A Uyoga
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, Laboratory of Human Nutrition, ETH Zürich, Zurich, Switzerland
| | - Francis M Mutuku
- Department of Environment and Health Sciences, Technical University Mombasa, Mombasa, Kenya
| | - Joe N Frost
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Edith Mwasi
- Pediatrics Department, Msambweni County Referral Hospital, Msambweni, Kenya
| | - Daniela Paganini
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, Laboratory of Human Nutrition, ETH Zürich, Zurich, Switzerland
| | - Fiona R M van der Klis
- Centre for Infectious Disease Control, National Institute for Public Health and Environment (RIVM), Bilthoven, Netherlands
| | - Indu J Malhotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - A Desiráe LaBeaud
- Division of Infectious Diseases, Department of Pediatrics, Lucille Packard Children's Hospital at Stanford School of Medicine, Stanford, CA, United States
| | - Cristian Ricci
- Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Simon Karanja
- Department of Medical Epidemiology, College of Health Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom.,Haematology Theme, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Charles H King
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Michael B Zimmermann
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, Laboratory of Human Nutrition, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
11
|
Lang C, Kumar M, Hickey RJ. Influence of block sequence on the colloidal self-assembly of poly(norbornene)-block-poly(ethylene oxide) amphiphilic block polymers using rapid injection processing. Polym Chem 2020. [DOI: 10.1039/c9py00954j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A facile self-assembly method, rapid injection, was used to study the self-assembly difference between AB diblock and ABA triblock copolymers.
Collapse
Affiliation(s)
- Chao Lang
- Department of Materials Science & Engineering
- The Pennsylvania State University
- University Park
- 16802 USA
- Department of Chemical Engineering
| | - Manish Kumar
- Department of Chemical Engineering
- The Pennsylvania State University
- University Park
- 16802 USA
- Materials Research Institute
| | - Robert J. Hickey
- Department of Materials Science & Engineering
- The Pennsylvania State University
- University Park
- 16802 USA
- Materials Research Institute
| |
Collapse
|