1
|
Phan MHQ, Zehnder T, Puntieri F, Magg A, Majchrzycka B, Antonović M, Wieler H, Lo BW, Baranasic D, Lenhard B, Müller F, Vingron M, Ibrahim DM. Conservation of regulatory elements with highly diverged sequences across large evolutionary distances. Nat Genet 2025:10.1038/s41588-025-02202-5. [PMID: 40425826 DOI: 10.1038/s41588-025-02202-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/22/2025] [Indexed: 05/29/2025]
Abstract
Developmental gene expression is a remarkably conserved process, yet most cis-regulatory elements (CREs) lack sequence conservation, especially at larger evolutionary distances. Some evidence suggests that CREs at the same genomic position remain functionally conserved independent of sequence conservation. However, the extent of such positional conservation remains unclear. Here, we profiled the regulatory genome in mouse and chicken embryonic hearts at equivalent developmental stages and found that most CREs lack sequence conservation. To identify positionally conserved CREs, we introduced the synteny-based algorithm interspecies point projection, which identifies up to fivefold more orthologs than alignment-based approaches. We termed positionally conserved orthologs 'indirectly conserved' and showed that they exhibited chromatin signatures and sequence composition similar to sequence-conserved CREs but greater shuffling of transcription factor binding sites between orthologs. Finally, we validated indirectly conserved chicken enhancers using in vivo reporter assays in mouse. By overcoming alignment-based limitations, we revealed widespread functional conservation of sequence-divergent CREs.
Collapse
Affiliation(s)
- Mai H Q Phan
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Tobias Zehnder
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Fiona Puntieri
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Andreas Magg
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Blanka Majchrzycka
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Milan Antonović
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Hannah Wieler
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Bai-Wei Lo
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Damir Baranasic
- Division of Electronics, Ruder Boskovic Institute, Zagreb, Croatia
- MRC Laboratoy of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Boris Lenhard
- MRC Laboratoy of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Ferenc Müller
- Department of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Martin Vingron
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Daniel M Ibrahim
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
2
|
de Mendoza A. Genome synteny reveals hidden enhancer conservation. Nat Genet 2025:10.1038/s41588-025-02194-2. [PMID: 40425825 DOI: 10.1038/s41588-025-02194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Affiliation(s)
- Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
- Centre for Epigenetics, Queen Mary University of London, London, UK.
| |
Collapse
|
3
|
Kim IV, Navarrete C, Grau-Bové X, Iglesias M, Elek A, Zolotarov G, Bykov NS, Montgomery SA, Ksiezopolska E, Cañas-Armenteros D, Soto-Angel JJ, Leys SP, Burkhardt P, Suga H, de Mendoza A, Marti-Renom MA, Sebé-Pedrós A. Chromatin loops are an ancestral hallmark of the animal regulatory genome. Nature 2025:10.1038/s41586-025-08960-w. [PMID: 40335694 DOI: 10.1038/s41586-025-08960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/31/2025] [Indexed: 05/09/2025]
Abstract
In bilaterian animals, gene regulation is shaped by a combination of linear and spatial regulatory information. Regulatory elements along the genome are integrated into gene regulatory landscapes through chromatin compartmentalization1,2, insulation of neighbouring genomic regions3,4 and chromatin looping that brings together distal cis-regulatory sequences5. However, the evolution of these regulatory features is unknown because the three-dimensional genome architecture of most animal lineages remains unexplored6,7. To trace the evolutionary origins of animal genome regulation, here we characterized the physical organization of the genome in non-bilaterian animals (sponges, ctenophores, placozoans and cnidarians)8,9 and their closest unicellular relatives (ichthyosporeans, filastereans and choanoflagellates)10 by combining high-resolution chromosome conformation capture11,12 with epigenomic marks and gene expression data. Our comparative analysis showed that chromatin looping is a conserved feature of genome architecture in ctenophores, placozoans and cnidarians. These sequence-determined distal contacts involve both promoter-enhancer and promoter-promoter interactions. By contrast, chromatin loops are absent in the unicellular relatives of animals. Our findings indicate that spatial genome regulation emerged early in animal evolution. This evolutionary innovation introduced regulatory complexity, ultimately facilitating the diversification of animal developmental programmes and cell type repertoires.
Collapse
Affiliation(s)
- Iana V Kim
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centre Nacional d'Anàlisis Genòmic (CNAG), Barcelona, Spain.
| | - Cristina Navarrete
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Xavier Grau-Bové
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Marta Iglesias
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anamaria Elek
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Grygoriy Zolotarov
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Sean A Montgomery
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ewa Ksiezopolska
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Didac Cañas-Armenteros
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Hiroshi Suga
- Department of Life and Environmental Sciences, Faculty of Bioresource Sciences, Prefectural University of Hiroshima, Shobara, Japan
| | - Alex de Mendoza
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, UK
| | - Marc A Marti-Renom
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centre Nacional d'Anàlisis Genòmic (CNAG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Barcelona, Spain.
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
| |
Collapse
|
4
|
Simakov O, Wagner GP. The application of irreversible genomic states to define and trace ancient cell type homologies. EvoDevo 2025; 16:5. [PMID: 40319312 PMCID: PMC12049793 DOI: 10.1186/s13227-025-00242-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/21/2025] [Indexed: 05/07/2025] Open
Abstract
Homology, or relationship among characters by common descent, has been notoriously difficult to assess for many morphological features, and cell types in particular. The ontogenetic origin of morphological traits means that the only physically inherited information is encoded in the genomes. However, the complexity of the underlying gene regulatory network and often miniscule changes that can impact gene expression, make it practically impossible to postulate a clear demarcation line for what molecular signature should "define" a homologous cell type between two deeply branching animals. In this Hypothesis article, we propose the use of the recently characterized irreversible genomic states, that occur after chromosomal and sub-chromosomal mixing of genes and regulatory elements, to dissect regulatory signatures of each cell type into irreversible and reversible configurations. While many of such states will be non-functional, some may permanently impact gene expression in a given cell type. Our proposal is that such evolutionarily irreversible, and thus synapomorphic, functional genomic states can constitute a criterion for the timing of the origin of deep evolutionary cell type homologies. Our proposal thus aims to close the gap between the clearly defined homology of the individual genomic characters and their genomic states to the homology at the phenotypic level through the identification of the underlying evolutionarily irreversible and regulatory linked states.
Collapse
Affiliation(s)
- Oleg Simakov
- Department of Neurosciences and Developmental Biology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Günter P Wagner
- Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Systems Biology Institute, Yale University, New Haven, CT, 06520, USA
- Hagler Institute for Advanced Studies, Texas A&M, College Station, TX, 77843, USA
| |
Collapse
|
5
|
Kurbidaeva A, Gupta S, Zaidem M, Castanera R, Sato Y, Joly‐Lopez Z, Casacuberta JM, Purugganan MD. Topologically associating domains and the evolution of three-dimensional genome architecture in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70139. [PMID: 40384625 PMCID: PMC12086760 DOI: 10.1111/tpj.70139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/17/2025] [Accepted: 03/25/2025] [Indexed: 05/20/2025]
Abstract
We examined the nature and evolution of three-dimensional (3D) genome conformation, including topologically associating domains (TADs), in five genomes within the genus Oryza. These included three varieties from subspecies within domesticated Asian rice O. sativa as well as their closely related wild relatives O. rufipogon and O. meridionalis. We used the high-resolution chromosome conformation capture technique Micro-C, which we modified for use in rice. Our analysis of rice TADs shows that TAD boundaries have high transcriptional activity, low methylation levels, low transposable element (TE) content, and increased gene density. We also find a significant correlation of expression levels for genes within TADs, suggesting that they do function as genomic domains with shared regulatory features. Our findings indicate that animal and plant TADs may share more commonalities than were initially thought, as evidenced by similar genetic and epigenetic signatures associated with TADs and boundaries. To examine 3D genome divergence, we employed a computer vision-based algorithm for the comparison of chromatin contact maps and complemented this analysis by assessing the evolutionary conservation of individual TADs and their boundaries. We conclude that overall chromatin organization is conserved in rice, and 3D structural divergence correlates with evolutionary distance between genomes. We also note that individual TADs are not well conserved, even at short evolutionary timescales.
Collapse
Affiliation(s)
- Amina Kurbidaeva
- Center for Genomics and Systems BiologyNew York UniversityNew YorkNew York10003USA
| | - Sonal Gupta
- Center for Genomics and Systems BiologyNew York UniversityNew YorkNew York10003USA
- Trivedi School of BioscienceAshoka UniversitySonipatIndia
| | - Maricris Zaidem
- Center for Genomics and Systems BiologyNew York UniversityNew YorkNew York10003USA
- Department of BiologyUniversity of OxfordOxfordUK
| | - Raúl Castanera
- Centre for Research in Agricultural GenomicsCerdanyola del VallèsBarcelonaSpain
- IRTA, Genomics and BiotechnologyEdifici CRAG, Campus UABBellaterraCatalonia08193Spain
| | | | - Zoé Joly‐Lopez
- Center for Genomics and Systems BiologyNew York UniversityNew YorkNew York10003USA
- Département de ChimieUniversité du Quebéc à MontréalMontrealQuebecCanada
| | | | - Michael D. Purugganan
- Center for Genomics and Systems BiologyNew York UniversityNew YorkNew York10003USA
- Center for Genomics and Systems BiologyNew York University Abu DhabiAbu DhabiUnited Arab Emirates
| |
Collapse
|
6
|
Shakya SB, Edwards SV, Sackton TB. Convergent evolution of noncoding elements associated with short tarsus length in birds. BMC Biol 2025; 23:52. [PMID: 39984930 PMCID: PMC11846207 DOI: 10.1186/s12915-025-02156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/12/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Convergent evolution is the independent evolution of similar traits in unrelated lineages across the Tree of Life. Various genomic signatures can help identify cases of convergent evolution at the molecular level, including changes in substitution rate in the same genes or gene networks. In this study, utilizing tarsus measurements of ~ 5400 species of birds, we identify independent shifts in tarsus length and use both comparative genomic and population genetic data to identify convergent evolutionary changes among focal clades with shifts to shorter optimal tarsus length. RESULTS Using a newly generated, comprehensive and broadly accessible set of 932,467 avian conserved non-exonic elements (CNEEs) and a whole-genome alignment of 79 birds, we find strong evidence for convergent acceleration in short-tarsus clades among 14,422 elements. Analysis of 9854 protein-coding genes, however, yielded no evidence of convergent patterns of positive selection. Accelerated elements in short-tarsus clades are concentrated near genes with functions in development, with the strongest enrichment associated with skeletal system development. Analysis of gene networks supports convergent changes in regulation of broadly homologous limb developmental genes and pathways. CONCLUSIONS Our results highlight the important role of regulatory elements undergoing convergent acceleration in convergent skeletal traits and are consistent with previous studies showing the roles of regulatory elements and skeletal phenotypes.
Collapse
Affiliation(s)
- Subir B Shakya
- Informatics Group, Harvard University, Cambridge, MA, USA.
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Timothy B Sackton
- Informatics Group, Harvard University, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
7
|
Rao A, Russell A, Segura-Bermudez J, Franz C, Dockery R, Blatnik A, Panten J, Zevallos M, McNulty C, Pietrzak M, Goldman JA. A cardiac transcriptional enhancer is repurposed during regeneration to activate an anti-proliferative program. Development 2025; 152:DEV204458. [PMID: 39803985 PMCID: PMC11883283 DOI: 10.1242/dev.204458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/17/2024] [Indexed: 02/18/2025]
Abstract
Zebrafish have a high capacity to regenerate their hearts. Several studies have surveyed transcriptional enhancers to understand how gene expression is controlled during heart regeneration. We have identified REN (the runx1 enhancer) that, during regeneration, regulates the expression of the nearby runx1 gene. We show that runx1 mRNA is reduced with deletion of REN (ΔREN), and cardiomyocyte proliferation is enhanced in ΔREN mutants only during regeneration. Interestingly, in uninjured hearts, ΔREN mutants have reduced expression of adamts1, a nearby gene that encodes a Collagen protease. This results in excess Collagen within cardiac valves of uninjured hearts. The ΔREN Collagen phenotype is rescued by an allele with Δrunx1 mutations, suggesting that in uninjured hearts REN regulates adamts1 independently of runx1. Taken together, this suggests that REN is rewired from adamts1 in uninjured hearts to stimulate runx1 transcription during regeneration. Our data point to a previously unappreciated mechanism for gene regulation during zebrafish heart regeneration. We report that an enhancer is rewired from expression in a distal cardiac domain to activate a different gene in regenerating tissue.
Collapse
Affiliation(s)
- Anupama Rao
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Andrew Russell
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Jose Segura-Bermudez
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Charles Franz
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Rejenae Dockery
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Anton Blatnik
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Jacob Panten
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Mateo Zevallos
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Carson McNulty
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Joseph Aaron Goldman
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Smaruj PN, Kamulegeya F, Kelley DR, Fudenberg G. Interpreting the CTCF-mediated sequence grammar of genome folding with AkitaV2. PLoS Comput Biol 2025; 21:e1012824. [PMID: 39903776 PMCID: PMC11828424 DOI: 10.1371/journal.pcbi.1012824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/14/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
Interphase mammalian genomes are folded in 3D with complex locus-specific patterns that impact gene regulation. CTCF (CCCTC-binding factor) is a key architectural protein that binds specific DNA sites, halts cohesin-mediated loop extrusion, and enables long-range chromatin interactions. There are hundreds of thousands of annotated CTCF-binding sites in mammalian genomes; disruptions of some result in distinct phenotypes, while others have no visible effect. Despite their importance, the determinants of which CTCF sites are necessary for genome folding and gene regulation remain unclear. Here, we update and utilize Akita, a convolutional neural network model, to extract the sequence preferences and grammar of CTCF contributing to genome folding. Our analyses of individual CTCF sites reveal four predictions: (i) only a small fraction of genomic sites are impactful; (ii) impact is highly dependent on sequences flanking the core CTCF binding motif; (iii) core and flanking nucleotides contribute largely additively to the overall impact of a site; (iv) sites created as combinations of different core and flanking sequences have impacts proportional to the product of their average impacts, i.e. they are broadly compatible. Our analysis of collections of CTCF sites make two predictions for multi-motif grammar: (i) insulation strength depends on the number of CTCF sites within a cluster, and (ii) pattern formation is governed by the orientation and spacing of these sites, rather than any inherent specialization of the CTCF motifs themselves. In sum, we present a framework for using neural network models to probe the sequences instructing genome folding and provide a number of predictions to guide future experimental inquiries.
Collapse
Affiliation(s)
- Paulina N. Smaruj
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Fahad Kamulegeya
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - David R. Kelley
- Calico Life Sciences LLC, South San Francisco, California, United States of America
| | - Geoffrey Fudenberg
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
9
|
Villano DJ, Prahlad M, Singhal A, Sanbonmatsu KY, Landweber LF. Widespread 3D genome reorganization precedes programmed DNA rearrangement in Oxytricha trifallax. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630814. [PMID: 39803579 PMCID: PMC11722245 DOI: 10.1101/2024.12.31.630814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Genome organization recapitulates function, yet ciliates like Oxytricha trifallax possess highly-specialized germline genomes, which are largely transcriptionally silent. During post-zygotic development, Oxytricha's germline undergoes large-scale genome editing, rearranging precursor genome elements into a transcriptionally-active genome with thousands of gene-sized nanochromosomes. Transgenerationally-inherited RNAs, derived from the parental somatic genome, program the retention and reordering of germline fragments. Retained and eliminated DNA must be distinguished and processed separately, but the role of chromatin organization in this process is unknown. We developed tools for studying Oxytricha nuclei and apply them to map the 3D organization of precursor and developmental states using Hi-C. We find that the precursor conformation primes the germline for development, while a massive spatial reorganization during development differentiates retained from eliminated regions before DNA rearrangement. Further experiments suggest a role for RNA-DNA interactions and chromatin remodeling in this process, implying a critical role for 3D architecture in programmed genome rearrangement.
Collapse
Affiliation(s)
- Danylo J Villano
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA
| | - Manasa Prahlad
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA
- Department of Neurobiology & Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Ankush Singhal
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544
| | - Laura F Landweber
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA
| |
Collapse
|
10
|
Rabuffo C, Schmidt MR, Yadav P, Tong P, Carloni R, Barcons-Simon A, Cosentino RO, Krebs S, Matthews KR, Allshire RC, Siegel TN. Inter-chromosomal transcription hubs shape the 3D genome architecture of African trypanosomes. Nat Commun 2024; 15:10716. [PMID: 39715762 PMCID: PMC11666725 DOI: 10.1038/s41467-024-55285-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/06/2024] [Indexed: 12/25/2024] Open
Abstract
The eukaryotic nucleus exhibits a highly organized 3D genome architecture, with RNA transcription and processing confined to specific nuclear structures. While intra-chromosomal interactions, such as promoter-enhancer dynamics, are well-studied, the role of inter-chromosomal interactions remains poorly understood. Investigating these interactions in mammalian cells is challenging due to large genome sizes and the need for deep sequencing. Additionally, transcription-dependent 3D topologies in mixed cell populations further complicate analyses. To address these challenges, we used high-resolution DNA-DNA contact mapping (Micro-C) in Trypanosoma brucei, a parasite with continuous RNA polymerase II (RNAPII) transcription and polycistronic transcription units (PTUs). With approximately 300 transcription start sites (TSSs), this genome organization simplifies data interpretation. To minimize scaffolding artifacts, we also generated a highly contiguous phased genome assembly using ultra-long sequencing reads. Our Micro-C analysis revealed an intricate 3D genome organization. While the T. brucei genome displays features resembling chromosome territories, its chromosomes are arranged around polymerase-specific transcription hubs. RNAPI-transcribed genes cluster, as expected from their localization to the nucleolus. However, we also found that RNAPII TSSs form distinct inter-chromosomal transcription hubs with other RNAPII TSSs. These findings highlight the evolutionary significance of inter-chromosomal transcription hubs and provide new insights into genome organization in T. brucei.
Collapse
Affiliation(s)
- Claudia Rabuffo
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Markus R Schmidt
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Prateek Yadav
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Pin Tong
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - Roberta Carloni
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom
| | - Anna Barcons-Simon
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Raúl O Cosentino
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Stefan Krebs
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Keith R Matthews
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom
| | - Robin C Allshire
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - T Nicolai Siegel
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.
- Biomedical Center Munich, Division of Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
11
|
Lee U, Arsala D, Xia S, Li C, Ali M, Svetec N, Langer CB, Sobreira DR, Eres I, Sosa D, Chen J, Zhang L, Reilly P, Guzzetta A, Emerson J, Andolfatto P, Zhou Q, Zhao L, Long M. The three-dimensional genome drives the evolution of asymmetric gene duplicates via enhancer capture-divergence. SCIENCE ADVANCES 2024; 10:eadn6625. [PMID: 39693425 PMCID: PMC11654672 DOI: 10.1126/sciadv.adn6625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 11/11/2024] [Indexed: 12/20/2024]
Abstract
Previous evolutionary models of duplicate gene evolution have overlooked the pivotal role of genome architecture. Here, we show that proximity-based regulatory recruitment by distally duplicated genes is an efficient mechanism for modulating tissue-specific production of preexisting proteins. By leveraging genomic asymmetries, we performed a coexpression analysis on Drosophila melanogaster tissue data to show the generality of enhancer capture-divergence (ECD) as a significant evolutionary driver of asymmetric, distally duplicated genes. We use the recently evolved gene HP6/Umbrea as an example of the ECD process. By assaying genome-wide chromosomal conformations in multiple Drosophila species, we show that HP6/Umbrea was inserted near a preexisting, long-distance three-dimensional genomic interaction. We then use this data to identify a newly found enhancer (FLEE1), buried within the coding region of the highly conserved, essential gene MFS18, that likely neofunctionalized HP6/Umbrea. Last, we demonstrate ancestral transcriptional coregulation of HP6/Umbrea's future insertion site, illustrating how enhancer capture provides a highly evolvable, one-step solution to Ohno's dilemma.
Collapse
Affiliation(s)
- UnJin Lee
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Deanna Arsala
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Shengqian Xia
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Cong Li
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Mujahid Ali
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Nicolas Svetec
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Christopher B. Langer
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller University, New York, NY, USA
| | | | - Ittai Eres
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Dylan Sosa
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Jianhai Chen
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China
| | - Patrick Reilly
- Department of Anthropology, Yale University, New Haven, CT, USA
| | | | - J.J. Emerson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Peter Andolfatto
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Qi Zhou
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
- MOE Laboratory of Biosystems Homeostasis and Protection Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Manyuan Long
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| |
Collapse
|
12
|
Szalay MF, Majchrzycka B, Jerković I, Cavalli G, Ibrahim DM. Evolution and function of chromatin domains across the tree of life. Nat Struct Mol Biol 2024; 31:1824-1837. [PMID: 39592879 DOI: 10.1038/s41594-024-01427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
The genome of all organisms is spatially organized to function efficiently. The advent of genome-wide chromatin conformation capture (Hi-C) methods has revolutionized our ability to probe the three-dimensional (3D) organization of genomes across diverse species. In this Review, we compare 3D chromatin folding from bacteria and archaea to that in mammals and plants, focusing on topology at the level of gene regulatory domains. In doing so, we consider systematic similarities and differences that hint at the origin and evolution of spatial chromatin folding and its relation to gene activity. We discuss the universality of spatial chromatin domains in all kingdoms, each encompassing one to several genes. We also highlight differences between organisms and suggest that similar features in Hi-C matrices do not necessarily reflect the same biological process or function. Furthermore, we discuss the evolution of domain boundaries and boundary-forming proteins, which indicates that structural maintenance of chromosome (SMC) proteins and the transcription machinery are the ancestral sculptors of the genome. Architectural proteins such as CTCF serve as clade-specific determinants of genome organization. Finally, studies in many non-model organisms show that, despite the ancient origin of 3D chromatin folding and its intricate link to gene activity, evolution tolerates substantial changes in genome organization.
Collapse
Affiliation(s)
| | - Blanka Majchrzycka
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ivana Jerković
- Institute of Human Genetics, CNRS and Univ. Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS and Univ. Montpellier, Montpellier, France.
| | - Daniel M Ibrahim
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
13
|
Fleck K, Luria V, Garag N, Karger A, Hunter T, Marten D, Phu W, Nam KM, Sestan N, O’Donnell-Luria AH, Erceg J. Functional associations of evolutionarily recent human genes exhibit sensitivity to the 3D genome landscape and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585403. [PMID: 38559085 PMCID: PMC10980080 DOI: 10.1101/2024.03.17.585403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Genome organization is intricately tied to regulating genes and associated cell fate decisions. Here, we examine the positioning and functional significance of human genes, grouped by their lineage restriction level, within the 3D organization of the genome. We reveal that genes of different lineage restriction levels have distinct positioning relationships with both domains and loop anchors, and remarkably consistent relationships with boundaries across cell types. While the functional associations of each group of genes are primarily cell type-specific, associations of conserved genes maintain greater stability across 3D genomic features and disease than recently evolved genes. Furthermore, the expression of these genes across various tissues follows an evolutionary progression, such that RNA levels increase from young lineage restricted genes to ancient genes present in most species. Thus, the distinct relationships of gene evolutionary age, function, and positioning within 3D genomic features contribute to tissue-specific gene regulation in development and disease.
Collapse
Affiliation(s)
- Katherine Fleck
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Victor Luria
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nitanta Garag
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Amir Karger
- IT-Research Computing, Harvard Medical School, Boston, MA 02115, USA
| | - Trevor Hunter
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Daniel Marten
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - William Phu
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Kee-Myoung Nam
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06510, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Anne H. O’Donnell-Luria
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jelena Erceg
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
14
|
Calamari ZT, Song A, Cohen E, Akter M, Das Roy R, Hallikas O, Christensen MM, Li P, Marangoni P, Jernvall J, Klein OD. Bank vole genomics links determinate and indeterminate growth of teeth. BMC Genomics 2024; 25:1000. [PMID: 39472825 PMCID: PMC11523675 DOI: 10.1186/s12864-024-10901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Continuously growing teeth are an important innovation in mammalian evolution, yet genetic regulation of continuous growth by stem cells remains incompletely understood. Dental stem cells responsible for tooth crown growth are lost at the onset of tooth root formation. Genetic signaling that initiates this loss is difficult to study with the ever-growing incisor and rooted molars of mice, the most common mammalian dental model species, because signals for root formation overlap with signals that pattern tooth size and shape (i.e., cusp patterns). Bank and prairie voles (Cricetidae, Rodentia, Glires) have evolved rooted and unrooted molars while retaining similar size and shape, providing alternative models for studying roots. RESULTS We assembled a de novo genome of Myodes glareolus, a vole with high-crowned, rooted molars, and performed genomic and transcriptomic analyses in a broad phylogenetic context of Glires (rodents and lagomorphs) to assess differential selection and evolution in tooth forming genes. Bulk transcriptomics comparisons of embryonic molar development between bank voles and mice demonstrated overall conservation of gene expression levels, with species-specific differences corresponding to the accelerated and more extensive patterning of the vole molar. We leverage convergent evolution of unrooted molars across the clade to examine changes that may underlie the evolution of unrooted molars. We identified 15 dental genes with changing synteny relationships and six dental genes undergoing positive selection across Glires, two of which were undergoing positive selection in species with unrooted molars, Dspp and Aqp1. Decreased expression of both genes in prairie voles with unrooted molars compared to bank voles supports the presence of positive selection and may underlie differences in root formation. CONCLUSIONS Our results support ongoing evolution of dental genes across Glires and identify candidate genes for mechanistic studies of root formation. Comparative research using the bank vole as a model species can reveal the complex evolutionary background of convergent evolution for ever-growing molars.
Collapse
Affiliation(s)
- Zachary T Calamari
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY, 10010, USA.
- The Graduate Center, City University of New York, 365 Fifth Ave, New York, NY, 10016, USA.
- Program in Craniofacial Biology, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA.
| | - Andrew Song
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY, 10010, USA
- Cornell University, 616 Thurston Ave, Ithaca, NY, 14853, USA
| | - Emily Cohen
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY, 10010, USA
- New York University College of Dentistry, 345 E 34th St, New York, NY, 10010, USA
| | - Muspika Akter
- Baruch College, City University of New York, One Bernard Baruch Way, New York, NY, 10010, USA
| | - Rishi Das Roy
- Institute of Biotechnology, University of Helsinki, Helsinki, FI-00014, Finland
| | - Outi Hallikas
- Institute of Biotechnology, University of Helsinki, Helsinki, FI-00014, Finland
| | - Mona M Christensen
- Institute of Biotechnology, University of Helsinki, Helsinki, FI-00014, Finland
| | - Pengyang Li
- Program in Craniofacial Biology, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Pediatrics, Cedars-Sinai Guerin Children's, 8700 Beverly Blvd., Suite 2416, Los Angeles, CA, 90048, USA
- Department of Bioengineering, Stanford University, 443 Via Ortega, Rm 119, Stanford, CA, 94305, USA
| | - Pauline Marangoni
- Program in Craniofacial Biology, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Pediatrics, Cedars-Sinai Guerin Children's, 8700 Beverly Blvd., Suite 2416, Los Angeles, CA, 90048, USA
| | - Jukka Jernvall
- Institute of Biotechnology, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Geosciences and Geography, University of Helsinki, Helsinki, FI-00014, Finland
| | - Ophir D Klein
- Program in Craniofacial Biology, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Department of Pediatrics, Cedars-Sinai Guerin Children's, 8700 Beverly Blvd., Suite 2416, Los Angeles, CA, 90048, USA.
| |
Collapse
|
15
|
Rahman S, Roussos P. The 3D Genome in Brain Development: An Exploration of Molecular Mechanisms and Experimental Methods. Neurosci Insights 2024; 19:26331055241293455. [PMID: 39494115 PMCID: PMC11528596 DOI: 10.1177/26331055241293455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
The human brain contains multiple cell types that are spatially organized into functionally distinct regions. The proper development of the brain requires complex gene regulation mechanisms in both neurons and the non-neuronal cell types that support neuronal function. Studies across the last decade have discovered that the 3D nuclear organization of the genome is instrumental in the regulation of gene expression in the diverse cell types of the brain. In this review, we describe the fundamental biochemical mechanisms that regulate the 3D genome, and comprehensively describe in vitro and ex vivo studies on mouse and human brain development that have characterized the roles of the 3D genome in gene regulation. We highlight the significance of the 3D genome in linking distal enhancers to their target promoters, which provides insights on the etiology of psychiatric and neurological disorders, as the genetic variants associated with these disorders are primarily located in noncoding regulatory regions. We also describe the molecular mechanisms that regulate chromatin folding and gene expression in neurons. Furthermore, we describe studies with an evolutionary perspective, which have investigated features that are conserved from mice to human, as well as human gained 3D chromatin features. Although most of the insights on disease and molecular mechanisms have been obtained from bulk 3C based experiments, we also highlight other approaches that have been developed recently, such as single cell 3C approaches, as well as non-3C based approaches. In our future perspectives, we highlight the gaps in our current knowledge and emphasize the need for 3D genome engineering and live cell imaging approaches to elucidate mechanisms and temporal dynamics of chromatin interactions, respectively.
Collapse
Affiliation(s)
- Samir Rahman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| |
Collapse
|
16
|
Ealo T, Sanchez-Gaya V, Respuela P, Muñoz-San Martín M, Martin-Batista E, Haro E, Rada-Iglesias A. Cooperative insulation of regulatory domains by CTCF-dependent physical insulation and promoter competition. Nat Commun 2024; 15:7258. [PMID: 39179577 PMCID: PMC11344162 DOI: 10.1038/s41467-024-51602-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/10/2024] [Indexed: 08/26/2024] Open
Abstract
The specificity of gene expression during development requires the insulation of regulatory domains to avoid inappropriate enhancer-gene interactions. In vertebrates, this insulator function is mostly attributed to clusters of CTCF sites located at topologically associating domain (TAD) boundaries. However, TAD boundaries allow some physical crosstalk across regulatory domains, which is at odds with the specific and precise expression of developmental genes. Here we show that developmental genes and nearby clusters of CTCF sites cooperatively foster the robust insulation of regulatory domains. By genetically dissecting a couple of representative loci in mouse embryonic stem cells, we show that CTCF sites prevent undesirable enhancer-gene contacts (i.e. physical insulation), while developmental genes preferentially contribute to regulatory insulation through non-structural mechanisms involving promoter competition rather than enhancer blocking. Overall, our work provides important insights into the insulation of regulatory domains, which in turn might help interpreting the pathological consequences of certain structural variants.
Collapse
Affiliation(s)
- Thais Ealo
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria, Santander, Spain
| | - Victor Sanchez-Gaya
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria, Santander, Spain.
| | - Patricia Respuela
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria, Santander, Spain
| | - María Muñoz-San Martín
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria, Santander, Spain
- Service of Neurology, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain
| | | | - Endika Haro
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria, Santander, Spain.
| | - Alvaro Rada-Iglesias
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria, Santander, Spain.
| |
Collapse
|
17
|
Yu H, Li Y, Han W, Bao L, Liu F, Ma Y, Pu Z, Zeng Q, Zhang L, Bao Z, Wang S. Pan-evolutionary and regulatory genome architecture delineated by an integrated macro- and microsynteny approach. Nat Protoc 2024; 19:1623-1678. [PMID: 38514839 DOI: 10.1038/s41596-024-00966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/20/2023] [Indexed: 03/23/2024]
Abstract
The forthcoming massive genome data generated by the Earth BioGenome Project will open up a new era of comparative genomics, for which genome synteny analysis provides an important framework. Profiling genome synteny represents an essential step in elucidating genome architecture, regulatory blocks/elements and their evolutionary history. Here we describe PanSyn, ( https://github.com/yhw320/PanSyn ), the most comprehensive and up-to-date genome synteny pipeline, providing step-by-step instructions and application examples to demonstrate its usage. PanSyn inherits both basic and advanced functions from existing popular tools, offering a user-friendly, highly customized approach for genome macrosynteny analysis and integrated pan-evolutionary and regulatory analysis of genome architecture, which are not yet available in public synteny software or tools. The advantages of PanSyn include: (i) advanced microsynteny analysis by functional profiling of microsynteny genes and associated regulatory elements; (ii) comprehensive macrosynteny analysis, including the inference of karyotype evolution from ancestors to extant species; and (iii) functional integration of microsynteny and macrosynteny for pan-evolutionary profiling of genome architecture and regulatory blocks, as well as integration with external functional genomics datasets from three- or four-dimensional genome and ENCODE projects. PanSyn requires basic knowledge of the Linux environment and Perl programming language and the ability to access a computer cluster, especially for large-scale genomic comparisons. Our protocol can be easily implemented by a competent graduate student or postdoc and takes several days to weeks to execute for dozens to hundreds of genomes. PanSyn provides yet the most comprehensive and powerful tool for integrated evolutionary and functional genomics.
Collapse
Affiliation(s)
- Hongwei Yu
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yuli Li
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China.
| | - Wentao Han
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lisui Bao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Fuyun Liu
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yuanting Ma
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhongqi Pu
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qifan Zeng
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lingling Zhang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China
| | - Zhenmin Bao
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
- Laboratory for Marine Fisheries and Aquaculture, Laoshan Laboratory, Qingdao, China
| | - Shi Wang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China.
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China.
| |
Collapse
|
18
|
Kuffler L, Skelly DA, Czechanski A, Fortin HJ, Munger SC, Baker CL, Reinholdt LG, Carter GW. Imputation of 3D genome structure by genetic-epigenetic interaction modeling in mice. eLife 2024; 12:RP88222. [PMID: 38669177 PMCID: PMC11052574 DOI: 10.7554/elife.88222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
Gene expression is known to be affected by interactions between local genetic variation and DNA accessibility, with the latter organized into three-dimensional chromatin structures. Analyses of these interactions have previously been limited, obscuring their regulatory context, and the extent to which they occur throughout the genome. Here, we undertake a genome-scale analysis of these interactions in a genetically diverse population to systematically identify global genetic-epigenetic interaction, and reveal constraints imposed by chromatin structure. We establish the extent and structure of genotype-by-epigenotype interaction using embryonic stem cells derived from Diversity Outbred mice. This mouse population segregates millions of variants from eight inbred founders, enabling precision genetic mapping with extensive genotypic and phenotypic diversity. With 176 samples profiled for genotype, gene expression, and open chromatin, we used regression modeling to infer genetic-epigenetic interactions on a genome-wide scale. Our results demonstrate that statistical interactions between genetic variants and chromatin accessibility are common throughout the genome. We found that these interactions occur within the local area of the affected gene, and that this locality corresponds to topologically associated domains (TADs). The likelihood of interaction was most strongly defined by the three-dimensional (3D) domain structure rather than linear DNA sequence. We show that stable 3D genome structure is an effective tool to guide searches for regulatory elements and, conversely, that regulatory elements in genetically diverse populations provide a means to infer 3D genome structure. We confirmed this finding with CTCF ChIP-seq that revealed strain-specific binding in the inbred founder mice. In stem cells, open chromatin participating in the most significant regression models demonstrated an enrichment for developmental genes and the TAD-forming CTCF-binding complex, providing an opportunity for statistical inference of shifting TAD boundaries operating during early development. These findings provide evidence that genetic and epigenetic factors operate within the context of 3D chromatin structure.
Collapse
|
19
|
James C, Trevisan-Herraz M, Juan D, Rico D. Evolutionary analysis of gene ages across TADs associates chromatin topology with whole-genome duplications. Cell Rep 2024; 43:113895. [PMID: 38517894 DOI: 10.1016/j.celrep.2024.113895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/03/2023] [Accepted: 02/16/2024] [Indexed: 03/24/2024] Open
Abstract
Topologically associated domains (TADs) are interaction subnetworks of chromosomal regions in 3D genomes. TAD boundaries frequently coincide with genome breaks while boundary deletion is under negative selection, suggesting that TADs may facilitate genome rearrangements and evolution. We show that genes co-localize by evolutionary age in humans and mice, resulting in TADs having different proportions of younger and older genes. We observe a major transition in the age co-localization patterns between the genes born during vertebrate whole-genome duplications (WGDs) or before and those born afterward. We also find that genes recently duplicated in primates and rodents are more frequently essential when they are located in old-enriched TADs and interact with genes that last duplicated during the WGD. Therefore, the evolutionary relevance of recent genes may increase when located in TADs with established regulatory networks. Our data suggest that TADs could play a role in organizing ancestral functions and evolutionary novelty.
Collapse
Affiliation(s)
- Caelinn James
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK; Scotland's Rural College (SRUC), The Roslin Institute Building, Easter Bush, Midlothian, UK
| | - Marco Trevisan-Herraz
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - David Juan
- Institut de Biologia Evolutiva, Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain; Systems Biology Department, Spanish National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Daniel Rico
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK; Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.
| |
Collapse
|
20
|
Wang W, Gao R, Yang D, Ma M, Zang R, Wang X, Chen C, Kou X, Zhao Y, Chen J, Liu X, Lu J, Xu B, Liu J, Huang Y, Chen C, Wang H, Gao S, Zhang Y, Gao Y. ADNP modulates SINE B2-derived CTCF-binding sites during blastocyst formation in mice. Genes Dev 2024; 38:168-188. [PMID: 38479840 PMCID: PMC10982698 DOI: 10.1101/gad.351189.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/20/2024] [Indexed: 04/02/2024]
Abstract
CTCF is crucial for chromatin structure and transcription regulation in early embryonic development. However, the kinetics of CTCF chromatin occupation in preimplantation embryos have remained unclear. In this study, we used CUT&RUN technology to investigate CTCF occupancy in mouse preimplantation development. Our findings revealed that CTCF begins binding to the genome prior to zygotic genome activation (ZGA), with a preference for CTCF-anchored chromatin loops. Although the majority of CTCF occupancy is consistently maintained, we identified a specific set of binding sites enriched in the mouse-specific short interspersed element (SINE) family B2 that are restricted to the cleavage stages. Notably, we discovered that the neuroprotective protein ADNP counteracts the stable association of CTCF at SINE B2-derived CTCF-binding sites. Knockout of Adnp in the zygote led to impaired CTCF binding signal recovery, failed deposition of H3K9me3, and transcriptional derepression of SINE B2 during the morula-to-blastocyst transition, which further led to unfaithful cell differentiation in embryos around implantation. Our analysis highlights an ADNP-dependent restriction of CTCF binding during cell differentiation in preimplantation embryos. Furthermore, our findings shed light on the functional importance of transposable elements (TEs) in promoting genetic innovation and actively shaping the early embryo developmental process specific to mammals.
Collapse
Affiliation(s)
- Wen Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Rui Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Dongxu Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Mingli Ma
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ruge Zang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiangxiu Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Modern Life Science Experiment Teaching Center at Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Chuan Chen
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Xiaochen Kou
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanhong Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Xuelian Liu
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxu Lu
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ben Xu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Juntao Liu
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanxin Huang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Chaoqun Chen
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China;
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Yong Zhang
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China;
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Yawei Gao
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China;
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| |
Collapse
|
21
|
Torres DE, Kramer HM, Tracanna V, Fiorin GL, Cook DE, Seidl MF, Thomma BPHJ. Implications of the three-dimensional chromatin organization for genome evolution in a fungal plant pathogen. Nat Commun 2024; 15:1701. [PMID: 38402218 PMCID: PMC10894299 DOI: 10.1038/s41467-024-45884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/05/2024] [Indexed: 02/26/2024] Open
Abstract
The spatial organization of eukaryotic genomes is linked to their biological functions, although it is not clear how this impacts the overall evolution of a genome. Here, we uncover the three-dimensional (3D) genome organization of the phytopathogen Verticillium dahliae, known to possess distinct genomic regions, designated adaptive genomic regions (AGRs), enriched in transposable elements and genes that mediate host infection. Short-range DNA interactions form clear topologically associating domains (TADs) with gene-rich boundaries that show reduced levels of gene expression and reduced genomic variation. Intriguingly, TADs are less clearly insulated in AGRs than in the core genome. At a global scale, the genome contains bipartite long-range interactions, particularly enriched for AGRs and more generally containing segmental duplications. Notably, the patterns observed for V. dahliae are also present in other Verticillium species. Thus, our analysis links 3D genome organization to evolutionary features conserved throughout the Verticillium genus.
Collapse
Affiliation(s)
- David E Torres
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - H Martin Kramer
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Vittorio Tracanna
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Gabriel L Fiorin
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - David E Cook
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, Manhattan, KS, USA
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Utrecht, The Netherlands.
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany.
| |
Collapse
|
22
|
Jehangir M, Ahmad SF, Singchat W, Panthum T, Thong T, Aramsirirujiwet P, Lisachov A, Muangmai N, Han K, Koga A, Duengkae P, Srikulnath K. Hi-C sequencing unravels dynamic three-dimensional chromatin interactions in muntjac lineage: insights from chromosome fusions in Fea's muntjac genome. Chromosome Res 2023; 31:34. [PMID: 38017297 DOI: 10.1007/s10577-023-09744-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/08/2023] [Accepted: 11/08/2023] [Indexed: 11/30/2023]
Abstract
Eukaryotes have varying numbers and structures of characteristic chromosomes across lineages or species. The evolutionary trajectory of species may have been affected by spontaneous genome rearrangements. Chromosome fusion drastically alters karyotypes. However, the mechanisms and consequences of chromosome fusions, particularly in muntjac species, are poorly understood. Recent research-based advancements in three-dimensional (3D) genomics, particularly high-throughput chromatin conformation capture (Hi-C) sequencing, have allowed for the identification of chromosome fusions and provided mechanistic insights into three muntjac species: Muntiacus muntjak, M. reevesi, and M. crinifrons. This study aimed to uncover potential genome rearrangement patterns in the threatened species Fea's muntjac (Muntiacus feae), which have not been previously examined for such characteristics. Deep Hi-C sequencing (31.42 × coverage) was performed to reveal the 3D chromatin architecture of the Fea's muntjac genome. Patterns of repeated chromosome fusions that were potentially mediated by high-abundance transposable elements were identified. Comparative Hi-C maps demonstrated linkage homology between the sex chromosomes in Fea's muntjac and autosomes in M. reevesi, indicating that fusions may have played a crucial role in the evolution of the sex chromosomes of the lineage. The species-level dynamics of topologically associated domains (TADs) suggest that TAD organization could be altered by differential chromosome interactions owing to repeated chromosome fusions. However, research on the effect of TADs on muntjac genome evolution is insufficient. This study generated Hi-C data for the Fea's muntjac, providing a genomic resource for future investigations of the evolutionary patterns of chromatin conformation at the chromosomal level.
Collapse
Affiliation(s)
- Maryam Jehangir
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Syed Farhan Ahmad
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Thanyapat Thong
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Pakpoom Aramsirirujiwet
- Deparment of National Park, Wildlife and Plant Conservation, Ministry of Natural Resources and Environment, Bangkok, 10900, Thailand
| | - Artem Lisachov
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Narongrit Muangmai
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand
| | - Kyudong Han
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Department of Microbiology, Dankook University, Cheonan, 31116, Korea
- Bio-Medical Engineering Core Facility Research Center, Dankook University, Cheonan, 31116, Korea
| | - Akihiko Koga
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Prateep Duengkae
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
23
|
Rogers TF, Simakov O. Emerging questions on the mechanisms and dynamics of 3D genome evolution in spiralians. Brief Funct Genomics 2023; 22:533-542. [PMID: 37815133 PMCID: PMC10658181 DOI: 10.1093/bfgp/elad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/17/2023] [Accepted: 09/12/2023] [Indexed: 10/11/2023] Open
Abstract
Information on how 3D genome topology emerged in animal evolution, how stable it is during development, its role in the evolution of phenotypic novelties and how exactly it affects gene expression is highly debated. So far, data to address these questions are lacking with the exception of a few key model species. Several gene regulatory mechanisms have been proposed, including scenarios where genome topology has little to no impact on gene expression, and vice versa. The ancient and diverse clade of spiralians may provide a crucial testing ground for such mechanisms. Sprialians have followed distinct evolutionary trajectories, with some clades experiencing genome expansions and/or large-scale genome rearrangements, and others undergoing genome contraction, substantially impacting their size and organisation. These changes have been associated with many phenotypic innovations in this clade. In this review, we describe how emerging genome topology data, along with functional tools, allow for testing these scenarios and discuss their predicted outcomes.
Collapse
Affiliation(s)
- Thea F Rogers
- Department of Neuroscience and Developmental Biology, Division of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| | - Oleg Simakov
- Department of Neuroscience and Developmental Biology, Division of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Russ BE, Barugahare A, Dakle P, Tsyganov K, Quon S, Yu B, Li J, Lee JKC, Olshansky M, He Z, Harrison PF, See M, Nussing S, Morey AE, Udupa VA, Bennett TJ, Kallies A, Murre C, Collas P, Powell D, Goldrath AW, Turner SJ. Active maintenance of CD8 + T cell naivety through regulation of global genome architecture. Cell Rep 2023; 42:113301. [PMID: 37858463 PMCID: PMC10679840 DOI: 10.1016/j.celrep.2023.113301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/07/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
The differentiation of naive CD8+ T lymphocytes into cytotoxic effector and memory CTL results in large-scale changes in transcriptional and phenotypic profiles. Little is known about how large-scale changes in genome organization underpin these transcriptional programs. We use Hi-C to map changes in the spatial organization of long-range genome contacts within naive, effector, and memory virus-specific CD8+ T cells. We observe that the architecture of the naive CD8+ T cell genome is distinct from effector and memory genome configurations, with extensive changes within discrete functional chromatin domains associated with effector/memory differentiation. Deletion of BACH2, or to a lesser extent, reducing SATB1 DNA binding, within naive CD8+ T cells results in a chromatin architecture more reminiscent of effector/memory states. This suggests that key transcription factors within naive CD8+ T cells act to restrain T cell differentiation by actively enforcing a unique naive chromatin state.
Collapse
Affiliation(s)
- Brendan E Russ
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia.
| | - Adele Barugahare
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia; Bioinformatics Platform, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Pushkar Dakle
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Kirril Tsyganov
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia; Bioinformatics Platform, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sara Quon
- Department of Biological Sciences, University of California, San Diego, San Diego, CA, USA
| | - Bingfei Yu
- Department of Biological Sciences, University of California, San Diego, San Diego, CA, USA
| | - Jasmine Li
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia; Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA
| | - Jason K C Lee
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Moshe Olshansky
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Zhaohren He
- Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA
| | - Paul F Harrison
- Bioinformatics Platform, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Michael See
- Bioinformatics Platform, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Simone Nussing
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Alison E Morey
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Vibha A Udupa
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Taylah J Bennett
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Axel Kallies
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Cornelis Murre
- Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA
| | - Phillipe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - David Powell
- Bioinformatics Platform, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ananda W Goldrath
- Department of Biological Sciences, University of California, San Diego, San Diego, CA, USA
| | - Stephen J Turner
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
25
|
Lawson HA, Liang Y, Wang T. Transposable elements in mammalian chromatin organization. Nat Rev Genet 2023; 24:712-723. [PMID: 37286742 DOI: 10.1038/s41576-023-00609-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 06/09/2023]
Abstract
Transposable elements (TEs) are mobile DNA elements that comprise almost 50% of mammalian genomic sequence. TEs are capable of making additional copies of themselves that integrate into new positions in host genomes. This unique property has had an important impact on mammalian genome evolution and on the regulation of gene expression because TE-derived sequences can function as cis-regulatory elements such as enhancers, promoters and silencers. Now, advances in our ability to identify and characterize TEs have revealed that TE-derived sequences also regulate gene expression by both maintaining and shaping 3D genome architecture. Studies are revealing how TEs contribute raw sequence that can give rise to the structures that shape chromatin organization, and thus gene expression, allowing for species-specific genome innovation and evolutionary novelty.
Collapse
Affiliation(s)
- Heather A Lawson
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Yonghao Liang
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA.
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO, USA.
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
26
|
Torres DE, Reckard AT, Klocko AD, Seidl MF. Nuclear genome organization in fungi: from gene folding to Rabl chromosomes. FEMS Microbiol Rev 2023; 47:fuad021. [PMID: 37197899 PMCID: PMC10246852 DOI: 10.1093/femsre/fuad021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023] Open
Abstract
Comparative genomics has recently provided unprecedented insights into the biology and evolution of the fungal lineage. In the postgenomics era, a major research interest focuses now on detailing the functions of fungal genomes, i.e. how genomic information manifests into complex phenotypes. Emerging evidence across diverse eukaryotes has revealed that the organization of DNA within the nucleus is critically important. Here, we discuss the current knowledge on the fungal genome organization, from the association of chromosomes within the nucleus to topological structures at individual genes and the genetic factors required for this hierarchical organization. Chromosome conformation capture followed by high-throughput sequencing (Hi-C) has elucidated how fungal genomes are globally organized in Rabl configuration, in which centromere or telomere bundles are associated with opposite faces of the nuclear envelope. Further, fungal genomes are regionally organized into topologically associated domain-like (TAD-like) chromatin structures. We discuss how chromatin organization impacts the proper function of DNA-templated processes across the fungal genome. Nevertheless, this view is limited to a few fungal taxa given the paucity of fungal Hi-C experiments. We advocate for exploring genome organization across diverse fungal lineages to ensure the future understanding of the impact of nuclear organization on fungal genome function.
Collapse
Affiliation(s)
- David E Torres
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Laboratory of Phytopathology, Wageningen University and Research,Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| | - Andrew T Reckard
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 234 Centennial Hall, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
| | - Andrew D Klocko
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 234 Centennial Hall, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
| | - Michael F Seidl
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
27
|
Smith GD, Ching WH, Cornejo-Páramo P, Wong ES. Decoding enhancer complexity with machine learning and high-throughput discovery. Genome Biol 2023; 24:116. [PMID: 37173718 PMCID: PMC10176946 DOI: 10.1186/s13059-023-02955-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Enhancers are genomic DNA elements controlling spatiotemporal gene expression. Their flexible organization and functional redundancies make deciphering their sequence-function relationships challenging. This article provides an overview of the current understanding of enhancer organization and evolution, with an emphasis on factors that influence these relationships. Technological advancements, particularly in machine learning and synthetic biology, are discussed in light of how they provide new ways to understand this complexity. Exciting opportunities lie ahead as we continue to unravel the intricacies of enhancer function.
Collapse
Affiliation(s)
- Gabrielle D Smith
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Wan Hern Ching
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, Australia
| | - Paola Cornejo-Páramo
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Emily S Wong
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, Australia.
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
28
|
Russ BE, Tsyganov K, Quon S, Yu B, Li J, Lee JKC, Olshansky M, He Z, Harrison PF, Barugahare A, See M, Nussing S, Morey AE, Udupa VA, Bennett T.J, Kallies A, Murre C, Collas P, Powell D, Goldrath AW, Turner SJ. Active maintenance of CD8 + T cell naïvety through regulation of global genome architecture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.530139. [PMID: 36909629 PMCID: PMC10002700 DOI: 10.1101/2023.02.26.530139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The differentiation of naïve CD8+ cytotoxic T lymphocytes (CTLs) into effector and memory states results in large scale changes in transcriptional and phenotypic profiles. Little is known about how large-scale changes in genome organisation reflect or underpin these transcriptional programs. We utilised Hi-C to map changes in the spatial organisation of long-range genome contacts within naïve, effector and memory virus-specific CD8+ T cells. We observed that the architecture of the naive CD8+ T cell genome was distinct from effector and memory genome configurations with extensive changes within discrete functional chromatin domains. However, deletion of the BACH2 or SATB1 transcription factors was sufficient to remodel the naïve chromatin architecture and engage transcriptional programs characteristic of differentiated cells. This suggests that the chromatin architecture within naïve CD8+ T cells is preconfigured to undergo autonomous remodelling upon activation, with key transcription factors restraining differentiation by actively enforcing the unique naïve chromatin state.
Collapse
Affiliation(s)
- Brendan E. Russ
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
| | - Kirril Tsyganov
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
- Bioinformatics platform, Biomedical Discovery Institute, Monash University, Australia
| | - Sara Quon
- Department of Biological Sciences, University of California, San Diego, USA
| | - Bingfei Yu
- Department of Biological Sciences, University of California, San Diego, USA
| | - Jasmine Li
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
- Department of Molecular Biology, University of California, San Diego, USA
| | - Jason K. C. Lee
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
| | - Moshe Olshansky
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
| | - Zhaohren He
- Department of Molecular Biology, University of California, San Diego, USA
| | - Paul F. Harrison
- Bioinformatics platform, Biomedical Discovery Institute, Monash University, Australia
| | - Adele Barugahare
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
- Bioinformatics platform, Biomedical Discovery Institute, Monash University, Australia
| | - Michael See
- Bioinformatics platform, Biomedical Discovery Institute, Monash University, Australia
| | | | - Alison E. Morey
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
| | - Vibha A. Udupa
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
| | - Taylah .J Bennett
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
| | - Axel Kallies
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Cornelis Murre
- Department of Molecular Biology, University of California, San Diego, USA
| | - Phillipe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - David Powell
- Bioinformatics platform, Biomedical Discovery Institute, Monash University, Australia
| | - Ananda W. Goldrath
- Department of Biological Sciences, University of California, San Diego, USA
| | - Stephen J. Turner
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
| |
Collapse
|
29
|
Acemel RD, Lupiáñez DG. Evolution of 3D chromatin organization at different scales. Curr Opin Genet Dev 2023; 78:102019. [PMID: 36603519 DOI: 10.1016/j.gde.2022.102019] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 01/04/2023]
Abstract
Most animal genomes fold in 3D chromatin domains called topologically associated domains (TADs) that facilitate interactions between cis-regulatory elements (CREs) and promoters. Owing to their critical role in the control of developmental gene expression, we explore how TADs have shaped animal evolution. In the light of recent studies that profile TADs in disparate animal lineages, we discuss their phylogenetic distribution and the mechanisms that underlie their formation. We present evidence indicating that TADs are plastic entities composed of genomic strata of different ages: ancient cores are combined with newer regions and brought into extant TADs through genomic rearrangements. We highlight that newly incorporated TAD strata enable the establishment of new CRE-promoter interactions and in turn new expression patterns that can drive phenotypical innovation. We further highlight how subtle changes in chromatin folding may fine-tune the expression levels of developmental genes and hold a potential for evolutionary significance.
Collapse
|
30
|
Torosin NS, Golla TR, Lawlor MA, Cao W, Ellison CE. Mode and Tempo of 3D Genome Evolution in Drosophila. Mol Biol Evol 2022; 39:6750036. [PMID: 36201625 PMCID: PMC9641997 DOI: 10.1093/molbev/msac216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Topologically associating domains (TADs) are thought to play an important role in preventing gene misexpression by spatially constraining enhancer-promoter contacts. The deleterious nature of gene misexpression implies that TADs should, therefore, be conserved among related species. Several early studies comparing chromosome conformation between species reported high levels of TAD conservation; however, more recent studies have questioned these results. Furthermore, recent work suggests that TAD reorganization is not associated with extensive changes in gene expression. Here, we investigate the evolutionary conservation of TADs among 11 species of Drosophila. We use Hi-C data to identify TADs in each species and employ a comparative phylogenetic approach to derive empirical estimates of the rate of TAD evolution. Surprisingly, we find that TADs evolve rapidly. However, we also find that the rate of evolution depends on the chromatin state of the TAD, with TADs enriched for developmentally regulated chromatin evolving significantly slower than TADs enriched for broadly expressed, active chromatin. We also find that, after controlling for differences in chromatin state, highly conserved TADs do not exhibit higher levels of gene expression constraint. These results suggest that, in general, most TADs evolve rapidly and their divergence is not associated with widespread changes in gene expression. However, higher levels of evolutionary conservation and gene expression constraints in TADs enriched for developmentally regulated chromatin suggest that these TAD subtypes may be more important for regulating gene expression, likely due to the larger number of long-distance enhancer-promoter contacts associated with developmental genes.
Collapse
Affiliation(s)
- Nicole S Torosin
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Tirupathi Rao Golla
- LifeCell, Kelambakkam Main Road, Keelakottaiyur, Chennai 600127, Tamil Nadu, India
| | - Matthew A Lawlor
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Weihuan Cao
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | | |
Collapse
|
31
|
The role of spatiotemporal organization and dynamics of clock complexes in circadian regulation. Curr Opin Cell Biol 2022; 78:102129. [PMID: 36126370 DOI: 10.1016/j.ceb.2022.102129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/26/2022] [Accepted: 08/19/2022] [Indexed: 01/31/2023]
Abstract
Circadian clocks are cell autonomous timekeepers that regulate ∼24-h oscillations in the expression of many genes and control rhythms in nearly all our behavior and physiology. Almost every cell in the human body has a molecular clock and networks of cells containing clock proteins orchestrate daily rhythms in many physiological processes, from sleep-wake cycles to metabolism to immunity. All eukaryotic circadian clocks are based on transcription-translation delayed negative feedback loops in which activation of core clock genes is negatively regulated by their cognate protein products. Our current understanding of circadian clocks has been accumulated from decades of genetic and biochemical experiments, however, what remains poorly understood is how clock proteins, genes, and mRNAs are spatiotemporally organized within live clock cells and how such subcellular organization affects circadian rhythms at the single cell level. Here, we review recent progress in understanding how clock proteins and genes are spatially organized within clock cells over the circadian cycle and the role of such organization in generating circadian rhythms and highlight open questions for future studies.
Collapse
|
32
|
Ringel AR, Szabo Q, Chiariello AM, Chudzik K, Schöpflin R, Rothe P, Mattei AL, Zehnder T, Harnett D, Laupert V, Bianco S, Hetzel S, Glaser J, Phan MHQ, Schindler M, Ibrahim DM, Paliou C, Esposito A, Prada-Medina CA, Haas SA, Giere P, Vingron M, Wittler L, Meissner A, Nicodemi M, Cavalli G, Bantignies F, Mundlos S, Robson MI. Repression and 3D-restructuring resolves regulatory conflicts in evolutionarily rearranged genomes. Cell 2022; 185:3689-3704.e21. [PMID: 36179666 PMCID: PMC9567273 DOI: 10.1016/j.cell.2022.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 06/03/2022] [Accepted: 08/30/2022] [Indexed: 01/26/2023]
Abstract
Regulatory landscapes drive complex developmental gene expression, but it remains unclear how their integrity is maintained when incorporating novel genes and functions during evolution. Here, we investigated how a placental mammal-specific gene, Zfp42, emerged in an ancient vertebrate topologically associated domain (TAD) without adopting or disrupting the conserved expression of its gene, Fat1. In ESCs, physical TAD partitioning separates Zfp42 and Fat1 with distinct local enhancers that drive their independent expression. This separation is driven by chromatin activity and not CTCF/cohesin. In contrast, in embryonic limbs, inactive Zfp42 shares Fat1's intact TAD without responding to active Fat1 enhancers. However, neither Fat1 enhancer-incompatibility nor nuclear envelope-attachment account for Zfp42's unresponsiveness. Rather, Zfp42's promoter is rendered inert to enhancers by context-dependent DNA methylation. Thus, diverse mechanisms enabled the integration of independent Zfp42 regulation in the Fat1 locus. Critically, such regulatory complexity appears common in evolution as, genome wide, most TADs contain multiple independently expressed genes.
Collapse
Affiliation(s)
- Alessa R Ringel
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Quentin Szabo
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Andrea M Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Konrad Chudzik
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Robert Schöpflin
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Patricia Rothe
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexandra L Mattei
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Tobias Zehnder
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Dermot Harnett
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Verena Laupert
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Sara Hetzel
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Juliane Glaser
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Mai H Q Phan
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Magdalena Schindler
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel M Ibrahim
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Christina Paliou
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Cesar A Prada-Medina
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Stefan A Haas
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Peter Giere
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Martin Vingron
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lars Wittler
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Giacomo Cavalli
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Frédéric Bantignies
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany.
| | - Michael I Robson
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
33
|
Fueyo R, Judd J, Feschotte C, Wysocka J. Roles of transposable elements in the regulation of mammalian transcription. Nat Rev Mol Cell Biol 2022; 23:481-497. [PMID: 35228718 PMCID: PMC10470143 DOI: 10.1038/s41580-022-00457-y] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2022] [Indexed: 12/16/2022]
Abstract
Transposable elements (TEs) comprise about half of the mammalian genome. TEs often contain sequences capable of recruiting the host transcription machinery, which they use to express their own products and promote transposition. However, the regulatory sequences carried by TEs may affect host transcription long after the TEs have lost the ability to transpose. Recent advances in genome analysis and engineering have facilitated systematic interrogation of the regulatory activities of TEs. In this Review, we discuss diverse mechanisms by which TEs contribute to transcription regulation. Notably, TEs can donate enhancer and promoter sequences that influence the expression of host genes, modify 3D chromatin architecture and give rise to novel regulatory genes, including non-coding RNAs and transcription factors. We discuss how TEs spur regulatory evolution and facilitate the emergence of genetic novelties in mammalian physiology and development. By virtue of their repetitive and interspersed nature, TEs offer unique opportunities to dissect the effects of mutation and genomic context on the function and evolution of cis-regulatory elements. We argue that TE-centric studies hold the key to unlocking general principles of transcription regulation and evolution.
Collapse
Affiliation(s)
- Raquel Fueyo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Julius Judd
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Cedric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
34
|
Baranasic D, Hörtenhuber M, Balwierz PJ, Zehnder T, Mukarram AK, Nepal C, Várnai C, Hadzhiev Y, Jimenez-Gonzalez A, Li N, Wragg J, D'Orazio FM, Relic D, Pachkov M, Díaz N, Hernández-Rodríguez B, Chen Z, Stoiber M, Dong M, Stevens I, Ross SE, Eagle A, Martin R, Obasaju O, Rastegar S, McGarvey AC, Kopp W, Chambers E, Wang D, Kim HR, Acemel RD, Naranjo S, Łapiński M, Chong V, Mathavan S, Peers B, Sauka-Spengler T, Vingron M, Carninci P, Ohler U, Lacadie SA, Burgess SM, Winata C, van Eeden F, Vaquerizas JM, Gómez-Skarmeta JL, Onichtchouk D, Brown BJ, Bogdanovic O, van Nimwegen E, Westerfield M, Wardle FC, Daub CO, Lenhard B, Müller F. Multiomic atlas with functional stratification and developmental dynamics of zebrafish cis-regulatory elements. Nat Genet 2022; 54:1037-1050. [PMID: 35789323 PMCID: PMC9279159 DOI: 10.1038/s41588-022-01089-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 05/03/2022] [Indexed: 12/12/2022]
Abstract
Zebrafish, a popular organism for studying embryonic development and for modeling human diseases, has so far lacked a systematic functional annotation program akin to those in other animal models. To address this, we formed the international DANIO-CODE consortium and created a central repository to store and process zebrafish developmental functional genomic data. Our data coordination center ( https://danio-code.zfin.org ) combines a total of 1,802 sets of unpublished and re-analyzed published genomic data, which we used to improve existing annotations and show its utility in experimental design. We identified over 140,000 cis-regulatory elements throughout development, including classes with distinct features dependent on their activity in time and space. We delineated the distinct distance topology and chromatin features between regulatory elements active during zygotic genome activation and those active during organogenesis. Finally, we matched regulatory elements and epigenomic landscapes between zebrafish and mouse and predicted functional relationships between them beyond sequence similarity, thus extending the utility of zebrafish developmental genomics to mammals.
Collapse
Affiliation(s)
- Damir Baranasic
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Matthias Hörtenhuber
- Department of Biosciences and Nutrition, Karolinska Institutet, NEO, Huddinge, Sweden
| | - Piotr J Balwierz
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Tobias Zehnder
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
- Max Planck Institute for Molecular Genetics, Department of Computational Molecular Biology, Berlin, Germany
| | - Abdul Kadir Mukarram
- Department of Biosciences and Nutrition, Karolinska Institutet, NEO, Huddinge, Sweden
| | - Chirag Nepal
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Csilla Várnai
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre for Computational Biology, University of Birmingham, Birmingham, UK
| | - Yavor Hadzhiev
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ada Jimenez-Gonzalez
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Nan Li
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Joseph Wragg
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Fabio M D'Orazio
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Dorde Relic
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Mikhail Pachkov
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Noelia Díaz
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Institute of Marine Sciences, Barcelona, Spain
| | | | - Zelin Chen
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Marcus Stoiber
- Environmental Genomics & Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michaël Dong
- Department of Biosciences and Nutrition, Karolinska Institutet, NEO, Huddinge, Sweden
| | - Irene Stevens
- Department of Biosciences and Nutrition, Karolinska Institutet, NEO, Huddinge, Sweden
| | - Samuel E Ross
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Anne Eagle
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Ryan Martin
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Oluwapelumi Obasaju
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Alison C McGarvey
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Wolfgang Kopp
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Emily Chambers
- Sheffield Bioinformatics Core, Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Dennis Wang
- Sheffield Bioinformatics Core, Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, UK
- Singapore Institute for Clinical Sciences, Singapore, Singapore
| | - Hyejeong R Kim
- Bateson Centre/Biomedical Science, University of Sheffield, Sheffield, UK
| | - Rafael D Acemel
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Maciej Łapiński
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Vanessa Chong
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Bernard Peers
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA-R, SART TILMAN, University of Liège, Liège, Belgium
| | - Tatjana Sauka-Spengler
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Martin Vingron
- Max Planck Institute for Molecular Genetics, Department of Computational Molecular Biology, Berlin, Germany
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Fondazione Human Technopole, Milano, Italy
| | - Uwe Ohler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
- Institute of Biology, Humboldt University, Berlin, Germany
| | - Scott Allen Lacadie
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Shawn M Burgess
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Cecilia Winata
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Freek van Eeden
- Bateson Centre/Biomedical Science, University of Sheffield, Sheffield, UK
| | - Juan M Vaquerizas
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Daria Onichtchouk
- Department of Developmental Biology, Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Ben James Brown
- Environmental Genomics & Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ozren Bogdanovic
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Erik van Nimwegen
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland
| | | | - Fiona C Wardle
- Randall Centre for Cell & Molecular Biophysics, Guy's Campus, King's College London, London, UK
| | - Carsten O Daub
- Department of Biosciences and Nutrition, Karolinska Institutet, NEO, Huddinge, Sweden.
- Science for Life Laboratory, Solna, Sweden.
| | - Boris Lenhard
- MRC London Institute of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK.
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
35
|
Liao Y, Wang J, Zhu Z, Liu Y, Chen J, Zhou Y, Liu F, Lei J, Gaut BS, Cao B, Emerson JJ, Chen C. The 3D architecture of the pepper genome and its relationship to function and evolution. Nat Commun 2022; 13:3479. [PMID: 35710823 PMCID: PMC9203530 DOI: 10.1038/s41467-022-31112-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/03/2022] [Indexed: 12/21/2022] Open
Abstract
The organization of chromatin into self-interacting domains is universal among eukaryotic genomes, though how and why they form varies considerably. Here we report a chromosome-scale reference genome assembly of pepper (Capsicum annuum) and explore its 3D organization through integrating high-resolution Hi-C maps with epigenomic, transcriptomic, and genetic variation data. Chromatin folding domains in pepper are as prominent as TADs in mammals but exhibit unique characteristics. They tend to coincide with heterochromatic regions enriched with retrotransposons and are frequently embedded in loops, which may correlate with transcription factories. Their boundaries are hotspots for chromosome rearrangements but are otherwise depleted for genetic variation. While chromatin conformation broadly affects transcription variance, it does not predict differential gene expression between tissues. Our results suggest that pepper genome organization is explained by a model of heterochromatin-driven folding promoted by transcription factories and that such spatial architecture is under structural and functional constraints.
Collapse
Affiliation(s)
- Yi Liao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Juntao Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Zhangsheng Zhu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Yuanlong Liu
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jinfeng Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongfeng Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Feng Liu
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Jianjun Lei
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Bihao Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China.
| | - J J Emerson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA.
| | - Changming Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
36
|
Hintermann A, Guerreiro I, Lopez-Delisle L, Bolt CC, Gitto S, Duboule D, Beccari L. Developmental and evolutionary comparative analysis of a regulatory landscape in mouse and chicken. Development 2022; 149:275867. [PMID: 35770682 PMCID: PMC9307994 DOI: 10.1242/dev.200594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022]
Abstract
Modifications in gene regulation are driving forces in the evolution of organisms. Part of these changes involve cis-regulatory elements (CREs), which contact their target genes through higher-order chromatin structures. However, how such architectures and variations in CREs contribute to transcriptional evolvability remains elusive. We use Hoxd genes as a paradigm for the emergence of regulatory innovations, as many relevant enhancers are located in a regulatory landscape highly conserved in amniotes. Here, we analysed their regulation in murine vibrissae and chicken feather primordia, two skin appendages expressing different Hoxd gene subsets, and compared the regulation of these genes in these appendages with that in the elongation of the posterior trunk. In the two former structures, distinct subsets of Hoxd genes are contacted by different lineage-specific enhancers, probably as a result of using an ancestral chromatin topology as an evolutionary playground, whereas the gene regulation that occurs in the mouse and chicken embryonic trunk partially relies on conserved CREs. A high proportion of these non-coding sequences active in the trunk have functionally diverged between species, suggesting that transcriptional robustness is maintained, despite considerable divergence in enhancer sequences. Summary: Analyses of the relationships between chromatin architecture and regulatory activities at the HoxD locus show that ancestral transcription patterns can be maintained while new regulations evolve.
Collapse
Affiliation(s)
- Aurélie Hintermann
- University of Geneva 1 Department of Genetics and Evolution , , 30 quai Ernest-Ansermet, 1211 Geneva , Switzerland
| | - Isabel Guerreiro
- University of Geneva 1 Department of Genetics and Evolution , , 30 quai Ernest-Ansermet, 1211 Geneva , Switzerland
| | - Lucille Lopez-Delisle
- Swiss Institute for Experimental Cancer Research (EPFL ISREC), School of Life Sciences, Federal School of Technology (EPFL) 2 , 1015 Lausanne , Switzerland
| | - Christopher Chase Bolt
- Swiss Institute for Experimental Cancer Research (EPFL ISREC), School of Life Sciences, Federal School of Technology (EPFL) 2 , 1015 Lausanne , Switzerland
| | - Sandra Gitto
- University of Geneva 1 Department of Genetics and Evolution , , 30 quai Ernest-Ansermet, 1211 Geneva , Switzerland
| | - Denis Duboule
- University of Geneva 1 Department of Genetics and Evolution , , 30 quai Ernest-Ansermet, 1211 Geneva , Switzerland
- Swiss Institute for Experimental Cancer Research (EPFL ISREC), School of Life Sciences, Federal School of Technology (EPFL) 2 , 1015 Lausanne , Switzerland
- Collège de France 3 , 11 Place Marcelin Berthelot, 75005 Paris , France
| | - Leonardo Beccari
- University of Geneva 1 Department of Genetics and Evolution , , 30 quai Ernest-Ansermet, 1211 Geneva , Switzerland
| |
Collapse
|
37
|
Li D, He M, Tang Q, Tian S, Zhang J, Li Y, Wang D, Jin L, Ning C, Zhu W, Hu S, Long K, Ma J, Liu J, Zhang Z, Li M. Comparative 3D genome architecture in vertebrates. BMC Biol 2022; 20:99. [PMID: 35524220 PMCID: PMC9077971 DOI: 10.1186/s12915-022-01301-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 04/20/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The three-dimensional (3D) architecture of the genome has a highly ordered and hierarchical nature, which influences the regulation of essential nuclear processes at the basis of gene expression, such as gene transcription. While the hierarchical organization of heterochromatin and euchromatin can underlie differences in gene expression that determine evolutionary differences among species, the way 3D genome architecture is affected by evolutionary forces within major lineages remains unclear. Here, we report a comprehensive comparison of 3D genomes, using high resolution Hi-C data in fibroblast cells of fish, chickens, and 10 mammalian species. RESULTS This analysis shows a correlation between genome size and chromosome length that affects chromosome territory (CT) organization in the upper hierarchy of genome architecture, whereas lower hierarchical features, including local transcriptional availability of DNA, are selected through the evolution of vertebrates. Furthermore, conservation of topologically associating domains (TADs) appears strongly associated with the modularity of expression profiles across species. Additionally, LINE and SINE transposable elements likely contribute to heterochromatin and euchromatin organization, respectively, during the evolution of genome architecture. CONCLUSIONS Our analysis uncovers organizational features that appear to determine the conservation and transcriptional regulation of functional genes across species. These findings can guide ongoing investigations of genome evolution by extending our understanding of the mechanisms shaping genome architecture.
Collapse
Affiliation(s)
- Diyan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengnan He
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shilin Tian
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Novogene Bioinformatics Institute, Beijing, 100000, China
| | - Jiaman Zhang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Danyang Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chunyou Ning
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Zhu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Silu Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jideng Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihua Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
38
|
Chua EHZ, Yasar S, Harmston N. The importance of considering regulatory domains in genome-wide analyses - the nearest gene is often wrong! Biol Open 2022; 11:274931. [PMID: 35377406 PMCID: PMC9002814 DOI: 10.1242/bio.059091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The expression of a large number of genes is regulated by regulatory elements that are located far away from their promoters. Identifying which gene is the target of a specific regulatory element or is affected by a non-coding mutation is often accomplished by assigning these regions to the nearest gene in the genome. However, this heuristic ignores key features of genome organisation and gene regulation; in that the genome is partitioned into regulatory domains, which at some loci directly coincide with the span of topologically associated domains (TADs), and that genes are regulated by enhancers located throughout these regions, even across intervening genes. In this review, we examine the results from genome-wide studies using chromosome conformation capture technologies and from those dissecting individual gene regulatory domains, to highlight that the phenomenon of enhancer skipping is pervasive and affects multiple types of genes. We discuss how simply assigning a genomic region of interest to its nearest gene is problematic and often leads to incorrect predictions and highlight that where possible information on both the conservation and topological organisation of the genome should be used to generate better hypotheses. The article has an associated Future Leader to Watch interview. Summary: Identifying which gene is the target of an enhancer is often accomplished by assigning it to the nearest gene, here we discuss how this heuristic can lead to incorrect predictions.
Collapse
Affiliation(s)
| | - Samen Yasar
- Science Division, Yale-NUS College, Singapore 138527, Singapore
| | - Nathan Harmston
- Science Division, Yale-NUS College, Singapore 138527, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
39
|
Lukyanchikova V, Nuriddinov M, Belokopytova P, Taskina A, Liang J, Reijnders MJMF, Ruzzante L, Feron R, Waterhouse RM, Wu Y, Mao C, Tu Z, Sharakhov IV, Fishman V. Anopheles mosquitoes reveal new principles of 3D genome organization in insects. Nat Commun 2022; 13:1960. [PMID: 35413948 PMCID: PMC9005712 DOI: 10.1038/s41467-022-29599-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
Chromosomes are hierarchically folded within cell nuclei into territories, domains and subdomains, but the functional importance and evolutionary dynamics of these hierarchies are poorly defined. Here, we comprehensively profile genome organizations of five Anopheles mosquito species and show how different levels of chromatin architecture influence each other. Patterns observed on Hi-C maps are associated with known cytological structures, epigenetic profiles, and gene expression levels. Evolutionary analysis reveals conservation of chromatin architecture within synteny blocks for tens of millions of years and enrichment of synteny breakpoints in regions with increased genomic insulation. However, in-depth analysis shows a confounding effect of gene density on both insulation and distribution of synteny breakpoints, suggesting limited causal relationship between breakpoints and regions with increased genomic insulation. At the level of individual loci, we identify specific, extremely long-ranged looping interactions, conserved for ~100 million years. We demonstrate that the mechanisms underlying these looping contacts differ from previously described Polycomb-dependent interactions and clustering of active chromatin.
Collapse
Affiliation(s)
- Varvara Lukyanchikova
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Miroslav Nuriddinov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Polina Belokopytova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Alena Taskina
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Jiangtao Liang
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Maarten J M F Reijnders
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Livio Ruzzante
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Yang Wu
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Department of Pathogen Biology, School of Public Health, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Chunhong Mao
- Biocomplexity Institute & Initiative, University of Virginia, Charlottesville, VA, 22911, USA
| | - Zhijian Tu
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Igor V Sharakhov
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Department of Genetics and Cell Biology, Tomsk State University, Tomsk, Russia.
| | - Veniamin Fishman
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
- AIRI, Moscow, Russia.
| |
Collapse
|
40
|
Chathoth KT, Mikheeva LA, Crevel G, Wolfe JC, Hunter I, Beckett-Doyle S, Cotterill S, Dai H, Harrison A, Zabet NR. The role of insulators and transcription in 3D chromatin organization of flies. Genome Res 2022; 32:682-698. [PMID: 35354608 PMCID: PMC8997359 DOI: 10.1101/gr.275809.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 02/17/2022] [Indexed: 11/25/2022]
Abstract
The DNA in many organisms, including humans, is shown to be organized in topologically associating domains (TADs). In Drosophila, several architectural proteins are enriched at TAD borders, but it is still unclear whether these proteins play a functional role in the formation and maintenance of TADs. Here, we show that depletion of BEAF-32, Cp190, Chro, and Dref leads to changes in TAD organization and chromatin loops. Their depletion predominantly affects TAD borders located in regions moderately enriched in repressive modifications and depleted in active ones, whereas TAD borders located in euchromatin are resilient to these knockdowns. Furthermore, transcriptomic data has revealed hundreds of genes displaying differential expression in these knockdowns and showed that the majority of differentially expressed genes are located within reorganized TADs. Our work identifies a novel and functional role for architectural proteins at TAD borders in Drosophila and a link between TAD reorganization and subsequent changes in gene expression.
Collapse
Affiliation(s)
- Keerthi T Chathoth
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Liudmila A Mikheeva
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom.,Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom.,Department of Mathematical Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Gilles Crevel
- Department Basic Medical Sciences, St. Georges University London, London SW17 0RE, United Kingdom
| | - Jareth C Wolfe
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom.,Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom.,School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Ioni Hunter
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Saskia Beckett-Doyle
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Sue Cotterill
- Department Basic Medical Sciences, St. Georges University London, London SW17 0RE, United Kingdom
| | - Hongsheng Dai
- Department of Mathematical Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Andrew Harrison
- Department of Mathematical Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Nicolae Radu Zabet
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom.,Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom
| |
Collapse
|
41
|
Snetkova V, Pennacchio LA, Visel A, Dickel DE. Perfect and imperfect views of ultraconserved sequences. Nat Rev Genet 2022; 23:182-194. [PMID: 34764456 PMCID: PMC8858888 DOI: 10.1038/s41576-021-00424-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 12/12/2022]
Abstract
Across the human genome, there are nearly 500 'ultraconserved' elements: regions of at least 200 contiguous nucleotides that are perfectly conserved in both the mouse and rat genomes. Remarkably, the majority of these sequences are non-coding, and many can function as enhancers that activate tissue-specific gene expression during embryonic development. From their first description more than 15 years ago, their extreme conservation has both fascinated and perplexed researchers in genomics and evolutionary biology. The intrigue around ultraconserved elements only grew with the observation that they are dispensable for viability. Here, we review recent progress towards understanding the general importance and the specific functions of ultraconserved sequences in mammalian development and human disease and discuss possible explanations for their extreme conservation.
Collapse
Affiliation(s)
- Valentina Snetkova
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Len A Pennacchio
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Comparative Biochemistry Program, University of California, Berkeley, CA, USA.
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.
| | - Axel Visel
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.
- School of Natural Sciences, University of California, Merced, Merced, CA, USA.
| | - Diane E Dickel
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
42
|
Robert NSM, Sarigol F, Zimmermann B, Meyer A, Voolstra CR, Simakov O. Emergence of distinct syntenic density regimes is associated with early metazoan genomic transitions. BMC Genomics 2022; 23:143. [PMID: 35177000 PMCID: PMC8851819 DOI: 10.1186/s12864-022-08304-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/10/2022] [Indexed: 12/03/2022] Open
Abstract
Background Animal genomes are strikingly conserved in terms of local gene order (microsynteny). While some of these microsyntenies have been shown to be coregulated or to form gene regulatory blocks, the diversity of their genomic and regulatory properties across the metazoan tree of life remains largely unknown. Results Our comparative analyses of 49 animal genomes reveal that the largest gains of synteny occurred in the last common ancestor of bilaterians and cnidarians and in that of bilaterians. Depending on their node of emergence, we further show that novel syntenic blocks are characterized by distinct functional compositions (Gene Ontology terms enrichment) and gene density properties, such as high, average and low gene density regimes. This is particularly pronounced among bilaterian novel microsyntenies, most of which fall into high gene density regime associated with higher gene coexpression levels. Conversely, a majority of vertebrate novel microsyntenies display a low gene density regime associated with lower gene coexpression levels. Conclusions Our study provides first evidence for evolutionary transitions between different modes of microsyntenic block regulation that coincide with key events of metazoan evolution. Moreover, the microsyntenic profiling strategy and interactive online application (Syntenic Density Browser, available at: http://synteny.csb.univie.ac.at/) we present here can be used to explore regulatory properties of microsyntenic blocks and predict their coexpression in a wide-range of animal genomes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08304-2.
Collapse
Affiliation(s)
- Nicolas S M Robert
- Department of Neurosciences and Developmental Biology, University of Vienna, Althanstrasse 14, 1090, Wien, Austria.
| | - Fatih Sarigol
- Department of Neurosciences and Developmental Biology, University of Vienna, Althanstrasse 14, 1090, Wien, Austria
| | - Bob Zimmermann
- Department of Neurosciences and Developmental Biology, University of Vienna, Althanstrasse 14, 1090, Wien, Austria
| | - Axel Meyer
- Department of Biology, University of Konstanz, 78457, Constance, Germany
| | | | - Oleg Simakov
- Department of Neurosciences and Developmental Biology, University of Vienna, Althanstrasse 14, 1090, Wien, Austria.
| |
Collapse
|
43
|
Tartour K, Padmanabhan K. The Clock Takes Shape-24 h Dynamics in Genome Topology. Front Cell Dev Biol 2022; 9:799971. [PMID: 35047508 PMCID: PMC8762244 DOI: 10.3389/fcell.2021.799971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022] Open
Abstract
Circadian rhythms orchestrate organismal physiology and behavior in order to anticipate daily changes in the environment. Virtually all cells have an internal rhythm that is synchronized every day by Zeitgebers (environmental cues). The synchrony between clocks within the animal enables the fitness and the health of organisms. Conversely, disruption of rhythms is linked to a variety of disorders: aging, cancer, metabolic diseases, and psychological disorders among others. At the cellular level, mammalian circadian rhythms are built on several layers of complexity. The transcriptional-translational feedback loop (TTFL) was the first to be described in the 90s. Thereafter oscillations in epigenetic marks highlighted the role of chromatin state in organizing the TTFL. More recently, studies on the 3D organization of the genome suggest that genome topology could be yet another layer of control on cellular circadian rhythms. The dynamic nature of genome topology over a solar day implies that the 3D mammalian genome has to be considered in the fourth dimension-in time. Whether oscillations in genome topology are a consequence of 24 h gene-expression or a driver of transcriptional cycles remains an open question. All said and done, circadian clock-gated phenomena such as gene expression, DNA damage response, cell metabolism and animal behavior-go hand in hand with 24 h rhythms in genome topology.
Collapse
Affiliation(s)
- Kévin Tartour
- Institut de Genomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard, Lyon, France
| | - Kiran Padmanabhan
- Institut de Genomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard, Lyon, France
| |
Collapse
|
44
|
Parker HJ, De Kumar B, Pushel I, Bronner ME, Krumlauf R. Analysis of lamprey meis genes reveals that conserved inputs from Hox, Meis and Pbx proteins control their expression in the hindbrain and neural tube. Dev Biol 2021; 479:61-76. [PMID: 34310923 DOI: 10.1016/j.ydbio.2021.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 11/23/2022]
Abstract
Meis genes are known to play important roles in the hindbrain and neural crest cells of jawed vertebrates. To explore the roles of Meis genes in head development during evolution of vertebrates, we have identified four meis genes in the sea lamprey genome and characterized their patterns of expression and regulation, with a focus on the hindbrain and pharynx. Each of the lamprey meis genes displays temporally and spatially dynamic patterns of expression, some of which are coupled to rhombomeric domains in the developing hindbrain and select pharyngeal arches. Studies of Meis loci in mouse and zebrafish have identified enhancers that are bound by Hox and TALE (Meis and Pbx) proteins, implicating these factors in the direct regulation of Meis expression. We examined the lamprey meis loci and identified a series of cis-elements conserved between lamprey and jawed vertebrate meis genes. In transgenic reporter assays we demonstrated that these elements act as neural enhancers in lamprey embryos, directing reporter expression in appropriate domains when compared to expression of their associated endogenous meis gene. Sequence alignments reveal that these conserved elements are in similar relative positions of the meis loci and contain a series of consensus binding motifs for Hox and TALE proteins. This suggests that ancient Hox and TALE-responsive enhancers regulated expression of ancestral vertebrate meis genes in segmental domains in the hindbrain and have been retained in the meis loci during vertebrate evolution. The presence of conserved Meis, Pbx and Hox binding sites in these lamprey enhancers links Hox and TALE factors to regulation of lamprey meis genes in the developing hindbrain, indicating a deep ancestry for these regulatory interactions prior to the divergence of jawed and jawless vertebrates.
Collapse
Affiliation(s)
- Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Irina Pushel
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA; Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
45
|
Delgado-Olguín P, Oktaba K, Furlan-Magaril M. Editorial: Chromatin Spatial Configuration and Function in Metazoans. Front Genet 2021; 12:734981. [PMID: 34456981 PMCID: PMC8385767 DOI: 10.3389/fgene.2021.734981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Paul Delgado-Olguín
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Heart & Stroke Richard Lewar Centre of Excellence, Toronto, ON, Canada
| | - Katarzyna Oktaba
- Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Mayra Furlan-Magaril
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico, Mexico
| |
Collapse
|
46
|
Gravitational Force-Induced 3D Chromosomal Conformational Changes Are Associated with Rapid Transcriptional Response in Human T Cells. Int J Mol Sci 2021; 22:ijms22179426. [PMID: 34502336 PMCID: PMC8430767 DOI: 10.3390/ijms22179426] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
The mechanisms underlying gravity perception in mammalian cells are unknown. We have recently discovered that the transcriptome of cells in the immune system, which is the most affected system during a spaceflight, responds rapidly and broadly to altered gravity. To pinpoint potential underlying mechanisms, we compared gene expression and three-dimensional (3D) chromosomal conformational changes in human Jurkat T cells during the short-term gravitational changes in parabolic flight and suborbital ballistic rocket flight experiments. We found that differential gene expression in gravity-responsive chromosomal regions, but not differentially regulated single genes, are highly conserved between different real altered gravity comparisons. These coupled gene expression effects in chromosomal regions could be explained by underlying chromatin structures. Based on a high-throughput chromatin conformation capture (Hi-C) analysis in altered gravity, we found that small chromosomes (chr16–22, with the exception of chr18) showed increased intra- and interchromosomal interactions in altered gravity, whereby large chromosomes showed decreased interactions. Finally, we detected a nonrandom overlap between Hi-C-identified chromosomal interacting regions and gravity-responsive chromosomal regions (GRCRs). We therefore demonstrate the first evidence that gravitational force-induced 3D chromosomal conformational changes are associated with rapid transcriptional response in human T cells. We propose a general model of cellular sensitivity to gravitational forces, where gravitational forces acting on the cellular membrane are rapidly and mechanically transduced through the cytoskeleton into the nucleus, moving chromosome territories to new conformation states and their genes into more expressive or repressive environments, finally resulting in region-specific differential gene expression.
Collapse
|
47
|
Bolt CC, Lopez-Delisle L, Mascrez B, Duboule D. Mesomelic dysplasias associated with the HOXD locus are caused by regulatory reallocations. Nat Commun 2021; 12:5013. [PMID: 34408147 PMCID: PMC8373931 DOI: 10.1038/s41467-021-25330-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Human families with chromosomal rearrangements at 2q31, where the human HOXD locus maps, display mesomelic dysplasia, a severe shortening and bending of the limb. In mice, the dominant Ulnaless inversion of the HoxD cluster produces a similar phenotype suggesting the same origin for these malformations in humans and mice. Here we engineer 1 Mb inversion including the HoxD gene cluster, which positioned Hoxd13 close to proximal limb enhancers. Using this model, we show that these enhancers contact and activate Hoxd13 in proximal cells, inducing the formation of mesomelic dysplasia. We show that a secondary Hoxd13 null mutation in-cis with the inversion completely rescues the alterations, demonstrating that ectopic HOXD13 is directly responsible for this bone anomaly. Single-cell expression analysis and evaluation of HOXD13 binding sites suggests that the phenotype arises primarily by acting through genes normally controlled by HOXD13 in distal limb cells. Altogether, these results provide a conceptual and mechanistic framework to understand and unify the molecular origins of human mesomelic dysplasia associated with 2q31.
Collapse
MESH Headings
- Abnormalities, Multiple/embryology
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/metabolism
- Animals
- Bone Diseases, Developmental/embryology
- Bone Diseases, Developmental/genetics
- Bone Diseases, Developmental/metabolism
- Disease Models, Animal
- Female
- Gene Deletion
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Limb Deformities, Congenital/embryology
- Limb Deformities, Congenital/genetics
- Limb Deformities, Congenital/metabolism
- Loss of Function Mutation
- Male
- Mice, Inbred C57BL
- Multigene Family
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Mice
Collapse
Affiliation(s)
- Christopher Chase Bolt
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Lucille Lopez-Delisle
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bénédicte Mascrez
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Denis Duboule
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.
- Collège de France, Paris, France.
| |
Collapse
|
48
|
Boltsis I, Grosveld F, Giraud G, Kolovos P. Chromatin Conformation in Development and Disease. Front Cell Dev Biol 2021; 9:723859. [PMID: 34422840 PMCID: PMC8371409 DOI: 10.3389/fcell.2021.723859] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/16/2021] [Indexed: 01/23/2023] Open
Abstract
Chromatin domains and loops are important elements of chromatin structure and dynamics, but much remains to be learned about their exact biological role and nature. Topological associated domains and functional loops are key to gene expression and hold the answer to many questions regarding developmental decisions and diseases. Here, we discuss new findings, which have linked chromatin conformation with development, differentiation and diseases and hypothesized on various models while integrating all recent findings on how chromatin architecture affects gene expression during development, evolution and disease.
Collapse
Affiliation(s)
- Ilias Boltsis
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Frank Grosveld
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Guillaume Giraud
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, Netherlands
- Cancer Research Center of Lyon – INSERM U1052, Lyon, France
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
49
|
Reconstruction of proto-vertebrate, proto-cyclostome and proto-gnathostome genomes provides new insights into early vertebrate evolution. Nat Commun 2021; 12:4489. [PMID: 34301952 PMCID: PMC8302630 DOI: 10.1038/s41467-021-24573-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Ancient polyploidization events have had a lasting impact on vertebrate genome structure, organization and function. Some key questions regarding the number of ancient polyploidization events and their timing in relation to the cyclostome-gnathostome divergence have remained contentious. Here we generate de novo long-read-based chromosome-scale genome assemblies for the Japanese lamprey and elephant shark. Using these and other representative genomes and developing algorithms for the probabilistic macrosynteny model, we reconstruct high-resolution proto-vertebrate, proto-cyclostome and proto-gnathostome genomes. Our reconstructions resolve key questions regarding the early evolutionary history of vertebrates. First, cyclostomes diverged from the lineage leading to gnathostomes after a shared tetraploidization (1R) but before a gnathostome-specific tetraploidization (2R). Second, the cyclostome lineage experienced an additional hexaploidization. Third, 2R in the gnathostome lineage was an allotetraploidization event, and biased gene loss from one of the subgenomes shaped the gnathostome genome by giving rise to remarkably conserved microchromosomes. Thus, our reconstructions reveal the major evolutionary events and offer new insights into the origin and evolution of vertebrate genomes.
Collapse
|
50
|
Anania C, Lupiáñez DG. Order and disorder: abnormal 3D chromatin organization in human disease. Brief Funct Genomics 2021; 19:128-138. [PMID: 32025693 PMCID: PMC7115703 DOI: 10.1093/bfgp/elz028] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/23/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023] Open
Abstract
A precise three-dimensional (3D) organization of chromatin is central to achieve the intricate transcriptional patterns that are required to form complex organisms. Growing evidence supports an important role of 3D chromatin architecture in development and delineates its alterations as prominent causes of disease. In this review, we discuss emerging concepts on the fundamental forces shaping genomes in space and on how their disruption can lead to pathogenic phenotypes. We describe the molecular mechanisms underlying a wide range of diseases, from the systemic effects of coding mutations on 3D architectural factors, to the more tissue-specific phenotypes resulting from genetic and epigenetic modifications at specific loci. Understanding the connection between the 3D organization of the genome and its underlying biological function will allow a better interpretation of human pathogenesis.
Collapse
Affiliation(s)
- Chiara Anania
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Darío G Lupiáñez
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|