1
|
Drobniak P, Baynard E, Beck A, Demailly J, Douillet D, Gonnin A, Iaquaniello G, Kane G, Kazamias S, Kubytskyi V, Lenivenko M, Lericheux N, Lucas B, Mercier B, Peinaud Y, Pittman M, Serhal J, Cassou K. Two-chamber gas target for laser-plasma electron source. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2025; 96:033304. [PMID: 40135986 DOI: 10.1063/5.0226055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
Exploring novel target schemes for laser wakefield accelerators is essential to address the challenge of increasing repetition rates while ensuring the stability and quality of the produced electron beams. This paper introduces and discusses the prototyping of a two-chamber gas target, integrated into the beamline and operating under continuous gas flow, in the framework of ionization injection. We present the numerical fluid modeling employed to assist the density profile shaping, with a focus on gas mixing and dopant confinement. The importance of localized high-Z gas for ionization injection is demonstrated through particle-in-cell simulations using the simulated gas profiles. We describe the test bench used for prototype evaluation, specifically addressing the plasma electron density and the longitudinal distribution of species relevant to ionization injection. The lifetime of the target at 10 Hz and 60 mJ is measured for different materials, and its effect on the resulting electron beam is assessed using particle-in-cell simulations. Finally, we outline perspectives on high-power operation.
Collapse
Affiliation(s)
- P Drobniak
- Laboratoire de Physique des 2 Infinis Irène Joliot-Curie-IJCLab-UMR9012, Bât. 100, 15 rue Georges Clémenceau, 91405 Orsay Cedex, France
| | - E Baynard
- Laboratoire de Physique des 2 Infinis Irène Joliot-Curie-IJCLab-UMR9012, Bât. 100, 15 rue Georges Clémenceau, 91405 Orsay Cedex, France
| | - A Beck
- Laboratoire Leprince-Ringuet-LLR-UMR 7638 CNRS Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | - J Demailly
- Laboratoire de Physique des 2 Infinis Irène Joliot-Curie-IJCLab-UMR9012, Bât. 100, 15 rue Georges Clémenceau, 91405 Orsay Cedex, France
| | - D Douillet
- Laboratoire de Physique des 2 Infinis Irène Joliot-Curie-IJCLab-UMR9012, Bât. 100, 15 rue Georges Clémenceau, 91405 Orsay Cedex, France
| | - A Gonnin
- Laboratoire de Physique des 2 Infinis Irène Joliot-Curie-IJCLab-UMR9012, Bât. 100, 15 rue Georges Clémenceau, 91405 Orsay Cedex, France
| | - G Iaquaniello
- Laboratoire de Physique des 2 Infinis Irène Joliot-Curie-IJCLab-UMR9012, Bât. 100, 15 rue Georges Clémenceau, 91405 Orsay Cedex, France
| | - G Kane
- Laboratoire de Physique des 2 Infinis Irène Joliot-Curie-IJCLab-UMR9012, Bât. 100, 15 rue Georges Clémenceau, 91405 Orsay Cedex, France
| | - S Kazamias
- Laboratoire de Physique des 2 Infinis Irène Joliot-Curie-IJCLab-UMR9012, Bât. 100, 15 rue Georges Clémenceau, 91405 Orsay Cedex, France
| | - V Kubytskyi
- Laboratoire de Physique des 2 Infinis Irène Joliot-Curie-IJCLab-UMR9012, Bât. 100, 15 rue Georges Clémenceau, 91405 Orsay Cedex, France
| | - M Lenivenko
- Laboratoire de Physique des 2 Infinis Irène Joliot-Curie-IJCLab-UMR9012, Bât. 100, 15 rue Georges Clémenceau, 91405 Orsay Cedex, France
| | - N Lericheux
- Laboratoire de Physique des 2 Infinis Irène Joliot-Curie-IJCLab-UMR9012, Bât. 100, 15 rue Georges Clémenceau, 91405 Orsay Cedex, France
| | - B Lucas
- Laboratoire de Physique des 2 Infinis Irène Joliot-Curie-IJCLab-UMR9012, Bât. 100, 15 rue Georges Clémenceau, 91405 Orsay Cedex, France
| | - B Mercier
- Laboratoire de Physique des 2 Infinis Irène Joliot-Curie-IJCLab-UMR9012, Bât. 100, 15 rue Georges Clémenceau, 91405 Orsay Cedex, France
| | - Y Peinaud
- Laboratoire de Physique des 2 Infinis Irène Joliot-Curie-IJCLab-UMR9012, Bât. 100, 15 rue Georges Clémenceau, 91405 Orsay Cedex, France
| | - M Pittman
- Laboratoire de Physique des 2 Infinis Irène Joliot-Curie-IJCLab-UMR9012, Bât. 100, 15 rue Georges Clémenceau, 91405 Orsay Cedex, France
| | - J Serhal
- Laboratoire de Physique des 2 Infinis Irène Joliot-Curie-IJCLab-UMR9012, Bât. 100, 15 rue Georges Clémenceau, 91405 Orsay Cedex, France
| | - K Cassou
- Laboratoire de Physique des 2 Infinis Irène Joliot-Curie-IJCLab-UMR9012, Bât. 100, 15 rue Georges Clémenceau, 91405 Orsay Cedex, France
| |
Collapse
|
2
|
Horný V, Bleotu PG, Ursescu D, Malka V, Tomassini P. Efficient laser wakefield accelerator in pump depletion dominated bubble regime. Phys Rev E 2024; 110:035202. [PMID: 39425353 DOI: 10.1103/physreve.110.035202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/01/2024] [Indexed: 10/21/2024]
Abstract
With the usage of the postcompression technique, few-cycle joule-class laser pulses are nowadays available extending the state of the art of 100 TW-class laser working at 10 Hz repetition. In this Letter, we explore the potential of wakefield acceleration when driven with such pulses. The numerical modeling predicts that 50% of the laser pulse energy can be transferred into electrons with energy above 15 MeV, and with charge exceeding several nanocoulombs for the electrons at hundreds of MeV energy. In such a regime, the laser pulse depletes its energy to plasma rapidly driving a strong cavitated wakefield. The self-steepening effect induces a continuous prolongation of a bubble resulting in a massive continuous self-injection that explains the extremely high charge of the beam rending this approach suitable for promoting Bremsstrahlung emitter and generator of tertiary particles, including neutrons released through photonuclear reactions.
Collapse
|
3
|
Huang K, Jin Z, Nakanii N, Hosokai T, Kando M. Electro-optic 3D snapshot of a laser wakefield accelerated kilo-ampere electron bunch. LIGHT, SCIENCE & APPLICATIONS 2024; 13:84. [PMID: 38584154 PMCID: PMC10999425 DOI: 10.1038/s41377-024-01440-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Laser wakefield acceleration, as an advanced accelerator concept, has attracted great attentions for its ultrahigh acceleration gradient and the capability to produce high brightness electron bunches. The three-dimensional (3D) density serves as an evaluation metric for the particle bunch quality and is intrinsically related to the applications of an accelerator. Despite its significance, this parameter has not been experimentally measured in the investigation of laser wakefield acceleration. We report on an electro-optic 3D snapshot of a laser wakefield electron bunch at a position outside the plasma. The 3D shape of the electron bunch was detected by simultaneously performing optical transition radiation imaging and electro-optic sampling. Detailed 3D structures to a few micrometer levels were reconstructed using a genetic algorithm. The electron bunch possessed a transverse size of less than 30 micrometers. The current profile shows a multi-peak structure. The main peak had a duration of < 10 fs and a peak current > 1 kA. The maximum electron 3D number density was ~ 9 × 1021 m -3. This research demonstrates a feasible way of 3D density monitoring on femtosecond kilo-ampere electron bunches, at any position of a beam transport line for relevant applications.
Collapse
Affiliation(s)
- Kai Huang
- Kansai Institute for Photon Science (KPSI), National Institutes for Quantum Science and Technology (QST), Kyoto, Japan.
- Laser Accelerator R&D, Innovative Light Sources Division, RIKEN SPring-8 Center, Hyogo, Japan.
| | - Zhan Jin
- Laser Accelerator R&D, Innovative Light Sources Division, RIKEN SPring-8 Center, Hyogo, Japan
- SANKEN, Osaka University, Osaka, Japan
| | - Nobuhiko Nakanii
- Kansai Institute for Photon Science (KPSI), National Institutes for Quantum Science and Technology (QST), Kyoto, Japan
- Laser Accelerator R&D, Innovative Light Sources Division, RIKEN SPring-8 Center, Hyogo, Japan
| | - Tomonao Hosokai
- Laser Accelerator R&D, Innovative Light Sources Division, RIKEN SPring-8 Center, Hyogo, Japan
- SANKEN, Osaka University, Osaka, Japan
| | - Masaki Kando
- Kansai Institute for Photon Science (KPSI), National Institutes for Quantum Science and Technology (QST), Kyoto, Japan
- Laser Accelerator R&D, Innovative Light Sources Division, RIKEN SPring-8 Center, Hyogo, Japan
| |
Collapse
|
4
|
Miller KG, Pierce JR, Ambat MV, Shaw JL, Weichman K, Mori WB, Froula DH, Palastro JP. Dephasingless laser wakefield acceleration in the bubble regime. Sci Rep 2023; 13:21306. [PMID: 38042954 PMCID: PMC10693645 DOI: 10.1038/s41598-023-48249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/23/2023] [Indexed: 12/04/2023] Open
Abstract
Laser wakefield accelerators (LWFAs) have electric fields that are orders of magnitude larger than those of conventional accelerators, promising an attractive, small-scale alternative for next-generation light sources and lepton colliders. The maximum energy gain in a single-stage LWFA is limited by dephasing, which occurs when the trapped particles outrun the accelerating phase of the wakefield. Here, we demonstrate that a single space-time structured laser pulse can be used for ionization injection and electron acceleration over many dephasing lengths in the bubble regime. Simulations of a dephasingless laser wakefield accelerator driven by a 6.2-J laser pulse show 25 pC of injected charge accelerated over 20 dephasing lengths (1.3 cm) to a maximum energy of 2.1 GeV. The space-time structured laser pulse features an ultrashort, programmable-trajectory focus. Accelerating the focus, reducing the focused spot-size variation, and mitigating unwanted self-focusing stabilize the electron acceleration, which improves beam quality and leads to projected energy gains of 125 GeV in a single, sub-meter stage driven by a 500-J pulse.
Collapse
Affiliation(s)
- Kyle G Miller
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY, 14623-1299, USA.
| | - Jacob R Pierce
- Department of Physics and Astronomy, University of California, Los Angeles, CA, 90095, USA
| | - Manfred V Ambat
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY, 14623-1299, USA
| | - Jessica L Shaw
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY, 14623-1299, USA
| | - Kale Weichman
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY, 14623-1299, USA
| | - Warren B Mori
- Department of Physics and Astronomy, University of California, Los Angeles, CA, 90095, USA
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Dustin H Froula
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY, 14623-1299, USA
| | - John P Palastro
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY, 14623-1299, USA
| |
Collapse
|
5
|
Metzkes-Ng J, Brack FE, Kroll F, Bernert C, Bock S, Bodenstein E, Brand M, Cowan TE, Gebhardt R, Hans S, Helbig U, Horst F, Jansen J, Kraft SD, Krause M, Leßmann E, Löck S, Pawelke J, Püschel T, Reimold M, Rehwald M, Richter C, Schlenvoigt HP, Schramm U, Schürer M, Seco J, Szabó ER, Umlandt MEP, Zeil K, Ziegler T, Beyreuther E. The DRESDEN PLATFORM is a research hub for ultra-high dose rate radiobiology. Sci Rep 2023; 13:20611. [PMID: 37996453 PMCID: PMC10667545 DOI: 10.1038/s41598-023-46873-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
The recently observed FLASH effect describes the observation of normal tissue protection by ultra-high dose rates (UHDR), or dose delivery in a fraction of a second, at similar tumor-killing efficacy of conventional dose delivery and promises great benefits for radiotherapy patients. Dedicated studies are now necessary to define a robust set of dose application parameters for FLASH radiotherapy and to identify underlying mechanisms. These studies require particle accelerators with variable temporal dose application characteristics for numerous radiation qualities, equipped for preclinical radiobiological research. Here we present the DRESDEN PLATFORM, a research hub for ultra-high dose rate radiobiology. By uniting clinical and research accelerators with radiobiology infrastructure and know-how, the DRESDEN PLATFORM offers a unique environment for studying the FLASH effect. We introduce its experimental capabilities and demonstrate the platform's suitability for systematic investigation of FLASH by presenting results from a concerted in vivo radiobiology study with zebrafish embryos. The comparative pre-clinical study was conducted across one electron and two proton accelerator facilities, including an advanced laser-driven proton source applied for FLASH-relevant in vivo irradiations for the first time. The data show a protective effect of UHDR irradiation up to [Formula: see text] and suggests consistency of the protective effect even at escalated dose rates of [Formula: see text]. With the first clinical FLASH studies underway, research facilities like the DRESDEN PLATFORM, addressing the open questions surrounding FLASH, are essential to accelerate FLASH's translation into clinical practice.
Collapse
Affiliation(s)
| | | | - Florian Kroll
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Constantin Bernert
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Stefan Bock
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Elisabeth Bodenstein
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies (CRTD), TUD Dresden University of Technology, Dresden, Germany
- Cluster of Excellence - Physics of Life, TUD Dresden University of Technology, Dresden, Germany
| | - Thomas E Cowan
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - René Gebhardt
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies (CRTD), TUD Dresden University of Technology, Dresden, Germany
- Cluster of Excellence - Physics of Life, TUD Dresden University of Technology, Dresden, Germany
| | - Uwe Helbig
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Felix Horst
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jeannette Jansen
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | | | - Mechthild Krause
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Dresden, Germany
| | - Jörg Pawelke
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | | | | | | - Christian Richter
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Dresden, Germany
| | | | - Ulrich Schramm
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Michael Schürer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Joao Seco
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy, Ruprecht-Karls-University, Heidelberg, Germany
| | - Emília Rita Szabó
- ELI ALPS, ELI-HU Non-Profit Ltd., Szeged, Hungary
- Department of Oncotherapy, University of Szeged, Szeged, Hungary
| | - Marvin E P Umlandt
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Karl Zeil
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Tim Ziegler
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Elke Beyreuther
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
| |
Collapse
|
6
|
Deng A, Li X, Luo Z, Li Y, Zeng J. Generation of attosecond micro bunched beam using ionization injection in laser wakefield acceleration. OPTICS EXPRESS 2023; 31:19958-19967. [PMID: 37381400 DOI: 10.1364/oe.492468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/15/2023] [Indexed: 06/30/2023]
Abstract
Micro bunched electron beams with periodic longitudinal density modulation at optical wavelengths give rise to coherent light emission. In this paper, we show attosecond micro bunched beam generation and acceleration in laser-plasma wakefield via particle-in-cell simulations. Due to the near-threshold ionization with the drive laser, the electrons with phase-dependent distributions are non-linearly mapped to discrete final phase spaces. Electrons can preserve this initial bunching structure during the acceleration, leading to an attosecond electron bunch train after leaving the plasma with separations of the same time scale. The modulation of the comb-like current density profile is about 2k0 ∼ 3k0, where k0 is the wavenumber of the laser pulse. Such pre-bunched electrons with low relative energy spread may have potential in applications related to future coherent light sources driven by laser-plasma accelerators and broad application prospects in attosecond science and ultrafast dynamical detection.
Collapse
|
7
|
Dewhurst KA, Muratori BD, Brunetti E, van der Geer B, de Loos M, Owen HL, Wiggins SM, Jaroszynski DA. A beamline to control longitudinal phase space whilst transporting laser wakefield accelerated electrons to an undulator. Sci Rep 2023; 13:8831. [PMID: 37258601 DOI: 10.1038/s41598-023-35435-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/17/2023] [Indexed: 06/02/2023] Open
Abstract
Laser wakefield accelerators (LWFAs) can produce high-energy electron bunches in short distances. Successfully coupling these sources with undulators has the potential to form an LWFA-driven free-electron laser (FEL), providing high-intensity short-wavelength radiation. Electron bunches produced from LWFAs have a correlated distribution in longitudinal phase space: a chirp. However, both LWFAs and FELs have strict parameter requirements. The bunch chirp created using ideal LWFA parameters may not suit the FEL; for example, a chirp can reduce the high peak current required for free-electron lasing. We, therefore, design a flexible beamline that can accept either positively or negatively chirped LWFA bunches and adjust the chirp during transport to an undulator. We have used the accelerator design program MAD8 to design a beamline in stages, and to track particle bunches. The final beamline design can produce ambidirectional values of longitudinal dispersion ([Formula: see text]): we demonstrate values of + 0.20 mm, 0.00 mm and - 0.22 mm. Positive or negative values of [Formula: see text] apply a shear forward or backward in the longitudinal phase space of the electron bunch, which provides control of the bunch chirp. This chirp control during the bunch transport gives an additional free parameter and marks a new approach to matching future LWFA-driven FELs.
Collapse
Affiliation(s)
- Kay A Dewhurst
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK.
- The Cockcroft Institute, Warrington, WA4 4AD, UK.
- Beams Department (BE), CERN, 1211, Geneva, Switzerland.
| | - Bruno D Muratori
- The Cockcroft Institute, Warrington, WA4 4AD, UK
- ASTeC, UKRI-STFC Daresbury Laboratory, Warrington, WA4 4FS, UK
| | - Enrico Brunetti
- SUPA, Department of Physics, University of Strathclyde, Glasgow, G4 0NG, UK
| | | | | | - Hywel L Owen
- The Cockcroft Institute, Warrington, WA4 4AD, UK
- ASTeC, UKRI-STFC Daresbury Laboratory, Warrington, WA4 4FS, UK
| | - S Mark Wiggins
- SUPA, Department of Physics, University of Strathclyde, Glasgow, G4 0NG, UK
| | - Dino A Jaroszynski
- SUPA, Department of Physics, University of Strathclyde, Glasgow, G4 0NG, UK.
| |
Collapse
|
8
|
Schulte R, Johnstone C, Boucher S, Esarey E, Geddes CGR, Kravchenko M, Kutsaev S, Loo BW, Méot F, Mustapha B, Nakamura K, Nanni EA, Obst-Huebl L, Sampayan SE, Schroeder CB, Sheng K, Snijders AM, Snively E, Tantawi SG, Van Tilborg J. Transformative Technology for FLASH Radiation Therapy. APPLIED SCIENCES (BASEL, SWITZERLAND) 2023; 13:5021. [PMID: 38240007 PMCID: PMC10795821 DOI: 10.3390/app13085021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
The general concept of radiation therapy used in conventional cancer treatment is to increase the therapeutic index by creating a physical dose differential between tumors and normal tissues through precision dose targeting, image guidance, and radiation beams that deliver a radiation dose with high conformality, e.g., protons and ions. However, the treatment and cure are still limited by normal tissue radiation toxicity, with the corresponding side effects. A fundamentally different paradigm for increasing the therapeutic index of radiation therapy has emerged recently, supported by preclinical research, and based on the FLASH radiation effect. FLASH radiation therapy (FLASH-RT) is an ultra-high-dose-rate delivery of a therapeutic radiation dose within a fraction of a second. Experimental studies have shown that normal tissues seem to be universally spared at these high dose rates, whereas tumors are not. While dose delivery conditions to achieve a FLASH effect are not yet fully characterized, it is currently estimated that doses delivered in less than 200 ms produce normal-tissue-sparing effects, yet effectively kill tumor cells. Despite a great opportunity, there are many technical challenges for the accelerator community to create the required dose rates with novel compact accelerators to ensure the safe delivery of FLASH radiation beams.
Collapse
Affiliation(s)
- Reinhard Schulte
- Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA 92350, USA
| | - Carol Johnstone
- Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
| | - Salime Boucher
- RadiaBeam Technologies, LLC, Santa Monica, CA 90404, USA
| | - Eric Esarey
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | - Sergey Kutsaev
- RadiaBeam Technologies, LLC, Santa Monica, CA 90404, USA
| | - Billy W. Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - François Méot
- Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - Kei Nakamura
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Emilio A. Nanni
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Stephen E. Sampayan
- Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
- Opcondys, Inc., Manteca, CA 95336, USA
| | | | - Ke Sheng
- Department of Radiation Oncology, University of California, San Francisco, CA 94115, USA
| | | | - Emma Snively
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Sami G. Tantawi
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | |
Collapse
|
9
|
Huang R, Han L, Shou Y, Wang D, Yu T, Yu J, Yan X. High-flux and bright betatron X-ray source generated from femtosecond laser pulse interaction with sub-critical density plasma. OPTICS LETTERS 2023; 48:819-822. [PMID: 36723597 DOI: 10.1364/ol.480553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Recent progress on betatron X-ray source enables the exploration of new physics in fundamental science; however, the application range is still limited by the source flux and brightness. In this Letter, we show the generation of more than 1 × 1012 photons (energy > 1 keV) with a peak brightness of 7.8 × 1022 photons/(s mm2 mrad2) at 0.1% bandwidth (BW) at 10 keV, driven by a femtosecond laser pulse of ≈5.5 J and a sub-critical density plasma (SCDP). The source flux is more than two orders of magnitude higher than that from typical laser wakefield electron acceleration. This method to produce high-flux and bright X-ray source would open a wide range of applications.
Collapse
|
10
|
Bohlen S, Brümmer T, Grüner F, Lindstrøm CA, Meisel M, Staufer T, Streeter MJV, Veale MC, Wood JC, D'Arcy R, Põder K, Osterhoff J. In Situ Measurement of Electron Energy Evolution in a Laser-Plasma Accelerator. PHYSICAL REVIEW LETTERS 2022; 129:244801. [PMID: 36563240 DOI: 10.1103/physrevlett.129.244801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 07/22/2022] [Accepted: 10/12/2022] [Indexed: 06/17/2023]
Abstract
We report on a novel, noninvasive method applying Thomson scattering to measure the evolution of the electron beam energy inside a laser-plasma accelerator with high spatial resolution. The determination of the local electron energy enabled the in-situ detection of the acting acceleration fields without altering the final beam state. In this Letter we demonstrate that the accelerating fields evolve from (265±119) GV/m to (9±4) GV/m in a plasma density ramp. The presented data show excellent agreement with particle-in-cell simulations. This method provides new possibilities for detecting the dynamics of plasma-based accelerators and their optimization.
Collapse
Affiliation(s)
- S Bohlen
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - T Brümmer
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - F Grüner
- Universität Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - C A Lindstrøm
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - M Meisel
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - T Staufer
- Universität Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - M J V Streeter
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Belfast, United Kingdom
| | - M C Veale
- UKRI STFC, Rutherford Appleton Laboratory, Didcot, OX11 0QX, United Kingdom
| | - J C Wood
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - R D'Arcy
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - K Põder
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - J Osterhoff
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| |
Collapse
|
11
|
Ferran Pousa A, Agapov I, Antipov SA, Assmann RW, Brinkmann R, Jalas S, Kirchen M, Leemans WP, Maier AR, Martinez de la Ossa A, Osterhoff J, Thévenet M. Energy Compression and Stabilization of Laser-Plasma Accelerators. PHYSICAL REVIEW LETTERS 2022; 129:094801. [PMID: 36083652 DOI: 10.1103/physrevlett.129.094801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 05/06/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Laser-plasma accelerators outperform current radio frequency technology in acceleration strength by orders of magnitude. Yet, enabling them to deliver competitive beam quality for demanding applications, particularly in terms of energy spread and stability, remains a major challenge. In this Letter, we propose to combine bunch decompression and active plasma dechirping for drastically improving the energy profile and stability of beams from laser-plasma accelerators. Realistic start-to-end simulations demonstrate the potential of these postacceleration phase-space manipulations for simultaneously reducing an initial energy spread and energy jitter of ∼1-2% to ≲0.1%, closing the beam-quality gap to conventional acceleration schemes.
Collapse
Affiliation(s)
- A Ferran Pousa
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - I Agapov
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - S A Antipov
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - R W Assmann
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - R Brinkmann
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - S Jalas
- Department of Physics Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - M Kirchen
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - W P Leemans
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Department of Physics Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - A R Maier
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | - J Osterhoff
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - M Thévenet
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| |
Collapse
|
12
|
Review of Quality Optimization of Electron Beam Based on Laser Wakefield Acceleration. PHOTONICS 2022. [DOI: 10.3390/photonics9080511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Compared with state-of-the-art radio frequency accelerators, the gradient of laser wakefield accelerators is 3–4 orders of magnitude higher. This is of great significance in the development of miniaturized particle accelerators and radiation sources. Higher requirements have been proposed for the quality of electron beams, owing to the increasing application requirements of tabletop radiation sources, specifically with the rapid development of free-electron laser devices. This review briefly examines the electron beam quality optimization scheme based on laser wakefield acceleration and presents some representative studies. In addition, manipulation of the electron beam phase space by means of injection, plasma profile distribution, and laser evolution is described. This review of studies is beneficial for further promoting the application of laser wakefield accelerators.
Collapse
|
13
|
Oubrerie K, Leblanc A, Kononenko O, Lahaye R, Andriyash IA, Gautier J, Goddet JP, Martelli L, Tafzi A, Ta Phuoc K, Smartsev S, Thaury C. Controlled acceleration of GeV electron beams in an all-optical plasma waveguide. LIGHT, SCIENCE & APPLICATIONS 2022; 11:180. [PMID: 35701390 PMCID: PMC9198076 DOI: 10.1038/s41377-022-00862-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Laser-plasma accelerators (LPAs) produce electric fields of the order of 100 GV m-1, more than 1000 times larger than those produced by radio-frequency accelerators. These uniquely strong fields make LPAs a promising path to generate electron beams beyond the TeV, an important goal in high-energy physics. Yet, large electric fields are of little benefit if they are not maintained over a long distance. It is therefore of the utmost importance to guide the ultra-intense laser pulse that drives the accelerator. Reaching very high energies is equally useless if the properties of the electron beam change completely from shot to shot, due to the intrinsic lack of stability of the injection process. State-of-the-art laser-plasma accelerators can already address guiding and control challenges separately by tweaking the plasma structures. However, the production of beams that are simultaneously high quality and high energy has yet to be demonstrated. This paper presents a novel experiment, coupling laser-plasma waveguides and controlled injection techniques, facilitating the reliable and efficient acceleration of high-quality electron beams up to 1.1 GeV, from a 50 TW-class laser.
Collapse
Affiliation(s)
- Kosta Oubrerie
- LOA, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 Chemin de la Hunière et des Joncherettes, 91120, Palaiseau, France
| | - Adrien Leblanc
- LOA, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 Chemin de la Hunière et des Joncherettes, 91120, Palaiseau, France
| | - Olena Kononenko
- LOA, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 Chemin de la Hunière et des Joncherettes, 91120, Palaiseau, France
| | - Ronan Lahaye
- LOA, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 Chemin de la Hunière et des Joncherettes, 91120, Palaiseau, France
| | - Igor A Andriyash
- LOA, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 Chemin de la Hunière et des Joncherettes, 91120, Palaiseau, France
| | - Julien Gautier
- LOA, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 Chemin de la Hunière et des Joncherettes, 91120, Palaiseau, France
| | - Jean-Philippe Goddet
- LOA, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 Chemin de la Hunière et des Joncherettes, 91120, Palaiseau, France
| | - Lorenzo Martelli
- LOA, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 Chemin de la Hunière et des Joncherettes, 91120, Palaiseau, France
| | - Amar Tafzi
- LOA, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 Chemin de la Hunière et des Joncherettes, 91120, Palaiseau, France
| | - Kim Ta Phuoc
- LOA, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 Chemin de la Hunière et des Joncherettes, 91120, Palaiseau, France
| | - Slava Smartsev
- LOA, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 Chemin de la Hunière et des Joncherettes, 91120, Palaiseau, France
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Cédric Thaury
- LOA, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 Chemin de la Hunière et des Joncherettes, 91120, Palaiseau, France.
| |
Collapse
|
14
|
Laso Garcia A, Hannasch A, Molodtsova M, Ferrari A, Couperus Cadabağ JP, Downer MC, Irman A, Kraft SD, Metzkes-Ng J, Naumann L, Prencipe I, Schramm U, Zeil K, Zgadzaj R, Ziegler T, Cowan TE. Calorimeter with Bayesian unfolding of spectra of high-flux broadband x rays. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:043102. [PMID: 35489906 DOI: 10.1063/5.0078443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
We report the development of a multipurpose differential x-ray calorimeter with a broad energy bandwidth. The absorber architecture is combined with a Bayesian unfolding algorithm to unfold high energy x-ray spectra generated in high-intensity laser-matter interactions. Particularly, we show how to extract absolute energy spectra and how our unfolding algorithm can reconstruct features not included in the initial guess. The performance of the calorimeter is evaluated via Monte Carlo generated data. The method accuracy to reconstruct electron temperatures from bremsstrahlung is shown to be 5% for electron temperatures from 1 to 50 MeV. We study bremsstrahlung generated in solid target interaction showing an electron temperature of 0.56 ± 0.04 MeV for a 700 μm Ti titanium target and 0.53 ± 0.03 MeV for a 50 μm target. We investigate bremsstrahlung from a target irradiated by laser-wakefield accelerated electrons showing an endpoint energy of 551 ± 5 MeV, inverse Compton generated x rays with a peak energy of 1.1 MeV, and calibrated radioactive sources. The total energy range covered by all these sources ranges from 10 keV to 551 MeV.
Collapse
Affiliation(s)
- A Laso Garcia
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - A Hannasch
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712-1081, USA
| | - M Molodtsova
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - A Ferrari
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - J P Couperus Cadabağ
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - M C Downer
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712-1081, USA
| | - A Irman
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - S D Kraft
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - J Metzkes-Ng
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - L Naumann
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - I Prencipe
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - U Schramm
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - K Zeil
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - R Zgadzaj
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712-1081, USA
| | - T Ziegler
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - T E Cowan
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| |
Collapse
|
15
|
Hannasch A, Laso Garcia A, LaBerge M, Zgadzaj R, Köhler A, Couperus Cabadağ JP, Zarini O, Kurz T, Ferrari A, Molodtsova M, Naumann L, Cowan TE, Schramm U, Irman A, Downer MC. Compact spectroscopy of keV to MeV X-rays from a laser wakefield accelerator. Sci Rep 2021; 11:14368. [PMID: 34257331 PMCID: PMC8277848 DOI: 10.1038/s41598-021-93689-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/22/2021] [Indexed: 11/24/2022] Open
Abstract
We reconstruct spectra of secondary X-rays from a tunable 250-350 MeV laser wakefield electron accelerator from single-shot X-ray depth-energy measurements in a compact (7.5 × 7.5 × 15 cm), modular X-ray calorimeter made of alternating layers of absorbing materials and imaging plates. X-rays range from few-keV betatron to few-MeV inverse Compton to > 100 MeV bremsstrahlung emission, and are characterized both individually and in mixtures. Geant4 simulations of energy deposition of single-energy X-rays in the stack generate an energy-vs-depth response matrix for a given stack configuration. An iterative reconstruction algorithm based on analytic models of betatron, inverse Compton and bremsstrahlung photon energy distributions then unfolds X-ray spectra, typically within a minute. We discuss uncertainties, limitations and extensions of both measurement and reconstruction methods.
Collapse
Affiliation(s)
- A Hannasch
- Department of Physics, The University of Texas at Austin, Austin, TX, 78712-1081, USA
| | - A Laso Garcia
- The Helmholtz-Zentrum Dresden-Rossendorf, Institute for Radiation Physics, 01328, Dresden, Germany
| | - M LaBerge
- Department of Physics, The University of Texas at Austin, Austin, TX, 78712-1081, USA
- The Helmholtz-Zentrum Dresden-Rossendorf, Institute for Radiation Physics, 01328, Dresden, Germany
| | - R Zgadzaj
- Department of Physics, The University of Texas at Austin, Austin, TX, 78712-1081, USA
| | - A Köhler
- The Helmholtz-Zentrum Dresden-Rossendorf, Institute for Radiation Physics, 01328, Dresden, Germany
| | - J P Couperus Cabadağ
- The Helmholtz-Zentrum Dresden-Rossendorf, Institute for Radiation Physics, 01328, Dresden, Germany
| | - O Zarini
- The Helmholtz-Zentrum Dresden-Rossendorf, Institute for Radiation Physics, 01328, Dresden, Germany
| | - T Kurz
- The Helmholtz-Zentrum Dresden-Rossendorf, Institute for Radiation Physics, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - A Ferrari
- The Helmholtz-Zentrum Dresden-Rossendorf, Institute for Radiation Physics, 01328, Dresden, Germany
| | - M Molodtsova
- The Helmholtz-Zentrum Dresden-Rossendorf, Institute for Radiation Physics, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - L Naumann
- The Helmholtz-Zentrum Dresden-Rossendorf, Institute for Radiation Physics, 01328, Dresden, Germany
| | - T E Cowan
- The Helmholtz-Zentrum Dresden-Rossendorf, Institute for Radiation Physics, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - U Schramm
- The Helmholtz-Zentrum Dresden-Rossendorf, Institute for Radiation Physics, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - A Irman
- The Helmholtz-Zentrum Dresden-Rossendorf, Institute for Radiation Physics, 01328, Dresden, Germany
| | - M C Downer
- Department of Physics, The University of Texas at Austin, Austin, TX, 78712-1081, USA.
| |
Collapse
|
16
|
Demonstration of a compact plasma accelerator powered by laser-accelerated electron beams. Nat Commun 2021; 12:2895. [PMID: 34001874 PMCID: PMC8129089 DOI: 10.1038/s41467-021-23000-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/08/2021] [Indexed: 11/08/2022] Open
Abstract
Plasma wakefield accelerators are capable of sustaining gigavolt-per-centimeter accelerating fields, surpassing the electric breakdown threshold in state-of-the-art accelerator modules by 3-4 orders of magnitude. Beam-driven wakefields offer particularly attractive conditions for the generation and acceleration of high-quality beams. However, this scheme relies on kilometer-scale accelerators. Here, we report on the demonstration of a millimeter-scale plasma accelerator powered by laser-accelerated electron beams. We showcase the acceleration of electron beams to 128 MeV, consistent with simulations exhibiting accelerating gradients exceeding 100 GV m−1. This miniaturized accelerator is further explored by employing a controlled pair of drive and witness electron bunches, where a fraction of the driver energy is transferred to the accelerated witness through the plasma. Such a hybrid approach allows fundamental studies of beam-driven plasma accelerator concepts at widely accessible high-power laser facilities. It is anticipated to provide compact sources of energetic high-brightness electron beams for quality-demanding applications such as free-electron lasers. Particle accelerators based on laser- or electron-driven plasma waves promise compact sources for relativistic electron bunches. Here, Kurz and Heinemann et al. demonstrate a hybrid two-stage configuration, combining the individual features of both accelerating schemes.
Collapse
|
17
|
Kirchen M, Jalas S, Messner P, Winkler P, Eichner T, Hübner L, Hülsenbusch T, Jeppe L, Parikh T, Schnepp M, Maier AR. Optimal Beam Loading in a Laser-Plasma Accelerator. PHYSICAL REVIEW LETTERS 2021; 126:174801. [PMID: 33988405 DOI: 10.1103/physrevlett.126.174801] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/16/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Applications of laser-plasma accelerators demand low energy spread beams and high-efficiency operation. Achieving both requires flattening the accelerating fields by controlled beam loading of the plasma wave. Here, we optimize the generation of an electron bunch via localized ionization injection, such that the combination of injected current profile and averaged acceleration dynamics results in optimal beam loading conditions. This enables the reproducible production of 1.2% rms energy spread bunches with 282 MeV and 44 pC at an estimated energy-transfer efficiency of ∼19%. We correlate shot-to-shot variations to reveal the phase space dynamics and train a neural network that predicts the beam quality as a function of the drive laser.
Collapse
Affiliation(s)
- Manuel Kirchen
- Center for Free-Electron Laser Science and Department of Physics Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Sören Jalas
- Center for Free-Electron Laser Science and Department of Physics Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Philipp Messner
- Center for Free-Electron Laser Science and Department of Physics Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- International Max Planck Research School for Ultrafast Imaging and Structural Dynamics, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Paul Winkler
- Center for Free-Electron Laser Science and Department of Physics Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Deutsches Elektronen Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Timo Eichner
- Center for Free-Electron Laser Science and Department of Physics Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Lars Hübner
- Center for Free-Electron Laser Science and Department of Physics Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Deutsches Elektronen Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Thomas Hülsenbusch
- Center for Free-Electron Laser Science and Department of Physics Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Deutsches Elektronen Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Laurids Jeppe
- Center for Free-Electron Laser Science and Department of Physics Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Trupen Parikh
- Deutsches Elektronen Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Matthias Schnepp
- Center for Free-Electron Laser Science and Department of Physics Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Andreas R Maier
- Center for Free-Electron Laser Science and Department of Physics Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Deutsches Elektronen Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| |
Collapse
|
18
|
Shaw JL, Romo-Gonzalez MA, Lemos N, King PM, Bruhaug G, Miller KG, Dorrer C, Kruschwitz B, Waxer L, Williams GJ, Ambat MV, McKie MM, Sinclair MD, Mori WB, Joshi C, Chen H, Palastro JP, Albert F, Froula DH. Microcoulomb (0.7 ± [Formula: see text] μC) laser plasma accelerator on OMEGA EP. Sci Rep 2021; 11:7498. [PMID: 33820945 PMCID: PMC8021563 DOI: 10.1038/s41598-021-86523-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/21/2021] [Indexed: 11/17/2022] Open
Abstract
Laser-plasma accelerators (LPAs) driven by picosecond-scale, kilojoule-class lasers can generate particle beams and x-ray sources that could be utilized in experiments driven by multi-kilojoule, high-energy-density science (HEDS) drivers such as the OMEGA laser at the Laboratory for Laser Energetics (LLE) or the National Ignition Facility at Lawrence Livermore National Laboratory. This paper reports on the development of the first LPA driven by a short-pulse, kilojoule-class laser (OMEGA EP) connected to a multi-kilojoule HEDS driver (OMEGA). In experiments, electron beams were produced with electron energies greater than 200 MeV, divergences as low as 32 mrad, charge greater than 700 nC, and conversion efficiencies from laser energy to electron energy up to 11%. The electron beam charge scales with both the normalized vector potential and plasma density. These electron beams show promise as a method to generate MeV-class radiography sources and improved-flux broadband x-ray sources at HEDS drivers.
Collapse
Affiliation(s)
- J. L. Shaw
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623 USA
| | - M. A. Romo-Gonzalez
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623 USA
- California State University Stanislaus, Turlock, CA 95382 USA
| | - N. Lemos
- Lawrence Livermore National Laboratory, Livermore, CA 94550 USA
| | - P. M. King
- Lawrence Livermore National Laboratory, Livermore, CA 94550 USA
- University of Texas at Austin, Austin, TX 78705 USA
| | - G. Bruhaug
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623 USA
| | - K. G. Miller
- University of California Los Angeles, Los Angeles, CA 90095 USA
| | - C. Dorrer
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623 USA
| | - B. Kruschwitz
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623 USA
| | - L. Waxer
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623 USA
| | - G. J. Williams
- Lawrence Livermore National Laboratory, Livermore, CA 94550 USA
| | - M. V. Ambat
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623 USA
| | - M. M. McKie
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623 USA
| | - M. D. Sinclair
- University of California Los Angeles, Los Angeles, CA 90095 USA
| | - W. B. Mori
- University of California Los Angeles, Los Angeles, CA 90095 USA
| | - C. Joshi
- University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Hui Chen
- Lawrence Livermore National Laboratory, Livermore, CA 94550 USA
| | - J. P. Palastro
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623 USA
| | - F. Albert
- Lawrence Livermore National Laboratory, Livermore, CA 94550 USA
| | - D. H. Froula
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623 USA
| |
Collapse
|
19
|
Valenta P, Esirkepov TZ, Koga JK, Nečas A, Grittani GM, Lazzarini CM, Klimo O, Korn G, Bulanov SV. Polarity reversal of wakefields driven by ultrashort pulse laser. Phys Rev E 2020; 102:053216. [PMID: 33327156 DOI: 10.1103/physreve.102.053216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/25/2020] [Indexed: 06/12/2023]
Abstract
Using an analytical model and computer simulation, we show that the wakefield driven by an ultrashort laser pulse in high-density plasma periodically reverses its polarity due to the carrier-envelope phase shift of the driver. The wakefield polarity reversal occurs on spatial scales shorter than the typical length considered for electron acceleration with the laser-wakefield mechanism. Consequently, the energies of accelerated electrons are significantly affected. The results obtained are important for the laser-wakefield acceleration under the conditions relevant to present-day high-repetition-rate laser systems.
Collapse
Affiliation(s)
- P Valenta
- ELI Beamlines, Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, Prague 18221, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, Prague 11519, Czech Republic
| | - T Zh Esirkepov
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Umemidai 8-1-7, Kizugawa, Kyoto 619-0215, Japan
| | - J K Koga
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Umemidai 8-1-7, Kizugawa, Kyoto 619-0215, Japan
| | - A Nečas
- TAE Technologies, Pauling 19631, Foothill Ranch, California 92610, USA
| | - G M Grittani
- ELI Beamlines, Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, Prague 18221, Czech Republic
| | - C M Lazzarini
- ELI Beamlines, Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, Prague 18221, Czech Republic
| | - O Klimo
- ELI Beamlines, Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, Prague 18221, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, Prague 11519, Czech Republic
| | - G Korn
- ELI Beamlines, Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, Prague 18221, Czech Republic
| | - S V Bulanov
- ELI Beamlines, Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, Prague 18221, Czech Republic
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Umemidai 8-1-7, Kizugawa, Kyoto 619-0215, Japan
| |
Collapse
|
20
|
Massimo F, Beck A, Derouillat J, Zemzemi I, Specka A. Numerical modeling of laser tunneling ionization in particle-in-cell codes with a laser envelope model. Phys Rev E 2020; 102:033204. [PMID: 33075946 DOI: 10.1103/physreve.102.033204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/19/2020] [Indexed: 11/07/2022]
Abstract
The resources needed for particle-in-cell simulations of laser wakefield acceleration can be greatly reduced in many cases of interest using an envelope model. However, the inclusion of tunneling ionization in this time-averaged treatment of laser-plasma acceleration is not straightforward, since the statistical features of the electron beams obtained through ionization should ideally be reproduced without resolving the high-frequency laser oscillations. In this context, an extension of an already known envelope ionization procedure is proposed, valid also for laser pulses with higher intensities, which consists in adding the initial longitudinal drift to the newly created electrons within the laser pulse ionizing the medium. The accuracy of the proposed procedure is shown with both linear and circular polarization in a simple benchmark where a nitrogen slab is ionized by a laser pulse and in a more complex benchmark of laser plasma acceleration with ionization injection in the nonlinear regime. With this addition to the envelope ionization algorithm, the main phase space properties of the bunches injected in a plasma wakefield with ionization by a laser (charge, average energy, energy spread, rms sizes, and normalized emittance) can be estimated with accuracy comparable to a nonenvelope simulation with significantly reduced resources, even in cylindrical geometry. Through this extended algorithm, preliminary studies of ionization injection in laser wakefield acceleration can be easily carried out even on a laptop.
Collapse
Affiliation(s)
- F Massimo
- Laboratoire Leprince-Ringuet-École polytechnique, CNRS-IN2P3, Palaiseau 91128, France
| | - A Beck
- Laboratoire Leprince-Ringuet-École polytechnique, CNRS-IN2P3, Palaiseau 91128, France
| | - J Derouillat
- Maison de la Simulation, CEA, CNRS, Université Paris-Sud, UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - I Zemzemi
- Laboratoire Leprince-Ringuet-École polytechnique, CNRS-IN2P3, Palaiseau 91128, France
| | - A Specka
- Laboratoire Leprince-Ringuet-École polytechnique, CNRS-IN2P3, Palaiseau 91128, France
| |
Collapse
|
21
|
Lumpkin AH, LaBerge M, Rule DW, Zgadzaj R, Hannasch A, Zarini O, Bowers B, Irman A, Couperus Cabadağ JP, Debus A, Köhler A, Schramm U, Downer MC. Coherent Optical Signatures of Electron Microbunching in Laser-Driven Plasma Accelerators. PHYSICAL REVIEW LETTERS 2020; 125:014801. [PMID: 32678646 DOI: 10.1103/physrevlett.125.014801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
We report observations of coherent optical transition radiation interferometry (COTRI) patterns generated by microbunched ∼200-MeV electrons as they emerge from a laser-driven plasma accelerator. The divergence of the microbunched portion of electrons, deduced by comparison to a COTRI model, is ∼9× smaller than the ∼3 mrad ensemble beam divergence, while the radius of the microbunched beam, obtained from COTR images on the same shot, is <3 μm. The combined results show that the microbunched distribution has estimated transverse normalized emittance ∼0.4 mm mrad.
Collapse
Affiliation(s)
- A H Lumpkin
- Accelerator Division, Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - M LaBerge
- Physics Department, University of Texas-Austin, Austin, Texas 78712, USA
| | - D W Rule
- Silver Spring, Maryland 20904, USA
| | - R Zgadzaj
- Physics Department, University of Texas-Austin, Austin, Texas 78712, USA
| | - A Hannasch
- Physics Department, University of Texas-Austin, Austin, Texas 78712, USA
| | - O Zarini
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - B Bowers
- Physics Department, University of Texas-Austin, Austin, Texas 78712, USA
| | - A Irman
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - J P Couperus Cabadağ
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - A Debus
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - A Köhler
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - U Schramm
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - M C Downer
- Physics Department, University of Texas-Austin, Austin, Texas 78712, USA
| |
Collapse
|
22
|
Nie Z, Pai CH, Zhang J, Ning X, Hua J, He Y, Wu Y, Su Q, Liu S, Ma Y, Cheng Z, Lu W, Chu HH, Wang J, Zhang C, Mori WB, Joshi C. Photon deceleration in plasma wakes generates single-cycle relativistic tunable infrared pulses. Nat Commun 2020; 11:2787. [PMID: 32493931 PMCID: PMC7271200 DOI: 10.1038/s41467-020-16541-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/01/2020] [Indexed: 11/09/2022] Open
Abstract
Availability of relativistically intense, single-cycle, tunable infrared sources will open up new areas of relativistic nonlinear optics of plasmas, impulse IR spectroscopy and pump-probe experiments in the molecular fingerprint region. However, generation of such pulses is still a challenge by current methods. Recently, it has been proposed that time dependent refractive index associated with laser-produced nonlinear wakes in a suitably designed plasma density structure rapidly frequency down-converts photons. The longest wavelength photons slip backwards relative to the evolving laser pulse to form a single-cycle pulse within the nearly evacuated wake cavity. This process is called photon deceleration. Here, we demonstrate this scheme for generating high-power (~100 GW), near single-cycle, wavelength tunable (3–20 µm), infrared pulses using an 810 nm drive laser by tuning the density profile of the plasma. We also demonstrate that these pulses can be used to in-situ probe the transient and nonlinear wakes themselves. Plasma can act as strong nonlinear refractive index medium that can be exploited to downshift the frequency of a laser pulse. Here, the authors show the generation of single-cycle tunable infrared pulses using strong density gradients associated with laser-produced wakes in plasmas.
Collapse
Affiliation(s)
- Zan Nie
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China.,University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Chih-Hao Pai
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China.
| | - Jie Zhang
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Xiaonan Ning
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Jianfei Hua
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China.
| | - Yunxiao He
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Yipeng Wu
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Qianqian Su
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Shuang Liu
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Yue Ma
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Zhi Cheng
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Wei Lu
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China. .,State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, China.
| | - Hsu-Hsin Chu
- Department of Physics, National Central University, Jhongli, 32001, Taiwan.,Center for High Energy and High Field Physics, National Central University, Jhongli, 32001, Taiwan
| | - Jyhpyng Wang
- Department of Physics, National Central University, Jhongli, 32001, Taiwan. .,Center for High Energy and High Field Physics, National Central University, Jhongli, 32001, Taiwan. .,Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan. .,Department of Physics, National Taiwan University, Taipei, 10617, Taiwan.
| | - Chaojie Zhang
- University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Warren B Mori
- University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Chan Joshi
- University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
23
|
Zhu CQ, Wang JG, Li YF, Feng J, Li DZ, He YH, Tan JH, Ma JL, Lu X, Li YT, Chen LM. Optical steering of electron beam in laser plasma accelerators. OPTICS EXPRESS 2020; 28:11609-11617. [PMID: 32403668 DOI: 10.1364/oe.380842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
Using a Dazzler system and tilting a compressor grating, we provide an effective way of using the laser group delay dispersion to continuously steer the electron beam accelerated by an asymmetric laser wakefield. The deviation angle of the electron beam was the same as that of the angularly chirped laser pulse from its initial optical axis, which is determined by the laser pulse-front-tilt (PFT). This method can be utilized to continuously control over the pointing direction of electron bunches to the requisite trajectories, especially for practical applications in highly sensitive alignment devices such as electron-positron colliders or undulators. Additionally, we investigate the effect of PFT on the properties of the electron beam.
Collapse
|
24
|
Water-Window X-Ray Pulses from a Laser-Plasma Driven Undulator. Sci Rep 2020; 10:5634. [PMID: 32221373 PMCID: PMC7101387 DOI: 10.1038/s41598-020-62401-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/12/2020] [Indexed: 11/17/2022] Open
Abstract
Femtosecond (fs) x-ray pulses are a key tool to study the structure and dynamics of matter on its natural length and time scale. To complement radio-frequency accelerator-based large-scale facilities, novel laser-based mechanisms hold promise for compact laboratory-scale x-ray sources. Laser-plasma driven undulator radiation in particular offers high peak-brightness, optically synchronized few-fs pulses reaching into the few-nanometer (nm) regime. To date, however, few experiments have successfully demonstrated plasma-driven undulator radiation. Those that have, typically operated at single and comparably long wavelengths. Here we demonstrate plasma-driven undulator radiation with octave-spanning tuneability at discrete wavelengths reaching from 13 nm to 4 nm. Studying spontaneous undulator radiation is an important step towards a plasma-driven free-electron laser. Our specific setup creates a photon pulse, which closely resembles the plasma electron bunch length and charge profile and thus might enable novel methods to characterize the longitudinal electron phase space.
Collapse
|
25
|
Ghaith A, Oumbarek D, Roussel E, Corde S, Labat M, André T, Loulergue A, Andriyash IA, Chubar O, Kononenko O, Smartsev S, Marcouillé O, Kitégi C, Marteau F, Valléau M, Thaury C, Gautier J, Sebban S, Tafzi A, Blache F, Briquez F, Tavakoli K, Carcy A, Bouvet F, Dietrich Y, Lambert G, Hubert N, El Ajjouri M, Polack F, Dennetière D, Leclercq N, Rommeluère P, Duval JP, Sebdaoui M, Bourgoin C, Lestrade A, Benabderrahmane C, Vétéran J, Berteaud P, De Oliveira C, Goddet JP, Herbeaux C, Szwaj C, Bielawski S, Malka V, Couprie ME. Tunable High Spatio-Spectral Purity Undulator Radiation from a Transported Laser Plasma Accelerated Electron Beam. Sci Rep 2019; 9:19020. [PMID: 31836730 PMCID: PMC6910930 DOI: 10.1038/s41598-019-55209-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/22/2019] [Indexed: 02/01/2023] Open
Abstract
Undulator based synchrotron light sources and Free Electron Lasers (FELs) are valuable modern probes of matter with high temporal and spatial resolution. Laser Plasma Accelerators (LPAs), delivering GeV electron beams in few centimeters, are good candidates for future compact light sources. However the barriers set by the large energy spread, divergence and shot-to-shot fluctuations require a specific transport line, to shape the electron beam phase space for achieving ultrashort undulator synchrotron radiation suitable for users and even for achieving FEL amplification. Proof-of-principle LPA based undulator emission, with strong electron focusing or transport, does not yet exhibit the full specific radiation properties. We report on the generation of undulator radiation with an LPA beam based manipulation in a dedicated transport line with versatile properties. After evidencing the specific spatio-spectral signature, we tune the resonant wavelength within 200-300 nm by modification of the electron beam energy and the undulator field. We achieve a wavelength stability of 2.6%. We demonstrate that we can control the spatio-spectral purity and spectral brightness by reducing the energy range inside the chicane. We have also observed the second harmonic emission of the undulator.
Collapse
Affiliation(s)
- A Ghaith
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, 91192, France. .,Université Paris-Saclay, Paris, France.
| | - D Oumbarek
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, 91192, France.,Université Paris-Saclay, Paris, France
| | - E Roussel
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, 59000, Lille, France
| | - S Corde
- LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 828 Bd des Maréchaux, 91762, Palaiseau Cedex, France
| | - M Labat
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, 91192, France
| | - T André
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, 91192, France.,Université Paris-Saclay, Paris, France
| | - A Loulergue
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, 91192, France
| | - I A Andriyash
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 761001, Israel
| | - O Chubar
- NSLS-II, Brookhaven National Laboratory, 98 Rochester St, Upton, NY, 11973, USA
| | - O Kononenko
- LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 828 Bd des Maréchaux, 91762, Palaiseau Cedex, France
| | - S Smartsev
- LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 828 Bd des Maréchaux, 91762, Palaiseau Cedex, France.,Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 761001, Israel
| | - O Marcouillé
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, 91192, France
| | - C Kitégi
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, 91192, France
| | - F Marteau
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, 91192, France
| | - M Valléau
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, 91192, France
| | - C Thaury
- LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 828 Bd des Maréchaux, 91762, Palaiseau Cedex, France
| | - J Gautier
- LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 828 Bd des Maréchaux, 91762, Palaiseau Cedex, France
| | - S Sebban
- LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 828 Bd des Maréchaux, 91762, Palaiseau Cedex, France
| | - A Tafzi
- LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 828 Bd des Maréchaux, 91762, Palaiseau Cedex, France
| | - F Blache
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, 91192, France
| | - F Briquez
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, 91192, France
| | - K Tavakoli
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, 91192, France
| | - A Carcy
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, 91192, France
| | - F Bouvet
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, 91192, France
| | - Y Dietrich
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, 91192, France
| | - G Lambert
- LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 828 Bd des Maréchaux, 91762, Palaiseau Cedex, France
| | - N Hubert
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, 91192, France
| | - M El Ajjouri
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, 91192, France
| | - F Polack
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, 91192, France
| | - D Dennetière
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, 91192, France
| | - N Leclercq
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, 91192, France
| | - P Rommeluère
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, 91192, France
| | - J-P Duval
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, 91192, France
| | - M Sebdaoui
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, 91192, France
| | - C Bourgoin
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, 91192, France
| | - A Lestrade
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, 91192, France
| | - C Benabderrahmane
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, 91192, France
| | - J Vétéran
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, 91192, France
| | - P Berteaud
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, 91192, France
| | - C De Oliveira
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, 91192, France
| | - J P Goddet
- LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 828 Bd des Maréchaux, 91762, Palaiseau Cedex, France
| | - C Herbeaux
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, 91192, France
| | - C Szwaj
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, 59000, Lille, France
| | - S Bielawski
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, 59000, Lille, France
| | - V Malka
- LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 828 Bd des Maréchaux, 91762, Palaiseau Cedex, France.,Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 761001, Israel
| | - M-E Couprie
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, 91192, France.,Université Paris-Saclay, Paris, France
| |
Collapse
|
26
|
Ferran Pousa A, Martinez de la Ossa A, Assmann RW. Intrinsic energy spread and bunch length growth in plasma-based accelerators due to betatron motion. Sci Rep 2019; 9:17690. [PMID: 31776391 PMCID: PMC6881450 DOI: 10.1038/s41598-019-53887-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 10/28/2019] [Indexed: 11/19/2022] Open
Abstract
Plasma-based accelerators (PBAs), having demonstrated the production of GeV electron beams in only centimetre scales, offer a path towards a new generation of highly compact and cost-effective particle accelerators. However, achieving the required beam quality, particularly on the energy spread for applications such as free-electron lasers, remains a challenge. Here we investigate fundamental sources of energy spread and bunch length in PBAs which arise from the betatron motion of beam electrons. We present an analytical theory, validated against particle-in-cell simulations, which accurately describes these phenomena. Significant impact on the beam quality is predicted for certain configurations, explaining previously observed limitations on the achievable bunch length and energy spread. Guidelines for mitigating these contributions towards high-quality beams are deduced.
Collapse
Affiliation(s)
- Angel Ferran Pousa
- Deutsches Elektronen-Synchrotron DESY, Hamburg, 22607, Germany.
- Institut für Experimentalphysik, Universität Hamburg, Hamburg, 22761, Germany.
| | | | - Ralph W Assmann
- Deutsches Elektronen-Synchrotron DESY, Hamburg, 22607, Germany
| |
Collapse
|
27
|
Li S, Li G, Ain Q, Hur MS, Ting AC, Kulagin VV, Kamperidis C, Hafz NAM. A laser-plasma accelerator driven by two-color relativistic femtosecond laser pulses. SCIENCE ADVANCES 2019; 5:eaav7940. [PMID: 31803828 PMCID: PMC6874490 DOI: 10.1126/sciadv.aav7940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
A typical laser-plasma accelerator (LPA) is driven by a single, ultrarelativistic laser pulse from terawatt- or petawatt-class lasers. Recently, there has been some theoretical work on the use of copropagating two-color laser pulses (CTLP) for LPA research. Here, we demonstrate the first LPA driven by CTLP where we observed substantial electron energy enhancements. Those results have been further confirmed in a practical application, where the electrons are used in a bremsstrahlung-based positron generation configuration, which led to a considerable boost in the positron energy as well. Numerical simulations suggest that the trailing second harmonic relativistic laser pulse is capable of sustaining the acceleration structure for much longer distances after the preceding fundamental pulse is depleted in the plasma. Therefore, our work confirms the merits of driving LPAs by two-color pulses and paves the way toward a downsizing of LPAs, making their potential applications in science and technology extremely attractive and affordable.
Collapse
Affiliation(s)
- Song Li
- Key Laboratory for Laser Plasmas (Ministry of Education), Collaborative Innovation Center of IFSA (CICIFSA), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- ELI-ALPS, ELI-HU Nonprofit Ltd., Dugonics tér 13, Szeged 6720, Hungary
| | - Guangyu Li
- Key Laboratory for Laser Plasmas (Ministry of Education), Collaborative Innovation Center of IFSA (CICIFSA), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Quratul Ain
- Key Laboratory for Laser Plasmas (Ministry of Education), Collaborative Innovation Center of IFSA (CICIFSA), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Sup Hur
- Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Antonio C. Ting
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
| | - Victor V. Kulagin
- Sternberg Astronomical Institute of Moscow State University, Moscow 119992, Russia
- Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Moscow, 125009, Russia
| | | | - Nasr A. M. Hafz
- ELI-ALPS, ELI-HU Nonprofit Ltd., Dugonics tér 13, Szeged 6720, Hungary
| |
Collapse
|
28
|
Martinez de la Ossa A, Assmann RW, Bussmann M, Corde S, Couperus Cabadağ JP, Debus A, Döpp A, Ferran Pousa A, Gilljohann MF, Heinemann T, Hidding B, Irman A, Karsch S, Kononenko O, Kurz T, Osterhoff J, Pausch R, Schöbel S, Schramm U. Hybrid LWFA-PWFA staging as a beam energy and brightness transformer: conceptual design and simulations. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180175. [PMID: 31230579 PMCID: PMC6602909 DOI: 10.1098/rsta.2018.0175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
We present a conceptual design for a hybrid laser-driven plasma wakefield accelerator (LWFA) to beam-driven plasma wakefield accelerator (PWFA). In this set-up, the output beams from an LWFA stage are used as input beams of a new PWFA stage. In the PWFA stage, a new witness beam of largely increased quality can be produced and accelerated to higher energies. The feasibility and the potential of this concept is shown through exemplary particle-in-cell simulations. In addition, preliminary simulation results for a proof-of-concept experiment in Helmholtz-Zentrum Dresden-Rossendorf (Germany) are shown. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.
Collapse
Affiliation(s)
| | - R. W. Assmann
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - M. Bussmann
- Helmholtz-Zentrum Dresden-Rossendorf HZDR, 01328 Dresden, Germany
| | - S. Corde
- LOA, ENSTA ParisTech - CNRS - École Polytechnique - Université Paris-Saclay, France
| | | | - A. Debus
- Helmholtz-Zentrum Dresden-Rossendorf HZDR, 01328 Dresden, Germany
| | - A. Döpp
- Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
| | - A. Ferran Pousa
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - M. F. Gilljohann
- Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
| | - T. Heinemann
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow G4 0NG, UK
| | - B. Hidding
- Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow G4 0NG, UK
| | - A. Irman
- Helmholtz-Zentrum Dresden-Rossendorf HZDR, 01328 Dresden, Germany
| | - S. Karsch
- Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
| | - O. Kononenko
- LOA, ENSTA ParisTech - CNRS - École Polytechnique - Université Paris-Saclay, France
| | - T. Kurz
- Helmholtz-Zentrum Dresden-Rossendorf HZDR, 01328 Dresden, Germany
| | - J. Osterhoff
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - R. Pausch
- Helmholtz-Zentrum Dresden-Rossendorf HZDR, 01328 Dresden, Germany
| | - S. Schöbel
- Helmholtz-Zentrum Dresden-Rossendorf HZDR, 01328 Dresden, Germany
| | - U. Schramm
- Helmholtz-Zentrum Dresden-Rossendorf HZDR, 01328 Dresden, Germany
| |
Collapse
|
29
|
Ferran Pousa A, Martinez de la Ossa A, Brinkmann R, Assmann RW. Compact Multistage Plasma-Based Accelerator Design for Correlated Energy Spread Compensation. PHYSICAL REVIEW LETTERS 2019; 123:054801. [PMID: 31491304 DOI: 10.1103/physrevlett.123.054801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 06/10/2019] [Indexed: 06/10/2023]
Abstract
The extreme electromagnetic fields sustained by plasma-based accelerators could drastically reduce the size and cost of future accelerator facilities. However, they are also an inherent source of correlated energy spread in the produced beams, which severely limits the usability of these devices. We propose here to split the acceleration process into two plasma stages joined by a magnetic chicane in which the energy correlation induced in the first stage is inverted such that it can be naturally compensated in the second. Simulations of a particular 1.5-m-long setup show that 5.5 GeV beams with relative energy spreads of 1.2×10^{-3} (total) and 2.8×10^{-4} (slice) could be achieved while preserving a submicron emittance. This is at least one order of magnitude below the current state of the art and would enable applications such as compact free-electron lasers.
Collapse
Affiliation(s)
- A Ferran Pousa
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Institut für Experimentalphysik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - R Brinkmann
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - R W Assmann
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| |
Collapse
|
30
|
Abstract
Fundamental similarities and differences between laser-driven plasma wakefield acceleration (LWFA) and particle-driven plasma wakefield acceleration (PWFA) are discussed. The complementary features enable the conception and development of novel hybrid plasma accelerators, which allow previously not accessible compact solutions for high quality electron bunch generation and arising applications. Very high energy gains can be realized by electron beam drivers even in single stages because PWFA is practically dephasing-free and not diffraction-limited. These electron driver beams for PWFA in turn can be produced in compact LWFA stages. In various hybrid approaches, these PWFA systems can be spiked with ionizing laser pulses to realize tunable and high-quality electron sources via optical density downramp injection (also known as plasma torch) or plasma photocathodes (also known as Trojan Horse) and via wakefield-induced injection (also known as WII). These hybrids can act as beam energy, brightness and quality transformers, and partially have built-in stabilizing features. They thus offer compact pathways towards beams with unprecedented emittance and brightness, which may have transformative impact for light sources and photon science applications. Furthermore, they allow the study of PWFA-specific challenges in compact setups in addition to large linac-based facilities, such as fundamental beam–plasma interaction physics, to develop novel diagnostics, and to develop contributions such as ultralow emittance test beams or other building blocks and schemes which support future plasma-based collider concepts.
Collapse
|
31
|
Cho MH, Pathak VB, Kim HT, Nam CH. Controlled electron injection facilitated by nanoparticles for laser wakefield acceleration. Sci Rep 2018; 8:16924. [PMID: 30446700 PMCID: PMC6240057 DOI: 10.1038/s41598-018-34998-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/26/2018] [Indexed: 11/24/2022] Open
Abstract
We propose a novel injection scheme for laser-driven wakefield acceleration in which controllable localized electron injection is obtained by inserting nanoparticles into a plasma medium. The nanoparticles provide a very confined electric field that triggers localized electron injection where nonlinear plasma waves are excited but not sufficient for background electrons self-injection. We present a theoretical model to describe the conditions and properties of the electron injection in the presence of nanoparticles. Multi-dimensional particle-in-cell (PIC) simulations demonstrate that the total charge of the injected electron beam can be controlled by the position, number, size, and density of the nanoparticles. The PIC simulation also indicates that a 5-GeV electron beam with an energy spread below 1% can be obtained with a 0.5-PW laser pulse by using the nanoparticle-assisted laser wakefield acceleration.
Collapse
Affiliation(s)
- Myung Hoon Cho
- Center for Relativistic Laser Science (CoReLS), Institute for Basic Science, Gwangju, 61005, Korea
| | - Vishwa Bandhu Pathak
- Center for Relativistic Laser Science (CoReLS), Institute for Basic Science, Gwangju, 61005, Korea
| | - Hyung Taek Kim
- Center for Relativistic Laser Science (CoReLS), Institute for Basic Science, Gwangju, 61005, Korea. .,Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.
| | - Chang Hee Nam
- Center for Relativistic Laser Science (CoReLS), Institute for Basic Science, Gwangju, 61005, Korea. .,Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.
| |
Collapse
|
32
|
Kurz T, Couperus JP, Krämer JM, Ding H, Kuschel S, Köhler A, Zarini O, Hollatz D, Schinkel D, D'Arcy R, Schwinkendorf JP, Osterhoff J, Irman A, Schramm U, Karsch S. Calibration and cross-laboratory implementation of scintillating screens for electron bunch charge determination. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:093303. [PMID: 30278695 DOI: 10.1063/1.5041755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
We revise the calibration of scintillating screens commonly used to detect relativistic electron beams with low average current, e.g., from laser-plasma accelerators, based on new and expanded measurements that include higher charge density and different types of screens than previous work [Buck et al., Rev. Sci. Instrum. 81, 033301 (2010)]. Electron peak charge densities up to 10 nC/mm2 were provided by focused picosecond-long electron beams delivered by the Electron Linac for beams with high Brilliance and low Emittance (ELBE) at the Helmholtz-Zentrum Dresden-Rossendorf. At low charge densities, a linear scintillation response was found, followed by the onset of saturation in the range of nC/mm2. The absolute calibration factor (photons/sr/pC) in this linear regime was measured to be almost a factor of 2 lower than that reported by Buck et al. retrospectively implying a higher charge in the charge measurements performed with the former calibration. A good agreement was found with the results provided by Glinec et al. [Rev. Sci. Instrum. 77, 103301 (2006)]. Furthermore long-term irradiation tests with an integrated dose of approximately 50 nC/mm2 indicate a significant decrease of the scintillation efficiency over time. Finally, in order to enable the transfer of the absolute calibration between laboratories, a new constant reference light source has been developed.
Collapse
Affiliation(s)
- Thomas Kurz
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | | | - Jakob Matthias Krämer
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Hao Ding
- Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
| | | | - Alexander Köhler
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Omid Zarini
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | | | - David Schinkel
- Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena, Germany
| | - Richard D'Arcy
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | | | - Jens Osterhoff
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Arie Irman
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Ulrich Schramm
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Stefan Karsch
- Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
| |
Collapse
|
33
|
Making spectral shape measurements in inverse Compton scattering a tool for advanced diagnostic applications. Sci Rep 2018; 8:1398. [PMID: 29362472 PMCID: PMC5780516 DOI: 10.1038/s41598-018-19546-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/29/2017] [Indexed: 11/27/2022] Open
Abstract
Interaction of relativistic electron beams with high power lasers can both serve as a secondary light source and as a novel diagnostic tool for various beam parameters. For both applications, it is important to understand the dynamics of the inverse Compton scattering mechanism and the dependence of the scattered light’s spectral properties on the interacting laser and electron beam parameters. Measurements are easily misinterpreted due to the complex interplay of the interaction parameters. Here we report the potential of inverse Compton scattering as an advanced diagnostic tool by investigating two of the most influential interaction parameters, namely the laser intensity and the electron beam emittance. Established scaling laws for the spectral bandwidth and redshift of the mean scattered photon energy are refined. This allows for a quantitatively well matching prediction of the spectral shape. Driving the interaction to a nonlinear regime, we spectrally resolve the rise of higher harmonic radiation with increasing laser intensity. Unprecedented agreement with 3D radiation simulations is found, showing the good control and characterization of the interaction. The findings advance the interpretation of inverse Compton scattering measurements into a diagnostic tool for electron beams from laser plasma acceleration.
Collapse
|