1
|
Knecht RJ, Swain A, Benner JS, Emma SL, Pierce NE, Labandeira CC. Endophytic ancestors of modern leaf miners may have evolved in the Late Carboniferous. THE NEW PHYTOLOGIST 2023; 240:2050-2057. [PMID: 37798874 DOI: 10.1111/nph.19266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023]
Abstract
Endophytic feeding behaviors, including stem borings and galling, have been observed in the fossil record from as early as the Devonian and involve the consumption of a variety of plant (and fungal) tissues. Historically, the exploitation of internal stem tissues through galling has been well documented as emerging during the Pennsylvanian (c. 323-299 million years ago (Ma)), replaced during the Permian by galling of foliar tissues. However, leaf mining, a foliar endophytic behavior that today is exhibited exclusively by members of the four hyperdiverse holometabolous insect orders, has been more sparsely documented, with confirmed examples dating back only to the Early Triassic (c. 252-250 Ma). Here, we describe a trace fossil on seed-fern foliage from the Rhode Island Formation of Massachusetts, USA, representing the earliest indication of a general, endophytic type of feeding damage and dating from the Middle Pennsylvanian (c. 312 Ma). Although lacking the full features of Mesozoic leaf mines, this specimen provides evidence of how endophytic mining behavior may have originated. It sheds light on the evolutionary transition to true foliar endophagy, contributes to our understanding of the behaviors of early holometabolous insects, and enhances our knowledge of macroevolutionary patterns of plant-insect interactions.
Collapse
Affiliation(s)
- Richard J Knecht
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Anshuman Swain
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
- Department of Paleobiology, National Museum of Natural History, Washington, DC, 20013, USA
| | - Jacob S Benner
- Department of Earth and Planetary Sciences, University of Tennessee Knoxville, Knoxville, TN, 37996, USA
| | - Steve L Emma
- Independent Researcher, Providence, RI, 02908, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Conrad C Labandeira
- Department of Paleobiology, National Museum of Natural History, Washington, DC, 20013, USA
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA
- College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
2
|
Labandeira CC, Wappler T. Arthropod and Pathogen Damage on Fossil and Modern Plants: Exploring the Origins and Evolution of Herbivory on Land. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:341-361. [PMID: 36689301 DOI: 10.1146/annurev-ento-120120-102849] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The use of the functional feeding group-damage type system for analyzing arthropod and pathogen interactions with plants has transformed our understanding of herbivory in fossil plant assemblages by providing data, analyses, and interpretation of the local, regional, and global patterns of a 420-Myr history. The early fossil record can be used to answer major questions about the oldest evidence for herbivory, the early emergence of herbivore associations on land plants, and later expansion on seed plants. The subsequent effects of the Permian-Triassic ecological crisis on herbivore diversity, the resulting formation of biologically diverse herbivore communities on gymnosperms, and major shifts in herbivory ensuing from initial angiosperm diversification are additional issues that need to be addressed. Studies ofherbivory resulting from more recent transient spikes and longer-term climate trends provide important data that are applied to current global change and include herbivore community responses to latitude, altitude, and habitat. Ongoing paleoecological themes remaining to be addressed include the antiquity of modern interactions, differential herbivory between ferns and angiosperms, and origins of modern tropical forests. The expansion of databases that include a multitude of specimens; improvements in sampling strategies; development of new analytical methods; and, importantly, the ability to address conceptually stimulating ecological and evolutionary questions have provided new impetus in this rapidly advancing field.
Collapse
Affiliation(s)
- Conrad C Labandeira
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA;
- Department of Entomology, University of Maryland, College Park, Maryland, USA
- College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University, Beijing, China
| | - Torsten Wappler
- Natural History Department, Hessisches Landesmuseum, Darmstadt, Germany;
- Paleontology Section, Institute of Geosciences, Rheinische Friedrich-Wilhelms Universität Bonn, Bonn, Germany
| |
Collapse
|
3
|
Mantzouka D, Akkemik Ü, Güngör Y. Miocene Cupressinoxylon from Gökçeada (Imbros), Turkey with Protophytobia cambium mining and the study of ecological signals of wood anatomy. PeerJ 2022; 10:e14212. [PMID: 36530400 PMCID: PMC9753763 DOI: 10.7717/peerj.14212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/19/2022] [Indexed: 12/14/2022] Open
Abstract
Premise The recognition of the Miocene Climate Optimum (MCO) in terrestrial palaeoenvironments of the Eastern Mediterranean is restricted to Lesbos and Lemnos Islands, Greece. This area is significant for its wood microfossils. A recently-discovered fossil wood assemblage from Gökçeada (Imbros) Island, Turkey, including tree species similar to the Greek findings, is thought to have an early Miocene age. Here, we revise the age of the latter plant fossiliferous locality, re-evaluate the area for the study of MCO for the terrestrial palaeoecosystems of the Eastern Mediterranean and the nomenclature errors referring to the occurrence of fossil wood. We present the plant-insect-environment interactions using detailed anatomical descriptions, of an extinct conifer and its extinct cambium miner feeding traces observed in its secondary xylem. Methods Three thin sections were prepared with standard palaeoxylotomical techniques from a small section of the silicified wood; the sections were observed under a light microscope. The anatomy of the conifer and its damage patterns were compared with those of extant and fossil Cupressaceae and Agromyzidae, respectively. Pivotal results The common anatomical features of the studied wood specimen and Hesperocyparis macrocarpa (Hartw.) Bartel and a shared characteristic (the number of the cross-field pits - a feature we consider of diagnostic value) with Xanthocyparis vietnamensis Farjon & T.H. Nguyên led to its assignment to the Hesperocyparis-Xanthocyparis-Callitropsis clade. The detailed study of the wound scars and anatomical abnormalities, the anatomical-environmental associations, and structural-functional reactions follow the identification of the wood's anatomy sensu Carlquist providing decisive results. Conclusions Based on the distinctive characteristics presented, we identify our macrofossil as Cupressinoxylon matromnense Grambast, a stem or an extinct lineage of the Hesperocyparis-Xanthocyparis vietnamensis-Callitropsis nootkatensis clade with feeding traces of the fossil cambium miner of the genus Protophytobia Süss (Diptera: Agromyzidae), and anatomical damage and reaction tissue on adventitious shoots. The use of Protopinaceae and Pinoxylon F. H. Knowlton from the eastern Mediterranean are re-evaluated and corrections are provided. The age of the studied plant fossiliferous locality in Gökçeada is revised as middle Miocene, allowing the proposal of an eastern Mediterranean MCO hotspot, including Lesbos, Lemnos, and Gökçeada (Imbros) Islands.
Collapse
Affiliation(s)
- Dimitra Mantzouka
- Senckenberg Natural History Collections Dresden, Königsbrücker Landstraße, Senckenberg Nature Research Society, Dresden, Germany
| | - Ünal Akkemik
- Department of Forest Botany, Forestry Faculty, Bahçeköy-Sarıyer, Istanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Yıldırım Güngör
- Department of Geology Engineering, Faculty of Engineering, Avcılar, İstanbul University-Cerrahpasa, İstanbul, Turkey
| |
Collapse
|
4
|
Feng Z, Wan S, Sui Q, Labandeira C, Guo Y, Chen J. A Triassic tritrophic triad documents an early food-web cascade. Curr Biol 2022; 32:5165-5171.e2. [PMID: 36351435 DOI: 10.1016/j.cub.2022.10.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/20/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
Abstract
Endophytic oviposition behavior, the insertion of eggs into plant tissues, represents a sophisticated reproductive strategy of insects.1 This process is accomplished by employing a specialized egg-laying device, the ovipositor, that effectively protects eggs through plant tissue concealment.2,3 Endophytic oviposition behavior is currently common in many lineages of several major, extant insect orders, principally Odonata (dragonflies and damselflies), Orthoptera (katydids and grasshoppers), Hemiptera (cicadas, aphids, scale insects, whiteflies, leafhoppers, and bugs), Coleoptera (beetles), Lepidoptera (moths), and Hymenoptera (sawflies).3,4 Based on the occurrences of egg insertion damage and associated scar tissue expressed in fossil plant stems and leaves, endophytic ovipositional behavior is presumed to have emerged as early as the Early Pennsylvanian Period.5 However, for impression fossils, egg morphology and surrounding scar tissue can be difficult to discern on plants, often resulting in ovipositional damage that may be assigned to exophytic (eggs laid on plant surfaces) or to endophytic behavior.6,7,8,9 This ambiguity is due to the spatial relationships and histological mingling of ovipositional damage and enveloping scars with adjoining plant-host tissues. Here, we describe body fossils of insect eggs within ginkgophyte leaves from the Upper Triassic of China. Feeding damage from an egg-predatory insect commonly occurs on these eggs, as some eggs bear up to several feeding punctures. We provide exceptional body-fossil evidence for resource use of a host plant by an ovipositing insect and unravel the earliest-known tritrophic cascade of a host plant, an ovipositing insect, and an egg-predatory insect.
Collapse
Affiliation(s)
- Zhuo Feng
- Institute of Palaeontology, Yunnan Key Laboratory of Earth System Science, Yunnan Key Laboratory for Palaeobiology, MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming 650500, China.
| | - Sui Wan
- Institute of Palaeontology, Yunnan Key Laboratory of Earth System Science, Yunnan Key Laboratory for Palaeobiology, MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming 650500, China
| | - Qun Sui
- Institute of Palaeontology, Yunnan Key Laboratory of Earth System Science, Yunnan Key Laboratory for Palaeobiology, MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming 650500, China
| | - Conrad Labandeira
- Department of Paleobiology, Smithsonian Institution, Washington, DC 20013, USA; Department of Entomology, University of Maryland, College Park, MD 20742, USA; College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University, Beijing 100048, China
| | - Yun Guo
- Institute of Palaeontology, Yunnan Key Laboratory of Earth System Science, Yunnan Key Laboratory for Palaeobiology, MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming 650500, China
| | - Jianbo Chen
- Institute of Palaeontology, Yunnan Key Laboratory of Earth System Science, Yunnan Key Laboratory for Palaeobiology, MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming 650500, China
| |
Collapse
|
5
|
Wang B. Evolution: Unveiling a hidden tripartite relationship. Curr Biol 2022; 32:R1311-R1313. [PMID: 36473441 DOI: 10.1016/j.cub.2022.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endophytic oviposition is one of the most intricate insect reproductive behaviors. A new study characterizes Triassic insect eggs within ginkgophyte leaves, revealing the earliest known tritrophic association of a host plant, ovipositing insect, and egg-predating insect.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
6
|
Feng Z, Gou XD, McLoughlin S, Wei HB, Guo Y. Nurse logs: A common seedling strategy in the Permian Cathaysian flora. iScience 2022; 25:105433. [PMID: 36388991 PMCID: PMC9641241 DOI: 10.1016/j.isci.2022.105433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/22/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
Nurse logs are common in modern forests from boreal to temperate and tropical ecosystems. However, the evolution of the nurse-log strategy remains elusive because of their rare occurrence in the fossil record. We report seven coniferous nurse logs from lowermost to uppermost Permian strata of northern China that have been colonized by conifer and sphenophyllalean roots. These roots are associated with two types of arthropod coprolites and fungal remains. Our study provides the first glimpse into plant—plant facilitative relationships between late Paleozoic gymnosperms and sphenopsids. Detritivorous arthropods and fungi appear to have been crucial for the utilization of nurse logs in Permian forests. The phylogenetically distant roots demonstrate that nurse-log interaction was a sophisticated seedling strategy in late Paleozoic humid tropical forests, and this approach may have been adopted and developed by a succession of plant groups leading to its wide representation in modern forest ecosystems. Diverse nurse-log interactions are documented in the Permian Cathaysian flora. Conifer wood served as substrates for seed plants and sphenopsids at the time. Arthropods and fungi were crucial for utilization of nurse logs in ancient forests. Nurse logs probably first occurred in swamps then expanded to various habitats
Collapse
|
7
|
Buatois LA, Davies NS, Gibling MR, Krapovickas V, Labandeira CC, MacNaughton RB, Mángano MG, Minter NJ, Shillito AP. The Invasion of the Land in Deep Time: Integrating Paleozoic Records of Paleobiology, Ichnology, Sedimentology, and Geomorphology. Integr Comp Biol 2022; 62:297-331. [PMID: 35640908 DOI: 10.1093/icb/icac059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/19/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The invasion of the land was a complex, protracted process, punctuated by mass extinctions, that involved multiple routes from marine environments. We integrate paleobiology, ichnology, sedimentology, and geomorphology to reconstruct Paleozoic terrestrialization. Cambrian landscapes were dominated by laterally mobile rivers with unstable banks in the absence of significant vegetation. Temporary incursions by arthropods and worm-like organisms into coastal environments apparently did not result in establishment of continental communities. Contemporaneous lacustrine faunas may have been inhibited by limited nutrient delivery and high sediment loads. The Ordovician appearance of early land plants triggered a shift in the primary locus of the global clay mineral factory, increasing the amount of mudrock on the continents. The Silurian-Devonian rise of vascular land plants, including the first forests and extensive root systems, was instrumental in further retaining fine sediment on alluvial plains. These innovations led to increased architectural complexity of braided and meandering rivers. Landscape changes were synchronous with establishment of freshwater and terrestrial arthropod faunas in overbank areas, abandoned fluvial channels, lake margins, ephemeral lakes, and inland deserts. Silurian-Devonian lakes experienced improved nutrient availability, due to increased phosphate weathering and terrestrial humic matter. All these changes favoured frequent invasions to permament establishment of jawless and jawed fishes in freshwater habitats and the subsequent tetrapod colonization of the land. The Carboniferous saw rapid diversification of tetrapods, mostly linked to aquatic reproduction, and land plants, including gymnosperms. Deeper root systems promoted further riverbank stabilization, contributing to the rise of anabranching rivers and braided systems with vegetated islands. New lineages of aquatic insects developed and expanded novel feeding modes, including herbivory. Late Paleozoic soils commonly contain pervasive root and millipede traces. Lacustrine animal communities diversified, accompanied by increased food-web complexity and improved food delivery which may have favored permanent colonization of offshore and deep-water lake environments. These trends continued in the Permian, but progressive aridification favored formation of hypersaline lakes, which were stressful for colonization. The Capitanian and end-Permian extinctions affected lacustrine and fluvial biotas, particularly the invertebrate infauna, although burrowing may have allowed some tetrapods to survive associated global warming and increased aridification.
Collapse
Affiliation(s)
- Luis A Buatois
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Neil S Davies
- Department of Earth Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EQ, UK
| | - Martin R Gibling
- Department of Earth and Environmental Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Verónica Krapovickas
- Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Argentina
| | - Conrad C Labandeira
- Department of Paleobiology, Smithsonian Institution, Washington DC 20013-7012, USA.,Department of Entomology and BEES Program, University of Maryland, College Park, Maryland 21740, USA.,College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Robert B MacNaughton
- Geological Survey of Canada (Calgary), Natural Resources Canada, Calgary, Alberta T2L 2A7, Canada
| | - M Gabriela Mángano
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Nicholas J Minter
- School of the Environment, Geography, and Geosciences, University of Portsmouth, Portsmouth, Hampshire PO1 3QL, UK
| | - Anthony P Shillito
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, UK
| |
Collapse
|
8
|
Zhao X, Yu Y, Clapham ME, Yan E, Chen J, Jarzembowski EA, Zhao X, Wang B. Early evolution of beetles regulated by the end-Permian deforestation. eLife 2021; 10:72692. [PMID: 34747694 PMCID: PMC8585485 DOI: 10.7554/elife.72692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/03/2021] [Indexed: 01/10/2023] Open
Abstract
The end-Permian mass extinction (EPME) led to a severe terrestrial ecosystem collapse. However, the ecological response of insects—the most diverse group of organisms on Earth—to the EPME remains poorly understood. Here, we analyse beetle evolutionary history based on taxonomic diversity, morphological disparity, phylogeny, and ecological shifts from the Early Permian to Middle Triassic, using a comprehensive new dataset. Permian beetles were dominated by xylophagous stem groups with high diversity and disparity, which probably played an underappreciated role in the Permian carbon cycle. Our suite of analyses shows that Permian xylophagous beetles suffered a severe extinction during the EPME largely due to the collapse of forest ecosystems, resulting in an Early Triassic gap of xylophagous beetles. New xylophagous beetles appeared widely in the early Middle Triassic, which is consistent with the restoration of forest ecosystems. Our results highlight the ecological significance of insects in deep-time terrestrial ecosystems.
Collapse
Affiliation(s)
- Xianye Zhao
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yilun Yu
- University of Chinese Academy of Sciences, Beijing, China.,Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Matthew E Clapham
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, Santa Cruz, United States
| | - Evgeny Yan
- Palaeontological Institute, Russian Academy of Sciences, Moscow, Russian Federation
| | - Jun Chen
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China.,Institute of Geology and Paleontology, Linyi University, Linyi, China
| | - Edmund A Jarzembowski
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China.,Department of Earth Sciences, Natural History Museum, London, United Kingdom
| | - Xiangdong Zhao
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bo Wang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
9
|
Tooker JF, Giron D. The Evolution of Endophagy in Herbivorous Insects. FRONTIERS IN PLANT SCIENCE 2020; 11:581816. [PMID: 33250909 PMCID: PMC7673406 DOI: 10.3389/fpls.2020.581816] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/08/2020] [Indexed: 06/12/2023]
Abstract
Herbivorous feeding inside plant tissues, or endophagy, is a common lifestyle across Insecta, and occurs in insect taxa that bore, roll, tie, mine, gall, or otherwise modify plant tissues so that the tissues surround the insects while they are feeding. Some researchers have developed hypotheses to explain the adaptive significance of certain endophytic lifestyles (e.g., miners or gallers), but we are unaware of previous efforts to broadly characterize the adaptive significance of endophagy more generally. To fill this knowledge gap, we characterized the limited set of evolutionary selection pressures that could have encouraged phytophagous insects to feed inside plants, and then consider how these factors align with evidence for endophagy in the evolutionary history of orders of herbivorous insects. Reviewing the occurrence of endophytic taxa of various feeding guilds reveals that the pattern of evolution of endophagy varies strongly among insect orders, in some cases being an ancestral trait (e.g., Coleoptera and Lepidoptera) while being more derived in others (e.g., Diptera). Despite the large diversity of endophagous lifestyles and evolutionary trajectories that have led to endophagy in insects, our consideration of selection pressures leads us to hypothesize that nutritionally based factors may have had a stronger influence on evolution of endophagy than other factors, but that competition, water conservation, and natural enemies may have played significant roles in the development of endophagy.
Collapse
Affiliation(s)
- John F. Tooker
- Department of Entomology, The Pennsylvania State University, University Park, PA, United States
| | - David Giron
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS/Université de Tours, Parc Grandmont, Tours, France
| |
Collapse
|
10
|
Vermeij GJ. The ecology of marine colonization by terrestrial arthropods. ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 56:100930. [PMID: 32200289 DOI: 10.1016/j.asd.2020.100930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Terrestrial arthropods often colonized and became important in freshwater ecosystems, but did so less often and with little consequence in marine habitats. This pattern cannot be explained by the physical properties of water alone or by limitations of the terrestrial arthropod body plan alone. One hypothesis is that transitions among terrestrial, aquatic and marine ecosystems are unlikely when well-adapted incumbent species in the recipient realm collectively resist entry by initially less well adapted newcomers. I evaluated and modified this hypothesis by examining the properties of donor and recipient ecosystems and the roles that insects play or do not play in each. I argue that the insularity and diminished competitiveness of most freshwater ecosystems makes them vulnerable to invasion from land and sea, and largely prevent transitions from freshwater to terrestrial and marine habitats by arthropods. Small terrestrial arthropods emphasize high locomotor performance and long-distance communication, traits that work less well in the denser, more viscous medium of water. These limitations pose particular challenges for insects colonizing highly escalated marine ecosystems, where small incumbent species rely more on passive than on active defences. Predatory insects are less constrained than herbivores, wood-borers, filter-feeders, sediment burrowers and social species.
Collapse
Affiliation(s)
- Geerat J Vermeij
- Dept. Earth and Planetary Sciences, University of California, 1 Shields Ave., Davis, CA, 95616, USA.
| |
Collapse
|
11
|
McKenna DD, Shin S, Ahrens D, Balke M, Beza-Beza C, Clarke DJ, Donath A, Escalona HE, Friedrich F, Letsch H, Liu S, Maddison D, Mayer C, Misof B, Murin PJ, Niehuis O, Peters RS, Podsiadlowski L, Pohl H, Scully ED, Yan EV, Zhou X, Ślipiński A, Beutel RG. The evolution and genomic basis of beetle diversity. Proc Natl Acad Sci U S A 2019; 116:24729-24737. [PMID: 31740605 PMCID: PMC6900523 DOI: 10.1073/pnas.1909655116] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The order Coleoptera (beetles) is arguably the most speciose group of animals, but the evolutionary history of beetles, including the impacts of plant feeding (herbivory) on beetle diversification, remain poorly understood. We inferred the phylogeny of beetles using 4,818 genes for 146 species, estimated timing and rates of beetle diversification using 89 genes for 521 species representing all major lineages and traced the evolution of beetle genes enabling symbiont-independent digestion of lignocellulose using 154 genomes or transcriptomes. Phylogenomic analyses of these uniquely comprehensive datasets resolved previously controversial beetle relationships, dated the origin of Coleoptera to the Carboniferous, and supported the codiversification of beetles and angiosperms. Moreover, plant cell wall-degrading enzymes (PCWDEs) obtained from bacteria and fungi via horizontal gene transfers may have been key to the Mesozoic diversification of herbivorous beetles-remarkably, both major independent origins of specialized herbivory in beetles coincide with the first appearances of an arsenal of PCWDEs encoded in their genomes. Furthermore, corresponding (Jurassic) diversification rate increases suggest that these novel genes triggered adaptive radiations that resulted in nearly half of all living beetle species. We propose that PCWDEs enabled efficient digestion of plant tissues, including lignocellulose in cell walls, facilitating the evolution of uniquely specialized plant-feeding habits, such as leaf mining and stem and wood boring. Beetle diversity thus appears to have resulted from multiple factors, including low extinction rates over a long evolutionary history, codiversification with angiosperms, and adaptive radiations of specialized herbivorous beetles following convergent horizontal transfers of microbial genes encoding PCWDEs.
Collapse
Affiliation(s)
- Duane D McKenna
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152;
- Center for Biodiversity Research, University of Memphis, Memphis, TN 38152
| | - Seunggwan Shin
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152
- Center for Biodiversity Research, University of Memphis, Memphis, TN 38152
| | - Dirk Ahrens
- Center for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany
| | - Michael Balke
- Bavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany
| | - Cristian Beza-Beza
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152
- Center for Biodiversity Research, University of Memphis, Memphis, TN 38152
| | - Dave J Clarke
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152
- Center for Biodiversity Research, University of Memphis, Memphis, TN 38152
| | - Alexander Donath
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
| | - Hermes E Escalona
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
- Australian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia
- Department of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany
| | - Frank Friedrich
- Institute of Zoology, University of Hamburg, D-20146 Hamburg, Germany
| | - Harald Letsch
- Department of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria
| | - Shanlin Liu
- China National GeneBank, BGI-Shenzhen, 518083 Guangdong, People's Republic of China
| | - David Maddison
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331
| | - Christoph Mayer
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
| | - Bernhard Misof
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
| | - Peyton J Murin
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany
| | - Ralph S Peters
- Center for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany
| | - Lars Podsiadlowski
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
| | - Hans Pohl
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
| | - Erin D Scully
- Center for Grain and Animal Health, Stored Product Insect and Engineering Research Unit, Agricultural Research Service, US Department of Agriculture, Manhattan, KS 66502
| | - Evgeny V Yan
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
- Borissiak Paleontological Institute, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Xin Zhou
- Department of Entomology, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Adam Ślipiński
- Australian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia
| | - Rolf G Beutel
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
| |
Collapse
|
12
|
Montagna M, Tong KJ, Magoga G, Strada L, Tintori A, Ho SYW, Lo N. Recalibration of the insect evolutionary time scale using Monte San Giorgio fossils suggests survival of key lineages through the End-Permian Extinction. Proc Biol Sci 2019; 286:20191854. [PMID: 31594499 PMCID: PMC6790769 DOI: 10.1098/rspb.2019.1854] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/17/2019] [Indexed: 12/24/2022] Open
Abstract
Insects are a highly diverse group of organisms and constitute more than half of all known animal species. They have evolved an extraordinary range of traits, from flight and complete metamorphosis to complex polyphenisms and advanced eusociality. Although the rich insect fossil record has helped to chart the appearance of many phenotypic innovations, data are scarce for a number of key periods. One such period is that following the End-Permian Extinction, recognized as the most catastrophic of all extinction events. We recently discovered several 240-million-year-old insect fossils in the Mount San Giorgio Lagerstätte (Switzerland-Italy) that are remarkable for their state of preservation (including internal organs and soft tissues), and because they extend the records of their respective taxa by up to 200 million years. By using these fossils as calibrations in a phylogenomic dating analysis, we present a revised time scale for insect evolution. Our date estimates for several major lineages, including the hyperdiverse crown groups of Lepidoptera, Hemiptera: Heteroptera and Diptera, are substantially older than their currently accepted post-Permian origins. We found that major evolutionary innovations, including flight and metamorphosis, appeared considerably earlier than previously thought. These results have numerous implications for understanding the evolution of insects and their resilience in the face of extreme events such as the End-Permian Extinction.
Collapse
Affiliation(s)
- Matteo Montagna
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - K. Jun Tong
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Sydney, Australia
| | - Giulia Magoga
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Laura Strada
- Dipartimento di Scienze della Terra ‘Ardito Desio’, Università degli Studi di Milano, Via Mangiagalli 34, 20133 Milano, Italy
| | - Andrea Tintori
- Dipartimento di Scienze della Terra ‘Ardito Desio’, Università degli Studi di Milano, Via Mangiagalli 34, 20133 Milano, Italy
| | - Simon Y. W. Ho
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Sydney, Australia
| | - Nathan Lo
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Sydney, Australia
| |
Collapse
|
13
|
Labandeira CC. The Fossil Record of Insect Mouthparts: Innovation, Functional Convergence, and Associations with Other Organisms. INSECT MOUTHPARTS 2019. [DOI: 10.1007/978-3-030-29654-4_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Expansion of Arthropod Herbivory in Late Triassic South Africa: The Molteno Biota, Aasvoëlberg 411 Site and Developmental Biology of a Gall. TOPICS IN GEOBIOLOGY 2018. [DOI: 10.1007/978-3-319-68009-5_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|