1
|
Alsaidan OA. Recent advancements in aptamers as promising nanotool for therapeutic and diagnostic applications. Anal Biochem 2025; 702:115844. [PMID: 40090606 DOI: 10.1016/j.ab.2025.115844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 03/18/2025]
Abstract
Aptamers are single-strand oligonucleotide molecules having certain structural interactions which allow them to bind to specific targets. Modified nucleotides are added during or after a selection procedure like Systematic Evolution of Ligands by Exponential Enrichment i.e., SELEX to enhance the characteristics and functionality of aptamers. Aptamers are extensible molecular tools with several uses such as in drug administration, biosensing, bioimaging, drug therapies and diagnostics. The ability to detect is improved by using aptamer-based sensors in conjunction with biological molecules among other sensing techniques. Chemical modification, and strong resistance to denaturation, aptamers are appropriate biological recognizing agents for developing sensitive and repeatable aptasensors. This review discusses the most current developments in the aptamers, SELEX method, applications of aptamers as innovative diagnostic, therapeutic & theragnostic tool along with major limitations & prospective directions in the future.
Collapse
Affiliation(s)
- Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, P.O. Box 2014, Sakaka, 72341, Saudi Arabia.
| |
Collapse
|
2
|
Troisi R, Sica F. Structural overview of DNA and RNA G-quadruplexes in their interaction with proteins. Curr Opin Struct Biol 2024; 87:102846. [PMID: 38848656 DOI: 10.1016/j.sbi.2024.102846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024]
Abstract
Since the discovery of G-quadruplex (G4) participation in vital cellular processes, the regulation of the interaction of naturally occurring G4s with the relative target proteins has emerged as a promising approach for therapeutic development. Additionally, a synthetic strategy has produced several oligonucleotide aptamers, embodying a G4 module, which exhibit relevant biological activity by binding selectively to a target protein. In this context, the G4-protein structures available in the Protein Data Bank represent a valuable molecular view of the different G4 topologies involved in protein interaction. Interestingly, recent results have shown the co-existence of G4s with other structural domains such as duplexes. Overall, these findings allow a better understanding of the mechanisms that regulate intricate biological functions and suggest new design for innovative medical treatments.
Collapse
Affiliation(s)
- Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, 80126 Naples, Italy; Institute of Biostructures and Bioimaging, CNR, via Pietro Castellino 111, 80131 Naples, Italy. https://twitter.com/TroRom
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, 80126 Naples, Italy.
| |
Collapse
|
3
|
Yin X, Rong J, Shao M, Zhang S, Yin L, He Z, Wang X. Aptamer-functionalized nanomaterials (AFNs) for therapeutic management of hepatocellular carcinoma. J Nanobiotechnology 2024; 22:243. [PMID: 38735927 PMCID: PMC11089756 DOI: 10.1186/s12951-024-02486-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents one of the deadliest cancers globally, making the search for more effective diagnostic and therapeutic approaches particularly crucial. Aptamer-functionalized nanomaterials (AFNs), an innovative nanotechnology, have paved new pathways for the targeted diagnosis and treatment of HCC. Initially, we outline the epidemiological background of HCC and the current therapeutic challenges. Subsequently, we explore in detail how AFNs enhance diagnostic and therapeutic efficiency and reduce side effects through the specific targeting of HCC cells and the optimization of drug delivery. Furthermore, we address the challenges faced by AFNs in clinical applications and future research directions, with a particular focus on enhancing their biocompatibility and assessing long-term effects. In summary, AFNs represent an avant-garde therapeutic approach, opening new avenues and possibilities for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Xiujuan Yin
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Jing Rong
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Min Shao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Saisai Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Likang Yin
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Zhenqiang He
- Clinical Medical College, Hebei University, Baoding, 071002, Hebei, China
| | - Xiao Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
4
|
Anil A, Chaskar J, Pawar AB, Tiwari A, Chaskar AC. Recent advances in DNA-based probes for photoacoustic imaging. J Biotechnol 2024; 382:8-20. [PMID: 38211667 DOI: 10.1016/j.jbiotec.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 11/29/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024]
Abstract
Photoacoustic imaging(PAI) is a widely developing imaging modality that has seen tremendous evolvement in the last decade. PAI has gained the upper hand in the imaging field as it takes advantage of optical absorption and ultrasound detection that imparts higher resolution, rich contrast and elevated penetration depth. Unlike other imaging techniques, PAI does not use ionising radiation and is a better, cost-effective and healthier alternative to other imaging techniques. It offers greater specificity than conventional ultrasound imaging with the ability to detect haemoglobin, lipids, water and other light-absorbing chromophores. These properties of PAI have led to its extended applications in the biomedical field in the treatment of diseases such as cancer. This paper reviews how DNA probes have been used in PAI, the various techniques by which it has been modified, and their role in the process. We also focus on different nanocomposites containing DNA having PAI and photothermal therapy(PTT) properties for detection, diagnosis and therapy, its constituents and the role of DNA in it.
Collapse
Affiliation(s)
- Anusri Anil
- National Centre for Nanosciences and Nanotechnology, University of Mumbai, Kalina, Mumbai 400098, India
| | - Jyotsna Chaskar
- National Centre for Nanosciences and Nanotechnology, University of Mumbai, Kalina, Mumbai 400098, India
| | - Avinash B Pawar
- Department of Chemistry, Bharati Vidyapeeth (Deemed to be University), Yashwantrao Mohite College of Arts, Science & Commerce, Pune 411038, India
| | - Abhishekh Tiwari
- National Centre for Nanosciences and Nanotechnology, University of Mumbai, Kalina, Mumbai 400098, India.
| | - Atul Changdev Chaskar
- National Centre for Nanosciences and Nanotechnology, University of Mumbai, Kalina, Mumbai 400098, India; Department of Chemistry, Institute of Chemical Technology, Mumbai.
| |
Collapse
|
5
|
Troisi R, Balasco N, Autiero I, Vitagliano L, Sica F. Structural Insights into Protein-Aptamer Recognitions Emerged from Experimental and Computational Studies. Int J Mol Sci 2023; 24:16318. [PMID: 38003510 PMCID: PMC10671752 DOI: 10.3390/ijms242216318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Aptamers are synthetic nucleic acids that are developed to target with high affinity and specificity chemical entities ranging from single ions to macromolecules and present a wide range of chemical and physical properties. Their ability to selectively bind proteins has made these compounds very attractive and versatile tools, in both basic and applied sciences, to such an extent that they are considered an appealing alternative to antibodies. Here, by exhaustively surveying the content of the Protein Data Bank (PDB), we review the structural aspects of the protein-aptamer recognition process. As a result of three decades of structural studies, we identified 144 PDB entries containing atomic-level information on protein-aptamer complexes. Interestingly, we found a remarkable increase in the number of determined structures in the last two years as a consequence of the effective application of the cryo-electron microscopy technique to these systems. In the present paper, particular attention is devoted to the articulated architectures that protein-aptamer complexes may exhibit. Moreover, the molecular mechanism of the binding process was analyzed by collecting all available information on the structural transitions that aptamers undergo, from their protein-unbound to the protein-bound state. The contribution of computational approaches in this area is also highlighted.
Collapse
Affiliation(s)
- Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy;
| | - Nicole Balasco
- Institute of Molecular Biology and Pathology, CNR c/o Department of Chemistry, University of Rome Sapienza, 00185 Rome, Italy;
| | - Ida Autiero
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy;
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy;
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
| |
Collapse
|
6
|
Lu S, Fowler CR, Ream B, Waugh SM, Russell TM, Rohloff JC, Gold L, Cleveland JP, Stoll S. Magnetically Detected Protein Binding Using Spin-Labeled Slow Off-Rate Modified Aptamers. ACS Sens 2023; 8:2219-2227. [PMID: 37300508 DOI: 10.1021/acssensors.3c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recent developments in aptamer chemistry open up opportunities for new tools for protein biosensing. In this work, we present an approach to use immobilized slow off-rate modified aptamers (SOMAmers) site-specifically labeled with a nitroxide radical via azide-alkyne click chemistry as a means for detecting protein binding. Protein binding induces a change in rotational mobility of the spin label, which is detected via solution-state electron paramagnetic resonance (EPR) spectroscopy. We demonstrate the workflow and test the protocol using the SOMAmer SL5 and its protein target, platelet-derived growth factor B (PDGF-BB). In a complete site scan of the nitroxide over the SOMAmer, we determine the rotational mobility of the spin label in the absence and presence of target protein. Several sites with sufficiently tight affinity and large rotational mobility change upon protein binding are identified. We then model a system where the spin-labeled SOMAmer assay is combined with fluorescence detection via diamond nitrogen-vacancy (NV) center relaxometry. The NV center spin-lattice relaxation time is modulated by the rotational mobility of a proximal spin label and thus responsive to SOMAmer-protein binding. The spin label-mediated assay provides a general approach for transducing protein binding events into magnetically detectable signals.
Collapse
Affiliation(s)
- Shutian Lu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | | - Brian Ream
- SomaLogic, Boulder, Colorado 80301, United States
| | | | | | | | - Larry Gold
- SomaLogic, Boulder, Colorado 80301, United States
| | | | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
7
|
Wu D, Feagin T, Mage P, Rangel A, Wan L, Kong D, Li A, Coller J, Eisenstein M, Soh H. Flow-Cell-Based Technology for Massively Parallel Characterization of Base-Modified DNA Aptamers. Anal Chem 2023; 95:2645-2652. [PMID: 36693249 DOI: 10.1021/acs.analchem.1c04777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Aptamers incorporating chemically modified bases can achieve superior affinity and specificity compared to natural aptamers, but their characterization remains a labor-intensive, low-throughput task. Here, we describe the "non-natural aptamer array" (N2A2) system, in which a minimally modified Illumina MiSeq instrument is used for the high-throughput generation and characterization of large libraries of base-modified DNA aptamer candidates based on both target binding and specificity. We first demonstrate the capability to screen multiple different base modifications to identify the optimal chemistry for high-affinity target binding. We next use N2A2 to generate aptamers that can maintain excellent specificity even in complex samples, with equally strong target affinity in both buffer and diluted human serum. For both aptamers, affinity was formally calculated with gold-standard binding assays. Given that N2A2 requires only minor mechanical modifications to the MiSeq, we believe that N2A2 offers a broadly accessible tool for generating high-quality affinity reagents for diverse applications.
Collapse
Affiliation(s)
- Diana Wu
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Trevor Feagin
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Peter Mage
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Alexandra Rangel
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Leighton Wan
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Dehui Kong
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Anping Li
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - John Coller
- Stanford Functional Genomics Facility, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Michael Eisenstein
- Department of Radiology, Stanford University, Stanford, California 94305, United States.,Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hyongsok Soh
- Department of Radiology, Stanford University, Stanford, California 94305, United States.,Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
8
|
Wang H, Su Y, Chen D, Li Q, Shi S, Huang X, Fang M, Yang M. Advances in the mechanisms and applications of inhibitory oligodeoxynucleotides against immune-mediated inflammatory diseases. Front Pharmacol 2023; 14:1119431. [PMID: 36825156 PMCID: PMC9941346 DOI: 10.3389/fphar.2023.1119431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
Inhibitory oligodeoxynucleotides (ODNs) are short single-stranded DNA, which capable of folding into complex structures, enabling them to bind to a large variety of targets. With appropriate modifications, the inhibitory oligodeoxynucleotides exhibited many features of long half-life time, simple production, low toxicity and immunogenicity. In recent years, inhibitory oligodeoxynucleotides have received considerable attention for their potential therapeutic applications in immune-mediated inflammatory diseases (IMIDs). Inhibitory oligodeoxynucleotides could be divided into three categories according to its mechanisms and targets, including antisense ODNs (AS-ODNs), DNA aptamers and immunosuppressive ODNs (iSup ODNs). As a synthetic tool with immunomodulatory activity, it can target RNAs or proteins in a specific way, resulting in the reduction, increase or recovery of protein expression, and then regulate the state of immune activation. More importantly, inhibitory oligodeoxynucleotides have been used to treat immune-mediated inflammatory diseases, including inflammatory disorders and autoimmune diseases. Several inhibitory oligodeoxynucleotide drugs have been developed and approved on the market already. These drugs vary in their chemical structures, action mechanisms and cellular targets, but all of them could be capable of inhibiting excessive inflammatory responses. This review summarized their chemical modifications, action mechanisms and applications of the three kinds of inhibitory oligodeoxynucleotidesin the precise treatment of immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Hongrui Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yingying Su
- Department of Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Duoduo Chen
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Qi Li
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Shuyou Shi
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xin Huang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Mingli Fang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China,*Correspondence: Mingli Fang, ; Ming Yang,
| | - Ming Yang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China,*Correspondence: Mingli Fang, ; Ming Yang,
| |
Collapse
|
9
|
Chen Y, Kong D, Qiu L, Wu Y, Dai C, Luo S, Huang Z, Lin Q, Chen H, Xie S, Geng L, Zhao J, Tan W, Liu Y, Wei D. Artificial Nucleotide Aptamer-Based Field-Effect Transistor for Ultrasensitive Detection of Hepatoma Exosomes. Anal Chem 2023; 95:1446-1453. [PMID: 36577081 DOI: 10.1021/acs.analchem.2c04433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An aptamer-based field-effect transistor (Apta-FET) is a well-developed assay method with high selectivity and sensitivity. Due to the limited information density that natural nucleotide library holds, the Apta-FET faces fundamental restriction in universality to detect various types of analytes. Herein, we demonstrate a type of Apta-FET sensors based on an artificial nucleotide aptamer (AN-Apta-FET). The introduction of an artificial nucleotide increases the diversity of the potential aptamer structure and expands the analyte category of the Apta-FET. The AN-Apta-FET specifically detects hepatoma exosomes, which traditional Apta-FET fails to discriminate from other tumor-derived exosomes, with a limit of detection down to 242 particles mL-1. The AN-Apta-FET distinguishes serum samples of hepatocellular carcinoma patients within 9 min from those of healthy people, showing the potential as a comprehensive assay tool in future disease diagnosis.
Collapse
Affiliation(s)
- Yiheng Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yungen Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Shi Luo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Zhipeng Huang
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Qiuyuan Lin
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Hui Chen
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Sitao Xie
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Li Geng
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Jun Zhao
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yunqi Liu
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
10
|
Stephens M. The emerging potential of Aptamers as therapeutic agents in infection and inflammation. Pharmacol Ther 2022; 238:108173. [DOI: 10.1016/j.pharmthera.2022.108173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
|
11
|
Shine M, Zhang C, Pyle AM. AMIGOS III: pseudo-torsion angle visualization and motif-based structure comparison of nucleic acids. Bioinformatics 2022; 38:2937-2939. [PMID: 35561202 PMCID: PMC9113296 DOI: 10.1093/bioinformatics/btac207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/15/2022] [Accepted: 04/04/2022] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION The full description of nucleic acid conformation involves eight torsion angles per nucleotide. To simplify this description, we previously developed a representation of the nucleic acid backbone that assigns each nucleotide a pair of pseudo-torsion angles (eta and theta defined by P and C4' atoms; or eta' and theta' defined by P and C1' atoms). A Java program, AMIGOS II, is currently available for calculating eta and theta angles for RNA and for performing motif searches based on eta and theta angles. However, AMIGOS II lacks the ability to parse DNA structures and to calculate eta' and theta' angles. It also has little visualization capacity for 3D structure, making it difficult for users to interpret the computational results. RESULTS We present AMIGOS III, a PyMOL plugin that calculates the pseudo-torsion angles eta, theta, eta' and theta' for both DNA and RNA structures and performs motif searching based on these angles. Compared to AMIGOS II, AMIGOS III offers improved pseudo-torsion angle visualization for RNA and faster nucleic acid worm database generation; it also introduces pseudo-torsion angle visualization for DNA and nucleic acid worm visualization. Its integration into PyMOL enables easy preparation of tertiary structure inputs and intuitive visualization of involved structures. AVAILABILITY AND IMPLEMENTATION https://github.com/pylelab/AMIGOSIII. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Morgan Shine
- Yale Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT 06511, USA
| | - Chengxin Zhang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | | |
Collapse
|
12
|
Jan Z, Mollazadeh S, Abnous K, Taghdisi SM, Danesh A, Ramezani M, Alibolandi M. Targeted Delivery Platforms for the Treatment of Multiple Sclerosis. Mol Pharm 2022; 19:1952-1976. [PMID: 35501974 DOI: 10.1021/acs.molpharmaceut.1c00892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a neurodegenerative condition of the central nervous system (CNS) that presents with varying levels of disability in patients, displaying the significance of timely and effective management of this complication. Though several treatments have been developed to protect nerves, comprehensive improvement of MS is still considered an essential bottleneck. Therefore, the development of innovative treatment methods for MS is one of the core research areas. In this regard, nanoscale platforms can offer practical and ideal approaches to the diagnosis and treatment of various diseases, especially immunological disorders such as MS, to improve the effectiveness of conventional therapies. It should be noted that there is significant progress in the development of neuroprotective strategies through the implementation of various nanoparticles, monoclonal antibodies, peptides, and aptamers. In this study, we summarize different particle systems as well as targeted therapies, such as antibodies, peptides, nucleic acids, and engineered cells for the treatment of MS, and discuss their potential in the treatment of MS in the preclinical and clinical stages. Future advances in targeted delivery of medical supplies may offer new strategies for complete recovery as well as practical treatment of progressive forms of MS.
Collapse
Affiliation(s)
- Zeinab Jan
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Science, 7GJP+VPQ Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, F82C+G8V Bojnurd, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| | - Abolghasem Danesh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Science, 7GJP+VPQ Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| |
Collapse
|
13
|
Sun P, Su J, Wang X, Zhou M, Zhao Y, Gu H. Nucleic Acids for Potential Treatment of Rheumatoid Arthritis. ACS APPLIED BIO MATERIALS 2022; 5:1990-2008. [PMID: 35118863 DOI: 10.1021/acsabm.1c01205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rheumatoid arthritis (RA) is a common systemic inflammatory autoimmune disease that severely affects the life quality of patients. Current therapeutics in clinic mainly focus on alleviating the development of RA or relieving the pain of patients. The emerging biological disease-modifying antirheumatic drugs (DMARDs) require long-term treatment to achieve the expected efficacy. With the development of bionanotechnology, nucleic acids fulfill characters as therapeutics or nanocarriers and can therefore be alternatives to combat RA. This review summarizes the therapeutic RNAs developed through RNA interference (RNAi), nucleic acid aptamers, DNA nanostructures-based drug delivery systems, and nucleic acid vaccines for the applications in RA therapy and diagnosis. Furthermore, prospects of nucleic acids for RA therapy are intensively discussed as well.
Collapse
Affiliation(s)
- Pengchao Sun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, and Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Jingjing Su
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, and Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Xiaonan Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, and Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Mo Zhou
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200433, China
| | - Yongxing Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, and Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Hongzhou Gu
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200433, China
| |
Collapse
|
14
|
Zheng Y, Zhang L, Zhao J, Li L, Wang M, Gao P, Wang Q, Zhang X, Wang W. Advances in aptamers against Aβ and applications in Aβ detection and regulation for Alzheimer's disease. Theranostics 2022; 12:2095-2114. [PMID: 35265201 PMCID: PMC8899576 DOI: 10.7150/thno.69465] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/11/2022] [Indexed: 11/05/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disease, causing profound social and economic implications. Early diagnosis and treatment of AD have faced great challenges due to the slow and hidden onset. β-amyloid (Aβ) protein has been considered an important biomarker and therapeutic target for AD. Therefore, non-invasive, simple, rapid and real-time detection methods for AD biomarkers are particularly favored. With the development of Aβ aptamers, the specific recognition between aptamers and Aβ plays a significant role in AD theranostics. On the one hand, aptamers are applied to construct biosensors for Aβ detection, which provides possibilities for early diagnosis of AD. On the other hand, aptamers are used for regulating Aβ aggregation process, which provides potential strategies for AD treatment. Many excellent reviews have summarized aptamers for neurodegenerative diseases or biosensors using specific recognition probes for Aβ detection applications in AD. In this review, we highlight the crucial role of the design, classification and applications of aptamers on Aβ detection as well as inhibition of Aβ aggregation for AD.
Collapse
Affiliation(s)
- Yan Zheng
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Limin Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jinge Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Lingyun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Minxuan Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Peifeng Gao
- Analysis & Testing Center, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Xiaoling Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
15
|
McCloskey CM, Li Q, Yik EJ, Chim N, Ngor AK, Medina E, Grubisic I, Co Ting Keh L, Poplin R, Chaput JC. Evolution of Functionally Enhanced α-l-Threofuranosyl Nucleic Acid Aptamers. ACS Synth Biol 2021; 10:3190-3199. [PMID: 34739228 DOI: 10.1021/acssynbio.1c00481] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Synthetic genetic polymers (xeno-nucleic acids, XNAs) have the potential to transition aptamers from laboratory tools to therapeutic agents, but additional functionality is needed to compete with antibodies. Here, we describe the evolution of a biologically stable artificial genetic system composed of α-l-threofuranosyl nucleic acid (TNA) that facilitates the production of backbone- and base-modified aptamers termed "threomers" that function as high quality protein capture reagents. Threomers were discovered against two prototypical protein targets implicated in human diseases through a combination of in vitro selection and next-generation sequencing using uracil nucleotides that are uniformly equipped with aromatic side chains commonly found in the paratope of antibody-antigen crystal structures. Kinetic measurements reveal that the side chain modifications are critical for generating threomers with slow off-rate binding kinetics. These findings expand the chemical space of evolvable non-natural genetic systems to include functional groups that enhance protein target binding by mimicking the structural properties of traditional antibodies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ivan Grubisic
- X, The Moonshot Factory, Mountain View, California 94043, United States
| | - Lance Co Ting Keh
- X, The Moonshot Factory, Mountain View, California 94043, United States
| | - Ryan Poplin
- X, The Moonshot Factory, Mountain View, California 94043, United States
| | | |
Collapse
|
16
|
Ren X, Gelinas AD, Linehan M, Iwasaki A, Wang W, Janjic N, Pyle AM. Evolving A RIG-I Antagonist: A Modified DNA Aptamer Mimics Viral RNA. J Mol Biol 2021; 433:167227. [PMID: 34487794 DOI: 10.1016/j.jmb.2021.167227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 12/25/2022]
Abstract
Vertebrate organisms express a diversity of protein receptors that recognize and respond to the presence of pathogenic molecules, functioning as an early warning system for infection. As a result of mutation or dysregulated metabolism, these same innate immune receptors can be inappropriately activated, leading to inflammation and disease. One of the most important receptors for detection and response to RNA viruses is called RIG-I, and dysregulation of this protein is linked with a variety of disease states. Despite its central role in inflammatory responses, antagonists for RIG-I are underdeveloped. In this study, we use invitro selection from a pool of modified DNA aptamers to create a high affinity RIG-I antagonist. A high resolution crystal structure of the complex reveals molecular mimicry between the aptamer and the 5'-triphosphate terminus of viral ligands, which bind to the same amino acids within the CTD recognition platform of the RIG-I receptor. Our study suggests a powerful, generalizable strategy for generating immunomodulatory drugs and mechanistic tool compounds.
Collapse
MESH Headings
- Antigens, Viral/chemistry
- Antigens, Viral/metabolism
- Aptamers, Nucleotide/chemistry
- Aptamers, Nucleotide/metabolism
- Binding Sites
- Cloning, Molecular
- Crystallography, X-Ray
- DEAD Box Protein 58/chemistry
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Humans
- Immunologic Factors/chemistry
- Immunologic Factors/metabolism
- Kinetics
- Models, Molecular
- Molecular Mimicry
- Mutation
- Nucleic Acid Conformation
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- RNA, Viral/chemistry
- RNA, Viral/metabolism
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- SELEX Aptamer Technique
Collapse
Affiliation(s)
- Xiaoming Ren
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Amy D Gelinas
- SomaLogic, Inc., 2945 Wilderness Place, Boulder, CO 80301, USA
| | - Melissa Linehan
- Department of Immunobiology, Yale University, New Haven, CT 06519, USA
| | - Akiko Iwasaki
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA; Department of Immunobiology, Yale University, New Haven, CT 06519, USA
| | - Wenshuai Wang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Nebojsa Janjic
- SomaLogic, Inc., 2945 Wilderness Place, Boulder, CO 80301, USA.
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
17
|
Komaniecki G, Lin H. Lysine Fatty Acylation: Regulatory Enzymes, Research Tools, and Biological Function. Front Cell Dev Biol 2021; 9:717503. [PMID: 34368168 PMCID: PMC8339906 DOI: 10.3389/fcell.2021.717503] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022] Open
Abstract
Post-translational acylation of lysine side chains is a common mechanism of protein regulation. Modification by long-chain fatty acyl groups is an understudied form of lysine acylation that has gained increasing attention recently due to the characterization of enzymes that catalyze the addition and removal this modification. In this review we summarize what has been learned about lysine fatty acylation in the approximately 30 years since its initial discovery. We report on what is known about the enzymes that regulate lysine fatty acylation and their physiological functions, including tumorigenesis and bacterial pathogenesis. We also cover the effect of lysine fatty acylation on reported substrates. Generally, lysine fatty acylation increases the affinity of proteins for specific cellular membranes, but the physiological outcome depends greatly on the molecular context. Finally, we will go over the experimental tools that have been used to study lysine fatty acylation. While much has been learned about lysine fatty acylation since its initial discovery, the full scope of its biological function has yet to be realized.
Collapse
Affiliation(s)
- Garrison Komaniecki
- Graduate Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY, United States.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Hening Lin
- Graduate Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY, United States.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States.,Howard Hughes Medical Institute, Cornell University, Ithaca, NY, United States
| |
Collapse
|
18
|
Structural Biology for the Molecular Insight between Aptamers and Target Proteins. Int J Mol Sci 2021; 22:ijms22084093. [PMID: 33920991 PMCID: PMC8071422 DOI: 10.3390/ijms22084093] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Aptamers are promising therapeutic and diagnostic agents for various diseases due to their high affinity and specificity against target proteins. Structural determination in combination with multiple biochemical and biophysical methods could help to explore the interacting mechanism between aptamers and their targets. Regrettably, structural studies for aptamer–target interactions are still the bottleneck in this field, which are facing various difficulties. In this review, we first reviewed the methods for resolving structures of aptamer–protein complexes and for analyzing the interactions between aptamers and target proteins. We summarized the general features of the interacting nucleotides and residues involved in the interactions between aptamers and proteins. Challenges and perspectives in current methodologies were discussed. Approaches for determining the binding affinity between aptamers and target proteins as well as modification strategies for stabilizing the binding affinity of aptamers to target proteins were also reviewed. The review could help to understand how aptamers interact with their targets and how alterations such as chemical modifications in the structures affect the affinity and function of aptamers, which could facilitate the optimization and translation of aptamers-based theranostics.
Collapse
|
19
|
Griffiths JS, Camilli G, Kotowicz NK, Ho J, Richardson JP, Naglik JR. Role for IL-1 Family Cytokines in Fungal Infections. Front Microbiol 2021; 12:633047. [PMID: 33643264 PMCID: PMC7902786 DOI: 10.3389/fmicb.2021.633047] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Fungal pathogens kill approximately 1.5 million individuals per year and represent a severe disease burden worldwide. It is estimated over 150 million people have serious fungal disease such as recurrent mucosal infections or life-threatening systemic infections. Disease can ensue from commensal fungi or new infection and involves different fungal morphologies and the expression of virulence factors. Therefore, anti-fungal immunity is complex and requires coordination between multiple facets of the immune system. IL-1 family cytokines are associated with acute and chronic inflammation and are essential for the innate response to infection. Recent research indicates IL-1 cytokines play a key role mediating immunity against different fungal infections. During mucosal disease, IL-1R and IL-36R are required for neutrophil recruitment and protective Th17 responses, but function through different mechanisms. During systemic disease, IL-18 drives protective Th1 responses, while IL-33 promotes Th2 and suppresses Th1 immunity. The IL-1 family represents an attractive anti-fungal immunotherapy target. There is a need for novel anti-fungal therapeutics, as current therapies are ineffective, toxic and encounter resistance, and no anti-fungal vaccine exists. Furthering our understanding of the IL-1 family cytokines and their complex role during fungal infection may aid the development of novel therapies. As such, this review will discuss the role for IL-1 family cytokines in fungal infections.
Collapse
Affiliation(s)
- James S Griffiths
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Giorgio Camilli
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Natalia K Kotowicz
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Jemima Ho
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Jonathan P Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
20
|
The revisited role of interleukin-1 alpha and beta in autoimmune and inflammatory disorders and in comorbidities. Autoimmun Rev 2021; 20:102785. [PMID: 33621698 DOI: 10.1016/j.autrev.2021.102785] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
The interleukin (IL) 1 family of cytokines is noteworthy to have pleiotropic functions in inflammation and acquired immunity. Over the last decades, several progresses have been made in understanding the function and regulation of the prototypical inflammatory cytokine (IL-1) in human diseases. IL-1α and IL-1β deregulated signaling causes devastating diseases manifested by severe acute or chronic inflammation. In this review, we examine and compare the key aspects of IL-1α and IL-1β biology and regulation and discuss their importance in the initiation and maintenance of inflammation that underlie the pathology of many human diseases. We also report the current and ongoing inhibitors of IL-1 signaling, targeting IL-1α, IL-1β, their receptor or other molecular compounds as effective strategies to prevent or treat the onset and progression of various inflammatory disorders.
Collapse
|
21
|
Xu X, Zhang C, Denton DT, O’Connell D, Drolet DW, Geisbrecht BV. Inhibition of the Complement Alternative Pathway by Chemically Modified DNA Aptamers That Bind with Picomolar Affinity to Factor B. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:861-873. [PMID: 33419768 PMCID: PMC7851746 DOI: 10.4049/jimmunol.2001260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/08/2020] [Indexed: 01/07/2023]
Abstract
The complement system is a conserved component of innate immunity that fulfills diverse roles in defense and homeostasis. Inappropriate activation of complement contributes to many inflammatory diseases, however, which has led to a renewed emphasis on development of therapeutic complement inhibitors. Activation of complement component C3 is required for amplification of complement and is achieved through two multisubunit proteases called C3 convertases. Of these, the alternative pathway (AP) C3 convertase is responsible for a majority of the C3 activation products in vivo, which renders it an attractive target for inhibitor discovery. In this study, we report the identification and characterization of two related slow off-rate modified DNA aptamers (SOMAmer) reagents that inhibit formation of the AP C3 convertase by binding to the proprotease, factor B (FB). These aptamers, known as SL1102 (31 bases) and SL1103 (29 bases), contain uniform substitutions of 5-(N-2-naphthylethylcarboxyamide)-2'-deoxyuridine for deoxythymidine. SL1102 and SL1103 bind FB with K d values of 49 and 88 pM, respectively, and inhibit activation of C3 and lysis of rabbit erythrocytes under AP-specific conditions. Cocrystal structures of SL1102 (3.4 Å) and SL1103 (3.1 Å) bound to human FB revealed that SL1102 and SL1103 recognize a site at the juncture of the CCP1, CCP3, and vWF domains of FB. Consistent with these structures and previously published information, these aptamers inhibited FB binding to C3b and blocked formation of the AP C3 convertase. Together, these results demonstrate potent AP inhibition by modified DNA aptamers and expand the pipeline of FB-binding molecules with favorable pharmacologic properties.
Collapse
Affiliation(s)
- Xin Xu
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Chi Zhang
- SomaLogic, Inc., Boulder, CO 80301; and
| | - Dalton T. Denton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | | | | | - Brian V. Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
22
|
Saito S. SELEX-based DNA Aptamer Selection: A Perspective from the Advancement of Separation Techniques. ANAL SCI 2021; 37:17-26. [PMID: 33132238 DOI: 10.2116/analsci.20sar18] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/22/2020] [Indexed: 11/23/2022]
Abstract
DNA aptamers, which are short, single-stranded DNA sequences that selectively bind to target substances (proteins, cells, small molecules, metal ions), can be acquired by means of the systematic evolution of ligands by exponential enrichment (SELEX) methodology. In the SELEX procedure, one of the keys for the effective acquisition of high-affinity and functional aptamer sequences is the separation stage to isolate target-bound DNA from unbound DNA in a randomized DNA library. In this review, various remarkable advancements in separation techniques for SELEX-based aptamer selection developed in this decade, are described and discussed, including CE-, microfluidic chip-, solid phase-, and FACS-based SELEX along with other methods.
Collapse
Affiliation(s)
- Shingo Saito
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo Sakura, Saitama, 338-8570, Japan.
| |
Collapse
|
23
|
Tanaka K, Okuda T, Kasahara Y, Obika S. Base-modified aptamers obtained by cell-internalization SELEX facilitate cellular uptake of an antisense oligonucleotide. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:440-449. [PMID: 33473329 PMCID: PMC7803630 DOI: 10.1016/j.omtn.2020.11.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/20/2020] [Indexed: 12/30/2022]
Abstract
Intracellular delivery of oligonucleotides is important for their use as therapeutic drugs. The conjugation of molecules interacting with cell membrane proteins to enhance their internalization into cells is an effective strategy for delivering oligonucleotides. In the present study, we focused on creating aptamers, which are single-stranded oligonucleotides that bind target molecules with high affinity and specificity, as membrane protein-binding molecules. With an evolutionary selection approach using a random DNA library containing a uracil derivative with a hydrophobic functional group at the 5 position, we successfully obtained aptamers that are efficiently internalized into A549 cells. The efficacies of the aptamers were tested by further conjugation with MALAT1-targeting antisense oligonucleotides (ASOs), and the expression levels of MALAT1 RNA were examined. The aptamer-ASO conjugates were taken up by A549 cells, although there was no observable reduction in MALAT1 RNA levels. In contrast, the activity of the aptamer-ASO conjugate was potentiated when endosomal/lysosomal escape was enhanced by the addition of chloroquine. Thus, we showed that the hydrophobic modification of the nucleobase moiety is useful for developing highly internalizing aptamers and that endosomal/lysosomal escape is important for the intracellular delivery of ASOs by aptamers.
Collapse
Affiliation(s)
- Keisuke Tanaka
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan.,National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Takumi Okuda
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan.,National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Yuuya Kasahara
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan.,National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan.,National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| |
Collapse
|
24
|
Shatunova EA, Korolev MA, Omelchenko VO, Kurochkina YD, Davydova AS, Venyaminova AG, Vorobyeva MA. Aptamers for Proteins Associated with Rheumatic Diseases: Progress, Challenges, and Prospects of Diagnostic and Therapeutic Applications. Biomedicines 2020; 8:biomedicines8110527. [PMID: 33266394 PMCID: PMC7700471 DOI: 10.3390/biomedicines8110527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid aptamers capable of affine and specific binding to their molecular targets have now established themselves as a very promising alternative to monoclonal antibodies for diagnostic and therapeutic applications. Although the main focus in aptamers’ research and development for biomedicine is made on cardiovascular, infectious, and malignant diseases, the use of aptamers as therapeutic or diagnostic tools in the context of rheumatic diseases is no less important. In this review, we consider the main features of aptamers that make them valuable molecular tools for rheumatologists, and summarize the studies on the selection and application of aptamers for protein biomarkers associated with rheumatic diseases. We discuss the progress in the development of aptamer-based diagnostic assays and targeted therapeutics for rheumatic disorders, future prospects in the field, and issues that have yet to be addressed.
Collapse
Affiliation(s)
- Elizaveta A. Shatunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
| | - Maksim A. Korolev
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (M.A.K.); (V.O.O.); (Y.D.K.)
| | - Vitaly O. Omelchenko
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (M.A.K.); (V.O.O.); (Y.D.K.)
| | - Yuliya D. Kurochkina
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (M.A.K.); (V.O.O.); (Y.D.K.)
| | - Anna S. Davydova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
| | - Alya G. Venyaminova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
| | - Mariya A. Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
- Correspondence:
| |
Collapse
|
25
|
Jose J, Thomas AM, Mendonsa D, Al-Sanea MM, Uddin MS, Parambi DGT, Charyulu RN, Mathew B. Aptamers in Drug Design: An Emerging Weapon to Fight a Losing Battle. Curr Drug Targets 2020; 20:1624-1635. [PMID: 31362673 DOI: 10.2174/1389450120666190729121747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 11/22/2022]
Abstract
Implementation of novel and biocompatible polymers in drug design is an emerging and rapidly growing area of research. Even though we have a large number of polymer materials for various applications, the biocompatibility of these materials remains as a herculean task for researchers. Aptamers provide a vital and efficient solution to this problem. They are usually small (ranging from 20 to 60 nucleotides, single-stranded DNA or RNA oligonucleotides which are capable of binding to molecules possessing high affinity and other properties like specificity. This review focuses on different aspects of Aptamers in drug discovery, starting from its preparation methods and covering the recent scenario reported in the literature regarding their use in drug discovery. We address the limitations of Aptamers and provide valuable insights into their future potential in the areas regarding drug discovery research. Finally, we explained the major role of Aptamers like medical imaging techniques, application as synthetic antibodies, and the most recent application, which is in combination with nanomedicines.
Collapse
Affiliation(s)
- Jobin Jose
- Department of Pharmaceutics, N.G.S.M. Institute of Pharmaceutical Sciences, NITTE Deemed to be University, Mangalore, India
| | - Aaron Mathew Thomas
- Department of Pharmaceutics, N.G.S.M. Institute of Pharmaceutical Sciences, NITTE Deemed to be University, Mangalore, India
| | - Darewin Mendonsa
- Department of Pharmaceutics, N.G.S.M. Institute of Pharmaceutical Sciences, NITTE Deemed to be University, Mangalore, India
| | - Mohammad M Al-Sanea
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Sakaka, Al Jouf-2014, Saudi Arabia
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Della Grace Thomas Parambi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Sakaka, Al Jouf-2014, Saudi Arabia
| | - R Narayana Charyulu
- Department of Pharmaceutics, N.G.S.M. Institute of Pharmaceutical Sciences, NITTE Deemed to be University, Mangalore, India
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad 678557, Kerala, India
| |
Collapse
|
26
|
Evolution of abiotic cubane chemistries in a nucleic acid aptamer allows selective recognition of a malaria biomarker. Proc Natl Acad Sci U S A 2020; 117:16790-16798. [PMID: 32631977 DOI: 10.1073/pnas.2003267117] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nucleic acid aptamers selected through systematic evolution of ligands by exponential enrichment (SELEX) fold into exquisite globular structures in complex with protein targets with diverse translational applications. Varying the chemistry of nucleotides allows evolution of nonnatural nucleic acids, but the extent to which exotic chemistries can be integrated into a SELEX selection to evolve nonnatural macromolecular binding interfaces is unclear. Here, we report the identification of a cubane-modified aptamer (cubamer) against the malaria biomarker Plasmodium vivax lactate dehydrogenase (PvLDH). The crystal structure of the complex reveals an unprecedented binding mechanism involving a multicubane cluster within a hydrophobic pocket. The binding interaction is further stabilized through hydrogen bonding via cubyl hydrogens, previously unobserved in macromolecular binding interfaces. This binding mechanism allows discriminatory recognition of P. vivax over Plasmodium falciparum lactate dehydrogenase, thereby distinguishing these highly conserved malaria biomarkers for diagnostic applications. Together, our data demonstrate that SELEX can be used to evolve exotic nucleic acids bearing chemical functional groups which enable remarkable binding mechanisms which have never been observed in biology. Extending to other exotic chemistries will open a myriad of possibilities for functional nucleic acids.
Collapse
|
27
|
Zhang L, Zhang X, Feng P, Han Q, Liu W, Lu Y, Song C, Li F. Photodriven Regeneration of G-Quadruplex Aptasensor for Sensitively Detecting Thrombin. Anal Chem 2020; 92:7419-7424. [PMID: 32268723 DOI: 10.1021/acs.analchem.0c00380] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aptamers have been widely used as recognition elements in electrochemical sensors. However, as the most expensive consumable, the aptasensors regeneration is still a critical challenge for sustainable feasibility and attracting great interest from researchers, due to the high affinity between the aptamers and their targets (the dissociation constant Kd is low to subnanomolar or nanomolar). In this work, we propose a photochromic five-azobenzene-inserted thrombin-aptamer based aptasensor to improve the regenerativity. With ultraviolet light exposure, the trans-structure of azobenzene changes to cis-structure, and open the folded aptamer to realize the aptasensor regeneration. The limit of detection can be sensitive to 3 pM (S/N = 3). The thrombin concentrations were detected to be 2.48 ± 0.02 and 20.26 ± 0.98 nM (n = 3) in duck whole blood and blood serum, respectively. Utilizing surface plasmon resonance, we demonstrated that the certain azobenzene moieties can exactly increase Kd of aptamer-thrombin bounding. The photodriven conversion of thrombin-aptamer from G-quadruplex to loosen structure approaches a convenient regeneration for aptasensor, which will promote its popularization and sustainable feasibility.
Collapse
Affiliation(s)
- Liangliang Zhang
- Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyu Zhang
- College of Chemistry and Materials Science Jinan University, Guangzhou 510632, China
| | - Pengju Feng
- College of Chemistry and Materials Science Jinan University, Guangzhou 510632, China
| | - Qi Han
- Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Wei Liu
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453000, China
| | - Ying Lu
- Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Chunxia Song
- Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Fengyu Li
- College of Chemistry and Materials Science Jinan University, Guangzhou 510632, China
| |
Collapse
|
28
|
Abstract
The modern version of the RNA World Hypothesis begins with activated ribonucleotides condensing (nonenzymatically) to make RNA molecules, some of which possess (perhaps slight) catalytic activity. We propose that noncanonical ribonucleotides, which would have been inevitable under prebiotic conditions, might decrease the RNA length required to have useful catalytic function by allowing short RNAs to possess a more versatile collection of folded motifs. We argue that modified versions of the standard bases, some with features that resemble cofactors, could have facilitated that first moment in which early RNA molecules with catalytic capability began their evolutionary path toward self-replication.
Collapse
|
29
|
Marchiori LLDM, Doi MY, Marchiori GDM, de Souza GV, Poli-Frederico RC, Ciquinato DSDA. Interleukin-1 alpha gene polymorphism (IL-1α) and susceptibility to tinnitus in the elderly. Noise Health 2020; 21:77-82. [PMID: 32174642 PMCID: PMC7158897 DOI: 10.4103/nah.nah_67_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Context: To investigate the association between the single nucleotide polymorphism in the position-889 (C/T) of the promoter region of the IL-1α gene and the susceptibility to tinnitus. Method: This was a case-control study with a sample of 108 independent elderly people over 60 years of age. Information on exposure to occupational noise and tinnitus was obtained by interviews. The genetic polymorphism was analyzed by polymerase chain reaction followed by cleavage with restriction enzyme NcoI. Data were analyzed using the Chi-square test, with the significance level set at 5%. For the statistical analysis all individuals with tinnitus on the right ear were eligible. Results: Among elderly with tinnitus, 42.9% had a history of exposure to occupational noise. There was statistically significant association between IL-1α gene polymorphism and tinnitus in subjects without a history of exposure to occupational noise (P = 0.006 and χ2 = 10.39). The elderly with the T allele were less likely to have tinnitus due to occupational noise exposure when compared to those carrying the C allele. Conclusion: This study suggests an association between the IL-1α gene polymorphism with susceptibility to tinnitus in individuals without a history of exposure to occupational noise. The present study demonstrated that allele T of IL-1α is a protective factor for presence and severity of tinnitus in the elderly and allele C contributes to the pathogenesis of the inflammatory response. The present observation implied the signaling IL-1α is involved in ear aging.
Collapse
|
30
|
|
31
|
Fields JK, Günther S, Sundberg EJ. Structural Basis of IL-1 Family Cytokine Signaling. Front Immunol 2019; 10:1412. [PMID: 31281320 PMCID: PMC6596353 DOI: 10.3389/fimmu.2019.01412] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/04/2019] [Indexed: 01/13/2023] Open
Abstract
Interleukin-1 (IL-1) family cytokines are key signaling molecules in both the innate and adaptive immune systems, mediating inflammation in response to a wide range of stimuli. The basic mechanism of signal initiation is a stepwise process in which an agonist cytokine binds its cognate receptor. Together, this cytokine-receptor complex recruits an often-common secondary receptor. Intracellularly, the Toll/IL-1 Receptor (TIR) domains of the two receptors are brought into close proximity, initiating an NF-κB signal transduction cascade. Due to the potent inflammatory response invoked by IL-1 family cytokines, several physiological mechanisms exist to inhibit IL-1 family signaling, including antagonist cytokines and decoy receptors. The numerous cytokines and receptors in the IL-1 superfamily are further classified into four subfamilies, dependent on their distinct cognate receptors—the IL-1, IL-33, and IL-36 subfamilies share IL-1RAcP as their secondary receptor, while IL-18 subfamily utilizes a distinct secondary receptor. Here, we describe how structural biology has informed our understanding of IL-1 family cytokine signaling, with a particular focus on molecular mechanisms of signaling complex formation and antagonism at the atomic level, as well as how these findings have advanced therapeutics to treat some chronic inflammatory diseases that are the result of dysregulated IL-1 signaling.
Collapse
Affiliation(s)
- James K Fields
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, United States.,Program in Molecular Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | | | - Eric J Sundberg
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
32
|
Hu H, Kofoed C, Li M, Gonçalves JP, Hansen J, Wolfram M, Hansen AK, Friis Hansen CH, Diness F, Schoffelen S, Meldal M. Computational Evolution of Threonine-Rich β-Hairpin Peptides Mimicking Specificity and Affinity of Antibodies. ACS CENTRAL SCIENCE 2019; 5:259-269. [PMID: 30834314 PMCID: PMC6396188 DOI: 10.1021/acscentsci.8b00614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Indexed: 05/07/2023]
Abstract
The development of recognition molecules with antibody-like properties is of great value to the biotechnological and bioanalytical communities. The recognition molecules presented here are peptides with a strong tendency to form β-hairpin structures, stabilized by alternate threonines, which are located at one face of the peptide. Amino acids at the other face of the peptide are available for interaction with the target molecule. Using this scaffold, we demonstrate that recognition molecules can efficiently be designed in silico toward four structurally unrelated proteins, GFP, IL-1β, IL-2, and IL-6. On solid support, 10 different antibody-mimetic recognition molecules were synthesized. They displayed high affinity and no cross-reactivity, as observed by fluorescence microscopy. Stabilized variants were readily obtained by incorporation of azido acids and propargylglycine followed by cyclization via the Cu(I)-catalyzed alkyne-azide cycloaddition reaction. As this new class of antibody mimics can be designed toward essentially any protein, the concept is believed to be useful to a wide range of technologies. Here, their use in protein separation and in the detection of proteins in a sandwich-type assay is demonstrated.
Collapse
|
33
|
Tanaka K, Kasahara Y, Miyamoto Y, Okuda T, Kasai T, Onodera K, Kuwahara M, Oka M, Yoneda Y, Obika S. Development of oligonucleotide-based antagonists of Ebola virus protein 24 inhibiting its interaction with karyopherin alpha 1. Org Biomol Chem 2019; 16:4456-4463. [PMID: 29850750 DOI: 10.1039/c8ob00706c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The investigation of protein-protein interactions (PPIs) and the preparation of antagonists are important for determining whether certain proteins are suitable medical targets. In the present study, we used the capillary electrophoresis-systematic evolution of ligands by exponential enrichment to generate natural and artificial nucleic acid aptamers targeting Ebola virus protein 24 (eVP24), demonstrating that artificial aptamers, synthesised utilising a uridine analogue with an adenine residue at its C5 position, exhibited activities exceeding those of natural ones. To confirm the functionality of the as-prepared aptamers, their abilities to inhibit the PPIs of eVP24 were determined by capillary electrophoresis and bio-layer interferometry, and the obtained results unambiguously demonstrated that these aptamers interacted with the functional site of eVP24 and were thus good antagonists.
Collapse
Affiliation(s)
- Keisuke Tanaka
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lichtor PA, Chen Z, Elowe NH, Chen JC, Liu DR. Side chain determinants of biopolymer function during selection and replication. Nat Chem Biol 2019; 15:419-426. [PMID: 30742124 PMCID: PMC6430648 DOI: 10.1038/s41589-019-0229-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/12/2019] [Indexed: 12/21/2022]
Abstract
The chemical functionalities within biopolymers determine their physical properties and biological activities. The relationship between the side-chains available to a biopolymer population and the potential functions of the resulting polymers, however, has proven difficult to study experimentally. Using seven sets of chemically diverse charged, polar, and nonpolar side-chains, we performed cycles of artificial translation, in vitro selections for binding to either PCSK9 or IL-6 protein, and replication on libraries of random side-chain-functionalized nucleic acid polymers. Polymer sequence convergence, bulk population target binding, affinity of individual polymers, and head-to-head competition among post-selection libraries collectively indicate that polymer libraries with nonpolar side-chains outperformed libraries lacking these side-chains. The presence of nonpolar groups, resembling functionality present in proteins but missing from natural nucleic acids, thus may be strong determinants of binding activity. This factor may contribute to the apparent evolutionary advantage of proteins over their nucleic acid precursors for some molecular recognition tasks.
Collapse
Affiliation(s)
- Phillip A Lichtor
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Zhen Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Nadine H Elowe
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Jonathan C Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA. .,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA. .,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
35
|
Yu F, Zhao Q, Zhang D, Yuan Z, Wang H. Affinity Interactions by Capillary Electrophoresis: Binding, Separation, and Detection. Anal Chem 2019; 91:372-387. [PMID: 30392351 DOI: 10.1021/acs.analchem.8b04741] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fangzhi Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing , 100085 , China
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing , 100085 , China
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Dapeng Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing , 100085 , China
| | - Zheng Yuan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing , 100085 , China
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing , 100085 , China
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| |
Collapse
|
36
|
Cai S, Yan J, Xiong H, Liu Y, Peng D, Liu Z. Investigations on the interface of nucleic acid aptamers and binding targets. Analyst 2019; 143:5317-5338. [PMID: 30357118 DOI: 10.1039/c8an01467a] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nucleic acid aptamers are single-stranded DNA or RNA of 20-100 nucleotides in length that have attracted substantial scientific interest due to their ability to specifically bind to target molecules via the formation of three-dimensional structures. Compared to traditional protein antibodies, aptamers have several advantages, such as their small size, high binding affinity, specificity, flexible structure, being chemical synthesizable and modifiable, good biocompatibility, high stability and low immunogenicity, which all contribute to their widely applications in the biomedical field. To date, much progress has been made in the study and applications of aptamers, however, detailed information on how aptamers bind to their targets is still scarce. Over the past few decades, many methods have been introduced to investigate the aptamer-target binding process, such as measuring the main kinetic or thermodynamic parameters, detecting the structural changes of the binding complexes, etc. Apart from traditional physicochemical methods, various types of molecular docking programs have been applied to simulate the aptamer-target interactions, while these simulations also have limitations. To facilitate the further research on the interactions, herein, we provide a brief review to illustrate the recent advances in the study of aptamer-target interactions. We summarize the binding targets of aptamers, such as small molecules, macromolecules, and even cells. Their binding constants (KD) are also summarized. Methods to probe the aptamer-target binding process, such as surface plasmon resonance (SPR), circular dichroism spectroscopy (CD), isothermal titration calorimetry (ITC), footprinting assay, truncation and mutation assay, nuclear magnetic resonance spectroscopy (NMR), X-ray crystallography and molecular docking simulation are indicated. The binding forces mediating the aptamer-target interactions, such as hydrogen bonding, electrostatic interaction, the hydrophobic effect, π-π stacking and van der Waals forces are summarized. The challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Shundong Cai
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China.
| | | | | | | | | | | |
Collapse
|
37
|
Zheng Y, Wang Q, Yang X, Nie W, Zou L, Liu X, Wang K. Aptamer as a Tool for Investigating the Effects of Electric Field on Aβ40 Monomer and Aggregates Using Single-Molecule Force Spectroscopy. Anal Chem 2018; 91:1954-1961. [DOI: 10.1021/acs.analchem.8b04278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yan Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Wenyan Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Liyuan Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaofeng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
38
|
Antipova OM, Zavyalova EG, Golovin AV, Pavlova GV, Kopylov AM, Reshetnikov RV. Advances in the Application of Modified Nucleotides in SELEX Technology. BIOCHEMISTRY (MOSCOW) 2018; 83:1161-1172. [PMID: 30472954 DOI: 10.1134/s0006297918100024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aptamers are widely used as molecular recognition elements for detecting and blocking functional biological molecules. Since the common "alphabet" of DNA and RNA consists of only four letters, the chemical diversity of aptamers is less than the diversity of protein recognition elements built of 20 amino acids. Chemical modification of nucleotides enlarges the potential of DNA/RNA aptamers. This review describes the latest achievements in a variety of approaches to aptamers selection with an extended genetic alphabet.
Collapse
Affiliation(s)
- O M Antipova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia. .,Apto-Pharm Ltd., Moscow, 115564, Russia
| | - E G Zavyalova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Apto-Pharm Ltd., Moscow, 115564, Russia
| | - A V Golovin
- Apto-Pharm Ltd., Moscow, 115564, Russia.,Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| | - G V Pavlova
- Apto-Pharm Ltd., Moscow, 115564, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia.,Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.,Burdenko National Scientific and Practical Center for Neurosurgery, Ministry of Healthcare of the Russian Federation, Moscow, 125047, Russia
| | - A M Kopylov
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Apto-Pharm Ltd., Moscow, 115564, Russia
| | - R V Reshetnikov
- Apto-Pharm Ltd., Moscow, 115564, Russia.,Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia.,Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
39
|
Liu M, Wang Z, Tan T, Chen Z, Mou X, Yu X, Deng Y, Lu G, He N. An Aptamer-Based Probe for Molecular Subtyping of Breast Cancer. Am J Cancer Res 2018; 8:5772-5783. [PMID: 30555580 PMCID: PMC6276286 DOI: 10.7150/thno.28949] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/12/2018] [Indexed: 12/26/2022] Open
Abstract
Molecular subtyping of breast cancer is of considerable interest owing to its potential for personalized therapy and prognosis. However, current methodologies cannot be used for precise subtyping, thereby posing a challenge in clinical practice. The aim of the present study is to develop a cell-specific single-stranded DNA (ssDNA) aptamer-based fluorescence probe for molecular subtyping of breast cancer. Methods: Cell-SELEX method was utilized to select DNA aptamers. Flow cytometry and confocal microscopy were used to study the specificity, binding affinity, temperature effect on the binding ability and target type analysis of the aptamers. In vitro and in vivo fluorescence imaging were used to distinguish the molecular subtypes of breast cancer cells, tissue sections and tumor-bearing mice. Results: Six SK-BR-3 breast cancer cell-specific ssDNA aptamers were evolved after successive in vitro selection over 21 rounds by Cell-SELEX. The Kd values of the selected aptamers were all in the low-nanomolar range, among which aptamer sk6 showed the lowest Kd of 0.61 ± 0.14 nM. Then, a truncated aptamer-based probe, sk6Ea, with only 53 nt and high specificity and binding affinity to the target cells was obtained. This aptamer-based probe was able to 1) differentiate SK-BR-3, MDA-MB-231, and MCF-7 breast cancer cells, as well as distinguish breast cancer cells from MCF-10A normal human mammary epithelial cells; 2) distinguish HER2-enriched breast cancer tissues from Luminal A, Luminal B, triple-negative breast cancer tissues, and adjacent normal breast tissues (ANBTs) in vitro; and 3) distinguish xenografts of SK-BR-3 tumor-bearing mice from those of MDA-MB-231 and MCF-7 tumor-bearing mice within 30 min in vivo. Conclusion: The results suggest that the aptamer-based probe is a powerful tool for fast and highly sensitive subtyping of breast cancer both in vitro and in vivo and is also very promising for the identification, diagnosis, and targeted therapy of breast cancer molecular subtypes.
Collapse
|
40
|
Norman KC, Moore BB, Arnold KB, O’Dwyer DN. Proteomics: Clinical and research applications in respiratory diseases. Respirology 2018; 23:993-1003. [PMID: 30105802 PMCID: PMC6234509 DOI: 10.1111/resp.13383] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/05/2018] [Accepted: 07/19/2018] [Indexed: 12/27/2022]
Abstract
The proteome is the study of the protein content of a definable component of an organism in biology. However, the tissue-specific expression of proteins and the varied post-translational modifications, splice variants and protein-protein complexes that may form, make the study of protein a challenging yet vital tool in answering many of the unanswered questions in medicine and biology to date. Indeed, the spatial, temporal and functional composition of proteins in the human body has proven difficult to elucidate for many years. Given the effect of microRNA and epigenetic regulation on silencing and enhancing gene transcription, the study of protein arguably provides more accurate information on homeostasis and perturbation in health and disease. There have been significant advances in the field of proteomics in recent years, with new technologies and platforms available to the research community. In this review, we briefly discuss some of these new technologies and developments in the context of respiratory disease. We also discuss the types of data science approaches to analyses and interpretation of the large volumes of data generated in proteomic studies. We discuss the application of these technologies with regard to respiratory disease and highlight the potential for proteomics in generating major advances in the understanding of respiratory pathophysiology into the future.
Collapse
Affiliation(s)
- Katy C. Norman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Bethany B. Moore
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, USA
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - David N. O’Dwyer
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, USA
| |
Collapse
|
41
|
Singh AK, Fechtner S, Chourasia M, Sicalo J, Ahmed S. Critical role of IL-1α in IL-1β-induced inflammatory responses: cooperation with NF-κBp65 in transcriptional regulation. FASEB J 2018; 33:2526-2536. [PMID: 30272996 DOI: 10.1096/fj.201801513r] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The IL-1 cytokines are considered among the first family of cytokines that orchestrate acute and chronic inflammatory diseases. Both IL-1β and IL-1α are members of the IL-1 family; however, their distinct roles in the inflammatory processes remain poorly understood. We explored the role of IL-1α in IL-1β-activated signaling pathways causing synovial inflammation in rheumatoid arthritis (RA). Using synovial fibroblasts isolated from RA joints, we found that IL-1β significantly stimulated IL-1α expression, which was selectively inhibited by blocking the NF-κB pathway. Knockdown of IL-1α using small interfering RNA abolished IL-1β-induced pro-IL-1α and pro-IL-1β expression and suppressed inflammation. Native and chromatin immunoprecipitation studies showed that IL-1α cooperates in NF-κBp65 binding to the distal region of IL-1α promoter and to the proximal region of IL-1β promoter upstream of the transcription start site to stabilize their gene transcription. Molecular dynamics simulation of IL-1α or IL-1β binding to IL-1 receptor showed distinct interaction sites that corroborate with the ability of IL-1α to differentially activate phosphorylation of signaling proteins compared with IL-1β. Our study highlights the importance of IL-1α in mediating IL-1β-induced inflammation in addition to maintaining its expression and providing a rationale for targeting IL-1α to minimize the role of IL-1β in inflammatory diseases like RA.-Singh, A. K., Fechtner, S., Chourasia, M., Sicalo, J., Ahmed, S. Critical role of IL-1α in IL-1β-induced inflammatory responses: cooperation with NF-κBp65 in transcriptional regulation.
Collapse
Affiliation(s)
- Anil K Singh
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington, USA
| | - Sabrina Fechtner
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington, USA
| | - Mukesh Chourasia
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Jerry Sicalo
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington, USA
| | - Salahuddin Ahmed
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington, USA.,Division of Rheumatology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
42
|
Röthlisberger P, Hollenstein M. Aptamer chemistry. Adv Drug Deliv Rev 2018; 134:3-21. [PMID: 29626546 DOI: 10.1016/j.addr.2018.04.007] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
Aptamers are single-stranded DNA or RNA molecules capable of tightly binding to specific targets. These functional nucleic acids are obtained by an in vitro Darwinian evolution method coined SELEX (Systematic Evolution of Ligands by EXponential enrichment). Compared to their proteinaceous counterparts, aptamers offer a number of advantages including a low immunogenicity, a relative ease of large-scale synthesis at affordable costs with little or no batch-to-batch variation, physical stability, and facile chemical modification. These alluring properties have propelled aptamers into the forefront of numerous practical applications such as the development of therapeutic and diagnostic agents as well as the construction of biosensing platforms. However, commercial success of aptamers still proceeds at a weak pace. The main factors responsible for this delay are the susceptibility of aptamers to degradation by nucleases, their rapid renal filtration, suboptimal thermal stability, and the lack of functional group diversity. Here, we describe the different chemical methods available to mitigate these shortcomings. Particularly, we describe the chemical post-SELEX processing of aptamers to include functional groups as well as the inclusion of modified nucleoside triphosphates into the SELEX protocol. These methods will be illustrated with successful examples of chemically modified aptamers used as drug delivery systems, in therapeutic applications, and as biosensing devices.
Collapse
|