1
|
Duffy KA, Wiglesworth A, Roediger DJ, Island E, Mueller BA, Luciana M, Klimes-Dougan B, Cullen KR, Fiecas MB. Characterizing the effects of age, puberty, and sex on variability in resting-state functional connectivity in late childhood and early adolescence. Neuroimage 2025; 313:121238. [PMID: 40280216 DOI: 10.1016/j.neuroimage.2025.121238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 04/11/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025] Open
Abstract
Understanding the relative influences of age, pubertal development, and sex assigned at birth on brain development is a key priority of developmental neuroscience given the complex interplay of these factors in the onset of psychopathology. Previous research has investigated how these factors relate to static (time-averaged) functional connectivity (FC), but little is known about their relationship with dynamic (time-varying) FC. The present study aimed to investigate the unique and overlapping roles of these factors on dynamic FC in children aged approximately 9 to 14 in the ABCD Study using a sample of 5122 low-motion resting-state scans (from 4136 unique participants). Time-varying correlations in the frontolimbic, default mode, and dorsal and ventral corticostriatal networks, estimated using the Dynamic Conditional Correlations (DCC) method, were used to calculate variability of within- and between-network connectivity and of graph theoretical measures of segregation and integration. We found decreased variability in global efficiency across the age range, and increased variability within the frontolimbic network driven primarily by those assigned female at birth (AFAB). AFAB youth specifically also showed increased variability in several other networks. Controlling for age, both advanced pubertal development and being AFAB were associated with decreased variability in all within- and between-network correlations and increased variability in measures of network segregation. These results potentially suggest advanced brain maturation in AFAB youth, particularly in key networks related to psychopathology, and lay the foundation for future investigations of dynamic FC.
Collapse
Affiliation(s)
- Kelly A Duffy
- Department of Psychology, University of Minnesota, Elliott Hall, 75 East River Parkway, Minneapolis, MN 55455, USA.
| | - Andrea Wiglesworth
- Department of Psychology, University of Minnesota, Elliott Hall, 75 East River Parkway, Minneapolis, MN 55455, USA
| | - Donovan J Roediger
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, F282/2A West Building, 2450 Riverside Avenue South, Minneapolis, MN 55454, USA
| | - Ellery Island
- Division of Biostatistics, University of Minnesota, 2221 University Ave SE, Suite 200, Minneapolis, MN 55414, USA
| | - Bryon A Mueller
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, F282/2A West Building, 2450 Riverside Avenue South, Minneapolis, MN 55454, USA
| | - Monica Luciana
- Department of Psychology, University of Minnesota, Elliott Hall, 75 East River Parkway, Minneapolis, MN 55455, USA
| | - Bonnie Klimes-Dougan
- Department of Psychology, University of Minnesota, Elliott Hall, 75 East River Parkway, Minneapolis, MN 55455, USA
| | - Kathryn R Cullen
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, F282/2A West Building, 2450 Riverside Avenue South, Minneapolis, MN 55454, USA
| | - Mark B Fiecas
- Division of Biostatistics, University of Minnesota, 2221 University Ave SE, Suite 200, Minneapolis, MN 55414, USA
| |
Collapse
|
2
|
Chen C, Xu S, Zhou J, Yi C, Yu L, Yao D, Zhang Y, Li F, Xu P. Resting-state EEG network variability predicts individual working memory behavior. Neuroimage 2025; 310:121120. [PMID: 40054759 DOI: 10.1016/j.neuroimage.2025.121120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 02/20/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Even during periods of rest, the brain exhibits spontaneous activity that dynamically fluctuates across spatially distributed regions in a globally coordinated manner, which has significant cognitive implications. However, the relationship between the temporal variability of resting-state networks and working memory (WM) remains largely unexplored. This study aims to address this gap by employing an EEG-based protocol combined with fuzzy entropy. First, we identified both flexible and robust patterns of dynamic resting-state networks. Subsequently, we observed a significant positive correlation between WM performance and network variability, particularly in connections associated with the frontal, right central, and right parietal lobes. Moreover, we found that the temporal variability of network properties was positively and significantly associated with WM performance. Additionally, distinct patterns of network variability were delineated, contributing to inter-individual differences in WM abilities, with these distinctions becoming more pronounced as task demands increased. Finally, using a multivariable predictive model based on these variability metrics, we effectively predicted individual WM performances. Notably, analogous analyses conducted in the source space validated the reproducibility of the temporal variability of resting-state networks in predicting individual WM behavior at higher spatial resolution, providing more precise anatomical localization of key brain regions. These results suggest that the temporal variability of resting-state networks reflects intrinsic dynamic changes in brain organization supporting WM and can serve as an objective predictor for individual WM behaviors.
Collapse
Affiliation(s)
- Chunli Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Shiyun Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jixuan Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chanlin Yi
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Liang Yu
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China; School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yangsong Zhang
- School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Fali Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China; Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China.
| | - Peng Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China; School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China; Radiation Oncology Key Laboratory of Sichuan Province, Chengdu 610041, China; Rehabilitation Center, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
3
|
Mill RD, Cole MW. Dynamically shifting from compositional to conjunctive brain representations supports cognitive task learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.06.27.546751. [PMID: 37425922 PMCID: PMC10327096 DOI: 10.1101/2023.06.27.546751] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
During cognitive task learning, neural representations must be rapidly constructed for novel task performance, then optimized for robust practiced task performance. How the geometry of neural representations changes to enable this transition from novel to practiced performance remains unknown. We hypothesized that practice involves a shift from compositional representations (task-general activity patterns that can be flexibly reused across tasks) to conjunctive representations (task-specific activity patterns specialized for the current task). Functional MRI during learning of multiple complex tasks substantiated this dynamic shift from compositional to conjunctive representations, which was associated with reduced cross-task interference (via pattern separation) and behavioral improvement. Further, we found that conjunctions originated in subcortex (hippocampus and cerebellum) and slowly spread to cortex, extending multiple memory systems theories to encompass cognitive task learning. The strengthening of conjunctive representations hence serves as a computational signature of learning, reflecting cortical-subcortical dynamics that optimize task representations in the human brain. Highlights Learning shifts multi-task representations from compositional to conjunctive formatsCortical conjunctions uniquely associate with improved behavior and pattern separationThese conjunctions strengthen over separated learning events and index switch costsSubcortical regions are critical for cross-region binding of task rule information.
Collapse
|
4
|
Wang Z, Yang Y, Huang Z, Zhao W, Su K, Zhu H, Yin D. Exploring the transmission of cognitive task information through optimal brain pathways. PLoS Comput Biol 2025; 21:e1012870. [PMID: 40053566 PMCID: PMC11957563 DOI: 10.1371/journal.pcbi.1012870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/18/2025] [Accepted: 02/12/2025] [Indexed: 03/09/2025] Open
Abstract
Understanding the large-scale information processing that underlies complex human cognition is the central goal of cognitive neuroscience. While emerging activity flow models demonstrate that cognitive task information is transferred by interregional functional or structural connectivity, graph-theory-based models typically assume that neural communication occurs via the shortest path of brain networks. However, whether the shortest path is the optimal route for empirical cognitive information transmission remains unclear. Based on a large-scale activity flow mapping framework, we found that the performance of activity flow prediction with the shortest path was significantly lower than that with the direct path. The shortest path routing was superior to other network communication strategies, including search information, path ensembles, and navigation. Intriguingly, the shortest path outperformed the direct path in activity flow prediction when the physical distance constraint and asymmetric routing contribution were simultaneously considered. This study not only challenges the shortest path assumption through empirical network models but also suggests that cognitive task information routing is constrained by the spatial and functional embedding of the brain network.
Collapse
Affiliation(s)
- Zhengdong Wang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yifeixue Yang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Ziyi Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Wanyun Zhao
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Kaiqiang Su
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Hengcheng Zhu
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Dazhi Yin
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
| |
Collapse
|
5
|
Çatal Y, Keskin K, Wolman A, Klar P, Smith D, Northoff G. Flexibility of intrinsic neural timescales during distinct behavioral states. Commun Biol 2024; 7:1667. [PMID: 39702547 DOI: 10.1038/s42003-024-07349-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
Recent neuroimaging studies demonstrate a heterogeneity of timescales prevalent in the brain's ongoing spontaneous activity, labeled intrinsic neural timescales (INT). At the same time, neural timescales also reflect stimulus- or task-related activity. The relationship of the INT during the brain's spontaneous activity with their involvement in task states including behavior remains unclear. To address this question, we combined calcium imaging data of spontaneously behaving mice and human electroencephalography (EEG) during rest and task states with computational modeling. We obtained four primary findings: (i) the distinct behavioral states can be accurately predicted from INT, (ii) INT become longer during behavioral states compared to rest, (iii) INT change from rest to task is correlated negatively with the variability of INT during rest, (iv) neural mass modeling shows a key role of recurrent connections in mediating the rest-task change of INT. Extending current findings, our results show the dynamic nature of the brain's INT in reflecting continuous behavior through their flexible rest-task modulation possibly mediated by recurrent connections.
Collapse
Affiliation(s)
- Yasir Çatal
- Mind, Brain Imaging and Neuroethics Research Unit, University of Ottawa, Ontario, ON, Canada.
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada.
| | - Kaan Keskin
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
- Department of Psychiatry, Ege University, Izmir, Turkey
- SoCAT Lab, Ege University, Izmir, Turkey
| | - Angelika Wolman
- Mind, Brain Imaging and Neuroethics Research Unit, University of Ottawa, Ontario, ON, Canada
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Philipp Klar
- Faculty of Mathematics and Natural Sciences, Institute of Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - David Smith
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, University of Ottawa, Ontario, ON, Canada
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| |
Collapse
|
6
|
Lang J, Yang LZ, Li H. Rest2Task: Modeling task-specific components in resting-state functional connectivity and applications. Brain Res 2024; 1845:149265. [PMID: 39393483 DOI: 10.1016/j.brainres.2024.149265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/04/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
The networks observed in the brain during resting-state activity are not entirely "task-free." Instead, they hint at a hierarchical structure prepared for adaptive cognitive functions. Recent studies have increasingly demonstrated the potential of resting-state fMRI to predict local activations or global connectomes during task performance. However, uncertainties remain regarding the unique and shared task-specific components within resting-state brain networks, elucidating local activations and global connectome patterns. A coherent framework is also required to integrate these task-specific components to predict local activations and global connectome patterns. In this work, we introduce the Rest2Task model based on the partial least squares-based multivariate regression algorithm, which effectively integrates mappings from resting-state connectivity to local activations and global connectome patterns. By analyzing the coefficients of the regression model, we extracted task-specific resting-state components corresponding to brain local activation or global connectome of various tasks and applied them to the brain lateralization prediction and psychiatric disorders diagnostic. Our model effectively substitutes traditional whole-brain functional connectivity (FC) in predicting functional lateralization and diagnosing brain disorders. Our research represents the inaugural effort to quantify the contribution of patterns (components) within resting-state FC to different tasks, endowing these components with specific task-related contextual information. The task-specific resting-state components offer new insights into brain lateralization processing and disease diagnosis, potentially providing fresh perspectives on the adaptive transformation of brain networks in response to tasks.
Collapse
Affiliation(s)
- Jinwei Lang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Li-Zhuang Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China.
| | - Hai Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
7
|
Chen X, Leach SC, Hollis J, Cellier D, Hwang K. The thalamus encodes and updates context representations during hierarchical cognitive control. PLoS Biol 2024; 22:e3002937. [PMID: 39621781 PMCID: PMC11637348 DOI: 10.1371/journal.pbio.3002937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/12/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024] Open
Abstract
Cognitive flexibility relies on hierarchically structured task representations that organize task contexts, relevant environmental features, and subordinate decisions. Despite ongoing interest in the human thalamus, its role in cognitive control has been understudied. This study explored thalamic representation and thalamocortical interactions that contribute to hierarchical cognitive control in humans. We found that several thalamic nuclei, including the anterior, mediodorsal, ventrolateral, and pulvinar nuclei, exhibited stronger evoked responses when subjects switch between task contexts. Decoding analysis revealed that thalamic activity encodes task contexts within the hierarchical task representations. To determine how thalamocortical interactions contribute to task representations, we developed a thalamocortical functional interaction model to predict task-related cortical representation. This data-driven model outperformed comparison models, particularly in predicting activity patterns in cortical regions that encode context representations. Collectively, our findings highlight the significant contribution of thalamic activity and thalamocortical interactions for contextually guided hierarchical cognitive control.
Collapse
Affiliation(s)
- Xitong Chen
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, Iowa, United States of America
- Cognitive Control Collaborative, The University of Iowa, Iowa City, Iowa, United States of America
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa, United States of America
| | - Stephanie C. Leach
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, Iowa, United States of America
- Cognitive Control Collaborative, The University of Iowa, Iowa City, Iowa, United States of America
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa, United States of America
| | - Juniper Hollis
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, Iowa, United States of America
- Cognitive Control Collaborative, The University of Iowa, Iowa City, Iowa, United States of America
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa, United States of America
| | - Dillan Cellier
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, Iowa, United States of America
- Cognitive Control Collaborative, The University of Iowa, Iowa City, Iowa, United States of America
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa, United States of America
| | - Kai Hwang
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, Iowa, United States of America
- Cognitive Control Collaborative, The University of Iowa, Iowa City, Iowa, United States of America
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
8
|
Santoro A, Battiston F, Lucas M, Petri G, Amico E. Higher-order connectomics of human brain function reveals local topological signatures of task decoding, individual identification, and behavior. Nat Commun 2024; 15:10244. [PMID: 39592571 PMCID: PMC11599762 DOI: 10.1038/s41467-024-54472-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Traditional models of human brain activity often represent it as a network of pairwise interactions between brain regions. Going beyond this limitation, recent approaches have been proposed to infer higher-order interactions from temporal brain signals involving three or more regions. However, to this day it remains unclear whether methods based on inferred higher-order interactions outperform traditional pairwise ones for the analysis of fMRI data. To address this question, we conducted a comprehensive analysis using fMRI time series of 100 unrelated subjects from the Human Connectome Project. We show that higher-order approaches greatly enhance our ability to decode dynamically between various tasks, to improve the individual identification of unimodal and transmodal functional subsystems, and to strengthen significantly the associations between brain activity and behavior. Overall, our approach sheds new light on the higher-order organization of fMRI time series, improving the characterization of dynamic group dependencies in rest and tasks, and revealing a vast space of unexplored structures within human functional brain data, which may remain hidden when using traditional pairwise approaches.
Collapse
Affiliation(s)
- Andrea Santoro
- Neuro-X Institute, EPFL, Geneva, Switzerland.
- CENTAI, Turin, Italy.
| | - Federico Battiston
- Department of Network and Data Science, Central European University, Vienna, Austria
| | - Maxime Lucas
- CENTAI, Turin, Italy
- Department of Mathematics & Namur Institute for Complex Systems (naXys), Université de Namur, Namur, Belgium
| | - Giovanni Petri
- CENTAI, Turin, Italy
- NPLab, Network Science Institute, Northeastern University London, London, UK
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Enrico Amico
- Neuro-X Institute, EPFL, Geneva, Switzerland.
- School of Mathematics, University of Birmingham, Birmingham, UK.
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
9
|
Yang Y, Ye C, Su G, Zhang Z, Chang Z, Chen H, Chan P, Yu Y, Ma T. BrainMass: Advancing Brain Network Analysis for Diagnosis With Large-Scale Self-Supervised Learning. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:4004-4016. [PMID: 38875087 DOI: 10.1109/tmi.2024.3414476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Foundation models pretrained on large-scale datasets via self-supervised learning demonstrate exceptional versatility across various tasks. Due to the heterogeneity and hard-to-collect medical data, this approach is especially beneficial for medical image analysis and neuroscience research, as it streamlines broad downstream tasks without the need for numerous costly annotations. However, there has been limited investigation into brain network foundation models, limiting their adaptability and generalizability for broad neuroscience studies. In this study, we aim to bridge this gap. In particular, 1) we curated a comprehensive dataset by collating images from 30 datasets, which comprises 70,781 samples of 46,686 participants. Moreover, we introduce pseudo-functional connectivity (pFC) to further generates millions of augmented brain networks by randomly dropping certain timepoints of the BOLD signal; 2) we propose the BrainMass framework for brain network self-supervised learning via mask modeling and feature alignment. BrainMass employs Mask-ROI Modeling (MRM) to bolster intra-network dependencies and regional specificity. Furthermore, Latent Representation Alignment (LRA) module is utilized to regularize augmented brain networks of the same participant with similar topological properties to yield similar latent representations by aligning their latent embeddings. Extensive experiments on eight internal tasks and seven external brain disorder diagnosis tasks show BrainMass's superior performance, highlighting its significant generalizability and adaptability. Nonetheless, BrainMass demonstrates powerful few/zero-shot learning abilities and exhibits meaningful interpretation to various diseases, showcasing its potential use for clinical applications.
Collapse
|
10
|
Chen X, Leach S, Hollis J, Cellier D, Hwang K. Thalamocortical contributions to hierarchical cognitive control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600427. [PMID: 38979282 PMCID: PMC11230235 DOI: 10.1101/2024.06.24.600427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cognitive flexibility relies on hierarchically structured task representations that organize task contexts, relevant environmental features, and subordinate decisions. Despite ongoing interest in the human thalamus, its role in cognitive control has been understudied. This study explored thalamic representation and thalamocortical interactions that contribute to hierarchical cognitive control in humans. We found that several thalamic nuclei, including the anterior, mediodorsal, ventrolateral, and pulvinar nuclei, exhibited stronger evoked responses when subjects switch between task contexts. Decoding analysis revealed that thalamic activity encodes task contexts within the hierarchical task representations. To determine how thalamocortical interactions contribute to task representations, we developed a thalamocortical functional interaction model to predict task-related cortical representation. This data-driven model outperformed comparison models, particularly in predicting activity patterns in cortical regions that encode context representations. Collectively, our findings highlight the significant contribution of thalamic activity and thalamocortical interactions for contextually guided hierarchical cognitive control.
Collapse
|
11
|
Zhao W, Su K, Zhu H, Kaiser M, Fan M, Zou Y, Li T, Yin D. Activity flow under the manipulation of cognitive load and training. Neuroimage 2024; 297:120761. [PMID: 39069226 DOI: 10.1016/j.neuroimage.2024.120761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/11/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024] Open
Abstract
Flexible cognitive functions, such as working memory (WM), usually require a balance between localized and distributed information processing. However, it is challenging to uncover how local and distributed processing specifically contributes to task-induced activity in a region. Although the recently proposed activity flow mapping approach revealed the relative contribution of distributed processing, few studies have explored the adaptive and plastic changes that underlie cognitive manipulation. In this study, we recruited 51 healthy volunteers (31 females) and investigated how the activity flow and brain activation of the frontoparietal systems was modulated by WM load and training. While the activation of both executive control network (ECN) and dorsal attention network (DAN) increased linearly with memory load at baseline, the relative contribution of distributed processing showed a linear response only in the DAN, which was prominently attributed to within-network activity flow. Importantly, adaptive training selectively induced an increase in the relative contribution of distributed processing in the ECN and also a linear response to memory load, which were predominantly due to between-network activity flow. Furthermore, we demonstrated a causal effect of activity flow prediction through training manipulation on connectivity and activity. In contrast with classic brain activation estimation, our findings suggest that the relative contribution of distributed processing revealed by activity flow prediction provides unique insights into neural processing of frontoparietal systems under the manipulation of cognitive load and training. This study offers a new methodological framework for exploring information integration versus segregation underlying cognitive processing.
Collapse
Affiliation(s)
- Wanyun Zhao
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Kaiqiang Su
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Hengcheng Zhu
- Division of Biostatistics, University of Minnesota, Minneapolis 55455, MN, USA
| | - Marcus Kaiser
- Precision Imaging Beacon, School of Medicine, University of Nottingham, Nottingham NG7 2UH, United Kingdom; School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Mingxia Fan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Yong Zou
- Institute of Theoretical Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Ting Li
- Shanghai Changning Mental Health Center, Shanghai 200335, China
| | - Dazhi Yin
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Shanghai Changning Mental Health Center, Shanghai 200335, China.
| |
Collapse
|
12
|
Schultz DH, Gansemer A, Allgood K, Gentz M, Secilmis L, Deldar Z, Savage CR, Ghazi Saidi L. Second language learning in older adults modulates Stroop task performance and brain activation. Front Aging Neurosci 2024; 16:1398015. [PMID: 39170898 PMCID: PMC11335563 DOI: 10.3389/fnagi.2024.1398015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Numerous studies have highlighted cognitive benefits in lifelong bilinguals during aging, manifesting as superior performance on cognitive tasks compared to monolingual counterparts. Yet, the cognitive impacts of acquiring a new language in older adulthood remain unexplored. In this study, we assessed both behavioral and fMRI responses during a Stroop task in older adults, pre- and post language-learning intervention. Methods A group of 41 participants (age:60-80) from a predominantly monolingual environment underwent a four-month online language course, selecting a new language of their preference. This intervention mandated engagement for 90 minutes a day, five days a week. Daily tracking was employed to monitor progress and retention. All participants completed a color-word Stroop task inside the scanner before and after the language instruction period. Results We found that performance on the Stroop task, as evidenced by accuracy and reaction time, improved following the language learning intervention. With the neuroimaging data, we observed significant differences in activity between congruent and incongruent trials in key regions in the prefrontal and parietal cortex. These results are consistent with previous reports using the Stroop paradigm. We also found that the amount of time participants spent with the language learning program was related to differential activity in these brain areas. Specifically, we found that people who spent more time with the language learning program showed a greater increase in differential activity between congruent and incongruent trials after the intervention relative to before. Discussion Future research is needed to determine the optimal parameters for language learning as an effective cognitive intervention for aging populations. We propose that with sufficient engagement, language learning can enhance specific domains of cognition such as the executive functions. These results extend the understanding of cognitive reserve and its augmentation through targeted interventions, setting a foundation for future investigations.
Collapse
Affiliation(s)
- Douglas H. Schultz
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Alison Gansemer
- Department of Communication Disorders, College of Education, University of Nebraska at Kearney, Kearney, NE, United States
| | - Kiley Allgood
- Department of Communication Disorders, College of Education, University of Nebraska at Kearney, Kearney, NE, United States
| | - Mariah Gentz
- Department of Communication Disorders, College of Education, University of Nebraska at Kearney, Kearney, NE, United States
| | - Lauren Secilmis
- Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Zoha Deldar
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Cary R. Savage
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Ladan Ghazi Saidi
- Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Communication Disorders, College of Education, University of Nebraska at Kearney, Kearney, NE, United States
| |
Collapse
|
13
|
Klug S, Murgaš M, Godbersen GM, Hacker M, Lanzenberger R, Hahn A. Synaptic signaling modeled by functional connectivity predicts metabolic demands of the human brain. Neuroimage 2024; 295:120658. [PMID: 38810891 DOI: 10.1016/j.neuroimage.2024.120658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/22/2024] [Accepted: 05/27/2024] [Indexed: 05/31/2024] Open
Abstract
PURPOSE The human brain is characterized by interacting large-scale functional networks fueled by glucose metabolism. Since former studies could not sufficiently clarify how these functional connections shape glucose metabolism, we aimed to provide a neurophysiologically-based approach. METHODS 51 healthy volunteers underwent simultaneous PET/MRI to obtain BOLD functional connectivity and [18F]FDG glucose metabolism. These multimodal imaging proxies of fMRI and PET were combined in a whole-brain extension of metabolic connectivity mapping. Specifically, functional connectivity of all brain regions were used as input to explain glucose metabolism of a given target region. This enabled the modeling of postsynaptic energy demands by incoming signals from distinct brain regions. RESULTS Functional connectivity input explained a substantial part of metabolic demands but with pronounced regional variations (34 - 76%). During cognitive task performance this multimodal association revealed a shift to higher network integration compared to resting state. In healthy aging, a dedifferentiation (decreased segregated/modular structure of the brain) of brain networks during rest was observed. Furthermore, by including data from mRNA maps, [11C]UCB-J synaptic density and aerobic glycolysis (oxygen-to-glucose index from PET data), we show that whole-brain functional input reflects non-oxidative, on-demand metabolism of synaptic signaling. The metabolically-derived directionality of functional inputs further marked them as top-down predictions. In addition, the approach uncovered formerly hidden networks with superior efficiency through metabolically informed network partitioning. CONCLUSIONS Applying multimodal imaging, we decipher a crucial part of the metabolic and neurophysiological basis of functional connections in the brain as interregional on-demand synaptic signaling fueled by anaerobic metabolism. The observed task- and age-related effects indicate promising future applications to characterize human brain function and clinical alterations.
Collapse
Affiliation(s)
- Sebastian Klug
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria
| | - Matej Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria
| | - Godber M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria.
| |
Collapse
|
14
|
Tanner J, Faskowitz J, Teixeira AS, Seguin C, Coletta L, Gozzi A, Mišić B, Betzel RF. A multi-modal, asymmetric, weighted, and signed description of anatomical connectivity. Nat Commun 2024; 15:5865. [PMID: 38997282 PMCID: PMC11245624 DOI: 10.1038/s41467-024-50248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
The macroscale connectome is the network of physical, white-matter tracts between brain areas. The connections are generally weighted and their values interpreted as measures of communication efficacy. In most applications, weights are either assigned based on imaging features-e.g. diffusion parameters-or inferred using statistical models. In reality, the ground-truth weights are unknown, motivating the exploration of alternative edge weighting schemes. Here, we explore a multi-modal, regression-based model that endows reconstructed fiber tracts with directed and signed weights. We find that the model fits observed data well, outperforming a suite of null models. The estimated weights are subject-specific and highly reliable, even when fit using relatively few training samples, and the networks maintain a number of desirable features. In summary, we offer a simple framework for weighting connectome data, demonstrating both its ease of implementation while benchmarking its utility for typical connectome analyses, including graph theoretic modeling and brain-behavior associations.
Collapse
Affiliation(s)
- Jacob Tanner
- Cognitive Science Program, Indiana University, Bloomington, IN, USA
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Andreia Sofia Teixeira
- LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Caio Seguin
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | | | - Alessandro Gozzi
- Functional Neuroimaging Lab, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy
| | - Bratislav Mišić
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Richard F Betzel
- Cognitive Science Program, Indiana University, Bloomington, IN, USA.
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
15
|
Wang G, Jiang N, Ma Y, Suo D, Liu T, Funahashi S, Yan T. Using a deep generation network reveals neuroanatomical specificity in hemispheres. PATTERNS (NEW YORK, N.Y.) 2024; 5:100930. [PMID: 38645770 PMCID: PMC11026975 DOI: 10.1016/j.patter.2024.100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 04/23/2024]
Abstract
Asymmetry is an important property of brain organization, but its nature is still poorly understood. Capturing the neuroanatomical components specific to each hemisphere facilitates the understanding of the establishment of brain asymmetry. Since deep generative networks (DGNs) have powerful inference and recovery capabilities, we use one hemisphere to predict the opposite hemisphere by training the DGNs, which automatically fit the built-in dependencies between the left and right hemispheres. After training, the reconstructed images approximate the homologous components in the hemisphere. We use the difference between the actual and reconstructed hemispheres to measure hemisphere-specific components due to asymmetric expression of environmental and genetic factors. The results show that our model is biologically plausible and that our proposed metric of hemispheric specialization is reliable, representing a wide range of individual variation. Together, this work provides promising tools for exploring brain asymmetry and new insights into self-supervised DGNs for representing the brain.
Collapse
Affiliation(s)
- Gongshu Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ning Jiang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yunxiao Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Dingjie Suo
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Tiantian Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Shintaro Funahashi
- Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- Department of Cognitive and Behavioral Sciences, Graduate School of Human and Environmental Science, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Kokoro Research Center, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tianyi Yan
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
16
|
Chu C, Li W, Shi W, Wang H, Wang J, Liu Y, Liu B, Elmenhorst D, Eickhoff SB, Fan L, Jiang T. Co-representation of Functional Brain Networks Is Shaped by Cortical Myeloarchitecture and Reveals Individual Behavioral Ability. J Neurosci 2024; 44:e0856232024. [PMID: 38290847 PMCID: PMC10977027 DOI: 10.1523/jneurosci.0856-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/01/2024] Open
Abstract
Large-scale functional networks are spatially distributed in the human brain. Despite recent progress in differentiating their functional roles, how the brain navigates the spatial coordination among them and the biological relevance of this coordination is still not fully understood. Capitalizing on canonical individualized networks derived from functional MRI data, we proposed a new concept, that is, co-representation of functional brain networks, to delineate the spatial coordination among them. To further quantify the co-representation pattern, we defined two indexes, that is, the co-representation specificity (CoRS) and intensity (CoRI), for separately measuring the extent of specific and average expression of functional networks at each brain location by using the data from both sexes. We found that the identified pattern of co-representation was anchored by cortical regions with three types of cytoarchitectural classes along a sensory-fugal axis, including, at the first end, primary (idiotypic) regions showing high CoRS, at the second end, heteromodal regions showing low CoRS and high CoRI, at the third end, paralimbic regions showing low CoRI. Importantly, we demonstrated the critical role of myeloarchitecture in sculpting the spatial distribution of co-representation by assessing the association with the myelin-related neuroanatomical and transcriptomic profiles. Furthermore, the significance of manifesting the co-representation was revealed in its prediction of individual behavioral ability. Our findings indicated that the spatial coordination among functional networks was built upon an anatomically configured blueprint to facilitate neural information processing, while advancing our understanding of the topographical organization of the brain by emphasizing the assembly of functional networks.
Collapse
Affiliation(s)
- Congying Chu
- Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Jülich 52428, Germany
| | - Wen Li
- Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyang Shi
- Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Haiyan Wang
- Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - David Elmenhorst
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Jülich 52428, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Forschungszentrum Jülich, Jülich 52428, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University, Düsseldorf 40204, Germany
| | - Lingzhong Fan
- Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100049, China
| | - Tianzi Jiang
- Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100049, China
- Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, Hunan Province, China
| |
Collapse
|
17
|
Zhuang K, Zeitlen DC, Beaty RE, Vatansever D, Chen Q, Qiu J. Diverse functional interaction driven by control-default network hubs supports creative thinking. Cereb Cortex 2023; 33:11206-11224. [PMID: 37823346 DOI: 10.1093/cercor/bhad356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Complex cognitive processes, like creative thinking, rely on interactions among multiple neurocognitive processes to generate effective and innovative behaviors on demand, for which the brain's connector hubs play a crucial role. However, the unique contribution of specific hub sets to creative thinking is unknown. Employing three functional magnetic resonance imaging datasets (total N = 1,911), we demonstrate that connector hub sets are organized in a hierarchical manner based on diversity, with "control-default hubs"-which combine regions from the frontoparietal control and default mode networks-positioned at the apex. Specifically, control-default hubs exhibit the most diverse resting-state connectivity profiles and play the most substantial role in facilitating interactions between regions with dissimilar neurocognitive functions, a phenomenon we refer to as "diverse functional interaction". Critically, we found that the involvement of control-default hubs in facilitating diverse functional interaction robustly relates to creativity, explaining both task-induced functional connectivity changes and individual creative performance. Our findings suggest that control-default hubs drive diverse functional interaction in the brain, enabling complex cognition, including creative thinking. We thus uncover a biologically plausible explanation that further elucidates the widely reported contributions of certain frontoparietal control and default mode network regions in creativity studies.
Collapse
Affiliation(s)
- Kaixiang Zhuang
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Daniel C Zeitlen
- Department of Psychology, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Roger E Beaty
- Department of Psychology, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Deniz Vatansever
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Qunlin Chen
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Jiang Qiu
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| |
Collapse
|
18
|
Yue WL, Ng KK, Koh AJ, Perini F, Doshi K, Zhou JH, Lim J. Mindfulness-based therapy improves brain functional network reconfiguration efficiency. Transl Psychiatry 2023; 13:345. [PMID: 37951943 PMCID: PMC10640625 DOI: 10.1038/s41398-023-02642-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 08/29/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023] Open
Abstract
Mindfulness-based interventions are showing increasing promise as a treatment for psychological disorders, with improvements in cognition and emotion regulation after intervention. Understanding the changes in functional brain activity and neural plasticity that underlie these benefits from mindfulness interventions is thus of interest in current neuroimaging research. Previous studies have found functional brain changes during resting and task states to be associated with mindfulness both cross-sectionally and longitudinally, particularly in the executive control, default mode and salience networks. However, limited research has combined information from rest and task to study mindfulness-related functional changes in the brain, particularly in the context of intervention studies with active controls. Recent work has found that the reconfiguration efficiency of brain activity patterns between rest and task states is behaviorally relevant in healthy young adults. Thus, we applied this measure to investigate how mindfulness intervention changed functional reconfiguration between rest and a breath-counting task in elderly participants with self-reported sleep difficulties. Improving on previous longitudinal designs, we compared the intervention effects of a mindfulness-based therapy to an active control (sleep hygiene) intervention. We found that mindfulness intervention improved self-reported mindfulness measures and brain functional reconfiguration efficiency in the executive control, default mode and salience networks, though the brain and behavioral changes were not associated with each other. Our findings suggest that neuroplasticity may be induced through regular mindfulness practice, thus bringing the intrinsic functional configuration in participants' brains closer to a state required for mindful awareness.
Collapse
Affiliation(s)
- Wan Lin Yue
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - Kwun Kei Ng
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amelia Jialing Koh
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Francesca Perini
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kinjal Doshi
- Department of Psychology, Singapore General Hospital, Singapore, Singapore
| | - Juan Helen Zhou
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore.
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
| | - Julian Lim
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Psychology, National University of, Singapore, Singapore.
| |
Collapse
|
19
|
Wilcox RR, Barbey AK. Connectome-based predictive modeling of fluid intelligence: evidence for a global system of functionally integrated brain networks. Cereb Cortex 2023; 33:10322-10331. [PMID: 37526284 DOI: 10.1093/cercor/bhad284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/21/2023] [Accepted: 07/16/2023] [Indexed: 08/02/2023] Open
Abstract
Cognitive neuroscience continues to advance our understanding of the neural foundations of human intelligence, with significant progress elucidating the role of the frontoparietal network in cognitive control mechanisms for flexible, intelligent behavior. Recent evidence in network neuroscience further suggests that this finding may represent the tip of the iceberg and that fluid intelligence may depend on the collective interaction of multiple brain networks. However, the global brain mechanisms underlying fluid intelligence and the nature of multi-network interactions remain to be well established. We therefore conducted a large-scale Connectome-based Predictive Modeling study, administering resting-state fMRI to 159 healthy college students and examining the contributions of seven intrinsic connectivity networks to the prediction of fluid intelligence, as measured by a state-of-the-art cognitive task (the Bochum Matrices Test). Specifically, we aimed to: (i) identify whether fluid intelligence relies on a primary brain network or instead engages multiple brain networks; and (ii) elucidate the nature of brain network interactions by assessing network allegiance (within- versus between-network connections) and network topology (strong versus weak connections) in the prediction of fluid intelligence. Our results demonstrate that whole-brain predictive models account for a large and significant proportion of variance in fluid intelligence (18%) and illustrate that the contribution of individual networks is relatively modest by comparison. In addition, we provide novel evidence that the global architecture of fluid intelligence prioritizes between-network connections and flexibility through weak ties. Our findings support a network neuroscience approach to understanding the collective role of brain networks in fluid intelligence and elucidate the system-wide network mechanisms from which flexible, adaptive behavior is constructed.
Collapse
Affiliation(s)
- Ramsey R Wilcox
- Decision Neuroscience Laboratory, University of Nebraska-Lincoln, NE 68501, United States
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, NE 68501, United States
- Department of Psychology, University of Nebraska-Lincoln, NE 68501, United States
- Department of Psychology, University of Illinois, Urbana, IL 61801, United States
| | - Aron K Barbey
- Decision Neuroscience Laboratory, University of Nebraska-Lincoln, NE 68501, United States
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, NE 68501, United States
- Department of Psychology, University of Nebraska-Lincoln, NE 68501, United States
- Department of Psychology, University of Illinois, Urbana, IL 61801, United States
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, United States
| |
Collapse
|
20
|
Sanchez-Romero R, Ito T, Mill RD, Hanson SJ, Cole MW. Causally informed activity flow models provide mechanistic insight into network-generated cognitive activations. Neuroimage 2023; 278:120300. [PMID: 37524170 PMCID: PMC10634378 DOI: 10.1016/j.neuroimage.2023.120300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/06/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023] Open
Abstract
Brain activity flow models estimate the movement of task-evoked activity over brain connections to help explain network-generated task functionality. Activity flow models have been shown to accurately generate task-evoked brain activations across a wide variety of brain regions and task conditions. However, these models have had limited explanatory power, given known issues with causal interpretations of the standard functional connectivity measures used to parameterize activity flow models. We show here that functional/effective connectivity (FC) measures grounded in causal principles facilitate mechanistic interpretation of activity flow models. We progress from simple to complex FC measures, with each adding algorithmic details reflecting causal principles. This reflects many neuroscientists' preference for reduced FC measure complexity (to minimize assumptions, minimize compute time, and fully comprehend and easily communicate methodological details), which potentially trades off with causal validity. We start with Pearson correlation (the current field standard) to remain maximally relevant to the field, estimating causal validity across a range of FC measures using simulations and empirical fMRI data. Finally, we apply causal-FC-based activity flow modeling to a dorsolateral prefrontal cortex region (DLPFC), demonstrating distributed causal network mechanisms contributing to its strong activation during a working memory task. Notably, this fully distributed model is able to account for DLPFC working memory effects traditionally thought to rely primarily on within-region (i.e., not distributed) recurrent processes. Together, these results reveal the promise of parameterizing activity flow models using causal FC methods to identify network mechanisms underlying cognitive computations in the human brain.
Collapse
Affiliation(s)
- Ruben Sanchez-Romero
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA.
| | - Takuya Ito
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| | - Ravi D Mill
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| | - Stephen José Hanson
- Rutgers University Brain Imaging Center (RUBIC), Rutgers University, Newark, NJ 07102, USA
| | - Michael W Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
21
|
Xu Y, Long X, Feng J, Gong P. Interacting spiral wave patterns underlie complex brain dynamics and are related to cognitive processing. Nat Hum Behav 2023:10.1038/s41562-023-01626-5. [PMID: 37322235 DOI: 10.1038/s41562-023-01626-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
The large-scale activity of the human brain exhibits rich and complex patterns, but the spatiotemporal dynamics of these patterns and their functional roles in cognition remain unclear. Here by characterizing moment-by-moment fluctuations of human cortical functional magnetic resonance imaging signals, we show that spiral-like, rotational wave patterns (brain spirals) are widespread during both resting and cognitive task states. These brain spirals propagate across the cortex while rotating around their phase singularity centres, giving rise to spatiotemporal activity dynamics with non-stationary features. The properties of these brain spirals, such as their rotational directions and locations, are task relevant and can be used to classify different cognitive tasks. We also demonstrate that multiple, interacting brain spirals are involved in coordinating the correlated activations and de-activations of distributed functional regions; this mechanism enables flexible reconfiguration of task-driven activity flow between bottom-up and top-down directions during cognitive processing. Our findings suggest that brain spirals organize complex spatiotemporal dynamics of the human brain and have functional correlates to cognitive processing.
Collapse
Affiliation(s)
- Yiben Xu
- School of Physics, University of Sydney, Sydney, New South Wales, Australia
- ARC Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, New South Wales, Australia
| | - Xian Long
- School of Physics, University of Sydney, Sydney, New South Wales, Australia
- ARC Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, New South Wales, Australia
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Pulin Gong
- School of Physics, University of Sydney, Sydney, New South Wales, Australia.
- ARC Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
22
|
Frequency-specific brain network architecture in resting-state fMRI. Sci Rep 2023; 13:2964. [PMID: 36806195 PMCID: PMC9941507 DOI: 10.1038/s41598-023-29321-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
The analysis of brain function in resting-state network (RSN) models, ascertained through the functional connectivity pattern of resting-state functional magnetic resonance imaging (rs-fMRI), is sufficiently powerful for studying large-scale functional integration of the brain. However, in RSN-based research, the network architecture has been regarded as the same through different frequency bands. Thus, here, we aimed to examined whether the network architecture changes with frequency. The blood oxygen level-dependent (BOLD) signal was decomposed into four frequency bands-ranging from 0.007 to 0.438 Hz-and the clustering algorithm was applied to each of them. The best clustering number was selected for each frequency band based on the overlap ratio with task activation maps. The results demonstrated that resting-state BOLD signals exhibited frequency-specific network architecture; that is, the networks finely subdivided in the lower frequency bands were integrated into fewer networks in higher frequency bands rather than reconfigured, and the default mode network and networks related to perception had sufficiently strong architecture to survive in an environment with a lower signal-to-noise ratio. These findings provide a novel framework to enable improved understanding of brain function through the multiband frequency analysis of ultra-slow rs-fMRI data.
Collapse
|
23
|
Zhu H, Huang Z, Yang Y, Su K, Fan M, Zou Y, Li T, Yin D. Activity flow mapping over probabilistic functional connectivity. Hum Brain Mapp 2023; 44:341-361. [PMID: 36647263 PMCID: PMC9842909 DOI: 10.1002/hbm.26044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/01/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
Emerging evidence indicates that activity flow over resting-state network topology allows the prediction of task activations. However, previous studies have mainly adopted static, linear functional connectivity (FC) estimates as activity flow routes. It is unclear whether an intrinsic network topology that captures the dynamic nature of FC can be a better representation of activity flow routes. Moreover, the effects of between- versus within-network connections and tight versus loose (using rest baseline) task contrasts on the prediction of task-evoked activity across brain systems remain largely unknown. In this study, we first propose a probabilistic FC estimation derived from a dynamic framework as a new activity flow route. Subsequently, activity flow mapping was tested using between- and within-network connections separately for each region as well as using a set of tight task contrasts. Our results showed that probabilistic FC routes substantially improved individual-level activity flow prediction. Although it provided better group-level prediction, the multiple regression approach was more dependent on the length of data points at the individual-level prediction. Regardless of FC type, we consistently observed that between-network connections showed a relatively higher prediction performance in higher-order cognitive control than in primary sensorimotor systems. Furthermore, cognitive control systems exhibit a remarkable increase in prediction accuracy with tight task contrasts and a decrease in sensorimotor systems. This work demonstrates that probabilistic FC estimates are promising routes for activity flow mapping and also uncovers divergent influences of connectional topology and task contrasts on activity flow prediction across brain systems with different functional hierarchies.
Collapse
Affiliation(s)
- Hengcheng Zhu
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive ScienceEast China Normal UniversityShanghaiChina
| | - Ziyi Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive ScienceEast China Normal UniversityShanghaiChina
| | - Yifeixue Yang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive ScienceEast China Normal UniversityShanghaiChina
| | - Kaiqiang Su
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive ScienceEast China Normal UniversityShanghaiChina
| | - Mingxia Fan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic ScienceEast China Normal UniversityShanghaiChina
| | - Yong Zou
- Institute of Theoretical Physics, School of Physics and Electronic ScienceEast China Normal UniversityShanghaiChina
| | - Ting Li
- Shanghai Changning Mental Health CenterShanghaiChina
| | - Dazhi Yin
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive ScienceEast China Normal UniversityShanghaiChina
- Shanghai Changning Mental Health CenterShanghaiChina
| |
Collapse
|
24
|
Gaynor AM, Varangis E, Song S, Gazes Y, Habeck C, Stern Y, Gu Y. Longitudinal association between changes in resting-state network connectivity and cognition trajectories: The moderation role of a healthy diet. Front Hum Neurosci 2023; 16:1043423. [PMID: 36741777 PMCID: PMC9893792 DOI: 10.3389/fnhum.2022.1043423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction Healthy diet has been shown to alter brain structure and function and improve cognitive performance, and prior work from our group showed that Mediterranean diet (MeDi) moderates the effect of between-network resting-state functional connectivity (rsFC) on cognitive function in a cross-sectional sample of healthy adults. The current study aimed to expand on this previous work by testing whether MeDi moderates the effects of changes in between- and within-network rsFC on changes in cognitive performance over an average of 5 years. Methods At baseline and 5-year follow up, 124 adults aged 20-80 years underwent resting state fMRI to measure connectivity within and between 10 pre-defined networks, and completed six cognitive tasks to measure each of four cognitive reference abilities (RAs): fluid reasoning (FLUID), episodic memory, processing speed and attention, and vocabulary. Participants were categorized into low, moderate, and high MeDi groups based on food frequency questionnaires (FFQs). Multivariable linear regressions were used to test relationships between MeDi, change in within- and between-network rsFC, and change in cognitive function. Results Results showed that MeDi group significantly moderated the effects of change in overall between-network and within-network rsFC on change in memory performance. Exploratory analyses on individual networks revealed that interactions between MeDi and between-network rsFC were significant for nearly all individual networks, whereas the moderating effect of MeDi on the relationship between within-network rsFC change and memory change was limited to a subset of specific functional networks. Discussion These findings suggest healthy diet may protect cognitive function by attenuating the negative effects of changes in connectivity over time. Further research is warranted to understand the mechanisms by which MeDi exerts its neuroprotective effects over the lifespan.
Collapse
Affiliation(s)
- Alexandra M. Gaynor
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, United States
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States
| | - Eleanna Varangis
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States
- Gertrude H. Sergievsky Center, Columbia University, New York, NY, United States
| | - Suhang Song
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States
| | - Yunglin Gazes
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, United States
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States
| | - Christian Habeck
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, United States
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States
| | - Yaakov Stern
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, United States
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States
- Gertrude H. Sergievsky Center, Columbia University, New York, NY, United States
- Department of Psychiatry, Columbia University, New York, NY, United States
| | - Yian Gu
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, United States
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States
- Gertrude H. Sergievsky Center, Columbia University, New York, NY, United States
- Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY, United States
| |
Collapse
|
25
|
Fang M, Poskanzer C, Anzellotti S. Multivariate connectivity: A brief introduction and an open question. Front Neurosci 2023; 16:1082120. [PMID: 36704006 PMCID: PMC9871770 DOI: 10.3389/fnins.2022.1082120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Affiliation(s)
- Mengting Fang
- University of Pennsylvania, Philadelphia, PA, United States
| | | | | |
Collapse
|
26
|
Palenciano AF, Senoussi M, Formica S, González-García C. Canonical template tracking: Measuring the activation state of specific neural representations. FRONTIERS IN NEUROIMAGING 2023; 1:974927. [PMID: 37555182 PMCID: PMC10406196 DOI: 10.3389/fnimg.2022.974927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/13/2022] [Indexed: 08/10/2023]
Abstract
Multivariate analyses of neural data have become increasingly influential in cognitive neuroscience since they allow to address questions about the representational signatures of neurocognitive phenomena. Here, we describe Canonical Template Tracking: a multivariate approach that employs independent localizer tasks to assess the activation state of specific representations during the execution of cognitive paradigms. We illustrate the benefits of this methodology in characterizing the particular content and format of task-induced representations, comparing it with standard (cross-)decoding and representational similarity analyses. Then, we discuss relevant design decisions for experiments using this analysis approach, focusing on the nature of the localizer tasks from which the canonical templates are derived. We further provide a step-by-step tutorial of this method, stressing the relevant analysis choices for functional magnetic resonance imaging and magneto/electroencephalography data. Importantly, we point out the potential pitfalls linked to canonical template tracking implementation and interpretation of the results, together with recommendations to mitigate them. To conclude, we provide some examples from previous literature that highlight the potential of this analysis to address relevant theoretical questions in cognitive neuroscience.
Collapse
Affiliation(s)
- Ana F. Palenciano
- Mind, Brain, and Behavior Research Center, University of Granada, Granada, Spain
| | - Mehdi Senoussi
- CLLE Lab, CNRS UMR 5263, University of Toulouse, Toulouse, France
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Silvia Formica
- Department of Psychology, Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Berlin, Germany
| | | |
Collapse
|
27
|
Hwang K, Shine JM, Cole MW, Sorenson E. Thalamocortical contributions to cognitive task activity. eLife 2022; 11:e81282. [PMID: 36537658 PMCID: PMC9799971 DOI: 10.7554/elife.81282] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Thalamocortical interaction is a ubiquitous functional motif in the mammalian brain. Previously (Hwang et al., 2021), we reported that lesions to network hubs in the human thalamus are associated with multi-domain behavioral impairments in language, memory, and executive functions. Here, we show how task-evoked thalamic activity is organized to support these broad cognitive abilities. We analyzed functional magnetic resonance imaging (MRI) data from human subjects that performed 127 tasks encompassing a broad range of cognitive representations. We first investigated the spatial organization of task-evoked activity and found a basis set of activity patterns evoked to support processing needs of each task. Specifically, the anterior, medial, and posterior-medial thalamus exhibit hub-like activity profiles that are suggestive of broad functional participation. These thalamic task hubs overlapped with network hubs interlinking cortical systems. To further determine the cognitive relevance of thalamic activity and thalamocortical functional connectivity, we built a data-driven thalamocortical model to test whether thalamic activity can be used to predict cortical task activity. The thalamocortical model predicted task-specific cortical activity patterns, and outperformed comparison models built on cortical, hippocampal, and striatal regions. Simulated lesions to low-dimensional, multi-task thalamic hub regions impaired task activity prediction. This simulation result was further supported by profiles of neuropsychological impairments in human patients with focal thalamic lesions. In summary, our results suggest a general organizational principle of how the human thalamocortical system supports cognitive task activity.
Collapse
Affiliation(s)
- Kai Hwang
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- Cognitive Control Collaborative, University of IowaIowa CityUnited States
- Iowa Neuroscience Institute, University of IowaIowa CityUnited States
- Department of Psychiatry, University of IowaIowa CityUnited States
| | - James M Shine
- Brain and Mind Center, University of SydneySydneyAustralia
| | - Michael W Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers University-NewarkNewarkUnited States
| | - Evan Sorenson
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- Cognitive Control Collaborative, University of IowaIowa CityUnited States
- Department of Psychiatry, University of IowaIowa CityUnited States
| |
Collapse
|
28
|
Miller JA, Tambini A, Kiyonaga A, D'Esposito M. Long-term learning transforms prefrontal cortex representations during working memory. Neuron 2022; 110:3805-3819.e6. [PMID: 36240768 PMCID: PMC9768795 DOI: 10.1016/j.neuron.2022.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/28/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
Abstract
The role of the lateral prefrontal cortex (lPFC) in working memory (WM) is debated. Non-human primate (NHP) electrophysiology shows that the lPFC stores WM representations, but human neuroimaging suggests that the lPFC controls WM content in sensory cortices. These accounts are confounded by differences in task training and stimulus exposure. We tested whether long-term training alters lPFC function by densely sampling WM activity using functional MRI. Over 3 months, participants trained on both a WM and serial reaction time (SRT) task, wherein fractal stimuli were embedded within sequences. WM performance improved for trained (but not novel) fractals and, neurally, delay activity increased in distributed lPFC voxels across learning. Item-level WM representations became detectable within lPFC patterns, and lPFC activity reflected sequence relationships from the SRT task. These findings demonstrate that human lPFC develops stimulus-selective responses with learning, and WM representations are shaped by long-term experience, which could reconcile competing accounts of WM functioning.
Collapse
Affiliation(s)
- Jacob A Miller
- Wu Tsai Institute, Department of Psychiatry, Yale University, New Haven, CT, USA.
| | - Arielle Tambini
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Anastasia Kiyonaga
- Department of Cognitive Science, University of California, San Diego, CA, USA
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA; Department of Psychology, University of California, Berkeley, CA, USA
| |
Collapse
|
29
|
Yan T, Wang G, Wang L, Liu T, Li T, Wang L, Chen D, Funahashi S, Wu J, Wang B, Suo D. Episodic memory in aspects of brain information transfer by resting-state network topology. Cereb Cortex 2022; 32:4969-4985. [PMID: 35174851 DOI: 10.1093/cercor/bhab526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/27/2022] Open
Abstract
Cognitive functionality emerges due to neural interactions. The interregional signal interactions underlying episodic memory are a complex process. Thus, we need to quantify this process more accurately to understand how brain regions receive information from other regions. Studies suggest that resting-state functional connectivity (FC) conveys cognitive information; additionally, activity flow estimates the contribution of the source region to the activation pattern of the target region, thus decoding the cognitive information transfer. Therefore, we performed a combined analysis of task-evoked activation and resting-state FC voxel-wise by activity flow mapping to estimate the information transfer pattern of episodic memory. We found that the cinguloopercular (CON), frontoparietal (FPN) and default mode networks (DMNs) were the most recruited structures in information transfer. The patterns and functions of information transfer differed between encoding and retrieval. Furthermore, we found that information transfer was a better predictor of memory ability than previous methods. Additional analysis indicated that structural connectivity (SC) had a transportive role in information transfer. Finally, we present the information transfer mechanism of episodic memory from multiple neural perspectives. These findings suggest that information transfer is a better biological indicator that accurately describes signal communication in the brain and strongly influences the function of episodic memory.
Collapse
Affiliation(s)
- Tianyi Yan
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Gongshu Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Li Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Tiantian Liu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Ting Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Luyao Wang
- School of Mechatronical Engineering, Intelligent Robotics Institute, Beijing Institute of Technology, Beijing 100081, China
| | - Duanduan Chen
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Shintaro Funahashi
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jinglong Wu
- School of Mechatronical Engineering, Intelligent Robotics Institute, Beijing Institute of Technology, Beijing 100081, China.,Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing 100081, China.,International Joint Research Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing 100081, China
| | - Bin Wang
- Department of Information and Computer, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Dingjie Suo
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
30
|
Cookson SL, D'Esposito M. Evaluating the reliability, validity, and utility of overlapping networks: Implications for network theories of cognition. Hum Brain Mapp 2022; 44:1030-1045. [PMID: 36317718 PMCID: PMC9875920 DOI: 10.1002/hbm.26134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/28/2022] [Accepted: 10/17/2022] [Indexed: 01/26/2023] Open
Abstract
Brain network definitions typically assume nonoverlap or minimal overlap, ignoring regions' connections to multiple networks. However, new methods are emerging that emphasize network overlap. Here, we investigated the reliability and validity of one assignment method, the mixed membership algorithm, and explored its potential utility for identifying gaps in existing network models of cognition. We first assessed between-sample reliability of overlapping assignments with a split-half design; a bootstrapped Dice similarity analysis demonstrated good agreement between the networks from the two subgroups. Next, we assessed whether overlapping networks captured expected nonoverlapping topographies; overlapping networks captured portions of one to three nonoverlapping topographies, which aligned with canonical network definitions. Following this, a relative entropy analysis showed that a majority of regions participated in more than one network, as is seen biologically, and many regions did not show preferential connection to any one network. Finally, we explored overlapping network membership in regions of the dual-networks model of cognitive control, showing that almost every region was a member of multiple networks. Thus, the mixed membership algorithm produces consistent and biologically plausible networks, which presumably will allow for the development of more complete network models of cognition.
Collapse
Affiliation(s)
- Savannah L. Cookson
- Helen Wills Neuroscience InstituteUniversity of California‐BerkeleyBerkeleyCaliforniaUSA
| | - Mark D'Esposito
- Helen Wills Neuroscience InstituteUniversity of California‐BerkeleyBerkeleyCaliforniaUSA
| |
Collapse
|
31
|
Schultz DH, Ito T, Cole MW. Global connectivity fingerprints predict the domain generality of multiple-demand regions. Cereb Cortex 2022; 32:4464-4479. [PMID: 35076709 PMCID: PMC9574240 DOI: 10.1093/cercor/bhab495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/26/2023] Open
Abstract
A set of distributed cognitive control networks are known to contribute to diverse cognitive demands, yet it is unclear how these networks gain this domain-general capacity. We hypothesized that this capacity is largely due to the particular organization of the human brain's intrinsic network architecture. Specifically, we tested the possibility that each brain region's domain generality is reflected in its level of global (hub-like) intrinsic connectivity as well as its particular global connectivity pattern ("connectivity fingerprint"). Consistent with prior work, we found that cognitive control networks exhibited domain generality as they represented diverse task context information covering sensory, motor response, and logic rule domains. Supporting our hypothesis, we found that the level of global intrinsic connectivity (estimated with resting-state functional magnetic resonance imaging [fMRI]) was correlated with domain generality during tasks. Further, using a novel information fingerprint mapping approach, we found that each cognitive control region's unique rule response profile("information fingerprint") could be predicted based on its unique intrinsic connectivity fingerprint and the information content in regions outside cognitive control networks. Together, these results suggest that the human brain's intrinsic network architecture supports its ability to represent diverse cognitive task information largely via the location of multiple-demand regions within the brain's global network organization.
Collapse
Affiliation(s)
- Douglas H Schultz
- Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.,Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Takuya Ito
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ 07102, USA
| | - Michael W Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ 07102, USA
| |
Collapse
|
32
|
Gaynor AM, Varangis E, Song S, Gazes Y, Noofoory D, Babukutty RS, Habeck C, Stern Y, Gu Y. Diet moderates the effect of resting state functional connectivity on cognitive function. Sci Rep 2022; 12:16080. [PMID: 36167961 PMCID: PMC9515193 DOI: 10.1038/s41598-022-20047-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/08/2022] [Indexed: 01/11/2023] Open
Abstract
Past research suggests modifiable lifestyle factors impact structural and functional measures of brain health, as well as cognitive performance, but no study to date has tested the effect of diet on resting state functional connectivity (rsFC), and its relationship with cognition. The current study tested whether Mediterranean diet (MeDi) moderates the associations between internetwork rsFC and cognitive function. 201 cognitively intact adults 20-80 years old underwent resting state fMRI to measure rsFC among 10 networks, and completed 12 cognitive tasks assessing perceptual speed, fluid reasoning, episodic memory, and vocabulary. Food frequency questionnaires were used to categorize participants into low, moderate, and high MeDi adherence groups. Multivariable linear regressions were used to test associations between MeDi group, task performance, and internetwork rsFC. MeDi group moderated the relationship between rsFC and fluid reasoning for nine of the 10 functional networks' connectivity to all others: higher internetwork rsFC predicted lower fluid reasoning performance in the low MeDi adherence group, but not in moderate and high MeDi groups. Results suggest healthy diet may support cognitive ability despite differences in large-scale network connectivity at rest. Further research is warranted to understand how diet impacts neural processes underlying cognitive function over time.
Collapse
Affiliation(s)
- Alexandra M. Gaynor
- grid.21729.3f0000000419368729Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY USA ,grid.21729.3f0000000419368729Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY USA
| | - Eleanna Varangis
- grid.21729.3f0000000419368729Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY USA ,grid.21729.3f0000000419368729Gertrude H. Sergievsky Center, Columbia University, New York, NY USA
| | - Suhang Song
- grid.21729.3f0000000419368729Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY USA
| | - Yunglin Gazes
- grid.21729.3f0000000419368729Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY USA ,grid.21729.3f0000000419368729Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY USA
| | - Diala Noofoory
- grid.21729.3f0000000419368729Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY USA ,grid.21729.3f0000000419368729Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY USA
| | - Reshma S. Babukutty
- grid.21729.3f0000000419368729Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY USA ,grid.21729.3f0000000419368729Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY USA
| | - Christian Habeck
- grid.21729.3f0000000419368729Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY USA ,grid.21729.3f0000000419368729Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY USA
| | - Yaakov Stern
- grid.21729.3f0000000419368729Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY USA ,grid.21729.3f0000000419368729Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY USA ,grid.21729.3f0000000419368729Gertrude H. Sergievsky Center, Columbia University, New York, NY USA ,grid.21729.3f0000000419368729Department of Psychiatry, Columbia University, New York, NY USA
| | - Yian Gu
- grid.21729.3f0000000419368729Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY USA ,grid.21729.3f0000000419368729Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY USA ,grid.21729.3f0000000419368729Gertrude H. Sergievsky Center, Columbia University, New York, NY USA ,grid.21729.3f0000000419368729Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY USA
| |
Collapse
|
33
|
Zhang H, Zhao R, Hu X, Guan S, Margulies DS, Meng C, Biswal BB. Cortical connectivity gradients and local timescales during cognitive states are modulated by cognitive loads. Brain Struct Funct 2022; 227:2701-2712. [PMID: 36098843 DOI: 10.1007/s00429-022-02564-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 08/29/2022] [Indexed: 11/02/2022]
Abstract
Although resting-state fMRI studies support that human brain is topographically organized regarding localized and distributed processes, it is still unclear about the task-modulated cortical hierarchy in terms of distributed functional connectivity and localized timescales. To address, current study investigated the effect of cognitive load on cortical connectivity gradients and local timescales in the healthy brain using resting state fMRI as well as 1- and 2-back working memory task fMRI. The results demonstrated that (1) increased cognitive load was associated with lower principal gradient in transmodal cortices, higher principal gradient in primary cortices, decreased decay rate and reduced timescale variability; (2) global properties including gradient variability, timescale decay rate, timescale variability and network topology were all modulated by cognitive load, with timescale variability related to behavioral performance; and (3) at 2-back state, the timescale variability was indirectly and negatively linked with global network integration, which was mediated by gradient variability. In conclusion, current study provides novel evidence for load-modulated cortical connectivity gradients and local timescales during cognitive states, which could contribute to better understanding about cognitive load theory and brain disorders with cognitive dysfunction.
Collapse
Affiliation(s)
- Heming Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue, Chengdu, 611731, China
| | - Rong Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue, Chengdu, 611731, China
| | - Xin Hu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue, Chengdu, 611731, China
| | - Sihai Guan
- Key Laboratory of Electronic and Information Engineering (Southwest Minzu University), State Ethnic Affairs Commission. College of Electronic and Information, Southwest Minzu University, Chengdu, 610225, China
| | - Daniel S Margulies
- Max Planck Research Group for Neuroanatomy & Connectivity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
| | - Chun Meng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue, Chengdu, 611731, China.
| | - Bharat B Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue, Chengdu, 611731, China. .,Department of Biomedical Engineering, New Jersey Institute of Technology, University Height, 607 Fenster Hall, Newark, NJ, 07102, USA.
| |
Collapse
|
34
|
Rahrig H, Vago DR, Passarelli MA, Auten A, Lynn NA, Brown KW. Meta-analytic evidence that mindfulness training alters resting state default mode network connectivity. Sci Rep 2022; 12:12260. [PMID: 35851275 PMCID: PMC9293892 DOI: 10.1038/s41598-022-15195-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/20/2022] [Indexed: 11/09/2022] Open
Abstract
This meta-analysis sought to expand upon neurobiological models of mindfulness through investigation of inherent brain network connectivity outcomes, indexed via resting state functional connectivity (rsFC). We conducted a systematic review and meta-analysis of rsFC as an outcome of mindfulness training (MT) relative to control, with the hypothesis that MT would increase cross-network connectivity between nodes of the Default Mode Network (DMN), Salience Network (SN), and Frontoparietal Control Network (FPCN) as a mechanism of internally-oriented attentional control. Texts were identified from the databases: MEDLINE/PubMed, ERIC, PSYCINFO, ProQuest, Scopus, and Web of Sciences; and were screened for inclusion based on experimental/quasi-experimental trial design and use of mindfulness-based training interventions. RsFC effects were extracted from twelve studies (mindfulness n = 226; control n = 204). Voxel-based meta-analysis revealed significantly greater rsFC (MT > control) between the left middle cingulate (Hedge's g = .234, p = 0.0288, I2 = 15.87), located within the SN, and the posterior cingulate cortex, a focal hub of the DMN. Egger's test for publication bias was nonsignificant, bias = 2.17, p = 0.162. In support of our hypothesis, results suggest that MT targets internetwork (SN-DMN) connectivity implicated in the flexible control of internally-oriented attention.
Collapse
Affiliation(s)
- Hadley Rahrig
- Department of Psychology, Virginia Commonwealth University, 806 W. Franklin Street, Richmond, VA, 23284, USA.
| | - David R Vago
- Department of Psychology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, USA, TN
| | - Matthew A Passarelli
- Department of Psychology, Virginia Commonwealth University, 806 W. Franklin Street, Richmond, VA, 23284, USA
| | - Allison Auten
- Department of Psychology, Virginia Commonwealth University, 806 W. Franklin Street, Richmond, VA, 23284, USA
| | - Nicholas A Lynn
- Department of Psychology, Virginia Commonwealth University, 806 W. Franklin Street, Richmond, VA, 23284, USA
| | - Kirk Warren Brown
- Department of Psychology, Virginia Commonwealth University, 806 W. Franklin Street, Richmond, VA, 23284, USA.
| |
Collapse
|
35
|
Rawls E, Kummerfeld E, Mueller BA, Ma S, Zilverstand A. The resting-state causal human connectome is characterized by hub connectivity of executive and attentional networks. Neuroimage 2022; 255:119211. [PMID: 35430360 PMCID: PMC9177236 DOI: 10.1016/j.neuroimage.2022.119211] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 01/17/2023] Open
Abstract
We demonstrate a data-driven approach for calculating a "causal connectome" of directed connectivity from resting-state fMRI data using a greedy adjacency search and pairwise non-Gaussian edge orientations. We used this approach to construct n = 442 causal connectomes. These connectomes were very sparse in comparison to typical Pearson correlation-based graphs (roughly 2.25% edge density) yet were fully connected in nearly all cases. Prominent highly connected hubs of the causal connectome were situated in attentional (dorsal attention) and executive (frontoparietal and cingulo-opercular) networks. These hub networks had distinctly different connectivity profiles: attentional networks shared incoming connections with sensory regions and outgoing connections with higher cognitive networks, while executive networks primarily connected to other higher cognitive networks and had a high degree of bidirected connectivity. Virtual lesion analyses accentuated these findings, demonstrating that attentional and executive hub networks are points of critical vulnerability in the human causal connectome. These data highlight the central role of attention and executive control networks in the human cortical connectome and set the stage for future applications of data-driven causal connectivity analysis in psychiatry.
Collapse
Affiliation(s)
- Eric Rawls
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, USA.
| | | | - Bryon A Mueller
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, USA
| | - Sisi Ma
- Institute for Health Informatics, University of Minnesota, USA
| | - Anna Zilverstand
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, USA; Medical Discovery Team on Addiction, University of Minnesota, USA
| |
Collapse
|
36
|
Melillo R, Leisman G, Machado C, Machado-Ferrer Y, Chinchilla-Acosta M, Kamgang S, Melillo T, Carmeli E. Retained Primitive Reflexes and Potential for Intervention in Autistic Spectrum Disorders. Front Neurol 2022; 13:922322. [PMID: 35873782 PMCID: PMC9301367 DOI: 10.3389/fneur.2022.922322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
We provide evidence to support the contention that many aspects of Autistic Spectrum Disorder (ASD) are related to interregional brain functional disconnectivity associated with maturational delays in the development of brain networks. We think a delay in brain maturation in some networks may result in an increase in cortical maturation and development in other networks, leading to a developmental asynchrony and an unevenness of functional skills and symptoms. The paper supports the close relationship between retained primitive reflexes and cognitive and motor function in general and in ASD in particular provided to indicate that the inhibition of RPRs can effect positive change in ASD.
Collapse
Affiliation(s)
- Robert Melillo
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa, Israel
| | - Gerry Leisman
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa, Israel
- Department of Neurology, University of the Medical Sciences of Havana, Havana, Cuba
| | - Calixto Machado
- Department of Clinical Neurophysiology, Institute for Neurology and Neurosurgery, Havana, Cuba
| | - Yanin Machado-Ferrer
- Department of Clinical Neurophysiology, Institute for Neurology and Neurosurgery, Havana, Cuba
| | | | - Shanine Kamgang
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Ty Melillo
- Northeast College of the Health Sciences, Seneca Falls, New York, NY, United States
| | - Eli Carmeli
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa, Israel
| |
Collapse
|
37
|
Cecilia A, Patricio P, Donna C, Rakibul H, Sussanne R, Betsy L, Bharat B. Cognitive control inhibition networks in adulthood are impaired by early iron deficiency in infancy. Neuroimage Clin 2022; 35:103089. [PMID: 35753235 PMCID: PMC9249946 DOI: 10.1016/j.nicl.2022.103089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/26/2022]
Abstract
Iron deficiency, a common form of micronutrient deficiency, primarily affects children and women. The principal cause of iron deficiency is undernutrition in low-income countries and malnutrition in middle to upper income regions. Iron is a key element for myelin production, neuronal metabolism, and dopamine functions. Iron deficiency in early life can alter brain development and exert long-lasting effects. Control inhibition is an executive function that involves several brain regions, including the prefrontal cortex and caudate and sub-thalamic nuclei. Dopamine is the prevalent neurotransmitter underlying cognitive inhibition. We followed cohort study participants who had iron deficiency anemia in infancy as well non-anemic controls. At 22 years of age, the participants were subjected to functional magnetic resonance imaging (fMRI) to evaluate the correlation between functional connectivity and performance on an inhibitory cognitive task (Go/No-Go). We hypothesized that former iron deficient anemic (FIDA) participants demonstrate less strength in functional connectivity compared with controls (C). There were not significant group differences in the behavioral results in terms of accuracy and response time. A continuous covariate interaction analysis of functional connectivity and the Go/No-Go scores demonstrated significant differences between the FIDA and C groups. The FIDA participants demonstrated less strength in connectivity in brain regions related to control inhibition, including the medial temporal lobe, impairment in the integration of the default mode network (indicating decreased attention and alertness), and an increase in connectivity in posterior brain areas, all of which suggest slower circuitry maturation. The results support the hypothesis that FIDA young adults show differences in the connectivity of networks related to executive functions. These differences could increase their vulnerability to develop cognitive dysfunctions or mental disorders in adulthood.
Collapse
Affiliation(s)
- Algarín Cecilia
- Sleep and Functional Neurobiology Laboratory, Institute of Nutrition and Food Technology, University of Chile, Chile,Corresponding author at: El Líbano 5524, Macul 7830490, Región Metropolitana, Santiago, Chile.
| | - Peirano Patricio
- Sleep and Functional Neurobiology Laboratory, Institute of Nutrition and Food Technology, University of Chile, Chile
| | - Chen Donna
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, United States
| | - Hafiz Rakibul
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, United States
| | - Reyes Sussanne
- Sleep and Functional Neurobiology Laboratory, Institute of Nutrition and Food Technology, University of Chile, Chile
| | - Lozoff Betsy
- Department of Pediatrics and Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Biswal Bharat
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, United States
| |
Collapse
|
38
|
Gruskin DC, Patel GH. Brain connectivity at rest predicts individual differences in normative activity during movie watching. Neuroimage 2022; 253:119100. [PMID: 35304263 PMCID: PMC9491116 DOI: 10.1016/j.neuroimage.2022.119100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022] Open
Abstract
When exposed to the same sensory event, some individuals are bound to have less typical experiences than others. Previous research has investigated this phenomenon by showing that the typicality of one's sensory experience is associated with the typicality of their stimulus-evoked brain activity (as measured by intersubject correlation, or ISC). Individual differences in ISC have recently been attributed to variability in focal neural processing. However, the extent to which these differences reflect purely intra-regional variability versus variation in the brain's baseline ability to transmit information between regions has yet to be established. Here, we show that an individual's degree and spatial distribution of ISC are closely related to their brain's functional organization at rest. Using resting state and movie watching fMRI data from the Human Connectome Project, we reveal that resting state functional connectivity (RSFC) profiles can be used to predict cortex-wide ISC. Similar region-level analyses demonstrate that the levels of ISC exhibited by brain regions during movie watching are associated with their connectivity to other regions at rest, and that the nature of these connectivity-activity relationships varies as a function of regional roles in sensory information processing. Finally, we show that an individual's unique spatial distribution of ISC, independent of its magnitude, is also related to their RSFC profile. These findings contextualize reports of localized individual differences in ISC as potentially reflecting larger, network-level alterations in resting brain function and detail how the brain's ability to process complex sensory information is linked to its baseline functional organization.
Collapse
Affiliation(s)
- David C Gruskin
- Medical Scientist Training Program, Columbia University Irving Medical Center, NY 10032, USA.
| | - Gaurav H Patel
- New York State Psychiatric Institute, NY 10032, USA; Department of Psychiatry, Columbia University Irving Medical Center, NY 10032, USA.
| |
Collapse
|
39
|
Khatri U, Kwon GR. Alzheimer's Disease Diagnosis and Biomarker Analysis Using Resting-State Functional MRI Functional Brain Network With Multi-Measures Features and Hippocampal Subfield and Amygdala Volume of Structural MRI. Front Aging Neurosci 2022; 14:818871. [PMID: 35707703 PMCID: PMC9190953 DOI: 10.3389/fnagi.2022.818871] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Accurate diagnosis of the initial phase of Alzheimer's disease (AD) is essential and crucial. The objective of this research was to employ efficient biomarkers for the diagnostic analysis and classification of AD based on combining structural MRI (sMRI) and resting-state functional MRI (rs-fMRI). So far, several anatomical MRI imaging markers for AD diagnosis have been identified. The use of cortical and subcortical volumes, the hippocampus, and amygdala volume, as well as genetic patterns, has proven to be beneficial in distinguishing patients with AD from the healthy population. The fMRI time series data have the potential for specific numerical information as well as dynamic temporal information. Voxel and graphical analyses have gained popularity for analyzing neurodegenerative diseases, such as Alzheimer's and its prodromal phase, mild cognitive impairment (MCI). So far, these approaches have been utilized separately for the diagnosis of AD. In recent studies, the classification of cases of MCI into those that are not converted for a certain period as stable MCI (MCIs) and those that converted to AD as MCIc has been less commonly reported with inconsistent results. In this study, we verified and validated the potency of a proposed diagnostic framework to identify AD and differentiate MCIs from MCIc by utilizing the efficient biomarkers obtained from sMRI, along with functional brain networks of the frequency range .01-.027 at the resting state and the voxel-based features. The latter mainly included default mode networks (amplitude of low-frequency fluctuation [ALFF], fractional ALFF [ALFF], and regional homogeneity [ReHo]), degree centrality (DC), and salience networks (SN). Pearson's correlation coefficient for measuring fMRI functional networks has proven to be an efficient means for disease diagnosis. We applied the graph theory to calculate nodal features (nodal degree [ND], nodal path length [NL], and between centrality [BC]) as a graphical feature and analyzed the connectivity link between different brain regions. We extracted three-dimensional (3D) patterns to calculate regional coherence and then implement a univariate statistical t-test to access a 3D mask that preserves voxels showing significant changes. Similarly, from sMRI, we calculated the hippocampal subfield and amygdala nuclei volume using Freesurfer (version 6). Finally, we implemented and compared the different feature selection algorithms to integrate the structural features, brain networks, and voxel features to optimize the diagnostic identifications of AD using support vector machine (SVM) classifiers. We also compared the performance of SVM with Random Forest (RF) classifiers. The obtained results demonstrated the potency of our framework, wherein a combination of the hippocampal subfield, the amygdala volume, and brain networks with multiple measures of rs-fMRI could significantly enhance the accuracy of other approaches in diagnosing AD. The accuracy obtained by the proposed method was reported for binary classification. More importantly, the classification results of the less commonly reported MCIs vs. MCIc improved significantly. However, this research involved only the AD Neuroimaging Initiative (ADNI) cohort to focus on the diagnosis of AD advancement by integrating sMRI and fMRI. Hence, the study's primary disadvantage is its small sample size. In this case, the dataset we utilized did not fully reflect the whole population. As a result, we cannot guarantee that our findings will be applicable to other populations.
Collapse
Affiliation(s)
| | - Goo-Rak Kwon
- Department of Information and Communication Engineering, Chosun University, Gwangju, South Korea
| |
Collapse
|
40
|
Dan T, Huang Z, Cai H, Lyday RG, Laurienti PJ, Wu G. Uncovering shape signatures of resting-state functional connectivity by geometric deep learning on Riemannian manifold. Hum Brain Mapp 2022; 43:3970-3986. [PMID: 35538672 PMCID: PMC9374896 DOI: 10.1002/hbm.25897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/21/2022] Open
Abstract
Functional neural activities manifest geometric patterns, as evidenced by the evolving network topology of functional connectivities (FC) even in the resting state. In this work, we propose a novel manifold‐based geometric neural network for functional brain networks (called “Geo‐Net4Net” for short) to learn the intrinsic low‐dimensional feature representations of resting‐state brain networks on the Riemannian manifold. This tool allows us to answer the scientific question of how the spontaneous fluctuation of FC supports behavior and cognition. We deploy a set of positive maps and rectified linear unit (ReLU) layers to uncover the intrinsic low‐dimensional feature representations of functional brain networks on the Riemannian manifold taking advantage of the symmetric positive‐definite (SPD) form of the correlation matrices. Due to the lack of well‐defined ground truth in the resting state, existing learning‐based methods are limited to unsupervised methodologies. To go beyond this boundary, we propose to self‐supervise the feature representation learning of resting‐state functional networks by leveraging the task‐based counterparts occurring before and after the underlying resting state. With this extra heuristic, our Geo‐Net4Net allows us to establish a more reasonable understanding of resting‐state FCs by capturing the geometric patterns (aka. spectral/shape signature) associated with resting states on the Riemannian manifold. We have conducted extensive experiments on both simulated data and task‐based functional resonance magnetic imaging (fMRI) data from the Human Connectome Project (HCP) database, where our Geo‐Net4Net not only achieves more accurate change detection results than other state‐of‐the‐art counterpart methods but also yields ubiquitous geometric patterns that manifest putative insights into brain function.
Collapse
Affiliation(s)
- Tingting Dan
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
| | - Zhuobin Huang
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
| | - Hongmin Cai
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
| | - Robert G Lyday
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Paul J Laurienti
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Guorong Wu
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Carolina Institute for Developmental Disabilities (CIDD), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,UNC NeuroScience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
41
|
Xiang J, Fan C, Wei J, Li Y, Wang B, Niu Y, Yang L, Lv J, Cui X. The Task Pre-Configuration Is Associated With Cognitive Performance Evidence From the Brain Synchrony. Front Comput Neurosci 2022; 16:883660. [PMID: 35603133 PMCID: PMC9120823 DOI: 10.3389/fncom.2022.883660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Although many resting state and task state characteristics have been studied, it is still unclear how the brain network switches from the resting state during tasks. The current theory shows that the brain is a complex dynamic system and synchrony is defined to measure brain activity. The study compared the changes of synchrony between the resting state and different task states in healthy young participants (N = 954). It also examined the ability to switch from the resting state to the task-general architecture of synchrony. We found that the synchrony increased significantly during the tasks. And the results showed that the brain has a task-general architecture of synchrony during different tasks. The main feature of task-based reasoning is that the increase in synchrony of high-order cognitive networks is significant, while the increase in synchrony of sensorimotor networks is relatively low. In addition, the high synchrony of high-order cognitive networks in the resting state can promote task switching effectively and the pre-configured participants have better cognitive performance, which shows that spontaneous brain activity and cognitive ability are closely related. These results revealed changes in the brain network configuration for switching between the resting state and task state, highlighting the consistent changes in the brain network between different tasks. Also, there was an important relationship between the switching ability and the cognitive performance.
Collapse
|
42
|
Cocuzza CV, Sanchez-Romero R, Cole MW. Protocol for activity flow mapping of neurocognitive computations using the Brain Activity Flow Toolbox. STAR Protoc 2022; 3:101094. [PMID: 35128473 PMCID: PMC8808261 DOI: 10.1016/j.xpro.2021.101094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Traditional cognitive neuroscience uses task-evoked activations to map neurocognitive processes (and information) to brain regions; however, how those processes are generated is unknown. We developed activity flow mapping to identify and empirically validate network mechanisms underlying the generation of neurocognitive processes. This approach models the movement of task-evoked activity over brain connections to predict task-evoked activations. We present a protocol for using the Brain Activity Flow Toolbox (https://colelab.github.io/ActflowToolbox/) to identify network mechanisms underlying neurocognitive processes of interest. For complete details on the use and execution of this protocol, please refer to Cole et al., 2021.
Collapse
Affiliation(s)
- Carrisa V. Cocuzza
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
- Behavioral and Neural Sciences PhD Program, Rutgers University, Newark, NJ 07102, USA
| | - Ruben Sanchez-Romero
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| | - Michael W. Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
43
|
Ito T, Yang GR, Laurent P, Schultz DH, Cole MW. Constructing neural network models from brain data reveals representational transformations linked to adaptive behavior. Nat Commun 2022; 13:673. [PMID: 35115530 PMCID: PMC8814166 DOI: 10.1038/s41467-022-28323-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/17/2022] [Indexed: 11/09/2022] Open
Abstract
The human ability to adaptively implement a wide variety of tasks is thought to emerge from the dynamic transformation of cognitive information. We hypothesized that these transformations are implemented via conjunctive activations in "conjunction hubs"-brain regions that selectively integrate sensory, cognitive, and motor activations. We used recent advances in using functional connectivity to map the flow of activity between brain regions to construct a task-performing neural network model from fMRI data during a cognitive control task. We verified the importance of conjunction hubs in cognitive computations by simulating neural activity flow over this empirically-estimated functional connectivity model. These empirically-specified simulations produced above-chance task performance (motor responses) by integrating sensory and task rule activations in conjunction hubs. These findings reveal the role of conjunction hubs in supporting flexible cognitive computations, while demonstrating the feasibility of using empirically-estimated neural network models to gain insight into cognitive computations in the human brain.
Collapse
Affiliation(s)
- Takuya Ito
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA.
- Behavioral and Neural Sciences PhD Program, Rutgers University, Newark, NJ, USA.
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| | - Guangyu Robert Yang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
| | | | - Douglas H Schultz
- Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Michael W Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| |
Collapse
|
44
|
Çatal Y, Gomez-Pilar J, Northoff G. Intrinsic dynamics and topography of sensory input systems. Cereb Cortex 2022; 32:4592-4604. [PMID: 35094077 PMCID: PMC9614113 DOI: 10.1093/cercor/bhab504] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 02/01/2023] Open
Abstract
The brain is continuously bombarded by external stimuli, which are processed in different input systems. The intrinsic features of these sensory input systems remain yet unclear. Investigating topography and dynamics of input systems is the goal of our study in order to better understand the intrinsic features that shape their neural processing. Using a functional magnetic resonance imaging dataset, we measured neural topography and dynamics of the input systems during rest and task states. Neural dynamics were probed by scale-free activity, measured with the power-law exponent (PLE), as well as by order/disorder as measured with sample entropy (SampEn). Our main findings during both rest and task states are: 1) differences in neural dynamics (PLE, SampEn) between regions within each of the three sensory input systems 2) differences in topography and dynamics among the three input systems; 3) PLE and SampEn correlate and, as demonstrated in simulation, show non-linear relationship in the critical range of PLE; 4) scale-free activity during rest mediates the transition of SampEn from rest to task as probed in a mediation model. We conclude that the sensory input systems are characterized by their intrinsic topographic and dynamic organization which, through scale-free activity, modulates their input processing.
Collapse
Affiliation(s)
- Yasir Çatal
- The Royal's Institute of Mental Health Research & University of Ottawa. Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, Ottawa, 145 Carling Avenue, Rm. 6435, Ottawa, Ontario K1Z 7K4, Canada
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, Higher Technical School of Telecommunications Engineering, University of Valladolid, Valladolid 47011, Spain,Centro de Investigación Biomédica en Red—Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Madrid 28029, Spain
| | | |
Collapse
|
45
|
Yankouskaya A, Sui J. Self-prioritization is supported by interactions between large-scale brain networks. Eur J Neurosci 2022; 55:1244-1261. [PMID: 35083806 PMCID: PMC9303922 DOI: 10.1111/ejn.15612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/29/2021] [Accepted: 01/23/2022] [Indexed: 11/30/2022]
Abstract
Resting-state functional magnetic resonance imaging (fMRI) has provided solid evidence that the default-mode network (DMN) is implicated in self-referential processing. The functional connectivity of the DMN has also been observed in tasks where self-referential processing leads to self-prioritization (SPE) in perception and decision-making. However, we are less certain about whether (i) SPE solely depends on the interplay within parts of the DMN or is driven by multiple brain networks; and (ii) whether SPE is associated with a unique component of interconnected networks or can be explained by related effects such as emotion prioritization. We addressed these questions by identifying and comparing topological clusters of networks involved in self-and emotion prioritization effects generated in an associative-matching task. Using network-based statistics, we found that SPE controlled by emotion is supported by a unique component of interacting networks, including the medial prefrontal part of the DMN (MPFC), Frontoparietal network (FPN) and insular Salience network (SN). This component emerged as a result of a focal effect confined to few connections, indicating that interaction between DMN, FPC and SN is critical to cognitive operations for the SPE. This result was validated on a separate data set. In contrast, prioritization of happy emotion was associated with a component formed by interactions between the rostral prefrontal part of SN, posterior parietal part of FPN and the MPFC, while sad emotion reveals a cluster of the DMN, Dorsal Attention Network (DAN) and Visual Medial Network (VMN). We discussed theoretical and methodological aspects of these findings within the more general domain of social cognition.
Collapse
Affiliation(s)
- A Yankouskaya
- Department of Psychology, Bournemouth University, UK
| | - J Sui
- School of Psychology, University of Aberdeen, UK
| |
Collapse
|
46
|
Kajimura S, Ito A. The Brain Understands Social Relationships: The Emerging Field of Functional-Connectome-Based Interpersonal Research. Neurosci Insights 2022; 17:26331055221119443. [PMID: 35991809 PMCID: PMC9386479 DOI: 10.1177/26331055221119443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Human functional brain imaging research over the last 2 decades has shown that data from resting-state brain activity can help predict various psychological and pathological variables and brain function during tasks. However, most variables have been attributed to the individual brain. Recently, several studies have aimed to understand interpersonal relationships based on inter-individual similarity or dissimilarity of functional connectome. In this commentary, we introduce the studies that have opened up a new era of interpersonal research using human brain imaging.
Collapse
Affiliation(s)
- Shogo Kajimura
- Faculty of Information and Human Sciences, Kyoto Institute of Technology, Kyoto, Japan
| | - Ayahito Ito
- Research Institute for Future Design, Kochi University of Technology, Kochi, Japan
- Department of Psychology, University of Southampton, Southampton, UK
- Faculty of Health Sciences, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
47
|
Context-specific activations are a hallmark of the neural basis of individual differences in general executive function. Neuroimage 2021; 249:118845. [PMID: 34963651 DOI: 10.1016/j.neuroimage.2021.118845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 11/23/2022] Open
Abstract
Common executive functioning (cEF) is a domain-general factor that captures shared variance in performance across diverse executive function tasks. To investigate the neural mechanisms of individual differences in cEF (e.g., goal maintenance, biasing), we conducted the largest fMRI study of multiple executive tasks to date (N=546). Group average activation during response inhibition (antisaccade task), working memory updating (keep track task), and mental set shifting (number-letter switch task) overlapped in classic cognitive control regions. However, there were no areas across tasks that were consistently correlated with individual differences in cEF ability. Although similar brain areas are recruited when completing different executive function tasks, activation levels of those areas are not consistently associated with better performance. This pattern is inconsistent with a simple model in which higher cEF is associated with greater or less activation of a set of control regions across different task contexts; however, it is potentially consistent with a model in which individual differences in cEF primarily depend on activation of domain-specific targets of executive function. Brain features that explain commonalities in executive function performance across tasks remain to be discovered.
Collapse
|
48
|
Hebling Vieira B, Dubois J, Calhoun VD, Garrido Salmon CE. A deep learning based approach identifies regions more relevant than resting-state networks to the prediction of general intelligence from resting-state fMRI. Hum Brain Mapp 2021; 42:5873-5887. [PMID: 34587333 PMCID: PMC8596958 DOI: 10.1002/hbm.25656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022] Open
Abstract
Prediction of cognitive ability latent factors such as general intelligence from neuroimaging has elucidated questions pertaining to their neural origins. However, predicting general intelligence from functional connectivity limit hypotheses to that specific domain, being agnostic to time‐distributed features and dynamics. We used an ensemble of recurrent neural networks to circumvent this limitation, bypassing feature extraction, to predict general intelligence from resting‐state functional magnetic resonance imaging regional signals of a large sample (n = 873) of Human Connectome Project adult subjects. Ablating common resting‐state networks (RSNs) and measuring degradation in performance, we show that model reliance can be mostly explained by network size. Using our approach based on the temporal variance of saliencies, that is, gradients of outputs with regards to inputs, we identify a candidate set of networks that more reliably affect performance in the prediction of general intelligence than similarly sized RSNs. Our approach allows us to further test the effect of local alterations on data and the expected changes in derived metrics such as functional connectivity and instantaneous innovations.
Collapse
Affiliation(s)
- Bruno Hebling Vieira
- InBrain Lab, Departamento de Física, Universidade de São Paulo, Ribeirão Preto, Brazil.,Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - Julien Dubois
- Cedars-Sinai Medical Center, Los Angeles, California, USA.,Caltech, Pasadena, California, USA
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA.,The Mind Research Network, Albuquerque, New Mexico, USA.,School of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | |
Collapse
|
49
|
Lyu D, Pappas I, Menon DK, Stamatakis EA. A Precuneal Causal Loop Mediates External and Internal Information Integration in the Human Brain. J Neurosci 2021; 41:9944-9956. [PMID: 34675087 PMCID: PMC8638689 DOI: 10.1523/jneurosci.0647-21.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/29/2021] [Accepted: 09/14/2021] [Indexed: 11/21/2022] Open
Abstract
Human brains interpret external stimuli based on internal representations. One untested hypothesis is that the default-mode network (DMN), widely considered responsible for internally oriented cognition, can decode external information. Here, we posit that the unique structural and functional fingerprint of the precuneus (PCu) supports a prominent role for the posterior part of the DMN in this process. By analyzing the imaging data of 100 participants performing two attention-demanding tasks, we found that the PCu is functionally divided into dorsal and ventral subdivisions. We then conducted a comprehensive examination of their connectivity profiles and found that at rest, both the ventral PCu (vPCu) and dorsal PCu (dPCu) are mainly connected with the DMN but also are differentially connected with internally oriented networks (IoN) and externally oriented networks (EoN). During tasks, the double associations between the v/dPCu and the IoN/EoN are correlated with task performance and can switch depending on cognitive demand. Furthermore, dynamic causal modeling (DCM) revealed that the strength and direction of the effective connectivity (EC) between v/dPCu is modulated by task difficulty in a manner potentially dictated by the balance of internal versus external cognitive demands. Our study provides evidence that the posterior medial part of the DMN may drive interactions between large-scale networks, potentially allowing access to stored representations for moment-to-moment interpretation of an ever-changing environment.SIGNIFICANCE STATEMENT The default-mode network (DMN) is widely known for its association with internalized thinking processes, e.g., spontaneous thoughts, which is the most interesting but least understood component in human consciousness. The precuneus (PCu), a posteromedial DMN hub, is thought to play a role in this, but a mechanistic explanation has not yet been established. In this study we found that the associations between ventral PCu (vPCu)/dorsal PCu (dPCu) subdivisions and internally oriented network (IoN)/externally oriented network (EoN) are flexibly modulated by cognitive demand and correlate with task performance. We further propose that the recurrent causal connectivity between the ventral and dorsal PCu supports conscious processing by constantly interpreting external information based on an internal model, meanwhile updating the internal model with the incoming information.
Collapse
Affiliation(s)
- Dian Lyu
- University Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0SP, United Kingdom
- Department of Clinical Neuroscience, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0SP, United Kingdom
| | - Ioannis Pappas
- University Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0SP, United Kingdom
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720
| | - David K Menon
- University Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0SP, United Kingdom
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel A Stamatakis
- University Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0SP, United Kingdom
- Department of Clinical Neuroscience, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0SP, United Kingdom
| |
Collapse
|
50
|
Caldinelli C, Cusack R. The fronto-parietal network is not a flexible hub during naturalistic cognition. Hum Brain Mapp 2021; 43:750-759. [PMID: 34652872 PMCID: PMC8720185 DOI: 10.1002/hbm.25684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/12/2022] Open
Abstract
The fronto‐parietal network (FPN) is crucial for cognitively demanding tasks as it selectively represents task‐relevant information and controls other brain regions. To implement these functions, it has been argued that it is a flexible hub that reconfigures its functional connectivity with other networks. This was supported by a study in which a set of demanding tasks were presented, that varied in their sensory features, comparison rules, and response mappings, and the FPN showed greater reconfiguration of functional connectivity between tasks than any other network. However, this task set was designed to engage the FPN, and therefore it remains an open question whether the FPN is in a flexible hub in general or only for such task sets. Using two freely available datasets (Experiment 1, N = 15, Experiment 2, N = 644), we examined dynamic functional connectivity during naturalistic cognition, while participants watched a movie. Many differences in the flexibility were found across networks but the FPN was not the most flexible hub in the brain, during either movie for any of two measures, using a regression model or a correlation model and across five timescales. We, therefore, conclude that the FPN does not have the trait of being a flexible hub, although it may adopt this state for particular task sets.
Collapse
Affiliation(s)
- Chiara Caldinelli
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin
| | - Rhodri Cusack
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin
| |
Collapse
|