1
|
Yan S, Yuan A, Shao G, Zhou W, Xu X, Dong MQ, Liu X, Li J. SUMOylation targets O-GlcNAcase to chaperone-mediated autophagy. J Biol Chem 2025:110314. [PMID: 40449592 DOI: 10.1016/j.jbc.2025.110314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 05/08/2025] [Accepted: 05/10/2025] [Indexed: 06/03/2025] Open
Abstract
O-GlcNAcase (OGA) is the sole eraser for the intracellular O-linked N-acetylglucosamine (O-GlcNAc). OGA has many roles in distinct biological processes, such as cancer and embryonic stem cells, but its precise regulatory mechanism is far from being understood. Herein we studied the small ubiquitin-like modifier (SUMO) modification of OGA, and found that OGA is SUMOylated at K358. SUMOylation targets OGA to the chaperone-mediated autophagy (CMA) pathway, which shunts client proteins to the lysosome for degradation. We demonstrate that SUMOylation increases the association between OGA and the heat shock cognate protein 70 (HSC70), the CMA chaperone, and facilitates OGA further degradation. We further mapped a SUMO-interacting motif (SIM) (VLIFD, aa. 195-199) on HSC70. Notably, HSC70-SIM is essential for affinity with other CMA client proteins, such as PKM2. We thus posit that the SIM of HSC70 binds SUMOylated client proteins in a lock-and-key manner to confer substrate selectivity during CMA. To further test our hypothesis, we used label-free quantitative mass spectrometry to study the HSC70-SIM mutant interactome, and generated a proteome-wide SUMO-mediated CMA client pool. We then validated this model by studying YEATS domain containing 2 (YEATS2) from the protein pool, and demonstrated that YEATS2 is SUMOylated at K592, targeting it to CMA. Our work uncovers the SUMO-SIM interaction as a fundamental mechanism governing CMA substrate selectivity and identifies a potential CMA client proteome to deepen our understanding of its pathophysiological relevance.
Collapse
Affiliation(s)
- Sheng Yan
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Aiyun Yuan
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Guangcan Shao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wen Zhou
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xin Xu
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing 100032, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xiaoqian Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 250100, China.
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
2
|
Roy J, Kumar A, Chakravarty S, Biswas NK, Goswami S, Mazumder A. Dynamic interaction of MYC enhancer RNA with YEATS2 protein regulates MYC gene transcription in pancreatic cancer. EMBO Rep 2025; 26:2519-2544. [PMID: 40216980 PMCID: PMC12117045 DOI: 10.1038/s44319-025-00446-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 05/29/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most prevalent and aggressive forms of pancreatic cancer with low survival rates and limited treatment options. Aberrant expression of the MYC oncogene promotes PDAC progression. Recent reports have established a role for enhancer RNAs (eRNAs), originating from active enhancers, in controlling gene transcription. Here we show that a novel MYC eRNA regulates MYC gene expression during chronic inflammatory conditions in pancreatic cancer cells. A higher amount of MYC eRNA is observed in chronic pancreatitis and in pancreatic cancer patients. We show that MYC eRNA interacts with YEATS2, a histone reader protein of the ATAC-HAT complex, and augments the association of YEATS2-containing ATAC complexes with MYC promoter/enhancer regions and thus increases MYC gene expression. TNF-α induced Tyrosine dephosphorylation of the YEATS domain increases MYC eRNA binding to the YEATS2 protein in pancreatic cancer cells. Our study adds another regulatory layer of MYC gene expression by enhancer-driven transcription.
Collapse
Affiliation(s)
- Jayita Roy
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, West Bengal, 741251, India
- Regional Centre for Biotechnology, Faridabad, Haryana, 121001, India
| | - Aniket Kumar
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, West Bengal, 741251, India
- Regional Centre for Biotechnology, Faridabad, Haryana, 121001, India
| | - Shouvik Chakravarty
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, West Bengal, 741251, India
- Regional Centre for Biotechnology, Faridabad, Haryana, 121001, India
| | - Nidhan K Biswas
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, West Bengal, 741251, India
- Regional Centre for Biotechnology, Faridabad, Haryana, 121001, India
| | - Srikanta Goswami
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, West Bengal, 741251, India.
- Regional Centre for Biotechnology, Faridabad, Haryana, 121001, India.
| | - Anup Mazumder
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, West Bengal, 741251, India.
| |
Collapse
|
3
|
Becht DC, Song J, Selvam K, Yin K, Bai W, Zhao Y, Wu R, Zheng YG, Kutateladze TG. The YEATS domain is a selective reader of histone methacrylation. Structure 2025:S0969-2126(25)00144-3. [PMID: 40339582 DOI: 10.1016/j.str.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/18/2025] [Accepted: 04/11/2025] [Indexed: 05/10/2025]
Abstract
Metabolically regulated lysine acylation modifications in proteins play a major role in epigenetic processes and cellular homeostasis. A new type of histone acylation, lysine methacrylation, has recently been identified but remains poorly characterized. Here, we show that lysine methacrylation can be generated through metabolism of sodium methacrylate and enzymatically removed in cells, and that the YEATS domain but not bromodomain recognizes this modification. Structural and biochemical analyses reveal the π-π-π-stacking mechanism for binding of the YEATS domain of ENL to methacrylated histone H3K18 (H3K18mc). Using mass spectrometry proteomics, we demonstrate that methacrylate induces global methacrylation of a set of proteins that differs from the set of methacrylated proteins associated with valine metabolism. These findings suggest that high levels of methacrylate may potentially perturb cellular functions of these proteins by altering protein methacrylation profiles.
Collapse
Affiliation(s)
- Dustin C Becht
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jiabao Song
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Karthik Selvam
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kejun Yin
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Weizhi Bai
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA.
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
4
|
Ji K, Chen G, Wang Y, Li Y, Chen J, Feng M. YEATS2: a novel cancer epigenetic reader and potential therapeutic target. Cancer Cell Int 2025; 25:162. [PMID: 40287757 PMCID: PMC12034173 DOI: 10.1186/s12935-025-03797-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
YEATS2, an evolutionarily conserved reader of histone acylation marks (H3K27ac, H3K27cr, H3K27bz), functions as a central oncogenic driver in diverse cancers, including non-small cell lung cancer (NSCLC), pancreatic ductal adenocarcinoma (PDAC), and hepatocellular carcinoma (HCC). Its structurally plastic YEATS domain bridges acyl-CoA metabolism to chromatin remodeling, amplifying transcription of survival genes such as MYC, BCL2, and PD-L1. YEATS2 orchestrates malignancy-specific programs-sustaining ribosome biogenesis in NSCLC through ATAC complex recruitment, enhancing NF-κB-dependent immune evasion in PDAC, and activating PI3K/AKT-driven metabolic rewiring in HCC. Structural studies demonstrate a unique aromatic cage architecture that selectively engages diverse acylated histones. Although pyrazolopyridine-based inhibitors targeting the YEATS domain show preclinical efficacy, developing isoform-selective agents remains challenging. Clinically, YEATS2 overexpression correlates with therapy resistance and may synergize with immune checkpoint blockade. This review integrates mechanistic insights into the role of YEATS2 in epigenetic regulation, evaluates its therapeutic potential, and proposes future directions: elucidating full-length complex topologies, mapping synthetic lethal interactors, and optimizing selective inhibitors. Disrupting YEATS2-mediated epigenetic adaptation presents novel opportunities for precision cancer therapy.
Collapse
Affiliation(s)
- Kangkang Ji
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Department of Clinical Medical Research, Binhai County People's Hospital, Clinical Medical College of Yangzhou University, Yancheng, 224500, Jiangsu, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Guoping Chen
- Department of Clinical Medical Research, Binhai County People's Hospital, Clinical Medical College of Yangzhou University, Yancheng, 224500, Jiangsu, China
| | - Yan Wang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yunyi Li
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jian Chen
- Department of Head and Neck Surgery, Tongji Medical College, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, 430070, China.
| | - Mingqian Feng
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
5
|
Xue Z, Xuan H, Lau K, Su Y, Wegener M, Li K, Turner L, Adams M, Shi X, Wen H. Expression of ENL YEATS domain tumor mutations in nephrogenic or stromal lineage impairs kidney development. Nat Commun 2025; 16:2531. [PMID: 40087269 PMCID: PMC11909213 DOI: 10.1038/s41467-025-57926-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
Recurrent gain-of-function mutations in the histone reader protein ENL have been identified in Wilms tumor, the most prevalent pediatric kidney cancer. However, their pathological significance in kidney development and tumorigenesis in vivo remains elusive. Here, we generate mouse models mimicking ENL tumor (ENLT) mutations and show that heterozygous mutant expression in Six2+ nephrogenic or Foxd1+ stromal lineages leads to severe, lineage-specific kidney defects, both resulting in neonatal lethality. Six2-ENLT mutant kidneys display compromised cap mesenchyme, scant nephron tubules, and cystic glomeruli, indicative of premature progenitor commitment and blocked differentiation. Bulk and spatial transcriptomic analyses reveal aberrant activation of Hox and Wnt signaling genes in mutant nephrogenic cells. In contrast, Foxd1-ENLT mutant kidneys exhibit expansion in renal capsule and cap mesenchyme, with dysregulated stromal gene expression affecting stroma-epithelium crosstalk. Our findings uncover distinct pathways through which ENL mutations disrupt nephrogenesis, providing a foundation for further investigations into their role in tumorigenesis.
Collapse
Affiliation(s)
- Zhaoyu Xue
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Hongwen Xuan
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Kin Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Yangzhou Su
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Marc Wegener
- Genomics Core, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Kuai Li
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Lisa Turner
- Pathology Core, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Marie Adams
- Genomics Core, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Xiaobing Shi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Hong Wen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
6
|
Bi L, Wang X, Li J, Li W, Wang Z. Epigenetic modifications in early stage lung cancer: pathogenesis, biomarkers, and early diagnosis. MedComm (Beijing) 2025; 6:e70080. [PMID: 39991629 PMCID: PMC11843169 DOI: 10.1002/mco2.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 02/25/2025] Open
Abstract
The integration of liquid biopsy with epigenetic markers offers significant potential for early lung cancer detection and personalized treatment. Epigenetic alterations, including DNA methylation, histone modifications, and noncoding RNA changes, often precede genetic mutations and are critical in cancer progression. In this study, we explore how liquid biopsy, combined with epigenetic markers, can provide early detection of lung cancer, potentially predicting onset up to 4 years before clinical diagnosis. We discuss the challenges of targeting epigenetic regulators, which could disrupt cellular balance if overexploited, and the need for maintaining key gene expressions in therapeutic applications. This review highlights the promise and challenges of using liquid biopsy and epigenetic markers for early-stage lung cancer diagnosis, with a focus on optimizing treatment strategies for personalized and precision medicine.
Collapse
Affiliation(s)
- Lingfeng Bi
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xin Wang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Jiayi Li
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan UniversityChengduSichuanChina
- The Research Units of West China, Chinese Academy of Medical SciencesWest China HospitalChengduSichuanChina
| | - Zhoufeng Wang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan UniversityChengduSichuanChina
- The Research Units of West China, Chinese Academy of Medical SciencesWest China HospitalChengduSichuanChina
| |
Collapse
|
7
|
Zhai Y, Zhang F, Shi X, Zou S, Hu X, Shan C, Zhang L, Zou B, Yang X, Kong P, Cheng X. YEATS2 promotes malignant phenotypes of esophageal squamous cell carcinoma via H3K27ac activated-IL6ST. Front Cell Dev Biol 2025; 13:1497290. [PMID: 40040791 PMCID: PMC11876388 DOI: 10.3389/fcell.2025.1497290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/27/2025] [Indexed: 03/06/2025] Open
Abstract
Introduction Histone acetylation modifications can regulate gene transcription and play crucial roles in multiple tumorigeneses processes. YEATS domain proteins are one important type of acetylation readers. We have found significant mutations and copy number amplifications of YEATS domain containing 2 (YEATS2) gene in esophageal squamous cell carcinoma (ESCC) through whole genome sequencing (WGS). However, the function and molecular mechanism of YEATS2 in ESCC remain elusive. Methods Chi-squared test and Kaplan-Meier methods were used to analyze the clinical significance of YEATS2. MTT, Colony Formation Assay, Transwell, Scratch Wound Healing, subcutaneous tumorigenesis model and lung metastatic tumor model were performed to detect YEATS2 effect on the proliferation and migration ability of ESCC cells in vivo and in vitro Co-IP-based mass spectrum (MS) assays and Chromatin immunoprecipitation (ChIP) were performed to explore the molecular mechanism of YEATS2 function in ESCC. Results ESCC patients with copy number amplification of YEATS2 had shorter postoperative survival. Furthermore, YEATS2 expression was positively correlated with copy number amplification. We have also found that YEATS2 expression was significantly upregulated in ESCC tissues and was correlated closely with the differentiation degree of ESCC cells. The results of in vivo and in vitro experiments revealed that YEATS2 enhanced the abilities of ESCC cells to proliferate and migrate. Mechanistically, YEATS2 activated NF-κB signaling to promote ESCC progression. YEATS2 and H3K27 acetylation (H3K27ac) were both enriched in the promoter region of IL6ST, which is involved in the regulation of YEATS2 on NF-κB signaling. Additionally, YEATS2 could recruit TAF15 and KAT5 to enhance H3K27ac enrichment in the promoter region of IL6ST to regulate its expression. Conclusion In conclusion, YEATS2 might function as a potential driver gene and a potential therapeutic target in ESCC.
Collapse
Affiliation(s)
- Yuanfang Zhai
- Key Laboratory of Cellular Physiology of the Ministry of Education (Shanxi Medical University), Translational Medicine Research Center, Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Anatomy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Fanyu Zhang
- Key Laboratory of Cellular Physiology of the Ministry of Education (Shanxi Medical University), Translational Medicine Research Center, Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoyu Shi
- Key Laboratory of Cellular Physiology of the Ministry of Education (Shanxi Medical University), Translational Medicine Research Center, Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Siwei Zou
- Key Laboratory of Cellular Physiology of the Ministry of Education (Shanxi Medical University), Translational Medicine Research Center, Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoling Hu
- Key Laboratory of Cellular Physiology of the Ministry of Education (Shanxi Medical University), Translational Medicine Research Center, Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chengyuan Shan
- Key Laboratory of Cellular Physiology of the Ministry of Education (Shanxi Medical University), Translational Medicine Research Center, Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ling Zhang
- Key Laboratory of Cellular Physiology of the Ministry of Education (Shanxi Medical University), Translational Medicine Research Center, Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Binbin Zou
- Key Laboratory of Cellular Physiology of the Ministry of Education (Shanxi Medical University), Translational Medicine Research Center, Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xin Yang
- Key Laboratory of Cellular Physiology of the Ministry of Education (Shanxi Medical University), Translational Medicine Research Center, Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Pengzhou Kong
- Key Laboratory of Cellular Physiology of the Ministry of Education (Shanxi Medical University), Translational Medicine Research Center, Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolong Cheng
- Key Laboratory of Cellular Physiology of the Ministry of Education (Shanxi Medical University), Translational Medicine Research Center, Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
8
|
Tian X, Liu G, Ji L, Shen Y, Gu J, Wang L, Ma J, Xia Z, Li X. Histone-acetyl epigenome regulates TGF-β pathway-associated chemoresistance in colorectal cancer. Transl Oncol 2025; 51:102166. [PMID: 39522302 PMCID: PMC11585898 DOI: 10.1016/j.tranon.2024.102166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/08/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
TGF-β signaling pathway has been demonstrated to be closely related to chemoresistance, which is the major cause of recurrence and poor outcome in colorectal cancer (CRC), however, the comprehensive epigenetic landscape that functionally implicates in the regulation of TGF-β pathway-associated chemoresistance has not yet well established in CRC. In our study, chromatin immunoprecipitation sequencing (ChIP-seq) and Western blot were employed to investigate epigenetic modifications for histones in response to TGF-β1 intervene. We found that the activation of the TGF-β pathway was characterized by genome-wide high levels of H3K9ac and H3K18ac. Mechanistically, the activation of the TGF-β signaling pathway leads to the downregulation of the deacetylase HDAC4, resulting in the upregulation of H3K9ac and H3K18ac. Consequently, this cascade induces oxaliplatin chemoresistance in CRC by triggering the anti-apoptotic PI3K/AKT signaling pathway. Our in vivo experiment results confirmed that overexpression of HDAC4 significantly enhances the sensitivity of CRC to oxaliplatin chemotherapy. Moreover, the expression level of HDAC4 was positively correlated with patients' prognosis in CRC. Our data suggest that histone-acetyl modification demonstrates a crucial role in modulating TGF-β pathway-associated chemoresistance in CRC, and HDAC4 would be a biomarker for prognostic prediction and potential therapeutic target for treatment in CRC.
Collapse
Affiliation(s)
- Xianglong Tian
- Department of Gastroenterology, Shanghai Eighth People's Hospital, Xuhui Branch of Shanghai Sixth People's Hospital, 20030, China.
| | - Guihua Liu
- Department of General Practice, Minhang District Hongqiao Community Health Service Center, Shanghai, 201103, China
| | - Linhua Ji
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yi Shen
- Department of Gastroenterology, Shanghai Eighth People's Hospital, Xuhui Branch of Shanghai Sixth People's Hospital, 20030, China
| | - Junjun Gu
- Department of Gastroenterology, Shanghai Eighth People's Hospital, Xuhui Branch of Shanghai Sixth People's Hospital, 20030, China
| | - Lili Wang
- Department of Gastroenterology, Shanghai Eighth People's Hospital, Xuhui Branch of Shanghai Sixth People's Hospital, 20030, China
| | - Jiali Ma
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Zuguang Xia
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Xinghua Li
- Department of Gastroenterology, Shanghai Eighth People's Hospital, Xuhui Branch of Shanghai Sixth People's Hospital, 20030, China.
| |
Collapse
|
9
|
Wang X, Wang L, Zhou Z, Jiang C, Bao Z, Wang Y, Zhang Y, Song L, Zhao Y, Li X, Li Q, Shen Y, Yu Y, Mi W. The ATAC complex represses the transcriptional program of the autophagy-lysosome pathway via its E3 ubiquitin ligase activity. Cell Rep 2024; 43:115033. [PMID: 39643968 DOI: 10.1016/j.celrep.2024.115033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/16/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024] Open
Abstract
The Ada two A-containing (ATAC) complex, containing histone acetyltransferases general control non-derepressible 5 (GCN5) or p300/CBP-associated factor (PCAF), has gained recognition as a prominent transcriptional coactivator. Recent revelations unveiled E3 ligase activity present in both GCN5 and PCAF; however, how the dual enzymatic activities of the ATAC complex orchestrate distinct transcriptional programs and signaling networks remains largely elusive. Our study unveils the function of the ATAC complex as a negative regulator of the autophagy-lysosome pathway's transcriptional program by modulating the stability of transcription factors TFE3 and TFEB. The ATAC complex primarily impacts TFE3/TFEB destabilization through its E3 ligase activity rather than its acetyltransferase function. GCN5/PCAF-mediated ubiquitination prompts the proteasome-dependent degradation of TFE3 and TFEB. Furthermore, inactivation of the ATAC complex amplifies TFE3/TFEB-mediated autophagy-lysosome functions, thereby promoting cell survival during nutrient deprivation. In summary, our findings establish the "ATAC complex-TFE3/TFEB-autophagy-lysosome" axis as an intrinsic regulatory pathway for resisting starvation-induced cell death.
Collapse
Affiliation(s)
- Xiaolu Wang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Lingling Wang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhili Zhou
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Chenhao Jiang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Ziyu Bao
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuexin Wang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Ying Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Lili Song
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yueling Zhao
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xinying Li
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qianqian Li
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yujun Shen
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Ying Yu
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Tianjin Medical University, Tianjin 300070, China.
| | - Wenyi Mi
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
10
|
Long Y, Wang W, Liu S, Wang X, Tao Y. The survival prediction analysis and preliminary study of the biological function of YEATS2 in hepatocellular carcinoma. Cell Oncol (Dordr) 2024; 47:2297-2316. [PMID: 39718737 DOI: 10.1007/s13402-024-01019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2024] [Indexed: 12/25/2024] Open
Abstract
PURPOSE Our study aims to develop and validate a novel molecular marker for the prognosis and diagnosis of hepatocellular carcinoma (HCC) MATERIALS & METHODS: We retrospectively analyzed mRNA expression profile and clinicopathological data of HCC patients fetched from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and The International Cancer Genome Consortium (ICGC) datasets. Univariate Cox regression analysis was performed to collect differentially expressed mRNA (DEmRNAs) from HCC and non-tumor tissues, and YEATS2, a prognostic marker, was identified by further analysis. ROC curve, survival analysis and multivariate Cox regression analysis as well as nomograms were used to evaluate the prognosis of this gene. Finally, the biological function of this gene was preliminarily discussed by using single gene Gene Set Enrichment Analysis (GSEA), and the YEATS2 overexpression and knockdown hepatoma cell line was used to verify the results in vitro and in vivo. RESULTS Based on the clinical information of HCC in TCGA, GEO and ICGC databases, the gene YEATS2 with significant differences from HCC was identified. There was a statistical difference in the survival prognosis between the two databases and the ROC curve showed that the survival of HCC in both TCGA, GSE14520 and ICGC groups had a satisfactory predictive effect. Univariate and multivariate Cox regression analysis showed that YEATS2 was an independent prognostic factor for HCC, and Nomograms, which combined this prognostic feature with significant clinical features, provided an important reference for the clinical prognostic diagnosis of HCC. Next, we constructed overexpression and knockdown YEATS2 cell line in Hep3B and LM3 cells, and further proved that overexpression YEATS2 promote the proliferation and migration of HCC cells by CCK8, colony formation experiment, and transwell assays, and knockdown YEATS2 inhibited the proliferation and migration of HCC cells by CCK8, colony formation experiment, and transwell assays. Finally, the biological function of YEATS2 was preliminarily explored through GSEA analysis of a single gene, and it was found that it was significantly correlated with cell cycle and DNA repair, which provided us with ideas for further analysis. Furthermore, the knockdown of YEATS2 promoted radiation-induced DNA damage, enhanced radiosensitivity, and ultimately inhibited the proliferation of hepatocellular carcinoma cells in vitro and in vivo. CONCLUSIONS Our study identified a promising prognostic marker for hepatocellular carcinoma that is useful for clinical decision-making and individualized treatment.
Collapse
Affiliation(s)
- Yao Long
- Cancer Research Institute; School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wei Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Shouping Liu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiang Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China.
- Cancer Research Institute; School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
11
|
Dai W, Qiao X, Fang Y, Guo R, Bai P, Liu S, Li T, Jiang Y, Wei S, Na Z, Xiao X, Li D. Epigenetics-targeted drugs: current paradigms and future challenges. Signal Transduct Target Ther 2024; 9:332. [PMID: 39592582 PMCID: PMC11627502 DOI: 10.1038/s41392-024-02039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Epigenetics governs a chromatin state regulatory system through five key mechanisms: DNA modification, histone modification, RNA modification, chromatin remodeling, and non-coding RNA regulation. These mechanisms and their associated enzymes convey genetic information independently of DNA base sequences, playing essential roles in organismal development and homeostasis. Conversely, disruptions in epigenetic landscapes critically influence the pathogenesis of various human diseases. This understanding has laid a robust theoretical groundwork for developing drugs that target epigenetics-modifying enzymes in pathological conditions. Over the past two decades, a growing array of small molecule drugs targeting epigenetic enzymes such as DNA methyltransferase, histone deacetylase, isocitrate dehydrogenase, and enhancer of zeste homolog 2, have been thoroughly investigated and implemented as therapeutic options, particularly in oncology. Additionally, numerous epigenetics-targeted drugs are undergoing clinical trials, offering promising prospects for clinical benefits. This review delineates the roles of epigenetics in physiological and pathological contexts and underscores pioneering studies on the discovery and clinical implementation of epigenetics-targeted drugs. These include inhibitors, agonists, degraders, and multitarget agents, aiming to identify practical challenges and promising avenues for future research. Ultimately, this review aims to deepen the understanding of epigenetics-oriented therapeutic strategies and their further application in clinical settings.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinbo Qiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shuang Liu
- Shenyang Maternity and Child Health Hospital, Shenyang, China
| | - Tingting Li
- Department of General Internal Medicine VIP Ward, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yutao Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Wei
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
12
|
Dent SYR. KAT tales: Functions of Gcn5 and PCAF lysine acetyltransferases in SAGA and ATAC. J Biol Chem 2024; 300:107744. [PMID: 39222683 PMCID: PMC11439848 DOI: 10.1016/j.jbc.2024.107744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/07/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
The Allis group identified Gcn5 as the first transcription-related lysine acetyltransferase in 1996, providing a molecular "missing link" between chromatin organization and gene regulation. This review will focus on functions subsequently identified for Gcn5 and the closely related PCAF protein, in the context of two major complexes, SAGA and ATAC, and how the study of these enzymes informs long standing questions regarding the importance of lysine acetylation.
Collapse
Affiliation(s)
- Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer, Center for Cancer Epigenetics, University of Texas M.D. Anderson/UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA.
| |
Collapse
|
13
|
Wu J, Ding Z, Zhong M, Xi J, He Y, Zhang B, Fang J. Polyphyllin II Induces Apoptosis in Fibrosarcoma Cells via Activating Pyruvate Kinase M2. Chem Res Toxicol 2024; 37:1394-1403. [PMID: 39066737 DOI: 10.1021/acs.chemrestox.4c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Aerobic glycolysis is a metabolic reprogramming of tumor cells that is essential for sustaining their phenotype of fast multiplication by continuously supplying energy and mass. Pyruvate kinase M2 (PKM2) has a vital role in this process, which has given it high interest as a target for anticancer drug development. With potent toxicity to many types of cancer cells, polyphyllin II (PP2), a steroidal saponin isolated from the herbaceous plant Rhizoma paridis, brought to our attention that it might interfere with the PKM2 activity. In this study, we discovered that PP2 was a novel agonist of PKM2. PP2 activated recombinant PKM2 and changed the protein's oligomeric state to activate intracellular PKM2. At the same time, PP2 suppressed its protein kinase function by decreasing the content of nuclear PKM2. The mRNA levels of its downstream genes, such as Glut1, LDHA, and MYC, were inhibited. In addition, PP2 induced oxidative stress by downregulating the expression and activity of antioxidant proteins such as NQO1, TrxR, and Trx in HT-1080 cells, which in turn led to mitochondrial dysfunction and ultimately induced apoptosis. Moreover, PP2 reduced the proliferation and migration of HT-1080 cells. Thus, targeting the glycolysis pathway offers an unprecedented mode of action for comprehending PP2's pharmacological impacts and advances PP2's further development in fibrosarcoma therapy.
Collapse
Affiliation(s)
- Jun Wu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhenjiang Ding
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries, Beijing 100015, China
| | - Miao Zhong
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junmin Xi
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ying He
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 , Jiangsu, China
| |
Collapse
|
14
|
Mavridou D, Psatha K, Aivaliotis M. Integrative Analysis of Multi-Omics Data to Identify Deregulated Molecular Pathways and Druggable Targets in Chronic Lymphocytic Leukemia. J Pers Med 2024; 14:831. [PMID: 39202022 PMCID: PMC11355716 DOI: 10.3390/jpm14080831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic Lymphocytic Leukemia (CLL) is the most common B-cell malignancy in the Western world, characterized by frequent relapses despite temporary remissions. Our study integrated publicly available proteomic, transcriptomic, and patient survival datasets to identify key differences between healthy and CLL samples. We exposed approximately 1000 proteins that differentiate healthy from cancerous cells, with 608 upregulated and 415 downregulated in CLL cases. Notable upregulated proteins include YEATS2 (an epigenetic regulator), PIGR (Polymeric immunoglobulin receptor), and SNRPA (a splicing factor), which may serve as prognostic biomarkers for this disease. Key pathways implicated in CLL progression involve RNA processing, stress resistance, and immune response deficits. Furthermore, we identified three existing drugs-Bosutinib, Vorinostat, and Panobinostat-for potential further investigation in drug repurposing in CLL. We also found limited correlation between transcriptomic and proteomic data, emphasizing the importance of proteomics in understanding gene expression regulation mechanisms. This generally known disparity highlights once again that mRNA levels do not accurately predict protein abundance due to many regulatory factors, such as protein degradation, post-transcriptional modifications, and differing rates of translation. These results demonstrate the value of integrating omics data to uncover deregulated proteins and pathways in cancer and suggest new therapeutic avenues for CLL.
Collapse
Affiliation(s)
- Dimitra Mavridou
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), GR-57001 Thessaloniki, Greece;
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Konstantina Psatha
- Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), GR-57001 Thessaloniki, Greece;
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Laboratory of Medical Biology—Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Michalis Aivaliotis
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), GR-57001 Thessaloniki, Greece;
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
15
|
Du N, Yi L, Wang J, Lei Y, Bo X, Guo F, Wang R, Chai J, Liu G. High expression of YEATS2 as a predictive factor of poor prognosis in patients with hepatocellular carcinoma. Sci Rep 2024; 14:17246. [PMID: 39060453 PMCID: PMC11282058 DOI: 10.1038/s41598-024-68348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024] Open
Abstract
YEATS domain containing 2 (YEATS2), it may function as a proto-oncogene. This study aims to investigate if YEATS2 correlates with prognosis in hepatocellular carcinoma. The prognostic landscape of YEATS2 and its relationship with expression in hepatocellular carcinoma were deciphered with public databases, RT-qPCR and western-blot in tissue samples. The expression profiling and prognostic value of YEATS2 were explored using UALCAN, TIMER, OncoLnc database. Transcription and survival analyses of YEATS2 in hepatocellular carcinoma were investigated with cBioPortal database. The STRING database was explored to identify molecular functions and signaling pathways downstream of YEATS2. YEATS2 expression was significantly higher in hepatocellular carcinoma compared with adjacent non-malignant tissues. Promoter methylation of YEATS2 exhibited different patterns in hepatocellular carcinoma. High expression of YEATS2 was associated with poorer survival. Mechanistically, YEATS2 was involved in mediating multiple biological processes including morphogenesis and migration.
Collapse
Affiliation(s)
- Ning Du
- Department of Hepatobiliary Surgery, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Lili Yi
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Jiamu Wang
- Department of Hepatobiliary Surgery, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Yongqiang Lei
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Xiaohui Bo
- Department of Hepatobiliary Surgery, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Fangjie Guo
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Ruhao Wang
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Jian Chai
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, 252000, China.
| | - Guijie Liu
- Department of Hepatobiliary Surgery, Liaocheng People's Hospital, Liaocheng, 252000, China.
| |
Collapse
|
16
|
Wang X, Li X, Wei L, Yu Y, Hazaisihan Y, Tao L, Jia W. Acetylation model predicts prognosis of patients and affects immune microenvironment infiltration in epithelial ovarian carcinoma. J Ovarian Res 2024; 17:150. [PMID: 39030559 PMCID: PMC11264718 DOI: 10.1186/s13048-024-01449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/06/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Epithelial ovarian carcinoma (EOC) is a prevalent gynaecological malignancy. The prognosis of patients with EOC is related to acetylation modifications and immune responses in the tumour microenvironment (TME). However, the relationships between acetylation-related genes, patient prognosis, and the tumour immune microenvironment (TIME) are not yet understood. Our research aims to investigate the link between acetylation and the tumour microenvironment, with the goal of identifying new biomarkers for estimating survival of patients with EOC. METHODS Using data downloaded from the tumour genome atlas (TCGA), genotypic tissue expression (GTEx), and gene expression master table (GEO), we comprehensively evaluated acetylation-related genes in 375 ovarian cancer specimens and identified molecular subtypes using unsupervised clustering. The prognosis, TIME, stem cell index and functional concentration analysis were compared among the three groups. A risk model based on differential expression of acetylation-related genes was established through minimum absolute contraction and selection operator (LASSO) regression analysis, and the predictive validity of this feature was validated using GEO data sets. A nomogram is used to predict a patient's likelihood of survival. In addition, different EOC risk groups were evaluated for timing, tumour immune dysfunction and exclusion (TIDE) score, stemness index, somatic mutation, and drug sensitivity. RESULTS We used the mRNA levels of the differentially expressed genes related to acetylation to classify them into three distinct clusters. Patients with increased immune cell infiltration and lower stemness scores in cluster 2 (C2) exhibited poorer prognosis. Immunity and tumourigenesis-related pathways were highly abundant in cluster 3 (C3). We developed a prognostic model for ten differentially expressed acetylation-related genes. Kaplan-Meier analysis demonstrated significantly worse overall survival (OS) in high-risk patients. Furthermore, the TIME, tumour immune dysfunction and exclusion (TIDE) score, stemness index, tumour mutation burden (TMB), immunotherapy response, and drug sensitivity all showed significant correlations with the risk scores. CONCLUSIONS Our study demonstrated a complex regulatory mechanism of acetylation in EOC. The assessment of acetylation patterns could provide new therapeutic strategies for EOC immunotherapy to improve the prognosis of patients.
Collapse
Affiliation(s)
- Xuan Wang
- First Affiliated Hospital, Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi University School of Medicine, Shihezi, China
| | - Xiaoning Li
- First Affiliated Hospital, Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi University School of Medicine, Shihezi, China
| | - Li Wei
- First Affiliated Hospital, Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi University School of Medicine, Shihezi, China
| | - Yankun Yu
- First Affiliated Hospital, Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi University School of Medicine, Shihezi, China
| | - Yeernaer Hazaisihan
- First Affiliated Hospital, Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi University School of Medicine, Shihezi, China
| | - Lin Tao
- First Affiliated Hospital, Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi University School of Medicine, Shihezi, China
| | - Wei Jia
- First Affiliated Hospital, Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi University School of Medicine, Shihezi, China.
| |
Collapse
|
17
|
Tian G, Li X, Li XD. Genetically Encoded Epitope Tag for Probing Lysine Acylation-Mediated Protein-Protein Interactions. ACS Chem Biol 2024; 19:1376-1386. [PMID: 38829775 DOI: 10.1021/acschembio.4c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Histone lysine acetylation (Kac) and crotonylation (Kcr) marks mediate the recruitment of YEATS domains to chromatin. In this way, YEATS domain-containing proteins such as AF9 participate in the regulation of DNA-templated processes. Our previous study showed that the replacement of Kac/Kcr by a 2-furancarbonyllysine (Kfu) residue led to greatly enhanced affinity toward the AF9 YEATS domain, rendering Kfu-containing peptides useful chemical tools to probe the AF9 YEATS-Kac/Kcr interactions. Here, we report the genetic incorporation of Kfu in Escherichia coli and mammalian cells through the amber codon suppression technology. We develop a Kfu-containing epitope tag, termed RAY-tag, which can robustly and selectively engage with the AF9 YEATS domain in vitro and in cellulo. We further demonstrate that the fusion of RAY-tag to different protein modules, including fluorescent proteins and DNA binding proteins, can facilitate the interrogation of the histone lysine acylation-mediated recruitment of the AF9 YEATS domain in different biological contexts.
Collapse
Affiliation(s)
- Gaofei Tian
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Xin Li
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Xiang David Li
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| |
Collapse
|
18
|
Xie M, Zhou L, Li T, Lin Y, Zhang R, Zheng X, Zeng C, Zheng L, Zhong L, Huang X, Zou Y, Kang T, Wu Y. Targeting the KAT8/YEATS4 Axis Represses Tumor Growth and Increases Cisplatin Sensitivity in Bladder Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310146. [PMID: 38526153 PMCID: PMC11165526 DOI: 10.1002/advs.202310146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/13/2024] [Indexed: 03/26/2024]
Abstract
Bladder cancer (BC) is one of the most common tumors characterized by a high rate of relapse and a lack of targeted therapy. Here, YEATS domain-containing protein 4 (YEATS4) is an essential gene for BC cell viability using CRISPR-Cas9 library screening is reported, and that HUWE1 is an E3 ligase responsible for YEATS4 ubiquitination and proteasomal degradation by the Protein Stability Regulators Screening Assay. KAT8-mediated acetylation of YEATS4 impaired its interaction with HUWE1 and consequently prevented its ubiquitination and degradation. The protein levels of YEATS4 and KAT8 are positively correlated and high levels of these two proteins are associated with poor overall survival in BC patients. Importantly, suppression of YEATS4 acetylation with the KAT8 inhibitor MG149 decreased YEATS4 acetylation, reduced cell viability, and sensitized BC cells to cisplatin treatment. The findings reveal a critical role of the KAT8/YEATS4 axis in both tumor growth and cisplatin sensitivity in BC cells, potentially generating a novel therapeutic strategy for BC patients.
Collapse
Affiliation(s)
- Miner Xie
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- Department of HematologyGuangzhou First People's HospitalSouth China University of TechnologyGuangzhou510060P. R. China
| | - Liwen Zhou
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Ting Li
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yujie Lin
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Ruhua Zhang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Xianchong Zheng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Cuiling Zeng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Lisi Zheng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Li Zhong
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- Center of Digestive DiseaseScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518107P. R. China
| | - Xiaodan Huang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yezi Zou
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- School of MedicineShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yuanzhong Wu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| |
Collapse
|
19
|
Chen PH, Guo XS, Zhang HE, Dubey GK, Geng ZZ, Fierke CA, Xu S, Hampton JT, Liu WR. Leveraging a Phage-Encoded Noncanonical Amino Acid: A Novel Pathway to Potent and Selective Epigenetic Reader Protein Inhibitors. ACS CENTRAL SCIENCE 2024; 10:782-792. [PMID: 38680566 PMCID: PMC11046469 DOI: 10.1021/acscentsci.3c01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 05/01/2024]
Abstract
Epigenetic reader proteins interpret histone epigenetic marks to regulate gene expression. Given their vital roles and the link between their dysfunction and various diseases, these proteins present compelling targets for therapeutic interventions. Nevertheless, designing selective inhibitors for these proteins poses significant challenges, primarily due to their unique properties such as shallow binding sites and similarities with homologous proteins. To overcome these challenges, we propose an innovative strategy that uses phage display with a genetically encoded noncanonical amino acid (ncAA) containing an epigenetic mark. This ncAA guides binding to the reader protein's active site, allowing the identification of peptide inhibitors with enhanced affinity and selectivity. In this study, we demonstrate this novel approach's effectiveness by identifying potent inhibitors for the ENL YEATS domain that plays a critical role in leukemogenesis. Our strategy involved genetically incorporating Nε-butyryl-l-lysine (BuK), known for its binding to ENL YEATS, into a phage display library for enriching the pool of potent inhibitors. One resultant hit was further optimized by substituting BuK with other pharmacophores to exploit a unique π-π-π stacking interaction with ENL YEATS. This led to the creation of selective ENL YEATS inhibitors with a KD value of 2.0 nM and a selectivity 28 times higher for ENL YEATS than its close homologue AF9 YEATS. One such inhibitor, tENL-S1f, demonstrated robust cellular target engagement and on-target effects to inhibit leukemia cell growth and suppress the expression of ENL target genes. As a pioneering study, this work opens up extensive avenues for the development of potent and selective peptidyl inhibitors for a broad spectrum of epigenetic reader proteins.
Collapse
Affiliation(s)
- Peng-Hsun
Chase Chen
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xuejiao Shirley Guo
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hanyuan Eric Zhang
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Gopal K. Dubey
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zhi Zachary Geng
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Carol A. Fierke
- Department
of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Shiqing Xu
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Texas A&M
University, College
Station, Texas 77843, United States
| | - J. Trae Hampton
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wenshe Ray Liu
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Texas A&M
University, College
Station, Texas 77843, United States
- Institute
of Biosciences and Technology and Department of Translational Medical
Sciences, College of Medicine, Texas A&M
University, Houston, Texas 77030, United States
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Cell Biology and Genetics, College of Medicine, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
20
|
Pina C. Contributions of transcriptional noise to leukaemia evolution: KAT2A as a case-study. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230052. [PMID: 38432321 PMCID: PMC10909511 DOI: 10.1098/rstb.2023.0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/04/2023] [Indexed: 03/05/2024] Open
Abstract
Transcriptional noise is proposed to participate in cell fate changes, but contributions to mammalian cell differentiation systems, including cancer, remain associative. Cancer evolution is driven by genetic variability, with modulatory or contributory participation of epigenetic variants. Accumulation of epigenetic variants enhances transcriptional noise, which can facilitate cancer cell fate transitions. Acute myeloid leukaemia (AML) is an aggressive cancer with strong epigenetic dependencies, characterized by blocked differentiation. It constitutes an attractive model to probe links between transcriptional noise and malignant cell fate regulation. Gcn5/KAT2A is a classical epigenetic transcriptional noise regulator. Its loss increases transcriptional noise and modifies cell fates in stem and AML cells. By reviewing the analysis of KAT2A-depleted pre-leukaemia and leukaemia models, I discuss that the net result of transcriptional noise is diversification of cell fates secondary to alternative transcriptional programmes. Cellular diversification can enable or hinder AML progression, respectively, by differentiation of cell types responsive to mutations, or by maladaptation of leukaemia stem cells. KAT2A-dependent noise-responsive genes participate in ribosome biogenesis and KAT2A loss destabilizes translational activity. I discuss putative contributions of perturbed translation to AML biology, and propose KAT2A loss as a model for mechanistic integration of transcriptional and translational control of noise and fate decisions. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Cristina Pina
- College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, London, UB8 3PH, United Kingdom
- CenGEM – Centre for Genome Engineering and Maintenance, Brunel University London, Kingston Lane, Uxbridge, London, UB8 3PH, United Kingdom
| |
Collapse
|
21
|
Chen Y, Ying Y, Ma W, Ma H, Shi L, Gao X, Jia M, Li M, Song X, Kong W, Chen W, Zheng X, Muluh TA, Wang X, Wang M, Shu XS. Targeting the Epigenetic Reader ENL Inhibits Super-Enhancer-Driven Oncogenic Transcription and Synergizes with BET Inhibition to Suppress Tumor Progression. Cancer Res 2024; 84:1237-1251. [PMID: 38241700 DOI: 10.1158/0008-5472.can-23-1836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/23/2023] [Accepted: 01/18/2024] [Indexed: 01/21/2024]
Abstract
Epigenetic alterations at cis-regulatory elements (CRE) fine-tune transcriptional output. Epigenetic readers interact with CREs and can cooperate with other chromatin regulators to drive oncogene transcription. Here, we found that the YEATS domain-containing histone acetylation reader ENL (eleven-nineteen leukemia) acts as a key regulator of super-enhancers (SE), which are highly active distal CREs, across cancer types. ENL occupied the majority of SEs with substantially higher preference over typical enhancers, and the enrichment of ENL at SEs depended on its ability to bind acetylated histones. Rapid depletion of ENL by auxin-inducible degron tagging severely repressed the transcription of SE-controlled oncogenes, such as MYC, by inducing the decommissioning of their SEs, and restoring ENL protein expression largely reversed these effects. Additionally, ENL was indispensable for the rapid activation of SE-regulated immediate early genes in response to growth factor stimulation. Furthermore, ENL interacted with the histone chaperone FACT complex and was required for the deposition of FACT over CREs, which mediates nucleosome reorganization required for transcription initiation and elongation. Proper control of transcription by ENL and ENL-associated FACT was regulated by the histone reader BRD4. ENL was overexpressed in colorectal cancer and functionally contributed to colorectal cancer growth and metastasis. ENL degradation or inhibition synergized with BET inhibitors that target BRD4 in restraining colorectal cancer progression. These findings establish the essential role of epigenetic reader ENL in governing SE-driven oncogenic transcription and uncover the potential of ENL intervention to increase sensitivity to BET inhibition. SIGNIFICANCE ENL plays a key role in decoding epigenetic marks at highly active oncogenic super-enhancers and can be targeted in combination with BET inhibition as a promising synergistic strategy for optimizing cancer treatment.
Collapse
Affiliation(s)
- Yongheng Chen
- Department of Physiology, Shenzhen University Medical School, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
- Graduate Program of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen, China
| | - Ying Ying
- Department of Physiology, Shenzhen University Medical School, Shenzhen, China
| | - Wenlong Ma
- Department of Physiology, Shenzhen University Medical School, Shenzhen, China
| | - Hongchao Ma
- Department of Physiology, Shenzhen University Medical School, Shenzhen, China
| | - Liang Shi
- Department of Physiology, Shenzhen University Medical School, Shenzhen, China
| | - Xuefeng Gao
- Integrative Microecology Center, Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Min Jia
- Department of Physiology, Shenzhen University Medical School, Shenzhen, China
| | - Meiqi Li
- Department of Physiology, Shenzhen University Medical School, Shenzhen, China
| | - Xiaoman Song
- Department of Physiology, Shenzhen University Medical School, Shenzhen, China
| | - Weixiao Kong
- Department of Physiology, Shenzhen University Medical School, Shenzhen, China
| | - Wei Chen
- Department of Physiology, Shenzhen University Medical School, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Xiangyi Zheng
- Department of Physiology, Shenzhen University Medical School, Shenzhen, China
| | - Tobias Achu Muluh
- Department of Physiology, Shenzhen University Medical School, Shenzhen, China
| | - Xiaobin Wang
- Southern University of Science and Technology Hospital, Shenzhen, China
| | - Maolin Wang
- Department of Physiology, Shenzhen University Medical School, Shenzhen, China
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xing-Sheng Shu
- Department of Physiology, Shenzhen University Medical School, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
- Graduate Program of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
22
|
Liu J, Lu Y, Hu Y, Zhang Q, Wang S, Guo Z, Qing Z. Portable Detection of Lysine Acetyltransferase Activity in Lung Cancer Cells Based on a Miniature Electrochemical Sensor. Anal Chem 2024; 96:5546-5553. [PMID: 38551480 DOI: 10.1021/acs.analchem.3c05908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The detection of lysine acetyltransferases is crucial for diagnosing and treating lung cancer, highlighting the necessity for highly efficient detection methods. We developed a portable, highly accurate, and sensitive technique using fast-scan cyclic voltammetry (FSCV) to determine the activity of the lysine acetyltransferase TIP60, employing a novel miniature electrochemical sensor. This approach involves a compact electrochemical cell, merely 3 mm in diameter, that holds solutions up to 50 μL, equipped with a conductive indium tin oxide working electrode. Uniquely, this system operates on a two-electrode model compatible with the FSCV, obviating the traditional requirement for a reference electrode. The system detects TIP60 activity through the continuous generation of CoA molecules that engage in reactions with Cu(II), thereby significantly improving the accuracy of the acetylation analysis. Remarkably, the detection limit achieved for TIP60 is notably low at 3.3 pg/mL (S/N = 3). The results show that the reversible dynamic acetylation can be effectively regulated by inhibitor incubation and glucose stimulation. This cutting-edge strategy enhances the analysis of a broad spectrum of biomarkers by modifying the responsive unit, and its miniaturization and portability significantly amplify its applicability in biomedical research, promising it to be a versatile tool for early diagnostic and therapeutic interventions in lung cancer.
Collapse
Affiliation(s)
- Jiayue Liu
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yanmei Lu
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yufang Hu
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Qingqing Zhang
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Sui Wang
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zhiyong Guo
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| |
Collapse
|
23
|
Konuma T, Zhou MM. Distinct Histone H3 Lysine 27 Modifications Dictate Different Outcomes of Gene Transcription. J Mol Biol 2024; 436:168376. [PMID: 38056822 DOI: 10.1016/j.jmb.2023.168376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Site-specific histone modifications have long been recognized to play an important role in directing gene transcription in chromatin in biology of health and disease. However, concrete illustration of how different histone modifications in a site-specific manner dictate gene transcription outcomes, as postulated in the influential "Histone code hypothesis", introduced by Allis and colleagues in 2000, has been lacking. In this review, we summarize our latest understanding of the dynamic regulation of gene transcriptional activation, silence, and repression in chromatin that is directed distinctively by histone H3 lysine 27 acetylation, methylation, and crotonylation, respectively. This represents a special example of a long-anticipated verification of the "Histone code hypothesis."
Collapse
Affiliation(s)
- Tsuyoshi Konuma
- Graduate School of Medical Life Science, Yokohama 230-0045, Japan; School of Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
24
|
Chen Z, Li C, Zhou Y, Li P, Cao G, Qiao Y, Yao Y, Su J. Histone 3 lysine 9 acetylation-specific reprogramming regulates esophageal squamous cell carcinoma progression and metastasis. Cancer Gene Ther 2024; 31:612-626. [PMID: 38291129 DOI: 10.1038/s41417-024-00738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Dysregulation of histone acetylation is widely implicated in tumorigenesis, yet its specific roles in the progression and metastasis of esophageal squamous cell carcinoma (ESCC) remain unclear. Here, we profiled the genome-wide landscapes of H3K9ac for paired adjacent normal (Nor), primary ESCC (EC) and metastatic lymph node (LNC) esophageal tissues from three ESCC patients. Compared to H3K27ac, we identified a distinct epigenetic reprogramming specific to H3K9ac in EC and LNC samples relative to Nor samples. This H3K9ac-related reprogramming contributed to the transcriptomic aberration of targeting genes, which were functionally associated with tumorigenesis and metastasis. Notably, genes with gained H3K9ac signals in both primary and metastatic lymph node samples (common-gained gene) were significantly enriched in oncogenes. Single-cell RNA-seq analysis further revealed that the corresponding top 15 common-gained genes preferred to be enriched in mesenchymal cells with high metastatic potential. Additionally, in vitro experiment demonstrated that the removal of H3K9ac from the common-gained gene MSI1 significantly downregulated its transcription, resulting in deficiencies in ESCC cell proliferation and migration. Together, our findings revealed the distinct characteristics of H3K9ac in esophageal squamous cell carcinogenesis and metastasis, and highlighted the potential therapeutic avenue for intervening ESCC through epigenetic modulation via H3K9ac.
Collapse
Affiliation(s)
- Zhenhui Chen
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, 325101, Zhejiang, China
| | - Chenghao Li
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yue Zhou
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, Zhejiang, China
| | - Pengcheng Li
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, Zhejiang, China
| | - Guoquan Cao
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yunbo Qiao
- Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200125, China
| | - Yinghao Yao
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, 325101, Zhejiang, China.
| | - Jianzhong Su
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, 325101, Zhejiang, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, Zhejiang, China.
| |
Collapse
|
25
|
Wang Z, Yang X, Chen D, Liu Y, Li Z, Duan S, Zhang Z, Jiang X, Stockwell BR, Gu W. GAS41 modulates ferroptosis by anchoring NRF2 on chromatin. Nat Commun 2024; 15:2531. [PMID: 38514704 PMCID: PMC10957913 DOI: 10.1038/s41467-024-46857-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
YEATS domain-containing protein GAS41 is a histone reader and oncogene. Here, through genome-wide CRISPR-Cas9 screenings, we identify GAS41 as a repressor of ferroptosis. GAS41 interacts with NRF2 and is critical for NRF2 to activate its targets such as SLC7A11 for modulating ferroptosis. By recognizing the H3K27-acetylation (H3K27-ac) marker, GAS41 is recruited to the SLC7A11 promoter, independent of NRF2 binding. By bridging the interaction between NRF2 and the H3K27-ac marker, GAS41 acts as an anchor for NRF2 on chromatin in a promoter-specific manner for transcriptional activation. Moreover, the GAS41-mediated effect on ferroptosis contributes to its oncogenic role in vivo. These data demonstrate that GAS41 is a target for modulating tumor growth through ferroptosis. Our study reveals a mechanism for GAS41-mediated regulation in transcription by anchoring NRF2 on chromatin, and provides a model in which the DNA binding activity on chromatin by transcriptional factors (NRF2) can be directly regulated by histone markers (H3K27-ac).
Collapse
Affiliation(s)
- Zhe Wang
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Xin Yang
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Delin Chen
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Yanqing Liu
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhiming Li
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Shoufu Duan
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Department of Pediatrics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Department of Genetics and Development, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, New York, NY, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Wei Gu
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
26
|
Mohan N, Dashwood RH, Rajendran P. A-Z of Epigenetic Readers: Targeting Alternative Splicing and Histone Modification Variants in Cancer. Cancers (Basel) 2024; 16:1104. [PMID: 38539439 PMCID: PMC10968829 DOI: 10.3390/cancers16061104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 11/03/2024] Open
Abstract
Epigenetic 'reader' proteins, which have evolved to interact with specific chromatin modifications, play pivotal roles in gene regulation. There is growing interest in the alternative splicing mechanisms that affect the functionality of such epigenetic readers in cancer etiology. The current review considers how deregulation of epigenetic processes and alternative splicing events contribute to pathophysiology. An A-Z guide of epigenetic readers is provided, delineating the antagonistic 'yin-yang' roles of full-length versus spliced isoforms, where this is known from the literature. The examples discussed underscore the key contributions of epigenetic readers in transcriptional regulation, early development, and cancer. Clinical implications are considered, offering insights into precision oncology and targeted therapies focused on epigenetic readers that have undergone alternative splicing events during disease pathogenesis. This review underscores the fundamental importance of alternative splicing events in the context of epigenetic readers while emphasizing the critical need for improved understanding of functional diversity, regulatory mechanisms, and future therapeutic potential.
Collapse
Affiliation(s)
- Nivedhitha Mohan
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
- Department of Translational Medical Sciences, Antibody & Biopharmaceuticals Core, Texas A&M School of Medicine, Houston, TX 77030, USA
| | - Roderick H. Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
- Department of Translational Medical Sciences, Antibody & Biopharmaceuticals Core, Texas A&M School of Medicine, Houston, TX 77030, USA
| | - Praveen Rajendran
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
- Department of Translational Medical Sciences, Antibody & Biopharmaceuticals Core, Texas A&M School of Medicine, Houston, TX 77030, USA
| |
Collapse
|
27
|
Lo Piccolo L, Yeewa R, Pohsa S, Yamsri T, Calovi D, Phetcharaburanin J, Suksawat M, Kulthawatsiri T, Shotelersuk V, Jantrapirom S. FAME4-associating YEATS2 knockdown impairs dopaminergic synaptic integrity and leads to seizure-like behaviours in Drosophila melanogaster. Prog Neurobiol 2024; 233:102558. [PMID: 38128822 DOI: 10.1016/j.pneurobio.2023.102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/25/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Familial adult myoclonus epilepsy (FAME) is a neurological disorder caused by a TTTTA/TTTCA intronic repeat expansion. FAME4 is one of the six types of FAME that results from the repeat expansion in the first intron of the gene YEATS2. Although the RNA toxicity is believed to be the primary mechanism underlying FAME, the role of genes where repeat expansions reside is still unclear, particularly in the case of YEATS2 in neurons. This study used Drosophila to explore the effects of reducing YEATS2 expression. Two pan-neuronally driven dsDNA were used for knockdown of Drosophila YEATS2 (dYEATS2), and the resulting molecular and behavioural outcomes were evaluated. Drosophila with reduced dYEATS2 expression exhibited decreased tolerance to acute stress, disturbed locomotion, abnormal social behaviour, and decreased motivated activity. Additionally, reducing dYEATS2 expression negatively affected tyrosine hydroxylase (TH) gene expression, resulting in decreased dopamine biosynthesis. Remarkably, seizure-like behaviours induced by knocking down dYEATS2 were rescued by the administration of L-DOPA. This study reveals a novel role of YEATS2 in neurons in regulating acute stress responses, locomotion, and complex behaviours, and suggests that haploinsufficiency of YEATS2 may play a role in FAME4.
Collapse
Affiliation(s)
- Luca Lo Piccolo
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ranchana Yeewa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sureena Pohsa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Titaree Yamsri
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Daniel Calovi
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany; Department of Collective Behaviour, Max Planck Institute of Animal Behaviour, Konstanz, Germany
| | - Jutarop Phetcharaburanin
- International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand; Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Manida Suksawat
- International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand; Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Thanaporn Kulthawatsiri
- International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand; Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Vorasuk Shotelersuk
- Centre of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Centre for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand.
| | - Salinee Jantrapirom
- Drosophila Centre for Human Diseases and Drug Discovery (DHD), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
28
|
Peng X, Hu Z, Zeng L, Zhang M, Xu C, Lu B, Tao C, Chen W, Hou W, Cheng K, Bi H, Pan W, Chen J. Overview of epigenetic degraders based on PROTAC, molecular glue, and hydrophobic tagging technologies. Acta Pharm Sin B 2024; 14:533-578. [PMID: 38322348 PMCID: PMC10840439 DOI: 10.1016/j.apsb.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/21/2023] [Accepted: 08/30/2023] [Indexed: 02/08/2024] Open
Abstract
Epigenetic pathways play a critical role in the initiation, progression, and metastasis of cancer. Over the past few decades, significant progress has been made in the development of targeted epigenetic modulators (e.g., inhibitors). However, epigenetic inhibitors have faced multiple challenges, including limited clinical efficacy, toxicities, lack of subtype selectivity, and drug resistance. As a result, the design of new epigenetic modulators (e.g., degraders) such as PROTACs, molecular glue, and hydrophobic tagging (HyT) degraders has garnered significant attention from both academia and pharmaceutical industry, and numerous epigenetic degraders have been discovered in the past decade. In this review, we aim to provide an in-depth illustration of new degrading strategies (2017-2023) targeting epigenetic proteins for cancer therapy, focusing on the rational design, pharmacodynamics, pharmacokinetics, clinical status, and crystal structure information of these degraders. Importantly, we also provide deep insights into the potential challenges and corresponding remedies of this approach to drug design and development. Overall, we hope this review will offer a better mechanistic understanding and serve as a useful guide for the development of emerging epigenetic-targeting degraders.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Zhihao Hu
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Limei Zeng
- College of Basic Medicine, Gannan Medical University, Ganzhou 314000, China
| | - Meizhu Zhang
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Congcong Xu
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Benyan Lu
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Chengpeng Tao
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Weiming Chen
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Wen Hou
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wanyi Pan
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
29
|
Wu Q, Zheng Q, Yuan L, Gao D, Hu Y, Jiang X, Zhai Q, Liu M, Xu L, Xu H, Ye J, Zhang F. Repression of YEATS2 induces cellular senescence in hepatocellular carcinoma and inhibits tumor growth. Cell Cycle 2024; 23:478-494. [PMID: 38619971 PMCID: PMC11174065 DOI: 10.1080/15384101.2024.2342714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024] Open
Abstract
Hepatocellular carcinoma (HCC) stands as the third leading cause of cancer-related fatalities globally. In this study, we observed a significant increase in the expression level of the YEATS2 gene in HCC patients, and it is negatively correlated with the patients' survival rate. While we have previously identified the association between YEATS2 and the survival of pancreatic cancer cells, the regulatory mechanisms and significance in HCC are still to be fully elucidated. Our study shows that knockdown (KD) of YEATS2 expression leads to DNA damage, which in turn results in an upregulation of γ-H2A.X expression and activation of the canonical senescence-related pathway p53/p21Cip1. Moreover, our transcriptomic analysis reveals that YEATS2 KD cells can enhance the expression of p21Cip1 via the c-Myc/miR-93-5p pathway, consequently fostering the senescence of HCC cells. The initiation of cellular senescence through dual-channel activation suggests that YEATS2 plays a pivotal regulatory role in the process of cell proliferation. Ultimately, our in vivo research utilizing a nude mouse tumor model revealed a notable decrease in both tumor volume and weight after the suppression of YEATS2 expression. This phenomenon is likely attributable to the attenuation of proliferative cell activity, coupled with a concurrent augmentation in the population of natural killer (NK) cells. In summary, our research results have supplemented the understanding of the regulatory mechanisms of HCC cell proliferation and indicated that targeting YEATS2 may potentially inhibit liver tumor growth.
Collapse
Affiliation(s)
- Qi Wu
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
- The Joint Innovation Center for Engineering in Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Quan Zheng
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
- The Joint Innovation Center for Engineering in Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Lei Yuan
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Dandan Gao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yabing Hu
- School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xinqing Jiang
- The Joint Innovation Center for Engineering in Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiaocheng Zhai
- The Joint Innovation Center for Engineering in Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Ming Liu
- The Joint Innovation Center for Engineering in Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Lifeng Xu
- The Joint Innovation Center for Engineering in Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Heng Xu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jinlin Ye
- The Joint Innovation Center for Engineering in Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Feng Zhang
- The Joint Innovation Center for Engineering in Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| |
Collapse
|
30
|
Peng F, Zhu F, Cao B, Peng L. Multidimensional Analysis of PANoptosis-Related Molecule CASP8: Prognostic Significance, Immune Microenvironment Effect, and Therapeutic Implications in Hepatocellular Carcinoma. Genet Res (Camb) 2023; 2023:2406193. [PMID: 38186679 PMCID: PMC10771335 DOI: 10.1155/2023/2406193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/25/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) presents significant challenges in diagnosis and treatment. Understanding the role of PANoptosis-related molecules in HCC is crucial for advancing therapeutic strategies. Methods We conducted a comprehensive analysis using public data from the Cancer Genome Atlas, Human Protein Atlas, Tumor Immune Single Cell Hub, and STRING databases. Techniques included Kaplan-Meier survival curves, Cox regression, LASSO analysis, and various computational methods for understanding the tumor microenvironment. We also employed ClueGO, gene set enrichment analysis, and other algorithms for biological enrichment analysis. Results CASP8 emerged as a significant molecule in HCC, correlated with poor survival outcomes. Its expression was predominant in the nucleoplasm and cytosol and varied across different cancer types. Biological enrichment analysis revealed CASP8's association with critical cellular activities and immune responses. In the tumor microenvironment, CASP8 showed correlations with various immune cell types. A nomogram plot was developed for better clinical prognostication. Mutation analysis indicated a higher frequency of TP53 mutations in patients with elevated CASP8 expression. In addition, CASP8 was found to regulate YEATS2 in HCC, highlighting a potential pathway in tumor progression. Conclusions Our study underscores the multifaceted role of CASP8 in HCC, emphasizing its prognostic and therapeutic significance. The regulatory relationship between CASP8 and YEATS2 opens new avenues for understanding HCC pathogenesis and treatment strategies.
Collapse
Affiliation(s)
- Fei Peng
- The Second People's Hospital of Jingdezhen, Jingdezhen 333000, Jiangxi, China
| | - Fang Zhu
- The Second People's Hospital of Jingdezhen, Jingdezhen 333000, Jiangxi, China
| | - Baodi Cao
- The Second People's Hospital of Jingdezhen, Jingdezhen 333000, Jiangxi, China
| | - Liang Peng
- The Second People's Hospital of Jingdezhen, Jingdezhen 333000, Jiangxi, China
| |
Collapse
|
31
|
Erb MA. Small-molecule tools for YEATS domain proteins. Curr Opin Chem Biol 2023; 77:102404. [PMID: 37924571 PMCID: PMC10842393 DOI: 10.1016/j.cbpa.2023.102404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 11/06/2023]
Abstract
Chromatin reader domains are protein folds that bind to post-translational modifications of histones and other chromatin-associated proteins. Compared to other families of reader domains, the discovery that YEATS domains bind to acylated lysines is relatively recent. Four human proteins harbor a YEATS domain, and each is present in protein complexes that regulate chromatin and transcription (ENL, AF9, YEATS2, and YEATS4). Without chemical tools to enable temporally resolved perturbations, it is often unclear how reader domains contribute to protein function. Here, we will discuss recent progress in developing small-molecule tools for YEATS domains and highlight their usefulness for making biological discoveries.
Collapse
Affiliation(s)
- Michael A Erb
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
32
|
Ji K, Li L, Liu H, Shen Y, Jiang J, Zhang M, Teng H, Yan X, Zhang Y, Cai Y, Zhou H. Unveiling the role of GAS41 in cancer progression. Cancer Cell Int 2023; 23:245. [PMID: 37853482 PMCID: PMC10583379 DOI: 10.1186/s12935-023-03098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
GAS41, a member of the human YEATS domain family, plays a pivotal role in human cancer development. It serves as a highly promising epigenetic reader, facilitating precise regulation of cell growth and development by recognizing essential histone modifications, including histone acetylation, benzoylation, succinylation, and crotonylation. Functional readouts of these histone modifications often coincide with cancer progression. In addition, GAS41 functions as a novel oncogene, participating in numerous signaling pathways. Here, we summarize the epigenetic functions of GAS41 and its role in the carcinoma progression. Moving forward, elucidating the downstream target oncogenes regulated by GAS41 and the developing small molecule inhibitors based on the distinctive YEATS recognition properties will be pivotal in advancing this research field.
Collapse
Affiliation(s)
- Kangkang Ji
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Li Li
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Hui Liu
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Yucheng Shen
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Jian Jiang
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Minglei Zhang
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Hongwei Teng
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Xun Yan
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Yanhua Zhang
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Yong Cai
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Hai Zhou
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China.
| |
Collapse
|
33
|
Ji P, Zhang G, Guo Y, Song H, Yuan X, Hu X, Guo Z, Xia P, Shen R, Wang D. Protein crotonylation: An emerging regulator in DNA damage response. Life Sci 2023; 331:122059. [PMID: 37652154 DOI: 10.1016/j.lfs.2023.122059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
DNA damage caused by internal or external factors lead to increased genomic instability and various diseases. The DNA damage response (DDR) is a crucial mechanism that maintaining genomic stability through detecting and repairing DNA damage timely. Post-translational modifications (PTMs) play significant roles in regulation of DDR. Among the present PTMs, crotonylation has emerged as a novel identified modification that is involved in a wide range of biological processes including gene expression, spermatogenesis, cell cycle, and the development of diverse diseases. In the past decade, numerous crotonylation sites have been identified in histone and non-histone proteins, leading to a more comprehensive and deep understanding of the function and mechanisms in protein crotonylation. This review provides a comprehensive overview of the regulatory mechanisms of protein crotonylation and the effect of crotonylation in DDR. Furthermore, the effect of protein crotonylation in tumor development and progression is presented, to inspire and explore the novel strategies for tumor therapy.
Collapse
Affiliation(s)
- Pengfei Ji
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Guokun Zhang
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Yanan Guo
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Haoyun Song
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Xinyi Yuan
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Xiaohui Hu
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Zhao Guo
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Peng Xia
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Rong Shen
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Degui Wang
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China; NHC Key Laboratory of diagnosis and therapy of Gastrointestinal Tumor, Lanzhou, Gansu Province 730000, China.
| |
Collapse
|
34
|
Zhong M, Chen L, Tao Y, Zhao J, Chang B, Zhang F, Tu J, Cai W, Zhang B. Synthesis and evaluation of Piperine analogs as thioredoxin reductase inhibitors to cause oxidative stress-induced cancer cell apoptosis. Bioorg Chem 2023; 138:106589. [PMID: 37320912 DOI: 10.1016/j.bioorg.2023.106589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 06/17/2023]
Abstract
Inhibiting thioredoxin reductase (TrxR) to disrupt the redox equilibrium and induce tumor cell apoptosis is a significant tumor therapeutic strategy. Piperine, a natural product from black pepper, has been demonstrated to suppress tumor cell proliferation by enhancing reactive oxygen species (ROS), subsequently leading to cell death. However, the development of Piperine as an active molecule is hampered by its weak cytotoxicity. To develop a compound with higher activity, we synthesized 22 Piperine analogs and evaluated their pharmacological properties. Ultimately, B5 was screened by the results of cytotoxicity and inhibition of TrxR activity. In contrast to Piperine, B5 had significant cytotoxicity with a 4-fold increase. The structure-activity relationship demonstrated that the introduction of an electron-withdrawing group into the benzene ring adjacent to the amino group, particularly in the meta-position, was positive and that shortening the olefin double bond had no appreciable impact on cytotoxicity. Further investigating the physiological activity of B5 in HeLa cells, we found that B5 selectively inhibits the activity of TrxR by binding to Sec residues on TrxR. B5 then induces cellular oxidative stress and finally leads to apoptosis. As a result, the study of B5 paved the way for further investigation into the modification and function of Piperine analogs as TrxR inhibitors.
Collapse
Affiliation(s)
- Miao Zhong
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Lingzhen Chen
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yue Tao
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jintao Zhao
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Bingbing Chang
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Fang Zhang
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jingwen Tu
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wenqing Cai
- Regor Therapeutics Inc, 1206 Zhangjiang Road, Building C, Pu Dong New District, Shanghai 201210, China.
| | - Baoxin Zhang
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
35
|
Hu H, Muntean AG. The YEATS domain epigenetic reader proteins ENL and AF9 and their therapeutic value in leukemia. Exp Hematol 2023; 124:15-21. [PMID: 37295550 PMCID: PMC10527611 DOI: 10.1016/j.exphem.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Recent studies have uncovered similarities and differences between 2 highly homologous epigenetic reading proteins, namely, ENL (MLLT1) and AF9 (MLLT3) with therapeutic implications. The importance of these proteins has traditionally been exemplified by their involvement in chromosomal translocations with the mixed-lineage leukemia gene (MLL; aka KMT2a). MLL rearrangements occur in a subset of acute leukemias and generate potent oncogenic MLL-fusion proteins that impact epigenetic and transcriptional regulation. Leukemic patients with MLL rearrangements display intermediate-to-poor prognoses, necessitating further mechanistic research. Several protein complexes involved in regulating RNA polymerase II transcription and the epigenetic landscape are hijacked in MLL-r leukemia, which include ENL and AF9. Recent biochemical studies have defined a highly homologous YEATS domain in ENL and AF9 that binds acylated histones, which aids in the localization and retention of these proteins to transcriptional targets. In addition, detailed characterization of the homologous ANC-1 homology domain (AHD) on ENL and AF9 revealed differential association with transcriptional activating and repressing complexes. Importantly, CRISPR knockout screens have demonstrated a unique role for wild-type ENL in leukemic stem cell function, whereas AF9 appears important for normal hematopoietic stem cells. In this perspective, we examine the ENL and AF9 proteins with attention to recent work characterizing the epigenetic reading YEATS domains and AHD on both wild-type proteins and when fused to MLL. We summarized the drug development efforts and their therapeutic potential and assess ongoing research that has refined our understanding of how these proteins function, which continues to reveal new therapeutic avenues.
Collapse
Affiliation(s)
- Hsiangyu Hu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI
| | - Andrew G Muntean
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI.
| |
Collapse
|
36
|
Liu N, Konuma T, Sharma R, Wang D, Zhao N, Cao L, Ju Y, Liu D, Wang S, Bosch A, Sun Y, Zhang S, Ji D, Nagatoishi S, Suzuki N, Kikuchi M, Wakamori M, Zhao C, Ren C, Zhou TJ, Xu Y, Meslamani J, Fu S, Umehara T, Tsumoto K, Akashi S, Zeng L, Roeder RG, Walsh MJ, Zhang Q, Zhou MM. Histone H3 lysine 27 crotonylation mediates gene transcriptional repression in chromatin. Mol Cell 2023; 83:2206-2221.e11. [PMID: 37311463 PMCID: PMC11138481 DOI: 10.1016/j.molcel.2023.05.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/22/2023] [Accepted: 05/16/2023] [Indexed: 06/15/2023]
Abstract
Histone lysine acylation, including acetylation and crotonylation, plays a pivotal role in gene transcription in health and diseases. However, our understanding of histone lysine acylation has been limited to gene transcriptional activation. Here, we report that histone H3 lysine 27 crotonylation (H3K27cr) directs gene transcriptional repression rather than activation. Specifically, H3K27cr in chromatin is selectively recognized by the YEATS domain of GAS41 in complex with SIN3A-HDAC1 co-repressors. Proto-oncogenic transcription factor MYC recruits GAS41/SIN3A-HDAC1 complex to repress genes in chromatin, including cell-cycle inhibitor p21. GAS41 knockout or H3K27cr-binding depletion results in p21 de-repression, cell-cycle arrest, and tumor growth inhibition in mice, explaining a causal relationship between GAS41 and MYC gene amplification and p21 downregulation in colorectal cancer. Our study suggests that H3K27 crotonylation signifies a previously unrecognized, distinct chromatin state for gene transcriptional repression in contrast to H3K27 trimethylation for transcriptional silencing and H3K27 acetylation for transcriptional activation.
Collapse
Affiliation(s)
- Nan Liu
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China; International Center of Future Science, Jilin University, Changchun 130012, China.
| | - Tsuyoshi Konuma
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan; School of Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Rajal Sharma
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deyu Wang
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Nan Zhao
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Lingling Cao
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Ying Ju
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Di Liu
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Shuai Wang
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Almudena Bosch
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yifei Sun
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Siwei Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130000, China
| | - Donglei Ji
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Satoru Nagatoishi
- Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Noa Suzuki
- School of Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Masaki Kikuchi
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | | | - Chengcheng Zhao
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Chunyan Ren
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas Jiachi Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yaoyao Xu
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Jamel Meslamani
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shibo Fu
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China; International Center of Future Science, Jilin University, Changchun 130012, China
| | - Takashi Umehara
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Kouhei Tsumoto
- Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Satoko Akashi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan; School of Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Lei Zeng
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China; International Center of Future Science, Jilin University, Changchun 130012, China
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, the Rockefeller University, New Nork, NY 10065, USA
| | - Martin J Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Qiang Zhang
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China; International Center of Future Science, Jilin University, Changchun 130012, China.
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
37
|
Xia H, Zhang J, Chen T, Wang M, Chen D, Si T, Liu Y. Molecular characterization of MET fusions from a large real-world Chinese population: A multicenter study. Cancer Med 2023. [PMID: 37326363 PMCID: PMC10358190 DOI: 10.1002/cam4.6047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/03/2023] [Accepted: 04/26/2023] [Indexed: 06/17/2023] Open
Abstract
PURPOSE MET is a notable driver gene in the diversity of aberrations with clinical relevance, including exon 14 skipping, copy number gain, point mutations, and gene fusions. Compared with the former two, MET fusions are severely under-reported, leaving a series of unanswered questions. In this study, we addressed this gap by characterizing MET fusions in a large, real-world Chinese cancer population. METHODS We retrospectively included patients with solid tumors who had DNA-based genome profiles acquired through targeted sequencing from August 2015 to May 2021. MET fusion-positive (MET+) patients were subsequently selected for clinical and molecular characterization. RESULTS We screened 79,803 patients across 27 tumor types and detected 155 putative MET fusions from 122 patients, resulting in an overall prevalence of 0.15%. Lung cancer comprised the majority of MET+ patients (92, 75.4%). Prevalence was markedly higher in liver cancer, biliary tract cancer, and renal cancer (range 0.52%-0.60%). It was lower in ovarian cancer (0.06%). A substantial proportion (48/58, 82.8%) of unique partners were reported for the first time. High heterogeneity was observed for partners, with ST7, HLA-DRB1, and KIF5B as the three most common partners. Mutational landscape analysis of lung adenocarcinoma (n = 32) revealed a high prevalence of TP53 in MET+ alterations, EGFR L858R, EGFR L861Q, and MET amplification. CONCLUSION To our knowledge, this is currently the largest study in characterizing MET fusions. Our findings warrant that further clinical validation and mechanistic study may translate into therapeutic avenues for MET+ cancer patients.
Collapse
Affiliation(s)
- Hui Xia
- Thoracic Surgery Department, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Junhua Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Tong Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mingzhao Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dongna Chen
- Department of Medical Oncology, Sanhuan Cancer Hospital of Chaoyang District, Beijing, China
| | - Tongguo Si
- Department of Interventional Treatment, Tianjin Medical University Cancer Hospital and Institute, Tianjin, China
| | - Yutao Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
38
|
Sheng H, Zheng F, Lan T, Chen HF, Xu CY, Wang SW, Weng YY, Xu LF, Zhang F. YEATS2 regulates the activation of TAK1/NF-κB pathway and is critical for pancreatic ductal adenocarcinoma cell survival. Cell Biol Toxicol 2023; 39:1-16. [PMID: 34686948 DOI: 10.1007/s10565-021-09671-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
The prognosis of pancreatic ductal adenocarcinoma (PDAC) is poor despite diagnostic progress and new chemotherapeutic regimens. Constitutive activation of NF-κB is frequently observed in PDAC. In this study, we found that YEATS2, a scaffolding protein of ATAC complex, was highly expressed in human PDAC. Depletion of YEATS2 reduced the growth, survival, and tumorigenesis of PDAC cells. The binding of YEATS2 is crucial for maintaining TAK1 activation and NF-κB transcriptional activity. Of importance, our results reveal that YEATS2 promotes NF-κB transcriptional activity through modulating TAK1 abundance and directly interacting with NF-κB as a co-transcriptional factor.
Collapse
Affiliation(s)
- Hao Sheng
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000, Quzhou, China
- The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Jiande, Hangzhou, Zhejiang, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Zheng
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000, Quzhou, China
| | - Tian Lan
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000, Quzhou, China
| | - Hang-Fei Chen
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Chun-Yi Xu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Si-Wei Wang
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000, Quzhou, China
| | - Yuan-Yuan Weng
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000, Quzhou, China
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Li-Feng Xu
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000, Quzhou, China
| | - Feng Zhang
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000, Quzhou, China.
- Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
39
|
Meng Z, Geng X, Lin X, Wang Z, Chen D, Liang H, Zhu Y, Sui Y. A prospective diagnostic and prognostic biomarker for hepatocellular carcinoma that functions in glucose metabolism regulation: Solute carrier family 37 member 3. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166661. [PMID: 36773462 DOI: 10.1016/j.bbadis.2023.166661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer. Due to the insidious onset of HCC, early diagnosis is relatively difficult. HCC also exhibit strong resistance to first-line therapeutic drugs. Therefore, novel precise diagnostic and prognostic biomarkers for HCC are urgently needed. We employed a combination methods of bioinformatic analysis, cell functional experiments in vitro and a xenograft tumour model in vivo to systematically investigate the role of solute carrier family 37 member 3 (SLC37A3) in HCC progression. First, bioinformatic analysis demonstrated that SLC37A3 expression was significantly increased in HCC tissues compared with normal tissues. SLC37A3 expression was also associated with tumour stages and various clinical and pathological features. Similar trends in SLC37A3 expression levels were verified in HCC cells and by using IHC experiments. Next, survival analysis showed that the overall, 1-year, 3-year and 5-year survival rates were decreased in HCC patients with high SLC37A3 expression compared with HCC patients low SLC37A3 expression. Xenograft tumour experiments also suggested that SLC37A3 knockdown significantly inhibited HCC tumourigenesis in vivo. Cell functional experiments suggested that SLC37A3 knockdown inhibited HCC cell proliferation and metastasis, but promoted apoptosis. Furthermore, RNA-seq analysis of SLC37A3-knockdown HCC cells indicated that the type 1 diabetes mellitus (T1DM)-related signalling pathway was significantly altered. The expression levels of insulin secretion-related and glycolysis/gluconeogenesis-related genes were also altered, suggesting that SLC37A3 might be involved in the regulation of glucose homeostasis. In summary, SLC37A3 represents a prospective diagnostic and prognostic biomarker for HCC that functions in glucose metabolism regulation.
Collapse
Affiliation(s)
- Ziyu Meng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Xue Geng
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Xiaoyue Lin
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Ziwei Wang
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China
| | - Danchun Chen
- Department of Pediatrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Hua Liang
- Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Ying Zhu
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China
| | - Yutong Sui
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China.
| |
Collapse
|
40
|
Liu X, Hu Y, Li C, Chen J, Liu X, Shen Y, Xu Y, Chen W, Xu X. Overexpression of YEATS2 Remodels the Extracellular Matrix to Promote Hepatocellular Carcinoma Progression via the PI3K/AKT Pathway. Cancers (Basel) 2023; 15:cancers15061850. [PMID: 36980736 PMCID: PMC10046954 DOI: 10.3390/cancers15061850] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers and the fourth leading cause of death in men. YEATS domain containing 2 (YEATS2) gene encodes a scaffolding subunit of the ATAC complex. We found that YEATS2 was upregulated in HCC tissues and was associated with a poor prognosis. However, the role of YEATS2 in HCC remains unclear. The purpose of this study was to investigate the effect of YEATS2 on the progression of HCC and to elucidate its related mechanisms. We found that overexpression of YEATS2 promoted tumor cell proliferation, migration, and invasion through the PI3K/AKT signaling pathway and regulation of extracellular matrix. These findings help to understand the role of YEATS2 in HCC, and YEATS2 may become a new target for HCC therapy.
Collapse
Affiliation(s)
- Xin Liu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yi Hu
- Department of Oncology, General Hospital of Central Theater Command, Wuhan 430061, China
| | - Cairong Li
- School of Clinical Medicine, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Jiayu Chen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaohong Liu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yang Shen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yangtao Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenliang Chen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
41
|
Design, synthesis of novel benzimidazole derivatives as ENL inhibitors suppressing leukemia cells viability via downregulating the expression of MYC. Eur J Med Chem 2023; 248:115093. [PMID: 36645983 DOI: 10.1016/j.ejmech.2023.115093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023]
Abstract
Eleven-Nineteen-Leukemia Protein (ENL) containing YEATS domain, a potential drug target, has emerged as a reader of lysine acetylation. SGC-iMLLT bearing with benzimidazole scaffold was identified as an effective ENL inhibitor, but with weak activity against mixed-lineage leukemia (MLL)-rearranged cells proliferation. In this study, a series of compounds were designed and synthesized by structural optimization on SGC-iMLLT. All the compounds have been evaluated for their ENL inhibitory activities. The results showed that compounds 13, 23 and 28 are the most potential ones with the IC50 values of 14.5 ± 3.0 nM, 10.7 ± 5.3 nM, and 15.4 ± 2.2 nM, respectively, similar with that of SGC-iMLLT. They could interact with ENL protein and strengthen its thermal stability in vitro. Among them, compound 28 with methyl phenanthridinone moiety replacement of indazole in SGC-iMLLT, exhibited significantly inhibitory activities towards MV4-11 and MOLM-13 cell lines with IC50 values of 4.8 μM and 8.3 μM, respectively, exhibiting ∼7 folds and ∼9 folds more potent inhibition of cell growth than SGC-iMLLT. It could also increase the ENL thermal stability while SGC-iMLLT had no obvious effect on leukemia cells. Moreover, compound 28 could downregulate the expression of target gene MYC either alone or in combination with JQ-1 in cells, which was more effective than SGC-iMLLT. Besides, in vivo pharmacokinetic studies showed that the PK properties for compound 28 was much improved over that of SGC-iMLLT. These observations suggested compound 28 was a potential ligand for ENL-related MLL chemotherapy.
Collapse
|
42
|
Londregan AT, Aitmakhanova K, Bennett J, Byrnes LJ, Canterbury DP, Cheng X, Christott T, Clemens J, Coffey SB, Dias JM, Dowling MS, Farnie G, Fedorov O, Fennell KF, Gamble V, Gileadi C, Giroud C, Harris MR, Hollingshead BD, Huber K, Korczynska M, Lapham K, Loria PM, Narayanan A, Owen DR, Raux B, Sahasrabudhe PV, Ruggeri RB, Sáez LD, Stock IA, Thuma BA, Tsai A, Varghese AE. Discovery of High-Affinity Small-Molecule Binders of the Epigenetic Reader YEATS4. J Med Chem 2023; 66:460-472. [PMID: 36562986 DOI: 10.1021/acs.jmedchem.2c01421] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A series of small-molecule YEATS4 binders have been discovered as part of an ongoing research effort to generate high-quality probe molecules for emerging and/or challenging epigenetic targets. Analogues such as 4d and 4e demonstrate excellent potency and selectivity for YEATS4 binding versus YEATS1,2,3 and exhibit good physical properties and in vitro safety profiles. A new X-ray crystal structure confirms direct binding of this chemical series to YEATS4 at the lysine acetylation recognition site of the YEATS domain. Multiple analogues engage YEATS4 with nanomolar potency in a whole-cell nanoluciferase bioluminescent resonance energy transfer assay. Rodent pharmacokinetic studies demonstrate the competency of several analogues as in vivo-capable binders.
Collapse
Affiliation(s)
- Allyn T Londregan
- Pfizer Medicine Design, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | | | - James Bennett
- Centre for Medicines Discovery, NDM, University of Oxford, Oxford OX3 7DQ, U.K
| | - Laura J Byrnes
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Daniel P Canterbury
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Xiayun Cheng
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Thomas Christott
- Centre for Medicines Discovery, NDM, University of Oxford, Oxford OX3 7DQ, U.K
| | - Jennifer Clemens
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Steven B Coffey
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - João M Dias
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Matthew S Dowling
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Gillian Farnie
- Centre for Medicines Discovery, NDM, University of Oxford, Oxford OX3 7DQ, U.K
| | - Oleg Fedorov
- Centre for Medicines Discovery, NDM, University of Oxford, Oxford OX3 7DQ, U.K
| | - Kimberly F Fennell
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Vicki Gamble
- Centre for Medicines Discovery, NDM, University of Oxford, Oxford OX3 7DQ, U.K
| | - Carina Gileadi
- Centre for Medicines Discovery, NDM, University of Oxford, Oxford OX3 7DQ, U.K
| | - Charline Giroud
- Centre for Medicines Discovery, NDM, University of Oxford, Oxford OX3 7DQ, U.K
| | - Michael R Harris
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Brett D Hollingshead
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Kilian Huber
- Centre for Medicines Discovery, NDM, University of Oxford, Oxford OX3 7DQ, U.K
| | - Magdalena Korczynska
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Kimberly Lapham
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Paula M Loria
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Arjun Narayanan
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Dafydd R Owen
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Brigitt Raux
- Centre for Medicines Discovery, NDM, University of Oxford, Oxford OX3 7DQ, U.K
| | - Parag V Sahasrabudhe
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Roger B Ruggeri
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Laura Díaz Sáez
- Centre for Medicines Discovery, NDM, University of Oxford, Oxford OX3 7DQ, U.K
| | - Ingrid A Stock
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Benjamin A Thuma
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Andy Tsai
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Alison E Varghese
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| |
Collapse
|
43
|
Abstract
Histone proteins in eukaryotic cells are subjected to a wide variety of post-translational modifications, which are known to play an important role in the partitioning of the genome into distinctive compartments and domains. One of the major functions of histone modifications is to recruit reader proteins, which recognize the epigenetic marks and transduce the molecular signals in chromatin to downstream effects. Histone readers are defined protein domains with well-organized three-dimensional structures. In this Chapter, we will outline major histone readers, delineate their biochemical and structural features in histone recognition, and describe how dysregulation of histone readout leads to human cancer.
Collapse
Affiliation(s)
- Hong Wen
- Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA
| | - Xiaobing Shi
- Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
44
|
Lan T, Chen HF, Zheng F, Huang H, Wu Q, Fan XY, Wang SW, Zhang F. Cinobufacini retards progression of pancreatic ductal adenocarcinoma through targeting YEATS2/TAK1/NF-κB axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154564. [PMID: 36610152 DOI: 10.1016/j.phymed.2022.154564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/27/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Cinobufacini, a sterilized hot water extract of dried toad skin, had significant effect against several human cancers. However, there are few studies reporting the effect of cinobufacini on pancreatic cancer. PURPOSE To investigate the effects of cinobufacini on the progress of pancreatic ductal adenocarcinoma and the underlying mechanisms. METHODS Cell counting, EdU incorporation and flow Cytometry were performed to evaluate the effect of cinobufacini on cell cycle and growth. MIA-PaCa2 cells were implanted into the nude mice to determine whether cinobufacini represses PDAC progression in vivo. Luciferase reporter assay, western blotting and qPCR were carried out to measure the activity of NF-κB pathway and the alteration of YEATS2 and TAK1. Ectopic gene expression introduced by plasmids was used to verify the molecular mechanism. RESULTS Our results showed that cinobufacini induced cell cycle arrest and inhibited the growth of PDAC cell in vitro, and repressed MIA-derived PDAC in vivo. Cinobufacini inhibited the phosphorylation of IKK, IκB and NF-κB p65 in PDAC cells. Furthermore, cinobufacini decreased the abundance of intracellular YEATS2 and total TAK1 protein in a time- and dose dependent manner. Ectopic expression of YEATS2 re-elevated the level of TAK1 and phosphorylated IKKα/β, IκBα and p65 after cinobufacini treatment in PANC-1 cells. CONCLUSION Cinobufacini retards the growth and progression of PDAC in vitro and in vivo through YEATS2/TAK1/NF-κB axis.
Collapse
Affiliation(s)
- Tian Lan
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Hang-Fei Chen
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fang Zheng
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Hui Huang
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Qi Wu
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Xue-Yu Fan
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Si-Wei Wang
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| | - Feng Zhang
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China; The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
45
|
Wang H, Lu X, Chen J. Construction and experimental validation of an acetylation-related gene signature to evaluate the recurrence and immunotherapeutic response in early-stage lung adenocarcinoma. BMC Med Genomics 2022; 15:254. [PMID: 36503492 PMCID: PMC9741798 DOI: 10.1186/s12920-022-01413-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Acetylation is a reversible epigenetic process, playing an important role in the initiation and progression of malignant tumors. However, the prognosis value of acetylation-related genes in the early-stage lung adenocarcinoma (LUAD) remains obscure. MATERIALS AND METHODS The acetylation-related genes were collected and clustered based on transcriptome sequencing of the patients with early-stage LUAD from the Cancer Genome Atlas. The genomic divergence analysis, protein-protein interaction network construction, Lasso regression, and univariate Cox regression were used to identify the significant biomarkers for the recurrence of the early-stage LUAD. The multivariate Cox regression was used to establish the predictive model. Gene Expression Omnibus was systemically retrieved and four independent datasets were used for external validation. 23 early-stage LUAD samples were collected from the local hospital to detect the expression difference of the genes in the model. Transfection assays were performed to verify the regulatory ability of the screened gene to the proliferation of LUAD cell lines. The single-cell RNA sequencing of the early-stage LUAD patients and two lung cancer cohorts receiving immunotherapy were utilized to explore the predictive ability of the established model to immunotherapeutic sensitivity. RESULTS The clustering based on acetylation-related genes was significantly associated with the recurrence (P < 0.01) and immune infiltration statuses. Through a series of bioinformatical and machine learning methods, RBBP7 and YEATS2 were ultimately identified. Accordingly, a novel gene signature containing RBBP7 and YEATS2 was developed to evaluate the recurrence-free survival of early-stage LUAD, which was then validated in five independent cohorts (pooled hazard ratio = 1.88, 95% confidence interval = 1.49-2.37) and 23 local clinical samples (P < 0.01). The knock-down of YEATS2 obviously suppressed proliferation of H1975 and HCC-827 cells. Single-cell RNA sequencing analyses indicated that RBBP7 and YEATS2 were both associated with the tumor immune response, and the prognosis signature could predict the immunotherapeutic response in two cohorts receiving immunotherapy (P < 0.05; P < 0.01). CONCLUSIONS Totally, an acetylation-related gene signature is constructed, helping to evaluate the recurrence and immunotherapeutic effectiveness of early-stage LUAD patients.
Collapse
Affiliation(s)
- Haiqiang Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Military Medical University, No. 1 Xinsi Road, Baqiao District, Xi’an, 710038 Shaanxi China
| | - Xiyan Lu
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Air Force Military Medical University, No. 1 Xinsi Road, Baqiao District, Xi’an, 710038 Shaanxi China
| | - Jiakuan Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Military Medical University, No. 1 Xinsi Road, Baqiao District, Xi’an, 710038 Shaanxi China
| |
Collapse
|
46
|
Garcia K, Gingras AC, Harvey KF, Tanas MR. TAZ/YAP fusion proteins: mechanistic insights and therapeutic opportunities. Trends Cancer 2022; 8:1033-1045. [PMID: 36096997 PMCID: PMC9671862 DOI: 10.1016/j.trecan.2022.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022]
Abstract
The Hippo pathway is dysregulated in many different cancers, but point mutations in the pathway are rare. Transcriptional co-activator with PDZ-binding motif (TAZ) and Yes-associated protein (YAP) fusion proteins have emerged in almost all major cancer types and represent the most common genetic mechanism by which the two transcriptional co-activators are activated. Given that the N termini of TAZ or YAP are fused to the C terminus of another transcriptional regulator, the resultant fusion proteins hyperactivate a TEAD transcription factor-based transcriptome. Recent advances show that the C-terminal fusion partners confer oncogenic properties to TAZ/YAP fusion proteins by recruiting epigenetic modifiers that promote a hybrid TEAD-based transcriptome. Elucidating these cooperating epigenetic complexes represents a strategy to identify new therapeutic approaches for a pathway that has been recalcitrant to medical therapy.
Collapse
Affiliation(s)
- Keith Garcia
- Department of Pathology, University of Iowa, Iowa City, IA, USA; Cancer Biology Graduate Program, University of Iowa, Iowa City, IA, USA
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Munir R Tanas
- Department of Pathology, University of Iowa, Iowa City, IA, USA; Cancer Biology Graduate Program, University of Iowa, Iowa City, IA, USA; Pathology and Laboratory Medicine, Veterans Affairs Medical Center, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
47
|
Zhu LY, Yuan JB, Zhang L, He CX, Lin X, Xu B, Jin GH. Loss of MLL Induces Epigenetic Dysregulation of Rasgrf1 to Attenuate Kras-Driven Lung Tumorigenesis. Cancer Res 2022; 82:4153-4163. [PMID: 36098964 DOI: 10.1158/0008-5472.can-22-1475] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/01/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
Menin is necessary for the formation of the menin/mixed lineage leukemia (MLL) complex and is recruited directly to chromatin. Menin is an important tumor suppressor in several cancer types, including lung cancer. Here, we investigated the role of MLL in menin-regulated lung tumorigenesis. Ablation of MLL suppressed KrasG12D-induced lung tumorigenesis in a genetically engineered mouse model. MLL deficiency decreased histone H3 lysine 4 trimethylation (H3K4me3) and subsequently suppressed expression of the Ras protein-specific guanine nucleotide-releasing factor 1 (Rasgrf1) gene. Rasgrf1 was essential for the GTP-bound active state of Kras and the activation of Kras downstream pathways as well as their cancer-promoting activities. MI-3, a small-molecule inhibitor targeting MLL, specifically inhibited the growth of Kras-mutated lung cancer cells in vitro and in vivo with minimal effect on wild-type Kras lung cancer growth. Together, these results demonstrate a novel tumor promoter function of MLL in mutant Kras-induced lung tumorigenesis and further indicate that specific blockade of the MLL-Rasgrf1 pathway may be a potential therapeutic strategy for the treatment of tumors containing Kras mutations. SIGNIFICANCE Activation of mutant Kras is dependent on MLL-mediated epigenetic regulation of Rasgrf1, conferring sensitivity to small-molecule inhibition of MLL in Kras-driven lung cancer.
Collapse
Affiliation(s)
- Ling-Yu Zhu
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, Fujian, P.R. China
| | - Jun-Bo Yuan
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, Fujian, P.R. China
| | - Li Zhang
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, Fujian, P.R. China
| | - Chun-Xiao He
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, Fujian, P.R. China
| | - Xiao Lin
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, Fujian, P.R. China
| | - Bin Xu
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, Fujian, P.R. China
| | - Guang-Hui Jin
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, Fujian, P.R. China.,State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, P.R. China
| |
Collapse
|
48
|
Liu Y, Li Q, Alikarami F, Barrett DR, Mahdavi L, Li H, Tang S, Khan TA, Michino M, Hill C, Song L, Yang L, Li Y, Pokharel SP, Stamford AW, Liverton N, Renzetti LM, Taylor S, Watt GF, Ladduwahetty T, Kargman S, Meinke PT, Foley MA, Shi J, Li H, Carroll M, Chen CW, Gardini A, Maillard I, Huggins DJ, Bernt KM, Wan L. Small-Molecule Inhibition of the Acyl-Lysine Reader ENL as a Strategy against Acute Myeloid Leukemia. Cancer Discov 2022; 12:2684-2709. [PMID: 36053276 PMCID: PMC9627135 DOI: 10.1158/2159-8290.cd-21-1307] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 06/27/2022] [Accepted: 08/29/2022] [Indexed: 02/06/2023]
Abstract
The chromatin reader eleven-nineteen leukemia (ENL) has been identified as a critical dependency in acute myeloid leukemia (AML), but its therapeutic potential remains unclear. We describe a potent and orally bioavailable small-molecule inhibitor of ENL, TDI-11055, which displaces ENL from chromatin by blocking its YEATS domain interaction with acylated histones. Cell lines and primary patient samples carrying MLL rearrangements or NPM1 mutations are responsive to TDI-11055. A CRISPR-Cas9-mediated mutagenesis screen uncovers an ENL mutation that confers resistance to TDI-11055, validating the compound's on-target activity. TDI-11055 treatment rapidly decreases chromatin occupancy of ENL-associated complexes and impairs transcription elongation, leading to suppression of key oncogenic gene expression programs and induction of differentiation. In vivo treatment with TDI-11055 blocks disease progression in cell line- and patient-derived xenograft models of MLL-rearranged and NPM1-mutated AML. Our results establish ENL displacement from chromatin as a promising epigenetic therapy for molecularly defined AML subsets and support the clinical translation of this approach. SIGNIFICANCE AML is a poor-prognosis disease for which new therapeutic approaches are desperately needed. We developed an orally bioavailable inhibitor of ENL, demonstrated its potent efficacy in MLL-rearranged and NPM1-mutated AML, and determined its mechanisms of action. These biological and chemical insights will facilitate both basic research and clinical translation. This article is highlighted in the In This Issue feature, p. 2483.
Collapse
Affiliation(s)
- Yiman Liu
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Qinglan Li
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fatemeh Alikarami
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Declan R. Barrett
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Leila Mahdavi
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Hangpeng Li
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of the School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sylvia Tang
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tanweer A. Khan
- Tri-Institutional Therapeutics Discovery Institute, New York, New York
| | - Mayako Michino
- Tri-Institutional Therapeutics Discovery Institute, New York, New York
| | - Connor Hill
- Wistar Institute, Gene Expression and Regulation Program, Philadelphia, Pennsylvania.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Pennsylvania
| | - Lele Song
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, California
| | - Yuanyuan Li
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing, China
| | | | | | - Nigel Liverton
- Tri-Institutional Therapeutics Discovery Institute, New York, New York
| | | | - Simon Taylor
- Pharmaron Drug Discovery, Pharmaron UK, West Hill Innovation Park, Hertford Road, Hoddesdon, Hertfordshire, United Kingdom
| | - Gillian F. Watt
- Pharmaron Drug Discovery, Pharmaron UK, West Hill Innovation Park, Hertford Road, Hoddesdon, Hertfordshire, United Kingdom
| | - Tammy Ladduwahetty
- Pharmaron Drug Discovery, Pharmaron UK, West Hill Innovation Park, Hertford Road, Hoddesdon, Hertfordshire, United Kingdom
| | - Stacia Kargman
- Tri-Institutional Therapeutics Discovery Institute, New York, New York.,Bridge Medicines, New York, New York
| | - Peter T. Meinke
- Tri-Institutional Therapeutics Discovery Institute, New York, New York.,Department of Pharmacology, Weill Cornell Medical College, New York, New York
| | - Michael A. Foley
- Tri-Institutional Therapeutics Discovery Institute, New York, New York
| | - Junwei Shi
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Martin Carroll
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, California
| | - Alessandro Gardini
- Wistar Institute, Gene Expression and Regulation Program, Philadelphia, Pennsylvania
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David J. Huggins
- Tri-Institutional Therapeutics Discovery Institute, New York, New York.,Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - Kathrin M. Bernt
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Corresponding Authors: Liling Wan, University of Pennsylvania, BRB II/III, RM751, 421 Curie Boulevard, Philadelphia, PA 19104. Phone: 215-898-3116; E-mail: ; and Kathrin M. Bernt, Children's Hospital of Philadelphia, Colket Translational Research Center, Room 3064, 3501 Civic Center Boulevard, Philadelphia, PA 19104. Phone: 215-370-3171; E-mail:
| | - Liling Wan
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Corresponding Authors: Liling Wan, University of Pennsylvania, BRB II/III, RM751, 421 Curie Boulevard, Philadelphia, PA 19104. Phone: 215-898-3116; E-mail: ; and Kathrin M. Bernt, Children's Hospital of Philadelphia, Colket Translational Research Center, Room 3064, 3501 Civic Center Boulevard, Philadelphia, PA 19104. Phone: 215-370-3171; E-mail:
| |
Collapse
|
49
|
Chen G, Zhu X, Li J, Zhang Y, Wang X, Zhang R, Qin X, Chen X, Wang J, Liao W, Wu Z, Lu L, Wu W, Yu H, Ma L. Celastrol inhibits lung cancer growth by triggering histone acetylation and acting synergically with HDAC inhibitors. Pharmacol Res 2022; 185:106487. [DOI: 10.1016/j.phrs.2022.106487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 10/31/2022]
|
50
|
Hu XQ, Zhang XC, Li ST, Hua T. Construction and validation of a histone acetylation-related lncRNA prognosis signature for ovarian cancer. Front Genet 2022; 13:934246. [PMID: 36313424 PMCID: PMC9596759 DOI: 10.3389/fgene.2022.934246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Ovarian cancer (OC) leads to the most deaths among gynecological malignancies. The various epigenetic regulatory mechanisms of histone acetylation in cancer have attracted increasing attention from scientists. Long non-coding RNA (lncRNA) also plays an important role in multiple biology processes linked to OC. This study aimed to identify the histone acetylation-related lncRNAs (HARlncRNAs) with respect to the prognosis in OC. We obtained the transcriptome data from Genotype-Tissue Expression (GTEx) project and The Cancer Genome Atlas (TCGA); HARlncRNAs were first identified by co-expression and differential expression analyses, and then univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) were used to construct the HARlncRNAs risk signature. Kaplan–Meier analysis, time-dependent receiver operating characteristics (ROC), univariate Cox regression, multivariate Cox regression, nomogram, and calibration were conducted to verify and evaluate the risk signature. Gene set enrichment analysis (GSEA) in risk groups were conducted to explore the tightly correlated pathways with the risk group. A risk signature with 14 HARlncRNAs in OC was finally established and further validated in the International Cancer Genome Consortium (ICGC) cohort; the 1-, 3-, and 5-year ROC value, nomogram, and calibration results confirmed the good prediction power of this model. The patients were grouped into high- and low-risk subgroups according to the risk score by the median value. The low-risk group patients exhibited a higher homologous recombination deficiency (HRD) score, LOH_frac_altered, and mutLoad_nonsilent. Furthermore, consensus clustering analysis was employed to divide OC patients into three clusters based on the expression of the 14 HARlncRNAs, which presented different survival probabilities. Principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) were also performed to evaluate the three clusters. In conclusion, the risk signature composed of 14 HARlncRNAs might function as biomarkers and prognostic indicators with respect to predicting the response to the anti-cancer drugs in OC.
Collapse
Affiliation(s)
- Xiao-Qian Hu
- Department of Oncology, Affiliated Xingtai People Hospital of Hebei Medical University, Xingtai, China
| | - Xiao-Chong Zhang
- Department of Oncology, Affiliated Xingtai People Hospital of Hebei Medical University, Xingtai, China
| | - Shao-Teng Li
- Department of Oncology, Affiliated Xingtai People Hospital of Hebei Medical University, Xingtai, China
| | - Tian Hua
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, Xingtai, China
- *Correspondence: Tian Hua,
| |
Collapse
|