1
|
Zhang X, Yang Y, Tian Z, Du Z, Zhou W, Fu T, Zheng L, Luo C, Peng R, Tan W. Programmable Loading of a Multivalent LRPPRC Aptamer onto a Rectangular DNA Tile Inhibits the Proliferation of Lung Adenocarcinoma Cells. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23722-23730. [PMID: 40223205 DOI: 10.1021/acsami.5c02782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Since cancer biomarkers for lung adenocarcinoma can lead to early intervention and treatment, they have been the focus of much research attention. DNA aptamers, which are functional oligonucleotides, exhibit high specificity and binding affinity to different types of cancer biomarkers. Through DNA aptamer screening, a leucine-rich PPR-motif-containing protein (LRPPRC) was discovered as a potential biomarker for lung adenocarcinoma therapeutics. It is an RNA-binding protein that helps in regulating post-transcriptional gene expression in mitochondria. Interestingly, the first LRPPRC-targeted small-molecule drug showed significant antitumor effects. Apart from biomarker discovery, DNA aptamers have also shown promise in cancer therapeutics, but challenges in the programmable delivery of aptamers have limited applications. Herein, we have addressed these challenges in two steps. First, after obtaining purified protein LRPPRC, we verified aptamer R14 as its high-affinity binding ligand. Second, for programmable delivery, a rectangular DNA tile (RDT) was constructed to improve cellular internalization. In particular, DNA handles on the surface of this DNA nanostructure serve as overhangs for loading multivalent R14, and both A549 and PC9 cells treated with R14-RDT targeted to LRPPRC showed significant inhibition of cancer cell proliferation. We then investigated the molecular mechanism(s) underlying the interaction between multivalent aptamer R14 loaded on an RDT and its cognate target protein such that the result is inhibition of cancer cell proliferation. Based on our findings, we hypothesized that R14-RDT-LRPPRC interaction triggers significant gene transcription and RNA processing events that result in inhibiting mitochondria-related genes and RNA transcriptional processing, while causing an immune inflammatory response that ultimately leads to the inhibition of cancer cell proliferation. Therefore, this research offers an instructive paradigm for programmable loading of a multivalent aptamer onto a two-dimensional DNA nanostructure to improve targeted cancer therapeutics through intervening with the cell's transcriptome.
Collapse
Affiliation(s)
- Xinna Zhang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Yunben Yang
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Zhan Tian
- Beijing National Research Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, P. R. China
| | - Ziyan Du
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Wei Zhou
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Ting Fu
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Linfeng Zheng
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Cong Luo
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Ruizi Peng
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Weihong Tan
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
2
|
Brischigliaro M, Ahn A, Hong S, Fontanesi F, Barrientos A. Emerging mechanisms of human mitochondrial translation regulation. Trends Biochem Sci 2025:S0968-0004(25)00056-8. [PMID: 40221217 DOI: 10.1016/j.tibs.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 04/14/2025]
Abstract
Mitochondrial translation regulation enables precise control over the synthesis of hydrophobic proteins encoded by the organellar genome, orchestrating their membrane insertion, accumulation, and assembly into oxidative phosphorylation (OXPHOS) complexes. Recent research highlights regulation across all translation stages (initiation, elongation, termination, and recycling) through a complex interplay of mRNA structures, specialized translation factors, and unique regulatory mechanisms that adjust protein levels for stoichiometric assembly. Key discoveries include mRNA-programmed ribosomal pausing, frameshifting, and termination-dependent re-initiation, which fine-tune protein synthesis and promote translation of overlapping open reading frames (ORFs) in bicistronic transcripts. In this review, we examine these advances, which are significantly enhancing our understanding of mitochondrial gene expression.
Collapse
Affiliation(s)
- Michele Brischigliaro
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB # 7094A, Miami, FL 33136, USA
| | - Ahram Ahn
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA
| | - Seungwoo Hong
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA.
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB # 7094A, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA; The Miami Veterans Affairs (VA) Medical System, 1201 NW 16th Street, Miami, FL 33125, USA.
| |
Collapse
|
3
|
Duan T, Sun L, Ding K, Zhao Q, Xu L, Liu C, Sun L. Mitochondrial RNA metabolism, a potential therapeutic target for mitochondria-related diseases. Chin Med J (Engl) 2025; 138:808-818. [PMID: 40008813 PMCID: PMC11970820 DOI: 10.1097/cm9.0000000000003516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Indexed: 02/27/2025] Open
Abstract
ABSTRACT In recent years, the roles of mitochondrial RNA and its associated human diseases have been reported to increase significantly. Treatments based on mtRNA metabolic processes and nuclear gene mutations are thus discussed. The mitochondrial oxidative phosphorylation process is affected by mtRNA metabolism, including mtRNA production, maturation, stabilization, and degradation, which leads to a variety of inherited human mitochondrial diseases. Moreover, mitochondrial diseases are caused by mitochondrial messenger RNA, mitochondrial transfer RNA, and mitochondrial ribosomal RNA gene mutations. This review presents the molecular mechanisms of human mtRNA metabolism and pathological mutations in mtRNA metabolism-related nuclear-encoded/nonencoded genes and mitochondrial DNA mutations to highlight the importance of mitochondrial RNA-related diseases and treatments.
Collapse
Affiliation(s)
- Tongyue Duan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Liya Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Kaiyue Ding
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Qing Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Lujun Xu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| |
Collapse
|
4
|
Olatunji M, Liu Y. RNA damage and its implications in genome stability. DNA Repair (Amst) 2025; 147:103821. [PMID: 40043352 DOI: 10.1016/j.dnarep.2025.103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025]
Abstract
Endogenous and environmental stressors can damage DNA and RNA to compromise genome and transcriptome stability and integrity in cells, leading to genetic instability and diseases. Recent studies have demonstrated that RNA damage can also modulate genome stability via RNA-templated DNA synthesis, suggesting that it is essential to maintain RNA integrity for the sustainment of genome stability. However, little is known about RNA damage and repair and their roles in modulating genome stability. Current efforts have mainly focused on revealing RNA surveillance pathways that detect and degrade damaged RNA, while the critical role of RNA repair is often overlooked. Due to their abundance and susceptibility to nucleobase damaging agents, it is essential for cells to evolve robust RNA repair mechanisms that can remove RNA damage, maintaining RNA integrity during gene transcription. This is supported by the discovery of the alkylated RNA nucleobase repair enzyme human AlkB homolog 3 that can directly remove the methyl group on damaged RNA nucleobases, predominantly in the nucleus of human cells, thereby restoring the integrity of the damaged RNA nucleobases. This is further supported by the fact that several DNA repair enzymes can also process RNA damage. In this review, we discuss RNA damage and its effects on cellular function, DNA repair, genome instability, and potential RNA damage repair mechanisms. Our review underscores the necessity for future research on RNA damage and repair and their essential roles in modulating genome stability.
Collapse
Affiliation(s)
- Mustapha Olatunji
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, USA
| | - Yuan Liu
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, USA; Department of Chemistry and Biochemistry, and Florida International University, Miami, FL, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
5
|
Yang X, Stentenbach M, Hughes LA, Siira SJ, Lau K, Hothorn M, Martinou JC, Rackham O, Filipovska A. The Vsr-like protein FASTKD4 regulates the stability and polyadenylation of the MT-ND3 mRNA. Nucleic Acids Res 2025; 53:gkae1261. [PMID: 39727163 PMCID: PMC11879112 DOI: 10.1093/nar/gkae1261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Expression of the compact mitochondrial genome is regulated by nuclear encoded, mitochondrially localized RNA-binding proteins (RBPs). RBPs regulate the lifecycles of mitochondrial RNAs from transcription to degradation by mediating RNA processing, maturation, stability and translation. The Fas-activated serine/threonine kinase (FASTK) family of RBPs has been shown to regulate and fine-tune discrete aspects of mitochondrial gene expression. Although the roles of specific targets of FASTK proteins have been elucidated, the molecular mechanisms of FASTK proteins in mitochondrial RNA metabolism remain unclear. Therefore, we resolved the structure of FASTKD4 at atomic level that includes the RAP domain and the two FAST motifs, creating a positively charged cavity resembling that of the very short patch repair endonuclease. Our biochemical studies show that FASTKD4 binds the canonical poly(A) tail of MT-ND3 enabling its maturation and translation. The in vitro role of FASTKD4 is consistent with its loss in cells that results in decreased MT-ND3 polyadenylation, which destabilizes this messenger RNA in mitochondria.
Collapse
Affiliation(s)
- Xuan Yang
- Department of Molecular Cell Biology, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - Maike Stentenbach
- The Kids Research Institute Australia, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 15 Hospital Avenue, Nedlands, Western Australia 6009, Australia
| | - Laetitia A Hughes
- The Kids Research Institute Australia, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 15 Hospital Avenue, Nedlands, Western Australia 6009, Australia
| | - Stefan J Siira
- The Kids Research Institute Australia, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 15 Hospital Avenue, Nedlands, Western Australia 6009, Australia
| | - Kelvin Lau
- Department of Plant Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - Michael Hothorn
- Department of Plant Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - Jean-Claude Martinou
- Department of Molecular Cell Biology, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - Oliver Rackham
- The Kids Research Institute Australia, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 15 Hospital Avenue, Nedlands, Western Australia 6009, Australia
- Curtin Medical School, Curtin University, Kent St, Bentley, Western Australia 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, Western Australia 6102, Australia
| | - Aleksandra Filipovska
- The Kids Research Institute Australia, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 15 Hospital Avenue, Nedlands, Western Australia 6009, Australia
- Curtin Medical School, Curtin University, Kent St, Bentley, Western Australia 6102, Australia
| |
Collapse
|
6
|
Zhou Y, Zhang Y, Xu D, Yang C, Lin X, Jin K, Xia L, Zhuge Q, Yang S. Exosomes from polarized Microglia: Proteomic insights into potential mechanisms affecting intracerebral hemorrhage. Gene 2025; 935:149080. [PMID: 39510328 DOI: 10.1016/j.gene.2024.149080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Intracerebral hemorrhage (ICH) is a devastating form of stroke associated with significant morbidity and mortality. Microglia are intracranial innate immune cell that play critical roles in Intracerebral hemorrhage through direct or indirect means. Vesicle transport is a fundamental mechanism of intercellular communication. Recent studies have identified microglia in specific polarized states correlate with pathogenesis, material and signal transmission in ICH through derived extracellular vesicles. Diverse polarization states trigger distinct functions, however, the exosome proteomes across these states remain poorly characterized. Here, we hypothesized that microglia exosomal profiles vary with polarization states, impacting their functional repertoire and influencing outcomes in cerebral hemorrhage. In vitro model of cerebral hemorrhage, administration of 20 μg/ml LPS-induced M1 microglia derived exosomes (M1-Exo) with HT22 enhanced hemin-induced neuronal death, while IL-4-induced M2 microglia derived exosomes (M2-Exo) significantly reduced hemin-induced cell apoptosis and inflammation. Then we identified novel state-specific proteomic profiles of microglia-derived exosomes under these polarization conditions through label-free quantitative mass spectrometry (LFQ-MS). Analysis of protein content identified several exosomal signature proteins and hundreds of differentially expressed proteins across polarization states. Specifically, proteins including UMOD, NLRP3, ACOD1, IL1RN, heme oxygenase 1 (HMOX1), CCL4, and TNFRSF1B in M1-Exo were enriched in inflammatory pathways, while those in M2-Exo exhibited enrichment in autophagy, ubiquitination, and mitochondrial respiration. The analysis of those diverse exosomal proteins suggested unique proteomic profiles and possible intracellular signal transmission and regulation mechanisms. Together, these findings offer new insights and resources for studying microglia-derived exosome and pave the way for the development of novel therapeutic strategies targeting microglial exosome-mediated pathways.
Collapse
Affiliation(s)
- Yinan Zhou
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ying Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Dongchen Xu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chenguang Yang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiao Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Lei Xia
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Su Yang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
7
|
Rackham O, Saurer M, Ban N, Filipovska A. Unique architectural features of mammalian mitochondrial protein synthesis. Trends Cell Biol 2025; 35:11-23. [PMID: 38853081 DOI: 10.1016/j.tcb.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
Mitochondria rely on coordinated expression of their own mitochondrial DNA (mtDNA) with that of the nuclear genome for their biogenesis. The bacterial ancestry of mitochondria has given rise to unique and idiosyncratic features of the mtDNA and its expression machinery that can be specific to different organisms. In animals, the mitochondrial protein synthesis machinery has acquired many new components and mechanisms over evolution. These include several new ribosomal proteins, new stop codons and ways to recognise them, and new mechanisms to deliver nascent proteins into the mitochondrial inner membrane. Here we describe the mitochondrial protein synthesis machinery in mammals and its unique mechanisms of action elucidated to date and highlight the technologies poised to reveal the next generation of discoveries in mitochondrial translation.
Collapse
Affiliation(s)
- Oliver Rackham
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia; ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia; Curtin Medical School Curtin University, Bentley, WA, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia
| | - Martin Saurer
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Nenad Ban
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Aleksandra Filipovska
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia; The University of Western Australia Centre for Child Health Research, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia.
| |
Collapse
|
8
|
Ge Y, Janson V, Liu H. Comprehensive review on leucine-rich pentatricopeptide repeat-containing protein (LRPPRC, PPR protein): A burgeoning target for cancer therapy. Int J Biol Macromol 2024; 282:136820. [PMID: 39476900 DOI: 10.1016/j.ijbiomac.2024.136820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Leucine-rich pentatricopeptide repeat-containing (LRPPRC), known as the gene mutations that cause Leigh Syndrome French Canadian, encodes a high molecular weight PPR protein (157,905 Da), LRPPRC. LRPPRC binds to DNA, RNA, and proteins to regulate transcription and translation, leading to changes in cell fate. Increasing evidence indicates that LRPPRC plays a pivotal role in various human diseases, particularly cancer in recent years. Here, we review the structure, function, molecular mechanism, as well as inhibitors of LRPPRC. LRPPRC expression elevates in most cancer types and high expression of LRPPRC predicts the poor prognosis of cancer patients. Targeting LRPPRC suppresses tumor progression by affecting several cancer hallmarks, including signal transduction, cancer metabolism, and immune regulation. LRPPRC is a promising target in cancer research, serving as both a biomarker and therapeutic target. Further studies are required to extend the understanding of LRPPRC function and molecular mechanism, as well as to refine novel therapeutic strategies targeting LRPPRC in cancer therapy.
Collapse
Affiliation(s)
- Yunxiao Ge
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China
| | - Victor Janson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Hui Liu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China.
| |
Collapse
|
9
|
Singh V, Moran JC, Itoh Y, Soto IC, Fontanesi F, Couvillion M, Huynen MA, Churchman LS, Barrientos A, Amunts A. Structural basis of LRPPRC-SLIRP-dependent translation by the mitoribosome. Nat Struct Mol Biol 2024; 31:1838-1847. [PMID: 39134711 PMCID: PMC11637978 DOI: 10.1038/s41594-024-01365-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/28/2024] [Indexed: 09/21/2024]
Abstract
In mammalian mitochondria, mRNAs are cotranscriptionally stabilized by the protein factor LRPPRC (leucine-rich pentatricopeptide repeat-containing protein). Here, we characterize LRPPRC as an mRNA delivery factor and report its cryo-electron microscopy structure in complex with SLIRP (SRA stem-loop-interacting RNA-binding protein), mRNA and the mitoribosome. The structure shows that LRPPRC associates with the mitoribosomal proteins mS39 and the N terminus of mS31 through recognition of the LRPPRC helical repeats. Together, the proteins form a corridor for handoff of the mRNA. The mRNA is directly bound to SLIRP, which also has a stabilizing function for LRPPRC. To delineate the effect of LRPPRC on individual mitochondrial transcripts, we used RNA sequencing, metabolic labeling and mitoribosome profiling, which showed a transcript-specific influence on mRNA translation efficiency, with cytochrome c oxidase subunit 1 and 2 translation being the most affected. Our data suggest that LRPPRC-SLIRP acts in recruitment of mitochondrial mRNAs to modulate their translation. Collectively, the data define LRPPRC-SLIRP as a regulator of the mitochondrial gene expression system.
Collapse
Affiliation(s)
- Vivek Singh
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - J Conor Moran
- Medical Scientist Training Program, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yuzuru Itoh
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan.
| | - Iliana C Soto
- Blavatnik Institute, Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Flavia Fontanesi
- Medical Scientist Training Program, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mary Couvillion
- Blavatnik Institute, Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Martijn A Huynen
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L Stirling Churchman
- Blavatnik Institute, Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
- Westlake University, Hangzhou, China.
| |
Collapse
|
10
|
Yoshinaga N, Numata K. Poly(A) Tail Length of Messenger RNA Regulates Translational Efficiency of the Mitochondria-Targeting Delivery System. ACS Biomater Sci Eng 2024; 10:6344-6351. [PMID: 39231264 DOI: 10.1021/acsbiomaterials.4c01169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Mitochondria are essential for cellular functions, such as energy production. Human mitochondrial DNA (mtDNA), encoding 13 distinct genes, two rRNA, and 22 tRNA, is crucial for maintaining vital functions, along with nuclear-encoded mitochondrial proteins. However, mtDNA is prone to somatic mutations due to replication errors and reactive oxygen species exposure. These mutations can accumulate, leading to heteroplasmic conditions associated with severe metabolic diseases. Therefore, developing methodologies to improve mitochondrial health is highly demanded. Introducing nucleic acids directly into mitochondria is a promising strategy to control mitochondrial gene expression. Messenger RNA (mRNA) delivery especially offers several advantages such as faster gene expression and reduced risk of genome integration if accidentally delivered to the cell nucleus. In this study, we investigated the effect of the poly(A) tail length of mRNA on the mitochondrial translation to achieve efficient expression. We used a peptide-based mitochondrial targeting system, mitoNEET-(RH)9, comprising a mitochondria-targeting sequence (MTS) and a cationic sequence, to deliver mRNA with various poly(A) tails into the mitochondria. The poly(A) tail length significantly affected translational efficiency, with a medium length of 60 nucleotides maximizing protein expression in various cell lines due to enhanced interaction with mitochondrial RNA-binding proteins. Our findings highlight the importance of optimizing poly(A) tail length for efficient mitochondrial mRNA translation, providing a potential strategy for improving mitochondrial gene therapy. These results pave the way for further exploration of the mechanisms and clinical applications of mitochondrial mRNA delivery systems.
Collapse
Affiliation(s)
- Naoto Yoshinaga
- Biomacromolecule Research Team, RIKEN Center for Sustainable Resource Science, Wako-shi, Saitama 351-0198, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka-shi, Yamagata 997-0017, Japan
| | - Keiji Numata
- Biomacromolecule Research Team, RIKEN Center for Sustainable Resource Science, Wako-shi, Saitama 351-0198, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka-shi, Yamagata 997-0017, Japan
- Department of Material Chemistry, Kyoto University, Kyoto-shi, Kyoto 606-8501, Japan
| |
Collapse
|
11
|
Rubalcava-Gracia D, Bubb K, Levander F, Burr S, August A, Chinnery P, Koolmeister C, Larsson NG. LRPPRC and SLIRP synergize to maintain sufficient and orderly mammalian mitochondrial translation. Nucleic Acids Res 2024; 52:11266-11282. [PMID: 39087558 PMCID: PMC11472161 DOI: 10.1093/nar/gkae662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
In mammals, the leucine-rich pentatricopeptide repeat protein (LRPPRC) and the stem-loop interacting RNA-binding protein (SLIRP) form a complex in the mitochondrial matrix that is required throughout the life cycle of most mitochondrial mRNAs. Although pathogenic mutations in the LRPPRC and SLIRP genes cause devastating human mitochondrial diseases, the in vivo function of the corresponding proteins is incompletely understood. We show here that loss of SLIRP in mice causes a decrease of complex I levels whereas other OXPHOS complexes are unaffected. We generated knock-in mice to study the in vivo interdependency of SLIRP and LRPPRC by mutating specific amino acids necessary for protein complex formation. When protein complex formation is disrupted, LRPPRC is partially degraded and SLIRP disappears. Livers from Lrpprc knock-in mice had impaired mitochondrial translation except for a marked increase in the synthesis of ATP8. Furthermore, the introduction of a heteroplasmic pathogenic mtDNA mutation (m.C5024T of the tRNAAla gene) into Slirp knockout mice causes an additive effect on mitochondrial translation leading to embryonic lethality and reduced growth of mouse embryonic fibroblasts. To summarize, we report that the LRPPRC/SLIRP protein complex is critical for maintaining normal complex I levels and that it also coordinates mitochondrial translation in a tissue-specific manner.
Collapse
Affiliation(s)
- Diana Rubalcava-Gracia
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Bubb
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Levander
- Department en Immunotechnology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Stephen P Burr
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council Mitochondrial Biology Unit,University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Amelie V August
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council Mitochondrial Biology Unit,University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Camilla Koolmeister
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nils-Göran Larsson
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Wenda JM, Drzewicka K, Mulica P, Tetaud E, di Rago JP, Golik P, Łabędzka-Dmoch K. Candida albicans PPR proteins are required for the expression of respiratory Complex I subunits. Genetics 2024; 228:iyae124. [PMID: 39073444 PMCID: PMC11630760 DOI: 10.1093/genetics/iyae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/10/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024] Open
Abstract
Pentatricopeptide repeat (PPR) proteins bind RNA and are present in mitochondria and chloroplasts of Eukaryota. In fungi, they are responsible for controlling mitochondrial genome expression, mainly on the posttranscriptional level. Candida albicans is a human opportunistic pathogen with a facultative anaerobic metabolism which, unlike the model yeast Saccharomyces cerevisiae, possesses mitochondrially encoded respiratory Complex I (CI) subunits and does not tolerate loss of mtDNA. We characterized the function of 4 PPR proteins of C. albicans that lack orthologs in S. cerevisiae and found that they are required for the expression of mitochondrially encoded CI subunits. We demonstrated that these proteins localize to mitochondria and are essential to maintain the respiratory capacity of cells. Deletion of genes encoding these PPR proteins results in changes in steady-state levels of mitochondrial RNAs and proteins. We demonstrated that C. albicans cells lacking CaPpr4, CaPpr11, and CaPpr13 proteins show no CI assembly, whereas the lack of CaPpr7p results in a decreased CI activity. CaPpr13p is required to maintain the bicistronic NAD4L-NAD5 mRNA, whereas the other 3 PPR proteins are likely involved in translation-related assembly of mitochondrially encoded CI subunits. In addition, we show that CaAep3p, which is an ortholog of ScAep3p, performs the evolutionary conserved function of controlling expression of the ATP8-ATP6 mRNA. We also show that C. albicans cells lacking PPR proteins express a higher level of the inducible alternative oxidase (AOX2) which likely rescues respiratory defects and compensates for oxidative stress.
Collapse
Affiliation(s)
- Joanna Maria Wenda
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw 02-106, Poland
| | - Katarzyna Drzewicka
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw 02-106, Poland
| | - Patrycja Mulica
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw 02-106, Poland
| | - Emmanuel Tetaud
- IBGC, Univ. Bordeaux, CNRS, UMR 5095, F-33000, Bordeaux, France
- MFP, Univ. Bordeaux, CNRS, UMR 5234, F-33000, Bordeaux, France
| | | | - Paweł Golik
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw 02-106, Poland
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw 00-901, Poland
| | - Karolina Łabędzka-Dmoch
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw 02-106, Poland
| |
Collapse
|
13
|
Brischigliaro M, Krüger A, Moran JC, Antonicka H, Ahn A, Shoubridge E, Rorbach J, Barrientos A. The human mitochondrial translation factor TACO1 alleviates mitoribosome stalling at polyproline stretches. Nucleic Acids Res 2024; 52:9710-9726. [PMID: 39036954 PMCID: PMC11381339 DOI: 10.1093/nar/gkae645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
The prokaryotic translation elongation factor P (EF-P) and the eukaryotic/archaeal counterparts eIF5A/aIF5A are proteins that serve a crucial role in mitigating ribosomal stalling during the translation of specific sequences, notably those containing consecutive proline residues (1,2). Although mitochondrial DNA-encoded proteins synthesized by mitochondrial ribosomes also contain polyproline stretches, an EF-P/eIF5A mitochondrial counterpart remains unidentified. Here, we show that the missing factor is TACO1, a protein causative of a juvenile form of neurodegenerative Leigh's syndrome associated with cytochrome c oxidase deficiency, until now believed to be a translational activator of COX1 mRNA. By using a combination of metabolic labeling, puromycin release and mitoribosome profiling experiments, we show that TACO1 is required for the rapid synthesis of the polyproline-rich COX1 and COX3 cytochrome c oxidase subunits, while its requirement is negligible for other mitochondrial DNA-encoded proteins. In agreement with a role in translation efficiency regulation, we show that TACO1 cooperates with the N-terminal extension of the large ribosomal subunit bL27m to provide stability to the peptidyl-transferase center during elongation. This study illuminates the translation elongation dynamics within human mitochondria, a TACO1-mediated biological mechanism in place to mitigate mitoribosome stalling at polyproline stretches during protein synthesis, and the pathological implications of its malfunction.
Collapse
Affiliation(s)
- Michele Brischigliaro
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10 Ave., Miami, FL 33136, USA
| | - Annika Krüger
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - J Conor Moran
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA
- The University of Miami Medical Scientist Training Program (MSTP), 1600 NW 10th Ave.,Miami, FL33136, USA
| | - Hana Antonicka
- The Neuro and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Ahram Ahn
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA
| | - Eric A Shoubridge
- The Neuro and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10 Ave., Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA
- The Miami Veterans Affairs (VA) Medical System. 1201 NW 16th St, Miami, FL-33125, USA
| |
Collapse
|
14
|
Sun Y, Chen X, Shi Y, Teng F, Dai C, Ge L, Xu J, Jia X. hsa_circ_0020093 suppresses ovarian cancer progression by modulating LRPPRC activity and miR-107/LATS2 signaling. Biol Direct 2024; 19:69. [PMID: 39164777 PMCID: PMC11337591 DOI: 10.1186/s13062-024-00520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024] Open
Abstract
A substantive body of evidence has demonstrated the significant roles of circular RNA (circRNA) in cancer. However, the contribution of dysregulated circRNAs to ovarian cancer (OC) remains elusive. We aim to elucidate the critical roles and mechanisms of hsa_circ_0020093, which was demonstrated to be downregulated in OC tissues in our previous study. In this study, we confirmed the decreased expression of hsa_circ_0020093 in OC tissues and cell lines and demonstrated the negative correlation between its expression and FIGO stage, abdominal implantation and CA125 level of OC patients. Through gain and loss of function studies, we confirmed the inhibitory role of hsa_circ_0020093 in ovarian tumor growth in vitro and in vivo. Mechanistically, based on the peri-nuclear accumulation of hsa_circ_0020093, we discovered the interaction between hsa_circ_0020093 and the mitochondrial protein LRPPRC by RNA pull-down, mass spectrometry, RNA Binding Protein Immunoprecipitation. As a result, qRT-PCR and transmission electron microscopy results showed that the mitochondria mRNA expression and mitochondria abundance were decreased upon hsa_circ_0020093-overexpression. Meanwhile, we also unearthed the hsa_circ_0020093/miR-107/LATS2 axis in OC according to RNA-sequencing, RIP and luciferase reporter assay data. Furthermore, LRPPRC and LATS2 are both reported as the upstream regulators of YAP, our study also studied the crosstalk between hsa_circ_0020093, LRPPRC and miR-107/LATS2, and unearthed the up-regulation of phosphorylated YAP in hsa_circ_0020093-overexpressing OC cells and xenograft tumors. Collectively, our study indicated the novel mechanism of hsa_circ_0020093 in suppressing OC progression through both hsa_circ_0020093/LRPPRC and hsa_circ_0020093/miR-107/LATS2 axes, providing a potential therapeutic target for OC patients.
Collapse
Affiliation(s)
- Yu Sun
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Tianfei Xiang, Mochou Road, Nanjing, 210004, China
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Xiyi Chen
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Tianfei Xiang, Mochou Road, Nanjing, 210004, China
| | - Yaqian Shi
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Tianfei Xiang, Mochou Road, Nanjing, 210004, China
| | - Fang Teng
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Tianfei Xiang, Mochou Road, Nanjing, 210004, China
| | - Chencheng Dai
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Tianfei Xiang, Mochou Road, Nanjing, 210004, China
| | - Lili Ge
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Tianfei Xiang, Mochou Road, Nanjing, 210004, China.
| | - Juan Xu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Tianfei Xiang, Mochou Road, Nanjing, 210004, China.
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Tianfei Xiang, Mochou Road, Nanjing, 210004, China.
| |
Collapse
|
15
|
Nie L, Wang X, Wang S, Hong Z, Wang M. Genetic insights into the complexity of premature ovarian insufficiency. Reprod Biol Endocrinol 2024; 22:94. [PMID: 39095891 PMCID: PMC11295921 DOI: 10.1186/s12958-024-01254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/29/2024] [Indexed: 08/04/2024] Open
Abstract
Premature Ovarian Insufficiency (POI) is a highly heterogeneous condition characterized by ovarian dysfunction in women occurring before the age of 40, representing a significant cause of female infertility. It manifests through primary or secondary amenorrhea. While more than half of POI cases are idiopathic, genetic factors play a pivotal role in all instances with known causes, contributing to approximately 20-25% of cases. This article comprehensively reviews the genetic factors associated with POI, delineating the primary candidate genes. The discussion delves into the intricate relationship between these genes and ovarian development, elucidating the functional consequences of diverse mutations to underscore the fundamental impact of genetic effects on POI. The identified genetic factors, encompassing gene mutations and chromosomal abnormalities, are systematically classified based on whether the resulting POI is syndromic or non-syndromic. Furthermore, this paper explores the genetic interplay between mitochondrial genes, such as Required for Meiotic Nuclear Division 1 homolog Gene (RMND1), Mitochondrial Ribosomal Protein S22 Gene (MRPS22), Leucine-rich Pentapeptide Repeat Gene (LRPPRC), and non-coding RNAs, including both microRNAs and Long non-coding RNAs, with POI. The insights provided serve to consolidate and enhance our understanding of the etiology of POI, contributing to establishing a theoretical foundation for diagnosing and treating POI patients, as well as for exploring the mechanisms underlying the disease.
Collapse
Affiliation(s)
- Linhang Nie
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- WuHan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, Hubei, P.R. China
| | - Xiaojie Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Second Clinical Hospital of WuHan University, Wuhan, Hubei, P.R. China
| | - Songyuan Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- WuHan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, Hubei, P.R. China
| | - Zhidan Hong
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| | - Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| |
Collapse
|
16
|
Xu Z, Sziraki A, Lee J, Zhou W, Cao J. Dissecting key regulators of transcriptome kinetics through scalable single-cell RNA profiling of pooled CRISPR screens. Nat Biotechnol 2024; 42:1218-1223. [PMID: 37749268 PMCID: PMC10961254 DOI: 10.1038/s41587-023-01948-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/15/2023] [Indexed: 09/27/2023]
Abstract
We present a combinatorial indexing method, PerturbSci-Kinetics, for capturing whole transcriptomes, nascent transcriptomes and single guide RNA (sgRNA) identities across hundreds of genetic perturbations at the single-cell level. Profiling a pooled CRISPR screen targeting various biological processes, we show the gene expression regulation during RNA synthesis, processing and degradation, miRNA biogenesis and mitochondrial mRNA processing, systematically decoding the genome-wide regulatory network that underlies RNA temporal dynamics at scale.
Collapse
Affiliation(s)
- Zihan Xu
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Andras Sziraki
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Jasper Lee
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Wei Zhou
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Junyue Cao
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
17
|
Moran JC, Brivanlou A, Brischigliaro M, Fontanesi F, Rouskin S, Barrientos A. The human mitochondrial mRNA structurome reveals mechanisms of gene expression. Science 2024; 385:eadm9238. [PMID: 39024447 PMCID: PMC11510358 DOI: 10.1126/science.adm9238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/24/2024] [Indexed: 07/20/2024]
Abstract
The human mitochondrial genome encodes crucial oxidative phosphorylation system proteins, pivotal for aerobic energy transduction. They are translated from nine monocistronic and two bicistronic transcripts whose native structures remain unexplored, posing a gap in understanding mitochondrial gene expression. In this work, we devised the mitochondrial dimethyl sulfate mutational profiling with sequencing (mitoDMS-MaPseq) method and applied detection of RNA folding ensembles using expectation-maximization (DREEM) clustering to unravel the native mitochondrial messenger RNA (mt-mRNA) structurome in wild-type (WT) and leucine-rich pentatricopeptide repeat-containing protein (LRPPRC)-deficient cells. Our findings elucidate LRPPRC's role as a holdase contributing to maintaining mt-mRNA folding and efficient translation. mt-mRNA structural insights in WT mitochondria, coupled with metabolic labeling, unveil potential mRNA-programmed translational pausing and a distinct programmed ribosomal frameshifting mechanism. Our data define a critical layer of mitochondrial gene expression regulation. These mt-mRNA folding maps provide a reference for studying mt-mRNA structures in diverse physiological and pathological contexts.
Collapse
Affiliation(s)
- J. Conor Moran
- Department of Biochemistry and Molecular Biology. University of Miami Miller School of Medicine. 1600 NW 10 Ave. Miami, FL-33136 (USA)
| | - Amir Brivanlou
- Department of Microbiology. Harvard Medical School. 77 Ave. Louis Pasteur. Boston, MA-02115 (USA)
| | - Michele Brischigliaro
- Department of Neurology. University of Miami Miller School of Medicine. 1600 NW 10 Ave. Miami, FL-33136 (USA)
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology. University of Miami Miller School of Medicine. 1600 NW 10 Ave. Miami, FL-33136 (USA)
| | - Silvi Rouskin
- Department of Microbiology. Harvard Medical School. 77 Ave. Louis Pasteur. Boston, MA-02115 (USA)
| | - Antoni Barrientos
- Department of Biochemistry and Molecular Biology. University of Miami Miller School of Medicine. 1600 NW 10 Ave. Miami, FL-33136 (USA)
- Department of Neurology. University of Miami Miller School of Medicine. 1600 NW 10 Ave. Miami, FL-33136 (USA)
- The Miami Veterans Affairs (VA) Medical System. 1201 NW 16 St, Miami, FL-33125 (USA)
| |
Collapse
|
18
|
Liu H, Zhou Y, Fredimoses M, Niu P, Ge Y, Wu R, Liu T, Li P, Shi Y, Shi Y, Liu K, Dong Z. Targeting leucine-rich PPR motif-containing protein/LRPPRC by 5,7,4'-trimethoxyflavone suppresses esophageal squamous cell carcinoma progression. Int J Biol Macromol 2024; 269:131966. [PMID: 38697422 DOI: 10.1016/j.ijbiomac.2024.131966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
JAK2/STAT3/MYC axis is dysregulated in nearly 70 % of human cancers, but targeting this pathway therapeutically remains a big challenge in cancer therapy. In this study, genes associated with JAK2, STAT3, and MYC were analyzed, and potential target genes were selected. Leucine-rich PPR motif-containing protein (LRPPRC) whose function and regulation are not fully understood, emerged as one of top 3 genes in terms of RNA epigenetic modification. Here, we demonstrate LRPPRC may be an independent prognostic indicator besides JAK2, STAT3, and MYC. Mechanistically, LRPPRC impairs N6-methyladenosine (m6A) modification of JAK2, STAT3, and MYC to facilitate nuclear mRNA export and expression. Meanwhile, excess LRPPRC act as a scaffold protein binding to JAK2 and STAT3 to enhance stability of JAK2-STAT3 complex, thereby facilitating JAK2/STAT3/MYC axis activation to promote esophageal squamous cell carcinoma (ESCC) progression. Furthermore, 5,7,4'-trimethoxyflavone was verified to bind to LRPPRC, STAT3, and CDK1, dissociating LRPPRC-JAK2-STAT3 and JAK2-STAT3-CDK1 interaction, leading to impaired tumorigenesis in 4-Nitroquinoline N-oxide induced ESCC mouse models and suppressed tumor growth in ESCC patient derived xenograft mouse models. In summary, this study suggests regulation of m6A modification by LRPPRC, and identifies a novel triplex target compound, suggesting that targeting LRPPRC-mediated JAK2/STAT3/MYC axis may overcome JAK2/STAT3/MYC dependent tumor therapeutic dilemma.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Yubing Zhou
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Mangaladoss Fredimoses
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China
| | - Peijia Niu
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yunxiao Ge
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Rui Wu
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Tingting Liu
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China
| | - Pan Li
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China
| | - Yang Shi
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yaqian Shi
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China; Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China; Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China.
| |
Collapse
|
19
|
Santonoceto G, Jurkiewicz A, Szczesny RJ. RNA degradation in human mitochondria: the journey is not finished. Hum Mol Genet 2024; 33:R26-R33. [PMID: 38779774 PMCID: PMC11497605 DOI: 10.1093/hmg/ddae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria are vital organelles present in almost all eukaryotic cells. Although most of the mitochondrial proteins are nuclear-encoded, mitochondria contain their own genome, whose proper expression is necessary for mitochondrial function. Transcription of the human mitochondrial genome results in the synthesis of long polycistronic transcripts that are subsequently processed by endonucleases to release individual RNA molecules, including precursors of sense protein-encoding mRNA (mt-mRNA) and a vast amount of antisense noncoding RNAs. Because of mitochondrial DNA (mtDNA) organization, the regulation of individual gene expression at the transcriptional level is limited. Although transcription of most protein-coding mitochondrial genes occurs with the same frequency, steady-state levels of mature transcripts are different. Therefore, post-transcriptional processes are important for regulating mt-mRNA levels. The mitochondrial degradosome is a complex composed of the RNA helicase SUV3 (also known as SUPV3L1) and polynucleotide phosphorylase (PNPase, PNPT1). It is the best-characterized RNA-degrading machinery in human mitochondria, which is primarily responsible for the decay of mitochondrial antisense RNA. The mechanism of mitochondrial sense RNA decay is less understood. This review aims to provide a general picture of mitochondrial genome expression, with a particular focus on mitochondrial RNA (mtRNA) degradation.
Collapse
Affiliation(s)
- Giulia Santonoceto
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, Warsaw 02-106, Poland
| | - Aneta Jurkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, Warsaw 02-106, Poland
| | - Roman J Szczesny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, Warsaw 02-106, Poland
| |
Collapse
|
20
|
Zhang J, Ling L, Xiang L, Li W, Bao P, Yue W. Clinical features of neuronal intranuclear inclusion disease with seizures: a systematic literature review. Front Neurol 2024; 15:1387399. [PMID: 38707999 PMCID: PMC11069311 DOI: 10.3389/fneur.2024.1387399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Background Infant, junior, and adult patients with neuronal intranuclear inclusion disease (NIID) present with various types of seizures. We aimed to conduct a systematic literature review on the clinical characteristics of NIID with seizures to provide novel insight for early diagnosis and treatment and to improve prognosis of these patients. Methods We used keywords to screen articles related to NIID and seizures, and data concerning the clinical characteristics of patients, including demographic features, disease characteristics of the seizures, treatment responses, imaging examinations, and other auxiliary examination results were extracted. Results The included studies comprised 21 patients with NIID with seizures. The most common clinical phenotypes were cognitive impairment (76.20%) and impaired consciousness (57.14%), and generalized onset motor seizures (46.15%) represented the most common type. Compared with infantile and juvenile cases, the use of antiepileptic drugs in adults led to significant seizure control and symptom improvement, in addition to providing a better prognosis. The number of GGC sequence repeats in the NOTCH2NLC gene in six NIID patients with seizures who underwent genetic testing ranged 72-134. Conclusion The most common clinical phenotypes in patients with NIID with seizures were cognitive impairment and consciousness disorders. Patients with NIID presented with various types of seizures, with the most common being generalized onset motor seizures. Adult patients had a better prognosis and were relatively stable. The early diagnosis of NIID with seizures is of great significance for treatment and to improve prognosis.
Collapse
Affiliation(s)
- Jinwei Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Ling Ling
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Lei Xiang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Wenxia Li
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Pengnan Bao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Wei Yue
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
21
|
McShane E, Couvillion M, Ietswaart R, Prakash G, Smalec BM, Soto I, Baxter-Koenigs AR, Choquet K, Churchman LS. A kinetic dichotomy between mitochondrial and nuclear gene expression processes. Mol Cell 2024; 84:1541-1555.e11. [PMID: 38503286 PMCID: PMC11236289 DOI: 10.1016/j.molcel.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/12/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
Oxidative phosphorylation (OXPHOS) complexes, encoded by both mitochondrial and nuclear DNA, are essential producers of cellular ATP, but how nuclear and mitochondrial gene expression steps are coordinated to achieve balanced OXPHOS subunit biogenesis remains unresolved. Here, we present a parallel quantitative analysis of the human nuclear and mitochondrial messenger RNA (mt-mRNA) life cycles, including transcript production, processing, ribosome association, and degradation. The kinetic rates of nearly every stage of gene expression differed starkly across compartments. Compared with nuclear mRNAs, mt-mRNAs were produced 1,100-fold more, degraded 7-fold faster, and accumulated to 160-fold higher levels. Quantitative modeling and depletion of mitochondrial factors LRPPRC and FASTKD5 identified critical points of mitochondrial regulatory control, revealing that the mitonuclear expression disparities intrinsically arise from the highly polycistronic nature of human mitochondrial pre-mRNA. We propose that resolving these differences requires a 100-fold slower mitochondrial translation rate, illuminating the mitoribosome as a nexus of mitonuclear co-regulation.
Collapse
Affiliation(s)
- Erik McShane
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Mary Couvillion
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Robert Ietswaart
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gyan Prakash
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Brendan M Smalec
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Iliana Soto
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Autum R Baxter-Koenigs
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Karine Choquet
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Nahalka J. 1-L Transcription of SARS-CoV-2 Spike Protein S1 Subunit. Int J Mol Sci 2024; 25:4440. [PMID: 38674024 PMCID: PMC11049929 DOI: 10.3390/ijms25084440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The COVID-19 pandemic prompted rapid research on SARS-CoV-2 pathogenicity. Consequently, new data can be used to advance the molecular understanding of SARS-CoV-2 infection. The present bioinformatics study discusses the "spikeopathy" at the molecular level and focuses on the possible post-transcriptional regulation of the SARS-CoV-2 spike protein S1 subunit in the host cell/tissue. A theoretical protein-RNA recognition code was used to check the compatibility of the SARS-CoV-2 spike protein S1 subunit with mRNAs in the human transcriptome (1-L transcription). The principle for this method is elucidated on the defined RNA binding protein GEMIN5 (gem nuclear organelle-associated protein 5) and RNU2-1 (U2 spliceosomal RNA). Using the method described here, it was shown that 45% of the genes/proteins identified by 1-L transcription of the SARS-CoV-2 spike protein S1 subunit are directly linked to COVID-19, 39% are indirectly linked to COVID-19, and 16% cannot currently be associated with COVID-19. The identified genes/proteins are associated with stroke, diabetes, and cardiac injury.
Collapse
Affiliation(s)
- Jozef Nahalka
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dubravska Cesta 9, SK-84538 Bratislava, Slovakia;
- Institute of Chemistry, Centre of Excellence for White-Green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, SK-94976 Nitra, Slovakia
| |
Collapse
|
23
|
Wu Z, Liu X, Xie F, Ma C, Lam EWF, Kang N, Jin D, Yan J, Jin B. Comprehensive pan-cancer analysis identifies the RNA-binding protein LRPPRC as a novel prognostic and immune biomarker. Life Sci 2024; 343:122527. [PMID: 38417544 DOI: 10.1016/j.lfs.2024.122527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/25/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
AIMS RNA-binding proteins (RBPs) play pivotal roles in carcinogenesis and immunotherapy. Leucine-rich pentapeptide repeat-containing protein (LRPPRC) is crucial for RNA polyadenylation, transport, and stability. Although recent studies have suggested LRPPRC's potential role in tumor progression, its significance in tumor prognosis, diagnosis, and immunology remains unclear. MAIN METHODS We comprehensively analyzed LRPPRC expression in tumors using various databases, including Human Transcriptome Cell Atlas (HTCA), University of California Santa Cruz (UCSC), Human Protein Atlas (HPA), Sangerbox, TISIDB, GeneMANIA, GSCALite, and CellMiner. We examined the correlation between LRPPRC expression level and prognosis, immune infiltration, immunotherapy, methylation, biological function, and drug sensitivity. Single-cell analysis was performed using Tumor Immune Single Cell Hub (TISCH) and CancerSEA software. Patients with acute myeloid leukemia (AML) were categorized based on LRPPRC levels for functional and immune infiltration analyses. The role of LRPPRC in cancer was validated using in vitro experiments. KEY FINDINGS Our findings revealed that LRPPRC was highly expressed in almost all cancer types, indicating its significant prognostic and diagnostic potential. Notably, LRPPRC was associated with diverse immune features, such as immune cell infiltration, immune checkpoint genes, tumor mutational burden, and microsatellite instability, suggesting its value in guiding immunotherapy strategies. Within AML, the high-expression group had lower levels of immune cells, including CD8+ T cells. In vitro experiments confirmed the inhibitory effects of LRPPRC knockdown on AML cell proliferation. SIGNIFICANCE This study highlights LRPPRC as a reliable pan-cancer prognostic and immune biomarker, particularly in AML. It lays the groundwork for future research on LRPPRC-targeted cancer therapies.
Collapse
Affiliation(s)
- Zheng Wu
- Institute of Cancer Stem Cell, Liaoning Key Laboratory of Nucleic Acid Biology, Dalian Medical University, Dalian 116044, Liaoning, China; Department of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian 116027, Liaoning, China
| | - Xinyue Liu
- Institute of Cancer Stem Cell, Liaoning Key Laboratory of Nucleic Acid Biology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Fang Xie
- Department of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian 116027, Liaoning, China
| | - Chao Ma
- Institute of Cancer Stem Cell, Liaoning Key Laboratory of Nucleic Acid Biology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Ning Kang
- Institute of Cancer Stem Cell, Liaoning Key Laboratory of Nucleic Acid Biology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Di Jin
- Institute of Cancer Stem Cell, Liaoning Key Laboratory of Nucleic Acid Biology, Dalian Medical University, Dalian 116044, Liaoning, China.
| | - Jinsong Yan
- Department of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian 116027, Liaoning, China.
| | - Bilian Jin
- Institute of Cancer Stem Cell, Liaoning Key Laboratory of Nucleic Acid Biology, Dalian Medical University, Dalian 116044, Liaoning, China.
| |
Collapse
|
24
|
Sun Q, Wang M, Lu T, Duan S, Liu Y, Chen J, Wang Z, Sun Y, Li X, Wang S, Lu L, Hu L, Yun L, Yang J, Yan J, Nie S, Zhu Y, Chen G, Wang CC, Liu C, He G, Tang R. Differentiated adaptative genetic architecture and language-related demographical history in South China inferred from 619 genomes from 56 populations. BMC Biol 2024; 22:55. [PMID: 38448908 PMCID: PMC10918984 DOI: 10.1186/s12915-024-01854-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND The underrepresentation of human genomic resources from Southern Chinese populations limited their health equality in the precision medicine era and complete understanding of their genetic formation, admixture, and adaptive features. Besides, linguistical and genetic evidence supported the controversial hypothesis of their origin processes. One hotspot case was from the Chinese Guangxi Pinghua Han people (GPH), whose language was significantly similar to Southern Chinese dialects but whose uniparental gene pool was phylogenetically associated with the indigenous Tai-Kadai (TK) people. Here, we analyzed genome-wide SNP data in 619 people from four language families and 56 geographically different populations, in which 261 people from 21 geographically distinct populations were first reported here. RESULTS We identified significant population stratification among ethnolinguistically diverse Guangxi populations, suggesting their differentiated genetic origin and admixture processes. GPH shared more alleles related to Zhuang than Southern Han Chinese but received more northern ancestry relative to Zhuang. Admixture models and estimates of genetic distances showed that GPH had a close genetic relationship with geographically close TK compared to Northern Han Chinese, supporting their admixture origin hypothesis. Further admixture time and demographic history reconstruction supported GPH was formed via admixture between Northern Han Chinese and Southern TK people. We identified robust signatures associated with lipid metabolisms, such as fatty acid desaturases (FADS) and medically relevant loci associated with Mendelian disorder (GJB2) and complex diseases. We also explored the shared and unique selection signatures of ethnically different but linguistically related Guangxi lineages and found some shared signals related to immune and malaria resistance. CONCLUSIONS Our genetic analysis illuminated the language-related fine-scale genetic structure and provided robust genetic evidence to support the admixture hypothesis that can explain the pattern of observed genetic diversity and formation of GPH. This work presented one comprehensive analysis focused on the population history and demographical adaptative process, which provided genetic evidence for personal health management and disease risk prediction models from Guangxi people. Further large-scale whole-genome sequencing projects would provide the entire landscape of southern Chinese genomic diversity and their contributions to human health and disease traits.
Collapse
Affiliation(s)
- Qiuxia Sun
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
| | - Tao Lu
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637100, China
| | - Yan Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637100, China
| | - Jing Chen
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yuntao Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiangping Li
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Shaomei Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Department of Public Health, Chengdu Medical College, Chengdu, 610500, China
| | - Liuyi Lu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Clinical Medical Sciences, North Sichuan Medical College, Nanchong, 637100, China
| | - Liping Hu
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Libing Yun
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Junbao Yang
- School of Clinical Medical Sciences, North Sichuan Medical College, Nanchong, 637100, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yanfeng Zhu
- Department of Public Health, Chengdu Medical College, Chengdu, 610500, China
| | - Gang Chen
- Hunan Key Lab of Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, 410075, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Chao Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China
- Guangzhou Forensic Science Institute, Guangzhou, 510055, China
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China.
| |
Collapse
|
25
|
Feng Y, Yu Z, Tang M, Li J, Peng B, Juaiti M, Tang Y, Liang B, Ouyang M, Liu Q, Song J. Transcriptome-Wide N6-Methyladenosine Alternations in Pulmonary Arteries of Monocrotaline-Induced Pulmonary Arterial Hypertension in Rats and Novel Therapeutic Targets. Biomedicines 2024; 12:364. [PMID: 38397966 PMCID: PMC10886831 DOI: 10.3390/biomedicines12020364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
N6-methyladenosine (m6A) is a post-transcriptional epigenetic change with transcriptional stability and functionality regulated by specific m6A-modifying enzymes. However, the significance of genes modified by m6A and enzymes specific to m6A regulation in the context of pulmonary arterial hypertension (PAH) remains largely unexplored. MeRIP-seq and RNA-seq were applied to explore variances in m6A and RNA expression within the pulmonary artery tissues of control and monocrotaline-induced PAH rats. Functional enrichments were analyzed using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. To screen candidate m6A-related genes, the STRING and Metascape databases were used to construct a protein-protein interaction network followed by a real-time PCR validation of their expression. The expression level of an m6A regulator was further investigated using immunohistochemical staining, immunofluorescence, and Western blot techniques. Additionally, proliferation assays were conducted on primary rat pulmonary artery smooth muscle cells (PASMCs). We identified forty-two differentially expressed genes that exhibited either hypermethylated or hypomethylated m6A. These genes are predominantly related to the extracellular matrix structure, MAPK, and PI3K/AKT pathways. A candidate gene, centromere protein F (CENPF), was detected with increased expression in the PAH group. Additionally, we first identified an m6A reader, leucine rich pentatricopeptide repeat containing (LRPPRC), which was downregulated in the PAH rat model. The in vitro downregulation of Lrpprc mediated by siRNA resulted in the enhanced proliferation and elevated expression of Cenpf mRNA in primary rat PASMCs. Our study revealed a modified transcriptome-wide m6A landscape and associated regulatory mechanisms in the pulmonary arteries of PAH rats, potentially offering a novel target for therapeutic strategies in the future.
Collapse
Affiliation(s)
- Yilu Feng
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.F.); (Z.Y.); (B.P.); (M.J.); (Y.T.); (B.L.)
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha 410011, China; (J.L.); (M.O.)
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zaixin Yu
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.F.); (Z.Y.); (B.P.); (M.J.); (Y.T.); (B.L.)
| | - Mi Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China;
| | - Jiang Li
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha 410011, China; (J.L.); (M.O.)
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Baohua Peng
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.F.); (Z.Y.); (B.P.); (M.J.); (Y.T.); (B.L.)
| | - Mukamengjiang Juaiti
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.F.); (Z.Y.); (B.P.); (M.J.); (Y.T.); (B.L.)
| | - Yiyang Tang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.F.); (Z.Y.); (B.P.); (M.J.); (Y.T.); (B.L.)
| | - Benhui Liang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.F.); (Z.Y.); (B.P.); (M.J.); (Y.T.); (B.L.)
| | - Mingqi Ouyang
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha 410011, China; (J.L.); (M.O.)
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qingqing Liu
- Department of Respiratory and Critical Care, The Second Xiangya Hospital, Central South University, Changsha 410011, China;
| | - Jie Song
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha 410011, China; (J.L.); (M.O.)
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
26
|
Zhu S, Bai L, Pan Y, Yin J, Zhang D, Hou C, Wang Y, Li R. Integrative Analysis of N6-methyladenosine RNA modifications related genes and their Influences on Immunoreaction or fibrosis in myocardial infarction. Int J Med Sci 2024; 21:219-233. [PMID: 38169719 PMCID: PMC10758152 DOI: 10.7150/ijms.86210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/17/2023] [Indexed: 01/05/2024] Open
Abstract
Increasing studies have shown that N6-methyladenosine (m6A) modification plays an important role in cardiovascular diseases. In this study, we systematically investigated the regulatory mode of m6A genes in myocardial infarction (MI) by combining bioinformatics analysis of clinical samples with animal experiments. We utilized gene expression data of clinical samples from public databases to examine the expression of m6A genes in heart tissues and found a large difference between the healthy control group and MI group. Subsequently, we established an MI diagnosis model based on the differentially expressed m6A genes using the random forest method. Next, unsupervised clustering method was used to classify all MI samples into two clusters, and the differences in immune infiltration and gene expression between different clusters were compared. We found LRPPRC to be the predominant gene in m6A clustering, and it was negatively correlated with immunoreaction. Through GO enrichment analysis, we found that most differentially expressed genes between the two clusters were profibrotic. By means of WGCNA, we inferred that GJA4 might be a core molecule in the m6A regulatory network of MI. This study demonstrates that m6A regulators probably affects the immune-inflammatory response and fibrosis to regulate the process of MI, which provides a potential therapeutic target.
Collapse
Affiliation(s)
- Shiwei Zhu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Lan Bai
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Yitong Pan
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Junhao Yin
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Deshuai Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Chenchen Hou
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yongli Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Ruogu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| |
Collapse
|
27
|
Baleva MV, Piunova U, Chicherin I, Vasilev R, Levitskii S, Kamenski P. Mitochondrial Protein SLIRP Affects Biosynthesis of Cytochrome c Oxidase Subunits in HEK293T Cells. Int J Mol Sci 2023; 25:93. [PMID: 38203264 PMCID: PMC10779364 DOI: 10.3390/ijms25010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Mitochondria carry out various vital roles in eukaryotic cells, including ATP energy synthesis, the regulation of apoptosis, Fe-S cluster formation, and the metabolism of fatty acids, amino acids, and nucleotides. Throughout evolution, mitochondria lost most of their ancestor's genome but kept the replication, transcription, and translation machinery. Protein biosynthesis in mitochondria is specialized in the production of highly hydrophobic proteins encoded by mitochondria. These proteins are components of oxidative phosphorylation chain complexes. The coordination of protein synthesis must be precise to ensure the correct assembly of nuclear-encoded subunits for these complexes. However, the regulatory mechanisms of mitochondrial translation in human cells are not yet fully understood. In this study, we examined the contribution of the SLIRP protein in regulating protein biosynthesis in mitochondria. Using a click-chemistry approach, we discovered that deletion of the SLIRP gene disturbs mitochondrial translation, leading to the dysfunction of complexes I and IV, but it has no significant effect on complexes III and V. We have shown that this protein interacts only with the small subunit of the mitochondrial ribosome, which may indicate its involvement in the regulation of the mitochondrial translation initiation stage.
Collapse
Affiliation(s)
| | | | | | | | - Sergey Levitskii
- Faculty of Biology, Lomonosov Moscow State University, 1/12 Leninskie Gory, 119234 Moscow, Russia; (M.V.B.); (U.P.); (I.C.); (R.V.)
| | - Piotr Kamenski
- Faculty of Biology, Lomonosov Moscow State University, 1/12 Leninskie Gory, 119234 Moscow, Russia; (M.V.B.); (U.P.); (I.C.); (R.V.)
| |
Collapse
|
28
|
Conor Moran J, Brivanlou A, Brischigliaro M, Fontanesi F, Rouskin S, Barrientos A. The human mitochondrial mRNA structurome reveals mechanisms of gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564750. [PMID: 37961485 PMCID: PMC10635011 DOI: 10.1101/2023.10.31.564750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The mammalian mitochondrial genome encodes thirteen oxidative phosphorylation system proteins, crucial in aerobic energy transduction. These proteins are translated from 9 monocistronic and 2 bicistronic transcripts, whose native structures remain unexplored, leaving fundamental molecular determinants of mitochondrial gene expression unknown. To address this gap, we developed a mitoDMS-MaPseq approach and used DREEM clustering to resolve the native human mitochondrial mt-mRNA structurome. We gained insights into mt-mRNA biology and translation regulatory mechanisms, including a unique programmed ribosomal frameshifting for the ATP8/ATP6 transcript. Furthermore, absence of the mt-mRNA maintenance factor LRPPRC led to a mitochondrial transcriptome structured differently, with specific mRNA regions exhibiting increased or decreased structuredness. This highlights the role of LRPPRC in maintaining mRNA folding to promote mt-mRNA stabilization and efficient translation. In conclusion, our mt-mRNA folding maps reveal novel mitochondrial gene expression mechanisms, serving as a detailed reference and tool for studying them in different physiological and pathological contexts.
Collapse
|
29
|
Loguercio Polosa P, Capriglia F, Bruni F. Molecular Investigation of Mitochondrial RNA19 Role in the Pathogenesis of MELAS Disease. Life (Basel) 2023; 13:1863. [PMID: 37763267 PMCID: PMC10532844 DOI: 10.3390/life13091863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
In mammalian mitochondria, the processing of primary RNA transcripts involves a coordinated series of cleavage and modification events, leading to the formation of processing intermediates and mature mt-RNAs. RNA19 is an unusually stable unprocessed precursor, physiologically polyadenylated, which includes the 16S mt-rRNA, the mt-tRNALeuUUR and the mt-ND1 mRNA. These peculiarities, together with the alteration of its steady-state levels in cellular models with defects in mitochondrial function, make RNA19 a potentially important molecule for the physiological regulation of mitochondrial molecular processes as well as for the pathogenesis of mitochondrial diseases. In this work, we quantitatively and qualitatively examined RNA19 in MELAS trans-mitochondrial cybrids carrying the mtDNA 3243A>G transition and displaying a profound mitochondrial translation defect. Through a combination of isokinetic sucrose gradient and RT-qPCR experiments, we found that RNA19 accumulated and co-sedimented with the mitoribosomal large subunit (mt-LSU) in mutant cells. Intriguingly, exogenous expression of the isolated LARS2 C-terminal domain (Cterm), which was shown to rescue defective translation in MELAS cybrids, decreased the levels of mt-LSU-associated RNA19 by relegating it to the pool of free unbound RNAs. Overall, the data reported here support a regulatory role for RNA19 in mitochondrial physiopathological processes, designating this RNA precursor as a possible molecular target in view of therapeutic strategy development.
Collapse
Affiliation(s)
| | | | - Francesco Bruni
- Department of Biosciences, Biotechnologies and Environment, University of Bari ‘Aldo Moro’, 70125 Bari, Italy; (P.L.P.); (F.C.)
| |
Collapse
|
30
|
Liang L, Sun W, Wei X, Wang L, Ruan H, Zhang J, Li S, Zhao B, Li M, Cai Z, Huang J. Oxymatrine suppresses colorectal cancer progression by inhibiting NLRP3 inflammasome activation through mitophagy induction in vitro and in vivo. Phytother Res 2023; 37:3342-3362. [PMID: 36974424 DOI: 10.1002/ptr.7808] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023]
Abstract
Chinese herb Radix sophorae tonkinensis extract oxymatrine shows anticancer effects. This study evaluated the role of oxymatrine in colorectal cancer (CRC) and the underlying molecular events in vitro and in vivo. CRC cells were treated with different doses of oxymatrine to assess cell viability, reactive oxygen species production, gene expression, and gene alterations. Meanwhile, mouse xenograft and liver metastasis models were used to assess the effects of oxymatrine using histology examination, transmission electron microscopy, and Western blot, respectively. Our results showed that oxymatrine treatment triggered CRC cell mitophagy to inhibit CRC cell growth, migration, invasion, and metastasis in vitro and in vivo. At the gene level, oxymatrine inhibited LRPPRC to promote Parkin translocation into the mitochondria and reduce the mitophagy-activated NLRP3 inflammasome. Thus, oxymatrine had an anticancer activity through LRPPRC inhibition, mitophagy induction, and NLRP3 inflammasome suppression in the CRC cell xenograft and liver metastasis models. In conclusion, the study demonstrates the oxymatrine anti- CRC activity through its unique role in regulating CRC cell mitophagy and NLRP3 inflammasome levels in vitro and in vivo.
Collapse
Affiliation(s)
- Li Liang
- Department of Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weiliang Sun
- Department of Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoxuan Wei
- Department of Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Wang
- Department of Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huaqiang Ruan
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Junchuan Zhang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Suyan Li
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bi Zhao
- Department of Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mengshi Li
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhengwen Cai
- Department of Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jie'an Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
31
|
Nadler F, Richter-Dennerlein R. Translation termination in human mitochondria - substrate specificity of mitochondrial release factors. Biol Chem 2023; 404:769-779. [PMID: 37377370 DOI: 10.1515/hsz-2023-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Mitochondria are the essential players in eukaryotic ATP production by oxidative phosphorylation, which relies on the maintenance and accurate expression of the mitochondrial genome. Even though the basic principles of translation are conserved due to the descendance from a bacterial ancestor, some deviations regarding translation factors as well as mRNA characteristics and the applied genetic code are present in human mitochondria. Together, these features are certain challenges during translation the mitochondrion has to handle. Here, we discuss the current knowledge regarding mitochondrial translation focusing on the termination process and the associated quality control mechanisms. We describe how mtRF1a resembles bacterial RF1 mechanistically and summarize in vitro and recent in vivo data leading to the conclusion of mtRF1a being the major mitochondrial release factor. On the other hand, we discuss the ongoing debate about the function of the second codon-dependent mitochondrial release factor mtRF1 regarding its role as a specialized termination factor. Finally, we link defects in mitochondrial translation termination to the activation of mitochondrial rescue mechanisms highlighting the importance of ribosome-associated quality control for sufficient respiratory function and therefore for human health.
Collapse
Affiliation(s)
- Franziska Nadler
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Ricarda Richter-Dennerlein
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, D-37075 Göttingen, Germany
- Goettingen Center for Molecular Biosciences, University of Göttingen, D-37077 Göttingen, Germany
| |
Collapse
|
32
|
Wang P, Wang Q, Chen L, Cao Z, Zhao H, Su R, Wang N, Ma X, Shan J, Chen X, Zhang Q, Du B, Yuan Z, Zhao Y, Zhang X, Guo X, Xue Y, Miao L. RNA-binding protein complex AMG-1/SLRP-1 mediates germline development and spermatogenesis by maintaining mitochondrial homeostasis in Caenorhabditis elegans. Sci Bull (Beijing) 2023; 68:1399-1412. [PMID: 37355389 DOI: 10.1016/j.scib.2023.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 06/26/2023]
Abstract
The mechanisms of RNA-binding proteins (RBPs)-mediated post-transcriptional regulation of pre-existing mRNAs, which is essential for spermatogenesis, remain poorly understood. In this study, we identify that a germline-specific mitochondrial RBP AMG-1(abnormal mitochondria in germline 1), a homolog of mammalian leucine-rich PPR motif-containing protein (LRPPRC), is required for spermatogenesis in Caenorhabditis elegans. The amg-1 mutation hinders germline development without affecting somatic development and leads to the aberrant mitochondrial morphology and structure associated with mitochondrial dysfunctions specifically in the germline. We demonstrate that AMG-1 is most frequently bound to mtDNA-encoded 12S and 16S ribosomal RNA, the essential components of mitochondrial ribosomes, and that 12S rRNA expression mediated by AMG-1 is crucial for germline mitochondrial protein homeostasis. Furthermore, steroid receptor RNA activator (SRA) stem loop interacting RNA binding protein (SLRP-1), a homolog of mammalian SRA stem loop interacting RNA binding protein (SLIRP) in C. elegans, interacts with AMG-1 genetically to regulate germline development and reproductive success in C. elegans. Overall, these findings reveal the novel function of mtRBP, specifically in regulating germline development.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Qiushi Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Lianwan Chen
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zheng Cao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hailian Zhao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Ruibao Su
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Ning Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Xiaojing Ma
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Jin Shan
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Xinyan Chen
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Qi Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China; Department of Automation, Tsinghua University, Beijing 100084, China
| | - Baochen Du
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Zhiheng Yuan
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China
| | - Yanmei Zhao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaorong Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China.
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China.
| | - Long Miao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100059, China; Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
33
|
Zhou W, Wang W, Liang Y, Jiang R, Qiu F, Shao X, Liu Y, Fang L, Ni M, Yu C, Zhao Y, Huang W, Li J, Donovan MJ, Wang L, Ni J, Wang D, Fu T, Feng J, Wang X, Tan W, Fang X. The RNA-binding protein LRPPRC promotes resistance to CDK4/6 inhibition in lung cancer. Nat Commun 2023; 14:4212. [PMID: 37452037 PMCID: PMC10349134 DOI: 10.1038/s41467-023-39854-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Kinase inhibitors against Cyclin Dependent Kinase 4 and 6 (CDK4/6i) are promising cancer therapeutic drugs. However, their effects are limited by primary or acquired resistance in virtually all tumor types. Here, we demonstrate that Leucine Rich Pentatricopeptide Repeat Containing (LRPPRC) controls CDK4/6i response in lung cancer by forming a feedback loop with CDK6. LRPPRC binds to CDK6-mRNA, increasing the stability and expression of CDK6. CDK6 and its downstream E2F Transcription Factor 1 (E2F1), bind to the LRPPRC promoter and elevate LRPPRC transcription. The activation of the LRPPRC-CDK6 loop facilitates cell cycle G1/S transition, oxidative phosphorylation, and cancer stem cell generation. Gossypol acetate (GAA), a gynecological medicine that has been repurposed as a degrader of LRPPRC, enhances the CDK4/6i sensitivity in vitro and in vivo. Our study reveals a mechanism responsible for CDK4/6i resistance and provides an enlightening approach to investigating the combinations of CDK4/6 and LRPPRC inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Wei Zhou
- Hangzhou Institute of Medicine (HIM), University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
- Beijing National Research Center for Molecular Sciences, Institute of Chemistry, Key Laboratory of Molecular Nanostructure and Nanotechnology, Chinese Academy of Science, Beijing, 100190, PR China
| | - Wenxi Wang
- Hangzhou Institute of Medicine (HIM), University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, PR China
| | - Yuxin Liang
- Beijing National Research Center for Molecular Sciences, Institute of Chemistry, Key Laboratory of Molecular Nanostructure and Nanotechnology, Chinese Academy of Science, Beijing, 100190, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ruibin Jiang
- Hangzhou Institute of Medicine (HIM), University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
| | - Fensheng Qiu
- Hangzhou Institute of Medicine (HIM), University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
| | - Xiying Shao
- Hangzhou Institute of Medicine (HIM), University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
| | - Yang Liu
- Beijing National Research Center for Molecular Sciences, Institute of Chemistry, Key Laboratory of Molecular Nanostructure and Nanotechnology, Chinese Academy of Science, Beijing, 100190, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Le Fang
- Hangzhou Institute of Medicine (HIM), University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, PR China
| | - Maowei Ni
- Hangzhou Institute of Medicine (HIM), University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
| | - Chenhuan Yu
- Hangzhou Institute of Medicine (HIM), University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
| | - Yue Zhao
- Hangzhou Institute of Medicine (HIM), University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
| | - Weijia Huang
- Hangzhou Institute of Medicine (HIM), University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
| | - Jiong Li
- Department of Medicinal Chemistry, Massey Cancer Center, Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, 23298-0540, USA
| | - Michael J Donovan
- Hangzhou Institute of Medicine (HIM), University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
| | - Lina Wang
- Beijing National Research Center for Molecular Sciences, Institute of Chemistry, Key Laboratory of Molecular Nanostructure and Nanotechnology, Chinese Academy of Science, Beijing, 100190, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Juan Ni
- Hangzhou Institute of Medicine (HIM), University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
| | - Dachi Wang
- Hangzhou Institute of Medicine (HIM), University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
| | - Ting Fu
- Hangzhou Institute of Medicine (HIM), University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
| | - Jianguo Feng
- Hangzhou Institute of Medicine (HIM), University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
| | - Xiaojia Wang
- Hangzhou Institute of Medicine (HIM), University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
| | - Weihong Tan
- Hangzhou Institute of Medicine (HIM), University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China.
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, PR China.
| | - Xiaohong Fang
- Hangzhou Institute of Medicine (HIM), University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China.
- Beijing National Research Center for Molecular Sciences, Institute of Chemistry, Key Laboratory of Molecular Nanostructure and Nanotechnology, Chinese Academy of Science, Beijing, 100190, PR China.
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, PR China.
- University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
34
|
Chella Krishnan K, El Hachem EJ, Keller MP, Patel SG, Carroll L, Vegas AD, Gerdes Gyuricza I, Light C, Cao Y, Pan C, Kaczor-Urbanowicz KE, Shravah V, Anum D, Pellegrini M, Lee CF, Seldin MM, Rosenthal NA, Churchill GA, Attie AD, Parker B, James DE, Lusis AJ. Genetic architecture of heart mitochondrial proteome influencing cardiac hypertrophy. eLife 2023; 12:e82619. [PMID: 37276142 PMCID: PMC10241513 DOI: 10.7554/elife.82619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 05/18/2023] [Indexed: 06/07/2023] Open
Abstract
Mitochondria play an important role in both normal heart function and disease etiology. We report analysis of common genetic variations contributing to mitochondrial and heart functions using an integrative proteomics approach in a panel of inbred mouse strains called the Hybrid Mouse Diversity Panel (HMDP). We performed a whole heart proteome study in the HMDP (72 strains, n=2-3 mice) and retrieved 848 mitochondrial proteins (quantified in ≥50 strains). High-resolution association mapping on their relative abundance levels revealed three trans-acting genetic loci on chromosomes (chr) 7, 13 and 17 that regulate distinct classes of mitochondrial proteins as well as cardiac hypertrophy. DAVID enrichment analyses of genes regulated by each of the loci revealed that the chr13 locus was highly enriched for complex-I proteins (24 proteins, P=2.2E-61), the chr17 locus for mitochondrial ribonucleoprotein complex (17 proteins, P=3.1E-25) and the chr7 locus for ubiquinone biosynthesis (3 proteins, P=6.9E-05). Follow-up high resolution regional mapping identified NDUFS4, LRPPRC and COQ7 as the candidate genes for chr13, chr17 and chr7 loci, respectively, and both experimental and statistical analyses supported their causal roles. Furthermore, a large cohort of Diversity Outbred mice was used to corroborate Lrpprc gene as a driver of mitochondrial DNA (mtDNA)-encoded gene regulation, and to show that the chr17 locus is specific to heart. Variations in all three loci were associated with heart mass in at least one of two independent heart stress models, namely, isoproterenol-induced heart failure and diet-induced obesity. These findings suggest that common variations in certain mitochondrial proteins can act in trans to influence tissue-specific mitochondrial functions and contribute to heart hypertrophy, elucidating mechanisms that may underlie genetic susceptibility to heart failure in human populations.
Collapse
Affiliation(s)
- Karthickeyan Chella Krishnan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Elie-Julien El Hachem
- Department of Integrative Biology and Physiology, Field Systems Biology, Sciences Sorbonne UniversitéParisFrance
| | - Mark P Keller
- Biochemistry Department, University of Wisconsin-MadisonMadisonUnited States
| | - Sanjeet G Patel
- Department of Surgery/Division of Cardiac Surgery, University of Southern California Keck School of MedicineLos AngelesUnited States
| | - Luke Carroll
- Metabolic Systems Biology Laboratory, Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Alexis Diaz Vegas
- Metabolic Systems Biology Laboratory, Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | | | - Christine Light
- Cardiovascular Biology Research Program, Oklahoma Medical Research FoundationOklahoma CityUnited States
| | - Yang Cao
- Department of Medicine/Division of Cardiology, University of California, Los AngelesLos AngelesUnited States
| | - Calvin Pan
- Department of Medicine/Division of Cardiology, University of California, Los AngelesLos AngelesUnited States
| | - Karolina Elżbieta Kaczor-Urbanowicz
- Division of Oral Biology and Medicine, UCLA School of DentistryLos AngelesUnited States
- UCLA Institute for Quantitative and Computational BiosciencesLos AngelesUnited States
| | - Varun Shravah
- Department of Chemistry, University of CaliforniaLos AngelesUnited States
| | - Diana Anum
- Department of Integrative Biology and Physiology, University of CaliforniaLos AngelesUnited States
| | - Matteo Pellegrini
- UCLA Institute for Quantitative and Computational BiosciencesLos AngelesUnited States
| | - Chi Fung Lee
- Cardiovascular Biology Research Program, Oklahoma Medical Research FoundationOklahoma CityUnited States
- Department of Physiology, University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | - Marcus M Seldin
- Center for Epigenetics and MetabolismIrvineUnited States
- Department of Biological Chemistry, University of CaliforniaIrvineUnited States
| | | | | | - Alan D Attie
- Biochemistry Department, University of Wisconsin-MadisonMadisonUnited States
| | - Benjamin Parker
- Department of Anatomy and Physiology, University of MelbourneMelbourneAustralia
| | - David E James
- Metabolic Systems Biology Laboratory, Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Aldons J Lusis
- Department of Medicine/Division of Cardiology, University of California, Los AngelesLos AngelesUnited States
- Department of Human Genetics, University of CaliforniaLos AngelesUnited States
- Department of Microbiology, Immunology and Molecular Genetics, University of CaliforniaLos AngelesUnited States
| |
Collapse
|
35
|
Xu Z, Sziraki A, Lee J, Zhou W, Cao J. PerturbSci-Kinetics: Dissecting key regulators of transcriptome kinetics through scalable single-cell RNA profiling of pooled CRISPR screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.29.526143. [PMID: 36778497 PMCID: PMC9915486 DOI: 10.1101/2023.01.29.526143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Here we described PerturbSci-Kinetics, a novel combinatorial indexing method for capturing three-layer single-cell readout (i.e., whole transcriptomes, nascent transcriptomes, sgRNA identities) across hundreds of genetic perturbations. Through PerturbSci-Kinetics profiling of pooled CRISPR screens targeting a variety of biological processes, we were able to decipher the complexity of RNA regulations at multiple levels (e.g., synthesis, processing, degradation), and revealed key regulators involved in miRNA and mitochondrial RNA processing pathways. Our technique opens the possibility of systematically decoding the genome-wide regulatory network underlying RNA temporal dynamics at scale and cost-effectively.
Collapse
|
36
|
Ma Q, Niu C, Wang C, Chen C, Li Y, Wei M. Effects of differentially expressed microRNAs induced by rootstocks and silicon on improving chilling tolerance of cucumber seedlings (Cucumis sativus L.). BMC Genomics 2023; 24:250. [PMID: 37165319 PMCID: PMC10173649 DOI: 10.1186/s12864-023-09337-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/26/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Rootstocks can improve the chilling tolerance of grafted cucumbers, but their effectiveness varies. Rootstocks with strong de-blooming capacity may result in lower chilling tolerance of grafted cucumbers compared to those with weak de-blooming capacity, while also reducing the silicon absorption. However, it remains unclear whether this reduction in chilling tolerance is due to differences in rootstock genotypes or the reduction in silicon absorption. RESULTS The chilling tolerance of cucumber seedlings was improved by using rootstocks and silicon nutrition. Rootstocks had a more significant effect than silicon nutrition, and the weak de-blooming rootstock 'Yunnan figleaf gourd' was superior to the strong de-blooming rootstock 'Huangchenggen No. 2'. Compared to self-rooted cucumber, twelve miRNAs were regulated by two rootstocks, including seven identical miRNAs (novel-mir23, novel-mir26, novel-mir30, novel-mir37, novel-mir46, miR395a and miR398a-3p) and five different miRNAs (novel-mir32, novel-mir38, novel-mir65, novel-mir78 and miR397a). Notably, four of these miRNAs (novel-mir38, novel-mir65, novel-mir78 and miR397a) were only identified in 'Yunnan figleaf gourd'-grafted cucumbers. Furthermore, six miRNAs (miR168a-5p, miR390a-5p, novel-mir26, novel-mir55, novel-mir67 and novel-mir70) were found to be responsive to exogenous silicon. Target gene prediction for 20 miRNAs resulted in 520 genes. Functional analysis of these target genes showed that 'Yunnan figleaf gourd' improves the chilling tolerance of cucumber by regulating laccase synthesis and sulfate metabolism, while 'Huangchenggen No. 2' and exogenous silicon reduced chilling stress damage to cucumber by regulating ROS scavenging and protein protection, respectively. CONCLUSION Among the identified miRNAs, novel-mir46 and miR398a-3p were found in cucumbers in response to chilling stress and two types of rootstocks. However, no identical miRNAs were identified in response to chilling stress and silicon. In addition, the differential expression of novel-mir38, novel-mir65, novel-mir78 and miR397a may be one of the important reasons for the differences in chilling tolerance of grafted cucumbers caused by two types of rootstocks.
Collapse
Affiliation(s)
- Qiang Ma
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Chenxu Niu
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Chao Wang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, China
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Taian, 271018, China
- State Key Laboratory of Crop Biology, Taian, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian, 271018, China
| | - Chunhua Chen
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, China
- State Key Laboratory of Crop Biology, Taian, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian, 271018, China
| | - Yan Li
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, China
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Taian, 271018, China
- State Key Laboratory of Crop Biology, Taian, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian, 271018, China
| | - Min Wei
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, China.
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Taian, 271018, China.
- State Key Laboratory of Crop Biology, Taian, 271018, China.
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian, 271018, China.
| |
Collapse
|
37
|
Rubalcava-Gracia D, García-Villegas R, Larsson NG. No role for nuclear transcription regulators in mammalian mitochondria? Mol Cell 2023; 83:832-842. [PMID: 36182692 DOI: 10.1016/j.molcel.2022.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/17/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
Although the mammalian mtDNA transcription machinery is simple and resembles bacteriophage systems, there are many reports that nuclear transcription regulators, as exemplified by MEF2D, MOF, PGC-1α, and hormone receptors, are imported into mammalian mitochondria and directly interact with the mtDNA transcription machinery. However, the supporting experimental evidence for this concept is open to alternate interpretations, and a main issue is the difficulty in distinguishing indirect regulation of mtDNA transcription, caused by altered nuclear gene expression, from direct intramitochondrial effects. We provide a critical discussion and experimental guidelines to stringently assess roles of intramitochondrial factors implicated in direct regulation of mammalian mtDNA transcription.
Collapse
Affiliation(s)
- Diana Rubalcava-Gracia
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rodolfo García-Villegas
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nils-Göran Larsson
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
38
|
Gonzalez B, Tare A, Ryu S, Johnson SC, Atzmon G, Barzilai N, Kaeberlein M, Suh Y. High-throughput sequencing analysis of nuclear-encoded mitochondrial genes reveals a genetic signature of human longevity. GeroScience 2023; 45:311-330. [PMID: 35948858 PMCID: PMC9886794 DOI: 10.1007/s11357-022-00634-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/28/2022] [Indexed: 02/03/2023] Open
Abstract
Mitochondrial dysfunction is a well-known contributor to aging and age-related diseases. The precise mechanisms through which mitochondria impact human lifespan, however, remain unclear. We hypothesize that humans with exceptional longevity harbor rare variants in nuclear-encoded mitochondrial genes (mitonuclear genes) that confer resistance against age-related mitochondrial dysfunction. Here we report an integrated functional genomics study to identify rare functional variants in ~ 660 mitonuclear candidate genes discovered by target capture sequencing analysis of 496 centenarians and 572 controls of Ashkenazi Jewish descent. We identify and prioritize longevity-associated variants, genes, and mitochondrial pathways that are enriched with rare variants. We provide functional gene variants such as those in MTOR (Y2396Lfs*29), CPS1 (T1406N), and MFN2 (G548*) as well as LRPPRC (S1378G) that is predicted to affect mitochondrial translation. Taken together, our results suggest a functional role for specific mitonuclear genes and pathways in human longevity.
Collapse
Affiliation(s)
- Brenda Gonzalez
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Archana Tare
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Seungjin Ryu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea
| | - Simon C Johnson
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Gil Atzmon
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Nir Barzilai
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Yousin Suh
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Departments of Obstetrics and Gynecology, and Genetics and Development, Columbia University, 630 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
39
|
Remes C, Khawaja A, Pearce SF, Dinan AM, Gopalakrishna S, Cipullo M, Kyriakidis V, Zhang J, Dopico XC, Yukhnovets O, Atanassov I, Firth AE, Cooperman B, Rorbach J. Translation initiation of leaderless and polycistronic transcripts in mammalian mitochondria. Nucleic Acids Res 2023; 51:891-907. [PMID: 36629253 PMCID: PMC9881170 DOI: 10.1093/nar/gkac1233] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/11/2022] [Accepted: 12/09/2022] [Indexed: 01/12/2023] Open
Abstract
The synthesis of mitochondrial OXPHOS complexes is central to cellular metabolism, yet many molecular details of mitochondrial translation remain elusive. It has been commonly held view that translation initiation in human mitochondria proceeded in a manner similar to bacterial systems, with the mitoribosomal small subunit bound to the initiation factors, mtIF2 and mtIF3, along with initiator tRNA and an mRNA. However, unlike in bacteria, most human mitochondrial mRNAs lack 5' leader sequences that can mediate small subunit binding, raising the question of how leaderless mRNAs are recognized by mitoribosomes. By using novel in vitro mitochondrial translation initiation assays, alongside biochemical and genetic characterization of cellular knockouts of mitochondrial translation factors, we describe unique features of translation initiation in human mitochondria. We show that in vitro, leaderless mRNA transcripts can be loaded directly onto assembled 55S mitoribosomes, but not onto the mitoribosomal small subunit (28S), in a manner that requires initiator fMet-tRNAMet binding. In addition, we demonstrate that in human cells and in vitro, mtIF3 activity is not required for translation of leaderless mitochondrial transcripts but is essential for translation of ATP6 in the case of the bicistronic ATP8/ATP6 transcript. Furthermore, we show that mtIF2 is indispensable for mitochondrial protein synthesis. Our results demonstrate an important evolutionary divergence of the mitochondrial translation system and further our fundamental understanding of a process central to eukaryotic metabolism.
Collapse
Affiliation(s)
- Cristina Remes
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anas Khawaja
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Stockholm 17165, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Sarah F Pearce
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Stockholm 17165, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Adam M Dinan
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Shreekara Gopalakrishna
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Stockholm 17165, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Miriam Cipullo
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Stockholm 17165, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Vasileios Kyriakidis
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Stockholm 17165, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Jingdian Zhang
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Stockholm 17165, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Xaquin Castro Dopico
- Department of Microbiology, Tumor & Cell Biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Olessya Yukhnovets
- RWTH Aachen, I. Physikalisches Institut (IA), Aachen, Germany
- Forschungszentrum Jülich, Institute of Complex Systems ICS-5, Jülich, Germany
| | - Ilian Atanassov
- Proteomics Core Facility, Max-Planck-Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Andrew E Firth
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Barry Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Stockholm 17165, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
- STIAS: Stellenbosch Institute for Advanced Study at Stellenbosch University, Marais Rd, Stellenbosch 7600, South Africa
| |
Collapse
|
40
|
Rudler DL, Siira SJ, Rackham O, Filipovska A. Digital RNase Footprinting of RNA-Protein Complexes and Ribosomes in Mitochondria. Methods Mol Biol 2023; 2661:317-328. [PMID: 37166645 DOI: 10.1007/978-1-0716-3171-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
RNA-binding proteins and mitochondrial ribosomes have been found to be linchpins of mitochondrial gene expression in health and disease. The expanding repertoire of proteins that bind and regulate the mitochondrial transcriptome has necessitated the development of new tools and methods to examine their molecular functions. Next-generation sequencing technologies have advanced the RNA biology field through application of high-throughput methods to study RNA-protein interactions. Here we describe a digital RNase footprinting method to analyze protein and ribosome interactions with mitochondrially encoded transcripts that provides insight into their mechanisms and minimal binding sites. We provide details on RNase digestion and next-generation sequencing, along with computational analyses and visualization of the binding targets within the mitochondrial transcriptome.
Collapse
Affiliation(s)
- Danielle L Rudler
- Harry Perkins Institute of Medical Research and ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia
| | - Stefan J Siira
- Harry Perkins Institute of Medical Research and ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research and ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia
- Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA, Australia
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research and ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia.
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia.
- Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA, Australia.
| |
Collapse
|
41
|
Yang Y, Yuan H, Zhao L, Guo S, Hu S, Tian M, Nie Y, Yu J, Zhou C, Niu J, Wang G, Song Y. Targeting the miR-34a/LRPPRC/MDR1 axis collapse the chemoresistance in P53 inactive colorectal cancer. Cell Death Differ 2022; 29:2177-2189. [PMID: 35484333 PMCID: PMC9613927 DOI: 10.1038/s41418-022-01007-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
P53 mutation is an important cause of chemoresistance in colorectal cancer (CRC). The investigation and identification of the downstream targets and underlying molecular mechanism of chemoresistance induced by P53 abnormalities are therefore of great clinical significance. In this study, we demonstrated and reported for the first time that leucine-rich pentatricopeptide repeat-containing protein (LRPPRC) is a key functional downstream factor and therapeutic target for P53 mutation-induced chemoresistance. Due to its RNA binding function, LRPPRC specifically bound to the mRNA of multidrug resistance 1 (MDR1), increasing MDR1 mRNA stability and protein expression. In normal cells, P53 induced by chemotherapy inhibited the expression of LRPPRC via miR-34a and in turn reduced the expression of MDR1. However, chemotherapy-induced P53/miR-34a/LRPPRC/MDR1 signalling pathway activation was lost when P53 was mutated. Additionally, the accumulated LRPPRC and MDR1 promoted drug resistance. Most importantly, gossypol-acetic acid (GAA) was recently reported by our team as the first specific inhibitor of LRPPRC. In CRC cells with P53 mutation, GAA effectively induced degradation of the LRPPRC protein and reduced chemoresistance. Both in vivo and in vitro experiments revealed that combination chemotherapy with GAA and 5-fluorouracil (5FU) yielded improved treatment outcomes. In this study, we reported a novel mechanism and target related to P53-induced drug resistance and provided corresponding interventional strategies for the precision treatment of CRC.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Hongyu Yuan
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lianmei Zhao
- Research center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Shichao Guo
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Sijun Hu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710000, China
| | - Miaomiao Tian
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710000, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710000, China
| | - Jiarui Yu
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chaoxi Zhou
- The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Jian Niu
- The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Guiying Wang
- The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China.
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050051, China.
| | - Yongmei Song
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
42
|
Szczepanowska K, Trifunovic A. Mitochondrial matrix proteases: quality control and beyond. FEBS J 2022; 289:7128-7146. [PMID: 33971087 DOI: 10.1111/febs.15964] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/22/2021] [Accepted: 05/07/2021] [Indexed: 01/13/2023]
Abstract
To ensure correct function, mitochondria have developed several mechanisms of protein quality control (QC). Protein homeostasis highly relies on chaperones and proteases to maintain proper folding and remove damaged proteins that might otherwise form cell-toxic aggregates. Besides quality control, mitochondrial proteases modulate and regulate many essential functions, such as trafficking, processing and activation of mitochondrial proteins, mitochondrial dynamics, mitophagy and apoptosis. Therefore, the impaired function of mitochondrial proteases is associated with various pathological conditions, including cancer, metabolic syndromes and neurodegenerative disorders. This review recapitulates and discusses the emerging roles of two major proteases of the mitochondrial matrix, LON and ClpXP. Although commonly acknowledge for their protein quality control role, recent advances have uncovered several highly regulated processes controlled by the LON and ClpXP connected to mitochondrial gene expression and respiratory chain function maintenance. Furthermore, both proteases have been lately recognized as potent targets for anticancer therapies, and we summarize those findings.
Collapse
Affiliation(s)
- Karolina Szczepanowska
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Germany
| | - Aleksandra Trifunovic
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Germany
| |
Collapse
|
43
|
CGG repeat expansion in NOTCH2NLC causes mitochondrial dysfunction and progressive neurodegeneration in Drosophila model. Proc Natl Acad Sci U S A 2022; 119:e2208649119. [PMID: 36191230 PMCID: PMC9565157 DOI: 10.1073/pnas.2208649119] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a neuromuscular/neurodegenerative disease caused by the expansion of CGG repeats in the 5' untranslated region (UTR) of the NOTCH2NLC gene. These repeats can be translated into a polyglycine-containing protein, uN2CpolyG, which forms protein inclusions and is toxic in cell models, albeit through an unknown mechanism. Here, we established a transgenic Drosophila model expressing uN2CpolyG in multiple systems, which resulted in progressive neuronal cell loss, locomotor deficiency, and shortened lifespan. Interestingly, electron microscopy revealed mitochondrial swelling both in transgenic flies and in muscle biopsies of individuals with NIID. Immunofluorescence and immunoelectron microscopy showed colocalization of uN2CpolyG with mitochondria in cell and patient samples, while biochemical analysis revealed that uN2CpolyG interacted with a mitochondrial RNA binding protein, LRPPRC (leucine-rich pentatricopeptide repeat motif-containing protein). Furthermore, RNA sequencing (RNA-seq) analysis and functional assays showed down-regulated mitochondrial oxidative phosphorylation in uN2CpolyG-expressing flies and NIID muscle biopsies. Finally, idebenone treatment restored mitochondrial function and alleviated neurodegenerative phenotypes in transgenic flies. Overall, these results indicate that transgenic flies expressing uN2CpolyG recapitulate key features of NIID and that reversing mitochondrial dysfunction might provide a potential therapeutic approach for this disorder.
Collapse
|
44
|
Ziemann M, Wu W, Deng XL, Du XJ. Transcriptomic Analysis of Dysregulated Genes of the nDNA-mtDNA Axis in a Mouse Model of Dilated Cardiomyopathy. Front Genet 2022; 13:921610. [PMID: 35754828 PMCID: PMC9214240 DOI: 10.3389/fgene.2022.921610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Mitochondrial dysfunction is implicated in the development of cardiomyopathy and heart failure. Transcription of mitochondrial DNA (mtDNA) encoded genes and subsequent protein synthesis are tightly regulated by nuclear DNA (nDNA) encoded proteins forming the nDNA-mtDNA axis. The scale of abnormalities in this axis in dilated cardiomyopathy (DCM) is unclear. We previously demonstrated, in a mouse DCM model with cardiac Mst1 overexpression, extensive downregulation of mitochondrial genes and mitochondrial dysfunction. Using the pre-acquired transcriptome sequencing database, we studied expression of gene sets of the nDNA-mtDNA axis. Methods: Using RNA-sequencing data from DCM hearts of mice at early and severe disease stages, transcriptome was performed for dysregulated nDNA-encoded gene sets that govern mtDNA transcription and in situ protein synthesis. To validate gene data, expression of a panel of proteins was determined by immunoblotting. Results: Relative to littermate controls, DCM hearts showed significant downregulation of all mtDNA encoded mRNAs, as well as mtDNA transcriptional activators. Downregulation was also evident for gene sets of mt-rRNA processing, aminoacyl-tRNA synthases, and mitoribosome subunits for in situ protein synthesis. Multiple downregulated genes belong to mitochondrial protein-importing machinery indicating compromised importing of proteins for mtDNA transcription and translation. Diverse changes were genes of mtRNA-binding proteins that govern maturation and stability of mtDNA-derived RNAs. Expression of mtDNA replicome genes was largely unchanged. These changes were similarly observed in mouse hearts at early and severe stages of DCM. Conclusion: Transcriptome revealed in our DCM model dysregulation of multiple gene sets of the nDNA-mtDNA axis, that is, expected to interfere with mtDNA transcription and in situ protein synthesis. Dysfunction of the nDNA-mtDNA axis might contribute to mitochondrial dysfunction and ultimately development of DCM.
Collapse
Affiliation(s)
- Mark Ziemann
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Wei Wu
- Key Laboratory of Environment and Genes Related to Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiu-Ling Deng
- Key Laboratory of Environment and Genes Related to Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiao-Jun Du
- Key Laboratory of Environment and Genes Related to Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| |
Collapse
|
45
|
Organization and expression of the mammalian mitochondrial genome. Nat Rev Genet 2022; 23:606-623. [PMID: 35459860 DOI: 10.1038/s41576-022-00480-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
The mitochondrial genome encodes core subunits of the respiratory chain that drives oxidative phosphorylation and is, therefore, essential for energy conversion. Advances in high-throughput sequencing technologies and cryoelectron microscopy have shed light on the structure and organization of the mitochondrial genome and revealed unique mechanisms of mitochondrial gene regulation. New animal models of impaired mitochondrial protein synthesis have shown how the coordinated regulation of the cytoplasmic and mitochondrial translation machineries ensures the correct assembly of the respiratory chain complexes. These new technologies and disease models are providing a deeper understanding of mitochondrial genome organization and expression and of the diseases caused by impaired energy conversion, including mitochondrial, neurodegenerative, cardiovascular and metabolic diseases. They also provide avenues for the development of treatments for these conditions.
Collapse
|
46
|
Scaltsoyiannes V, Corre N, Waltz F, Giegé P. Types and Functions of Mitoribosome-Specific Ribosomal Proteins across Eukaryotes. Int J Mol Sci 2022; 23:ijms23073474. [PMID: 35408834 PMCID: PMC8998825 DOI: 10.3390/ijms23073474] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
Mitochondria are key organelles that combine features inherited from their bacterial endosymbiotic ancestor with traits that arose during eukaryote evolution. These energy producing organelles have retained a genome and fully functional gene expression machineries including specific ribosomes. Recent advances in cryo-electron microscopy have enabled the characterization of a fast-growing number of the low abundant membrane-bound mitochondrial ribosomes. Surprisingly, mitoribosomes were found to be extremely diverse both in terms of structure and composition. Still, all of them drastically increased their number of ribosomal proteins. Interestingly, among the more than 130 novel ribosomal proteins identified to date in mitochondria, most of them are composed of a-helices. Many of them belong to the nuclear encoded super family of helical repeat proteins. Here we review the diversity of functions and the mode of action held by the novel mitoribosome proteins and discuss why these proteins that share similar helical folds were independently recruited by mitoribosomes during evolution in independent eukaryote clades.
Collapse
Affiliation(s)
- Vassilis Scaltsoyiannes
- CNRS, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 67084 Strasbourg, France; (V.S.); (N.C.)
| | - Nicolas Corre
- CNRS, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 67084 Strasbourg, France; (V.S.); (N.C.)
| | - Florent Waltz
- CNRS, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 67084 Strasbourg, France; (V.S.); (N.C.)
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Munich, Germany
- Correspondence: (F.W.); (P.G.); Tel.: +33-3-6715-5363 (P.G.); Fax: +33-3-8861-4442 (P.G.)
| | - Philippe Giegé
- CNRS, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 67084 Strasbourg, France; (V.S.); (N.C.)
- Correspondence: (F.W.); (P.G.); Tel.: +33-3-6715-5363 (P.G.); Fax: +33-3-8861-4442 (P.G.)
| |
Collapse
|
47
|
Criscuolo D, Avolio R, Matassa DS, Esposito F. Targeting Mitochondrial Protein Expression as a Future Approach for Cancer Therapy. Front Oncol 2021; 11:797265. [PMID: 34888254 PMCID: PMC8650000 DOI: 10.3389/fonc.2021.797265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022] Open
Abstract
Extensive metabolic remodeling is a fundamental feature of cancer cells. Although early reports attributed such remodeling to a loss of mitochondrial functions, it is now clear that mitochondria play central roles in cancer development and progression, from energy production to synthesis of macromolecules, from redox modulation to regulation of cell death. Biosynthetic pathways are also heavily affected by the metabolic rewiring, with protein synthesis dysregulation at the hearth of cellular transformation. Accumulating evidence in multiple organisms shows that the metabolic functions of mitochondria are tightly connected to protein synthesis, being assembly and activity of respiratory complexes highly dependent on de novo synthesis of their components. In turn, protein synthesis within the organelle is tightly connected with the cytosolic process. This implies an entire network of interactions and fine-tuned regulations that build up a completely under-estimated level of complexity. We are now only preliminarily beginning to reconstitute such regulatory level in human cells, and to perceive its role in diseases. Indeed, disruption or alterations of these connections trigger conditions of proteotoxic and energetic stress that could be potentially exploited for therapeutic purposes. In this review, we summarize the available literature on the coordinated regulation of mitochondrial and cytosolic mRNA translation, and their effects on the integrity of the mitochondrial proteome and functions. Finally, we highlight the potential held by this topic for future research directions and for the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Daniela Criscuolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Rosario Avolio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
48
|
Wei WS, Wang N, Deng MH, Dong P, Liu JY, Xiang Z, Li XD, Li ZY, Liu ZH, Peng YL, Li Z, Jiang LJ, Yao K, Ye YL, Lu WH, Zhang ZL, Zhou FJ, Liu ZW, Xie D, Yu CP. LRPPRC regulates redox homeostasis via the circANKHD1/FOXM1 axis to enhance bladder urothelial carcinoma tumorigenesis. Redox Biol 2021; 48:102201. [PMID: 34864630 PMCID: PMC8645923 DOI: 10.1016/j.redox.2021.102201] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 01/03/2023] Open
Abstract
Reactive oxygen species (ROS) which are continuously generated mainly by mitochondria, have been proved to play an important role in the stress signaling of cancer cells. Moreover, pentatricopeptide repeat (PPR) proteins have been suggested to take part in mitochondrial metabolism. However, the mechanisms integrating the actions of these distinct networks in urothelial carcinoma of the bladder (UCB) pathogenesis are elusive. In this study, we found that leucine rich pentatricopeptide repeat containing (LRPPRC) was frequently upregulated in UCB and that it was an independent prognostic factor in UCB. We further revealed that LRPPRC promoted UCB tumorigenesis by regulating the intracellular ROS homeostasis. Mechanistically, LRPPRC modulates ROS balance and protects UCB cells from oxidative stress via mt-mRNA metabolism and the circANKHD1/FOXM1 axis. In addition, the SRA stem-loop interacting RNA binding protein (SLIRP) directly interacted with LRPPRC to protect it from ubiquitination and proteasomal degradation. Notably, we showed that LRPPRC modulated the tumorigenesis of UCB cells in a circANKHD1-FOXM1-dependent manner. In conclusion, LRPPRC exerts critical roles in regulating UCB redox homeostasis and tumorigenesis, and is a prognostic factor for UCB; suggesting that LRPPRC may serve as an exploitable therapeutic target in UCB.
Collapse
Affiliation(s)
- Wen-Su Wei
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, PR China; Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, PR China
| | - Ning Wang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, PR China; Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, PR China
| | - Min-Hua Deng
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, PR China; Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, PR China
| | - Pei Dong
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, PR China; Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, PR China
| | - Jian-Ye Liu
- Department of Urology, Xiangya Third Hospital, No. 106, 2nd Zhongshan Road, Changsha, PR China
| | - Zhen Xiang
- Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China
| | - Xiang-Dong Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, PR China; Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, PR China
| | - Zhi-Yong Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, PR China; Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, PR China
| | - Zhen-Hua Liu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, PR China; Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, PR China
| | - Yu-Lu Peng
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, PR China; Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, PR China
| | - Zhen Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, PR China; Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, PR China
| | - Li-Juan Jiang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, PR China; Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, PR China
| | - Kai Yao
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, PR China; Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, PR China
| | - Yun-Lin Ye
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, PR China; Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, PR China
| | - Wen-Hua Lu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, PR China
| | - Zhi-Ling Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, PR China; Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, PR China
| | - Fang-Jian Zhou
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, PR China; Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, PR China
| | - Zhuo-Wei Liu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, PR China; Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, PR China.
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, PR China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, PR China.
| | - Chun-Ping Yu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, PR China; Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, PR China.
| |
Collapse
|
49
|
Ohkubo A, Van Haute L, Rudler DL, Stentenbach M, Steiner FA, Rackham O, Minczuk M, Filipovska A, Martinou JC. The FASTK family proteins fine-tune mitochondrial RNA processing. PLoS Genet 2021; 17:e1009873. [PMID: 34748562 PMCID: PMC8601606 DOI: 10.1371/journal.pgen.1009873] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/18/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022] Open
Abstract
Transcription of the human mitochondrial genome and correct processing of the two long polycistronic transcripts are crucial for oxidative phosphorylation. According to the tRNA punctuation model, nucleolytic processing of these large precursor transcripts occurs mainly through the excision of the tRNAs that flank most rRNAs and mRNAs. However, some mRNAs are not punctuated by tRNAs, and it remains largely unknown how these non-canonical junctions are resolved. The FASTK family proteins are emerging as key players in non-canonical RNA processing. Here, we have generated human cell lines carrying single or combined knockouts of several FASTK family members to investigate their roles in non-canonical RNA processing. The most striking phenotypes were obtained with loss of FASTKD4 and FASTKD5 and with their combined double knockout. Comprehensive mitochondrial transcriptome analyses of these cell lines revealed a defect in processing at several canonical and non-canonical RNA junctions, accompanied by an increase in specific antisense transcripts. Loss of FASTKD5 led to the most severe phenotype with marked defects in mitochondrial translation of key components of the electron transport chain complexes and in oxidative phosphorylation. We reveal that the FASTK protein family members are crucial regulators of non-canonical junction and non-coding mitochondrial RNA processing. As a legacy of their bacterial origin, mitochondria have retained their own genome with a unique gene expression system. All mitochondrially encoded proteins are essential components of the respiratory chain. Therefore, the mitochondrial gene expression is crucial for their iconic role as the ‘powerhouse of the cell’–ATP synthesis through oxidative phosphorylation. Consistently, defects in enzymes involved in this gene expression system are a common source of incurable inherited metabolic disorders, called mitochondrial diseases. The human mitochondrial transcription generates long polycistronic transcripts that carry information for multiple genes, so that the expression level of each gene is mainly regulated through post-transcriptional events. The polycistronic transcript first undergoes RNA processing, where individual mRNA, rRNA, and tRNA are cleaved off. However, its entire molecular mechanism remains unclear, and in particular, ‘non-canonical’ RNA processing has been poorly understood. To address this question, we studied the FASTK family proteins, emerging key mitochondrial post-transcriptional regulators. We generated different human cell lines carrying single or combined disruption of FASTKD3, FASTKD4, and FASTKD5 genes, and analyzed them using biochemical and genetic approaches. We show that the FASTK family members fine-tune the processing of both ‘canonical’ and ‘non-canonical’ mitochondrial RNA junctions.
Collapse
Affiliation(s)
- Akira Ohkubo
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Lindsey Van Haute
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Danielle L. Rudler
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Perth, Australia
- ARC Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre, Perth, Australia
- Centre for Medical Research, The University of Western Australia, Queen Elizabeth II Medical Centre, Perth, Australia
| | - Maike Stentenbach
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Perth, Australia
- ARC Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre, Perth, Australia
- Centre for Medical Research, The University of Western Australia, Queen Elizabeth II Medical Centre, Perth, Australia
| | - Florian A. Steiner
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Perth, Australia
- ARC Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre, Perth, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Telethon Kids Institute, Perth Children’s Hospital, Perth, Australia
| | - Michal Minczuk
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Perth, Australia
- ARC Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre, Perth, Australia
- Centre for Medical Research, The University of Western Australia, Queen Elizabeth II Medical Centre, Perth, Australia
- Telethon Kids Institute, Perth Children’s Hospital, Perth, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
- * E-mail: (AF); (J-CM)
| | - Jean-Claude Martinou
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
- * E-mail: (AF); (J-CM)
| |
Collapse
|
50
|
Liu JY, Chen YJ, Feng HH, Chen ZL, Wang YL, Yang JE, Zhuang SM. LncRNA SNHG17 interacts with LRPPRC to stabilize c-Myc protein and promote G1/S transition and cell proliferation. Cell Death Dis 2021; 12:970. [PMID: 34671012 PMCID: PMC8528917 DOI: 10.1038/s41419-021-04238-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/18/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022]
Abstract
Oncogenic c-Myc is a master regulator of G1/S transition. Long non-coding RNAs (lncRNAs) emerge as new regulators of various cell activities. Here, we found that lncRNA SnoRNA Host Gene 17 (SNHG17) was elevated at the early G1-phase of cell cycle. Both gain- and loss-of function studies disclosed that SNHG17 increased c-Myc protein level, accelerated G1/S transition and cell proliferation, and consequently promoted tumor cell growth in vitro and in vivo. Mechanistically, the 1-150-nt of SNHG17 physically interacted with the 1035-1369-aa of leucine rich pentatricopeptide repeat containing (LRPPRC) protein, and disrupting this interaction abrogated the promoting role of SNHG17 in c-Myc expression, G1/S transition, and cell proliferation. The effect of SNHG17 in stimulating cell proliferation was attenuated by silencing c-Myc or LRPPRC. Furthermore, silencing SNHG17 or LRPPRC increased the level of ubiquitylated c-Myc and reduced the stability of c-Myc protein. Analysis of human hepatocellular carcinoma (HCC) tissues revealed that SNHG17, LRPPRC, and c-Myc were significantly upregulated in HCC, and they showed a positive correlation with each other. High level of SNHG17 or LRPPRC was associated with worse survival of HCC patients. These data suggest that SNHG17 may inhibit c-Myc ubiquitination and thus enhance c-Myc level and facilitate proliferation by interacting with LRPPRC. Our findings identify a novel SNHG17-LRPPRC-c-Myc regulatory axis and elucidate its roles in G1/S transition and tumor growth, which may provide potential targets for cancer therapy.
Collapse
Affiliation(s)
- Jin-Yu Liu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou, 510275, P. R. China.,Key Laboratory of Liver Disease of Guangdong Province, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ya-Jing Chen
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou, 510275, P. R. China
| | - Huan-Hui Feng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou, 510275, P. R. China
| | - Zhan-Li Chen
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou, 510275, P. R. China
| | - Yun-Long Wang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou, 510275, P. R. China
| | - Jin-E Yang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou, 510275, P. R. China.
| | - Shi-Mei Zhuang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou, 510275, P. R. China. .,Key Laboratory of Liver Disease of Guangdong Province, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|