1
|
Shi DL. Canonical and Non-Canonical Wnt Signaling Generates Molecular and Cellular Asymmetries to Establish Embryonic Axes. J Dev Biol 2024; 12:20. [PMID: 39189260 PMCID: PMC11348223 DOI: 10.3390/jdb12030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
The formation of embryonic axes is a critical step during animal development, which contributes to establishing the basic body plan in each particular organism. Wnt signaling pathways play pivotal roles in this fundamental process. Canonical Wnt signaling that is dependent on β-catenin regulates the patterning of dorsoventral, anteroposterior, and left-right axes. Non-canonical Wnt signaling that is independent of β-catenin modulates cytoskeletal organization to coordinate cell polarity changes and asymmetric cell movements. It is now well documented that components of these Wnt pathways biochemically and functionally interact to mediate cell-cell communications and instruct cellular polarization in breaking the embryonic symmetry. The dysfunction of Wnt signaling disrupts embryonic axis specification and proper tissue morphogenesis, and mutations of Wnt pathway genes are associated with birth defects in humans. This review discusses the regulatory roles of Wnt pathway components in embryonic axis formation by focusing on vertebrate models. It highlights current progress in decoding conserved mechanisms underlying the establishment of asymmetry along the three primary body axes. By providing an in-depth analysis of canonical and non-canonical pathways in regulating cell fates and cellular behaviors, this work offers insights into the intricate processes that contribute to setting up the basic body plan in vertebrate embryos.
Collapse
Affiliation(s)
- De-Li Shi
- Department of Medical Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China;
- Laboratory of Developmental Biology, Centre National de la Recherche Scientifique (CNRS), UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, 75005 Paris, France
| |
Collapse
|
2
|
Baysoy A, Seddu K, Salloum T, Dawson CA, Lee JJ, Yang L, Gal-oz S, Ner-Gaon H, Tellier J, Millan A, Sasse A, Brown B, Lanier LL, Shay T, Nutt S, Dwyer D, Benoist C. The interweaved signatures of common-gamma-chain cytokines across immunologic lineages. J Exp Med 2023; 220:e20222052. [PMID: 36976164 PMCID: PMC10067526 DOI: 10.1084/jem.20222052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
"γc" cytokines are a family whose receptors share a "common-gamma-chain" signaling moiety, and play central roles in differentiation, homeostasis, and communications of all immunocyte lineages. As a resource to better understand their range and specificity of action, we profiled by RNAseq the immediate-early responses to the main γc cytokines across all immunocyte lineages. The results reveal an unprecedented landscape: broader, with extensive overlap between cytokines (one cytokine doing in one cell what another does elsewhere) and essentially no effects unique to any one cytokine. Responses include a major downregulation component and a broad Myc-controlled resetting of biosynthetic and metabolic pathways. Various mechanisms appear involved: fast transcriptional activation, chromatin remodeling, and mRNA destabilization. Other surprises were uncovered: IL2 effects in mast cells, shifts between follicular and marginal zone B cells, paradoxical and cell-specific cross-talk between interferon and γc signatures, or an NKT-like program induced by IL21 in CD8+ T cells.
Collapse
Affiliation(s)
- Alev Baysoy
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kumba Seddu
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Tamara Salloum
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital; and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Caleb A. Dawson
- The Walter and Eliza Hall Institute of Medical Researchand Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Juliana J. Lee
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Liang Yang
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Shani Gal-oz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hadas Ner-Gaon
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Julie Tellier
- The Walter and Eliza Hall Institute of Medical Researchand Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Alberto Millan
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander Sasse
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Brian Brown
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Tal Shay
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Stephen Nutt
- The Walter and Eliza Hall Institute of Medical Researchand Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Daniel Dwyer
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital; and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Christophe Benoist
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | |
Collapse
|
3
|
Shi DL. Wnt/planar cell polarity signaling controls morphogenetic movements of gastrulation and neural tube closure. Cell Mol Life Sci 2022; 79:586. [PMID: 36369349 PMCID: PMC11803072 DOI: 10.1007/s00018-022-04620-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
Gastrulation and neurulation are successive morphogenetic processes that play key roles in shaping the basic embryonic body plan. Importantly, they operate through common cellular and molecular mechanisms to set up the three spatially organized germ layers and to close the neural tube. During gastrulation and neurulation, convergent extension movements driven by cell intercalation and oriented cell division generate major forces to narrow the germ layers along the mediolateral axis and elongate the embryo in the anteroposterior direction. Apical constriction also makes an important contribution to promote the formation of the blastopore and the bending of the neural plate. Planar cell polarity proteins are major regulators of asymmetric cell behaviors and critically involved in a wide variety of developmental processes, from gastrulation and neurulation to organogenesis. Mutations of planar cell polarity genes can lead to general defects in the morphogenesis of different organs and the co-existence of distinct congenital diseases, such as spina bifida, hearing deficits, kidney diseases, and limb elongation defects. This review outlines our current understanding of non-canonical Wnt signaling, commonly known as Wnt/planar cell polarity signaling, in regulating morphogenetic movements of gastrulation and neural tube closure during development and disease. It also attempts to identify unanswered questions that deserve further investigations.
Collapse
Affiliation(s)
- De-Li Shi
- Institute of Medical Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, Paris, France.
| |
Collapse
|
4
|
Kha QH, Tran TO, Nguyen TTD, Nguyen VN, Than K, Le NQK. An interpretable deep learning model for classifying adaptor protein complexes from sequence information. Methods 2022; 207:90-96. [PMID: 36174933 DOI: 10.1016/j.ymeth.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/19/2022] [Accepted: 09/22/2022] [Indexed: 11/15/2022] Open
Abstract
Adaptor proteins (APs) are a family of proteins that aids in intracellular membrane trafficking, and their impairments or defects are closely related to various disorders. Traditional methods to identify and classify APs require time and complex techniques, which were then advanced by machine learning and computational approaches to facilitate the APs recognition task. However, most studies focused on recognizing separate ones in the APs family or the APs in general with non-APs, lacking one comprehensive strategy to distinguish the complexes of AP subtypes. Herein, we proposed a novel method to implement one novel task as discriminating the AP complexes in the APs family, utilizing an interpretable deep neural network architecture on sequence-based encoding features. This work also introduced a benchmark data set of AP complexes originating from the UniProt and GeneOntology databases. To assess the robustness of our proposed method, we compared our performance to various machine learning algorithms and feature extraction strategies. Furthermore, the interpretation of the model's prediction performance was implemented using t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation and projection (UMAP), and SHapley Additive exPlanations (SHAP) analysis to show the distribution of AP complexes on optimal features. The promising performance of our architecture can assist scientists not only in AP complexes distinction but also in general protein sequences. Moreover, we have also made our work publicly on GitHub https://github.com/khanhlee/adaptor-dnn.
Collapse
Affiliation(s)
- Quang-Hien Kha
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Thi-Oanh Tran
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Trinh-Trung-Duong Nguyen
- Personalised Medicine Cluster, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Van-Nui Nguyen
- University of Information and Communication Technology, Thai Nguyen University, Thai Nguyen, Viet Nam
| | - Khoat Than
- School of Information and Communication Technology, Hanoi University of Science and Technology, Viet Nam
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan; Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 106, Taiwan; Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan.
| |
Collapse
|
5
|
Li JT, Zhang YD, Song XR, Li RJ, Yang WL, Tian M, Zhang SF, Cao GH, Song LL, Chen YM, Liu CH. The mechanism and effects of remdesivir-induced developmental toxicity in zebrafish: Blood flow dysfunction and behavioral alterations. J Appl Toxicol 2022; 42:1688-1700. [PMID: 35560222 DOI: 10.1002/jat.4336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 04/01/2022] [Accepted: 04/30/2022] [Indexed: 11/11/2022]
Abstract
The antiviral drug remdesivir has been used to treat the growing number of coronavirus disease 2019 (COVID-19) patients. However, the drug is mainly excreted through urine and feces and introduced into the environment to affect non-target organisms, including fish, which has raised concerns about potential ecotoxicological effects on aquatic organisms. Moreover, studies on the ecological impacts of remdesivir on aquatic environments have not been reported. Here, we aimed to explore the toxicological impacts of microinjection of remdesivir on zebrafish early embryonic development and larvae and the associated mechanism. We found that 100 μM remdesivir delayed epiboly and impaired convergent movement of embryos during gastrulation, and dose-dependent increases in mortality and malformation were observed in remdesivir-treated embryos. Moreover, 10-100 μM remdesivir decreased blood flow and swimming velocity and altered the behavior of larvae. In terms of molecular mechanisms, eighty differentially expressed genes (DEGs) were identified by transcriptome analysis in the remdesivir-treated group. Some of these DEGs, such as manf, kif3a, hnf1ba, rgn, prkcz, egr1, fosab, nr4a1, and ptgs2b, were mainly involved in early embryonic development, neuronal developmental disorders, vascular disease and the blood flow pathway. These data reveal that remdesivir can impair early embryonic development, blood flow and behavior of zebrafish embryos/larvae, probably due to alterations at the transcriptome level. This study suggests that it is important to avoid the discharge of remdesivir to aquatic ecosystems and provides a theoretical foundation to hinder remdesivir-induced ecotoxicity to aquatic environments.
Collapse
Affiliation(s)
- Ji-Tong Li
- Henan Neurodevelopment Engineering Research Center for Children; Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.,Department of Nephrology and Rheumatology, Children's Hospital Affiliated to Zhengzhou University; Zhengzhou Key Laboratory of Pediatric Kidney Disease Research, Zhengzhou, China
| | - Yao-Dong Zhang
- Henan Neurodevelopment Engineering Research Center for Children; Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Xiao-Rui Song
- Henan Neurodevelopment Engineering Research Center for Children; Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Rui-Jing Li
- Henan Neurodevelopment Engineering Research Center for Children; Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Wei-Li Yang
- Henan Neurodevelopment Engineering Research Center for Children; Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Ming Tian
- Department of Nephrology and Rheumatology, Children's Hospital Affiliated to Zhengzhou University; Zhengzhou Key Laboratory of Pediatric Kidney Disease Research, Zhengzhou, China
| | - Shu-Feng Zhang
- Department of Nephrology and Rheumatology, Children's Hospital Affiliated to Zhengzhou University; Zhengzhou Key Laboratory of Pediatric Kidney Disease Research, Zhengzhou, China
| | - Guang-Hai Cao
- Department of Nephrology and Rheumatology, Children's Hospital Affiliated to Zhengzhou University; Zhengzhou Key Laboratory of Pediatric Kidney Disease Research, Zhengzhou, China
| | - Lu-Lu Song
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yu-Ming Chen
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Cui-Hua Liu
- Henan Neurodevelopment Engineering Research Center for Children; Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.,Department of Nephrology and Rheumatology, Children's Hospital Affiliated to Zhengzhou University; Zhengzhou Key Laboratory of Pediatric Kidney Disease Research, Zhengzhou, China
| |
Collapse
|
6
|
Kuriyama S, Tanaka G, Takagane K, Itoh G, Tanaka M. Pigment Epithelium Derived Factor Is Involved in the Late Phase of Osteosarcoma Metastasis by Increasing Extravasation and Cell-Cell Adhesion. Front Oncol 2022; 12:818182. [PMID: 35174090 PMCID: PMC8842676 DOI: 10.3389/fonc.2022.818182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Organ tropism of metastatic cells is not well understood. To determine the key factors involved in the selection of a specific organ upon metastasis, we established metastatic cell lines and analyzed their homing to specific tissues. Toward this, 143B osteosarcoma cells were injected intracardially until the kidney-metastasizing sub-cell line Bkid was established, which significantly differed from the parental 143B cells. The candidate genes responsible for kidney metastasis were validated, and SerpinF1/Pigment epithelium derived factor (PEDF) was identified as the primary target. Bkid cells with PEDF knockdown injected intracardially did not metastasize to the kidneys. In contrast, PEDF overexpressing 143B cells injected into femur metastasized to the lungs and kidneys. PEDF triggered mesenchymal-to-epithelial transition (MET) in vitro as well as in vivo. Based on these results, we hypothesized that the MET might be a potential barrier to extravasation. PEDF overexpression in various osteosarcoma cell lines increased their extravasation to the kidneys and lungs. Moreover, when cultured close to the renal endothelial cell line TKD2, Bkid cells disturbed the TKD2 layer and hindered wound healing via the PEDF-laminin receptor (lamR) axis. Furthermore, novel interactions were observed among PEDF, lamR, lysyl oxidase-like 1 (Loxl1), and SNAI3 (Snail-like transcription factor) during endothelial-to-mesenchymal transition (EndoMT). Collectively, our results show that PEDF induces cancer cell extravasation by increasing the permeability of kidney and lung vasculature acting via lamR and its downstream genes. We also speculate that PEDF promotes extravasation via inhibiting EndoMT, and this warrants investigation in future studies.
Collapse
Affiliation(s)
- Sei Kuriyama
- Department of Molecular Medicine and Biochemistry, Graduate School and Faculty of Medicine, Akita University, Akita City, Japan
| | - Gentaro Tanaka
- Department of Molecular Medicine and Biochemistry, Graduate School and Faculty of Medicine, Akita University, Akita City, Japan.,Department of Lifescience, Faculty and Graduate School of Engineering and Resource Science, Akita University, Akita City, Japan
| | - Kurara Takagane
- Department of Molecular Medicine and Biochemistry, Graduate School and Faculty of Medicine, Akita University, Akita City, Japan
| | - Go Itoh
- Department of Molecular Medicine and Biochemistry, Graduate School and Faculty of Medicine, Akita University, Akita City, Japan
| | - Masamitsu Tanaka
- Department of Molecular Medicine and Biochemistry, Graduate School and Faculty of Medicine, Akita University, Akita City, Japan
| |
Collapse
|
7
|
Li JT, Cheng XN, Zhang C, Shi DL, Shao M. The Adaptor Protein Lurap1 Is Required for Cell Cohesion during Epiboly Movement in Zebrafish. BIOLOGY 2021; 10:biology10121337. [PMID: 34943252 PMCID: PMC8699034 DOI: 10.3390/biology10121337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 11/23/2022]
Abstract
Simple Summary Cell adhesion and active cell shape changes play an important role in morphogenetic movements during embryonic development. Zebrafish is an attractive model for the study of cellular and molecular mechanisms underlying these processes. Epiboly is a conserved gastrulation cell movement, which describes the thinning and spreading of an external sheet of cells to cover other groups of cells in the embryo. It involves differential cellular adhesive properties and dynamic cytoskeletal organization across the embryo, but how these are regulated remains elusive. We found that the adaptor protein Lurap1, which interacts with other proteins required for cell migration, plays a role in cell adhesion during epiboly. In zebrafish mutants with loss of Lurap1 function, there is a reduced cellular cohesion in the epithelial blastoderm cells and a delayed epiboly movement. Our observations suggest that Lurap1 is implicated in the regulation of cellular behavior changes for coordinated morphogenetic movements in vertebrate embryos. Abstract Cell adhesion and polarized cellular behaviors play critical roles in a wide variety of morphogenetic events. In the zebrafish embryo, epiboly represents an important process of epithelial morphogenesis that involves differential cell adhesion and dynamic cell shape changes for coordinated movements of different cell populations, but the underlying mechanism remains poorly understood. The adaptor protein Lurap1 functions to link myotonic dystrophy kinase-related Rac/Cdc42-binding kinase with MYO18A for actomyosin retrograde flow in cell migration. We previously reported that it interacts with Dishevelled in convergence and extension movements during gastrulation. Here, we show that it regulates blastoderm cell adhesion and radial cell intercalation during epiboly. In zebrafish mutant embryos with loss of both maternal and zygotic Lurap1 function, deep cell multilayer of the blastoderm exhibit delayed epiboly with respect to the superficial layer. Time-lapse imaging reveals that these deep cells undergo unstable intercalation, which impedes their expansion over the yolk cell. Cell sorting and adhesion assays indicate reduced cellular cohesion of the blastoderm. These defects are correlated with disrupted cytoskeletal organization in the cortex of blastoderm cells. Thus, the present results extend our previous works by demonstrating that Lurap1 is required for cell adhesion and cell behavior changes to coordinate cell movements during epithelial morphogenesis. They provide insights for a further understanding of the regulation of cytoskeletal organization during gastrulation cell movements.
Collapse
Affiliation(s)
- Ji-Tong Li
- School of Life Sciences, Shandong University, Qingdao 266237, China; (J.-T.L.); (C.Z.)
| | - Xiao-Ning Cheng
- Laboratory of Zebrafish Model for Development and Disease, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China;
| | - Chong Zhang
- School of Life Sciences, Shandong University, Qingdao 266237, China; (J.-T.L.); (C.Z.)
| | - De-Li Shi
- Laboratory of Zebrafish Model for Development and Disease, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China;
- Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine, Sorbonne University, 75005 Paris, France
- Correspondence: (D.-L.S.); (M.S.)
| | - Ming Shao
- School of Life Sciences, Shandong University, Qingdao 266237, China; (J.-T.L.); (C.Z.)
- Correspondence: (D.-L.S.); (M.S.)
| |
Collapse
|
8
|
Creighton JH, Jessen JR. Core pathway proteins and the molecular basis of planar polarity in the zebrafish gastrula. Semin Cell Dev Biol 2021; 125:17-25. [PMID: 34635444 DOI: 10.1016/j.semcdb.2021.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022]
Abstract
The planar polarization of cells and subcellular structures is critical for embryonic development. Coordination of this polarity can provide cells a sense of direction in relation to the anterior-posterior and dorsal-ventral body axes. Fly epithelia use a core pathway comprised of transmembrane (Van Gogh/Strabismus, Frizzled, and Flamingo/Starry night) and cytoplasmic (Prickle or Spiny-legs, Dishevelled, and Diego) proteins to communicate directional information between cells and thereby promote the uniform orientation of structures such as hairs. In the zebrafish gastrula, planar polarity underlies complex cellular processes, including directed migration and intercalation, that are required to shape the embryo body. Like other vertebrates, the zebrafish genome encodes homologs of each core protein, and it is well-established that polarized gastrula cell behaviors are regulated by some of them. However, it is unknown whether a conserved six-member core protein pathway regulates planar polarity during zebrafish gastrulation. Here, we review our current understanding of core protein function as it relates to two specific examples of planar polarity, the dorsal convergence of lateral gastrula cells and the mediolateral intercalation of midline cells. We consider the hallmarks of fly planar polarity and discuss data regarding asymmetric protein localization and function, and the intercellular communication of polarity information.
Collapse
Affiliation(s)
- Joy H Creighton
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Jason R Jessen
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA.
| |
Collapse
|
9
|
Li YL, Cheng XN, Lu T, Shao M, Shi DL. Syne2b/Nesprin-2 Is Required for Actin Organization and Epithelial Integrity During Epiboly Movement in Zebrafish. Front Cell Dev Biol 2021; 9:671887. [PMID: 34222245 PMCID: PMC8248263 DOI: 10.3389/fcell.2021.671887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/28/2021] [Indexed: 11/25/2022] Open
Abstract
Syne2b/nesprin-2 is a giant protein implicated in tethering the nucleus to the cytoskeleton and plays an important role in maintaining cellular architecture. Epiboly is a conserved morphogenetic movement that involves extensive spreading and thinning of the epithelial blastoderm to shape the embryo and organize the three germ layers. Dynamic cytoskeletal organization is critical for this process, but how it is regulated remains elusive. Here we generated a zebrafish syne2b mutant line and analyzed the effects of impaired Syne2b function during early development. By CRISPR/Cas9-mediated genome editing, we obtained a large deletion in the syne2b locus, predicted to cause truncation of the nuclear localization KASH domain in the translated protein. Maternal and zygotic syne2b embryos showed delayed epiboly initiation and progression without defects in embryonic patterning. Remarkably, disruption of Syne2b function severely impaired cytoskeletal organization across the embryo, leading to aberrant clustering of F-actin at multiple cell contact regions and abnormal cell shape changes. These caused disintegration of the epithelial blastoderm before the end of gastrulation in most severely affected embryos. Moreover, the migration of yolk nuclear syncytium also became defective, likely due to disorganized cytoskeletal networks at the blastoderm margin and in the yolk cell. These findings demonstrate an essential function of Syne2b in maintaining cytoskeletal architecture and epithelial integrity during epiboly movement.
Collapse
Affiliation(s)
- Yu-Long Li
- School of Life Sciences, Shandong University, Qingdao, China
| | | | - Tong Lu
- School of Life Sciences, Shandong University, Qingdao, China
| | - Ming Shao
- School of Life Sciences, Shandong University, Qingdao, China
| | - De-Li Shi
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Laboratory of Developmental Biology, CNRS-UMR 7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, Paris, France
| |
Collapse
|
10
|
Zhuang J, Pan ZJ, Hong FS, Zhu CK, Wu N, Chang G, Wang H, Zhao XX. BDE-47 induced apoptosis in zebrafish embryos through mitochondrial ROS-mediated JNK signaling. CHEMOSPHERE 2020; 258:127385. [PMID: 32947675 DOI: 10.1016/j.chemosphere.2020.127385] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
2,2,4,4-tetrabromodiphenyl ether (BDE-47) has received considerable attention because of its high detection level in biological samples and potential developmental toxicity. Here, using zebrafish (Danio rerio) as the experimental animal, we investigated developmental effects of BDE-47 and explored the potential mechanism. Zebrafish embryos at 4 h post-fertilization (hpf) were exposed to 0.312, 0.625 and 1.25 mg/L BDE-47 to 74-120 hpf. We found that BDE-47 instigated a dose-related developmental toxicity, evidenced by reduced embryonic survival and hatching rate, shortened body length and increased aberration rate. Meanwhile, higher doses of BDE-47 reduced mitochondrial membrane potential and ATP production but increased apoptosis in zebrafish embryos. Expression of genes involved in mitochondrial oxidative phosphorylation (OXPHOS) (ndufb8, sdha, uqcrc1, cox5ab and atp5fal) were negatively related to BDE-47 doses in zebrafish embryos. Moreover, exposure to BDE-47 at 0.625 or 1.25 mg/L impaired mitochondrial biogenesis and mitochondrial dynamics. Our data further showed that BDE- 47 exposure induced excessive reactive oxygen species (ROS) and oxidative stress, which was accompanied by the activation of c-Jun N-terminal Kinase (JNK). Antioxidant NAC and JNK inhibition could mitigate apoptosis in embryos and improve embryonic development in BDE-47-treated zebrafish, suggesting the involvement of ROS/JNK pathway in embryonic developmental changes induced by BDE-47. Altogether, our data suggest here that developmental toxicity of BDE-47 may be associated with mitochondrial ROS-mediated JNK signaling in zebrafish embryo.
Collapse
Affiliation(s)
- Juan Zhuang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China.
| | - Zheng-Jun Pan
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China
| | - Fa-Shui Hong
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China
| | - Chuan-Kun Zhu
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China
| | - Nan Wu
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China
| | - Guoliang Chang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China
| | - Hui Wang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China
| | - Xiang-Xiang Zhao
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China.
| |
Collapse
|
11
|
Shi DL. Decoding Dishevelled-Mediated Wnt Signaling in Vertebrate Early Development. Front Cell Dev Biol 2020; 8:588370. [PMID: 33102490 PMCID: PMC7554312 DOI: 10.3389/fcell.2020.588370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022] Open
Abstract
Dishevelled proteins are key players of Wnt signaling pathways. They transduce Wnt signals and perform cellular functions through distinct conserved domains. Due to the presence of multiple paralogs, the abundant accumulation of maternal transcripts, and the activation of distinct Wnt pathways, their regulatory roles during vertebrate early development and the mechanism by which they dictate the pathway specificity have been enigmatic and attracted much attention in the past decades. Extensive studies in different animal models have provided significant insights into the structure-function relationship of conserved Dishevelled domains in Wnt signaling and the implications of Dishevelled isoforms in early developmental processes. Notably, intra- and inter-molecular interactions and Dishevelled dosage may be important in modulating the specificity of Wnt signaling. There are also distinct and redundant functions among Dishevelled isoforms in development and disease, which may result from differential spatiotemporal expression patterns and biochemical properties and post-translational modifications. This review presents the advances and perspectives in understanding Dishevelled-mediated Wnt signaling during gastrulation and neurulation in vertebrate early embryos.
Collapse
Affiliation(s)
- De-Li Shi
- Developmental Biology Laboratory, CNRS-UMR 7622, IBPS, Sorbonne University, Paris, France
| |
Collapse
|
12
|
Rbm24 controls poly(A) tail length and translation efficiency of crystallin mRNAs in the lens via cytoplasmic polyadenylation. Proc Natl Acad Sci U S A 2020; 117:7245-7254. [PMID: 32170011 PMCID: PMC7132282 DOI: 10.1073/pnas.1917922117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lens transparency critically requires the abundant accumulation of crystallin proteins, and deregulation of this process causes congenital cataracts in humans. Rbm24 is an RNA-binding protein with highly conserved expression in differentiating lens fiber cells among all vertebrates. We use a zebrafish model to demonstrate that loss of Rbm24 function specifically impedes lens fiber cell differentiation, resulting in cataract formation and blindness. Molecular analyses reveal that Rbm24 interacts with cytoplasmic polyadenylation complex and binds to a large number of lens-expressed messenger RNAs to maintain their stability and protect their poly(A) tail length, thereby crucially contributing to their efficient translation into functional proteins. This work identifies an important mechanism by which Rbm24 posttranscriptionally controls lens gene expression to establish transparency and refraction power. Lens transparency is established by abundant accumulation of crystallin proteins and loss of organelles in the fiber cells. It requires an efficient translation of lens messenger RNAs (mRNAs) to overcome the progressively reduced transcriptional activity that results from denucleation. Inappropriate regulation of this process impairs lens differentiation and causes cataract formation. However, the regulatory mechanism promoting protein synthesis from lens-expressed mRNAs remains unclear. Here we show that in zebrafish, the RNA-binding protein Rbm24 is critically required for the accumulation of crystallin proteins and terminal differentiation of lens fiber cells. In the developing lens, Rbm24 binds to a wide spectrum of lens-specific mRNAs through the RNA recognition motif and interacts with cytoplasmic polyadenylation element-binding protein (Cpeb1b) and cytoplasmic poly(A)-binding protein (Pabpc1l) through the C-terminal region. Loss of Rbm24 reduces the stability of a subset of lens mRNAs encoding heat shock proteins and shortens the poly(A) tail length of crystallin mRNAs encoding lens structural components, thereby preventing their translation into functional proteins. This severely impairs lens transparency and results in blindness. Consistent with its highly conserved expression in differentiating lens fiber cells, the findings suggest that vertebrate Rbm24 represents a key regulator of cytoplasmic polyadenylation and plays an essential role in the posttranscriptional control of lens development.
Collapse
|
13
|
Loreti M, Shi DL, Carron C. The regulatory proteins DSCR6 and Ezh2 oppositely regulate Stat3 transcriptional activity in mesoderm patterning during Xenopus development. J Biol Chem 2020; 295:2724-2735. [PMID: 31996376 DOI: 10.1074/jbc.ra119.010719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/15/2020] [Indexed: 12/26/2022] Open
Abstract
Embryonic cell fate specification and axis patterning requires integration of several signaling pathways that orchestrate region-specific gene expression. The transcription factor signal transducer and activator of transcription 3 (Stat3) plays important roles during early development, but it is unclear how Stat3 is activated. Here, using Xenopus as a model, we analyzed the post-translational regulation and functional consequences of Stat3 activation in dorsoventral axis patterning. We show that Stat3 phosphorylation, lysine methylation, and transcriptional activity increase before gastrulation and induce ventral mesoderm formation. Down syndrome critical region gene 6 (DSCR6), a RIPPLY family member that induces dorsal mesoderm by releasing repressive polycomb group proteins from chromatin, bound to the Stat3 C-terminal region and antagonized its transcriptional and ventralizing activities by interfering with its lysine methylation. Enhancer of zeste 2 polycomb-repressive complex 2 subunit (Ezh2) also bound to this region; however, its methyltransferase activity was required for Stat3 methylation and activation. Loss of Ezh2 resulted in dorsalization of ventral mesoderm and formation of a secondary axis. Furthermore, interference with Ezh2 phosphorylation also prevented Stat3 lysine methylation and transcriptional activity. Thus, inhibition of either Ezh2 phosphorylation or Stat3 lysine methylation compensated for the absence of DSCR6 function. These results reveal that DSCR6 and Ezh2 critically and post-translationally regulate Stat3 transcriptional activity. Ezh2 promotes Stat3 activation in ventral mesoderm formation independently of epigenetic regulation, whereas DSCR6 specifies dorsal fate by counteracting this ventralizing activity. This antagonism helps pattern the mesoderm along the dorsoventral axis, representing a critical facet of cell identity regulation during development.
Collapse
Affiliation(s)
- Mafalda Loreti
- Sorbonne Université, CNRS UMR7622, IBPS-Developmental Biology Laboratory, 75005 Paris, France
| | - De-Li Shi
- Sorbonne Université, CNRS UMR7622, IBPS-Developmental Biology Laboratory, 75005 Paris, France.
| | - Clémence Carron
- Sorbonne Université, CNRS UMR7622, IBPS-Developmental Biology Laboratory, 75005 Paris, France.
| |
Collapse
|
14
|
Cheng XN, Shao M, Shi DL. Collagen triple helix repeat containing 1a (Cthrc1a) regulates cell adhesion and migration during gastrulation in zebrafish. Exp Cell Res 2019; 381:112-120. [DOI: 10.1016/j.yexcr.2019.04.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/08/2019] [Accepted: 04/29/2019] [Indexed: 01/27/2023]
|
15
|
Leerberg DM, Hopton RE, Draper BW. Fibroblast Growth Factor Receptors Function Redundantly During Zebrafish Embryonic Development. Genetics 2019; 212:1301-1319. [PMID: 31175226 PMCID: PMC6707458 DOI: 10.1534/genetics.119.302345] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/29/2019] [Indexed: 01/08/2023] Open
Abstract
Fibroblast growth factor (Fgf) signaling regulates many processes during development. In most cases, one tissue layer secretes an Fgf ligand that binds and activates an Fgf receptor (Fgfr) expressed by a neighboring tissue. Although studies have identified the roles of specific Fgf ligands during development, less is known about the requirements for the receptors. We have generated null mutations in each of the five fgfr genes in zebrafish. Considering the diverse requirements for Fgf signaling throughout development, and that null mutations in the mouse Fgfr1 and Fgfr2 genes are embryonic lethal, it was surprising that all zebrafish homozygous mutants are viable and fertile, with no discernable embryonic defect. Instead, we find that multiple receptors are involved in coordinating most Fgf-dependent developmental processes. For example, mutations in the ligand fgf8a cause loss of the midbrain-hindbrain boundary, whereas, in the fgfr mutants, this phenotype is seen only in embryos that are triple mutant for fgfr1a;fgfr1b;fgfr2, but not in any single or double mutant combinations. We show that this apparent fgfr redundancy is also seen during the development of several other tissues, including posterior mesoderm, pectoral fins, viscerocranium, and neurocranium. These data are an essential step toward defining the specific Fgfrs that function with particular Fgf ligands to regulate important developmental processes in zebrafish.
Collapse
Affiliation(s)
- Dena M Leerberg
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Rachel E Hopton
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Bruce W Draper
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| |
Collapse
|
16
|
Zhang W, Zhang Y, Li S, Wu Z, Yan Y, Li Y. Prmt7 regulates epiboly and gastrulation cell movements by facilitating syntenin. Acta Biochim Biophys Sin (Shanghai) 2018; 50:1280-1287. [PMID: 30383201 DOI: 10.1093/abbs/gmy136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Indexed: 02/01/2023] Open
Abstract
Epiboly spreads and thins the blastoderm over the yolk cell during zebrafish gastrulation. Despite of its fundamental function, little is known about the molecular mechanisms that control this coordinated cell movement. In this study, we investigated protein arginine methyltransferase 7 (Prmt7) morphants with an epibolic delay defect in zebrafish. The ratio of morphants with epiboly delay phenotypes increased as the dose of the injected morpholino (MO) increased. Here, syntenin transcripts are maternally deposited and ubiquitously expressed from the oocyte period to the early larva stage. Furthermore, we demonstrated that Prmt7 modulates epibolic movements of the enveloping layer by regulating F-actin organization. These defects can be partially rescued by re-expression of Prmt7 or syntenin protein. Analysis of the earliest cellular defects suggested a role of Prmt7 in the autonomous vegetal expansion of the yolk syncytial layer and the rearrangement of the actin cytoskeleton in extra-embryonic tissues. By a combination of knockdown studies and rescue experiments in zebrafish, we showed that epiboly relies on the molecular networking of Prmt7 by facilitating syntenin, which acts as a regulator for cytoskeleton. This study identifies the important function of the Prmt7 for the progression of zebrafish epiboly and establishes its key role in directional cell movements during early development.
Collapse
Affiliation(s)
- Wuwen Zhang
- Department of Reproductive Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunbin Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shifeng Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhili Wu
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuanchang Yan
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yiping Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
17
|
Mutational analysis of dishevelled genes in zebrafish reveals distinct functions in embryonic patterning and gastrulation cell movements. PLoS Genet 2018; 14:e1007551. [PMID: 30080849 PMCID: PMC6095615 DOI: 10.1371/journal.pgen.1007551] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/16/2018] [Accepted: 07/10/2018] [Indexed: 12/31/2022] Open
Abstract
Wnt signaling plays critical roles in dorsoventral fate specification and anteroposterior patterning, as well as in morphogenetic cell movements. Dishevelled proteins, or Dvls, mediate the activation of Wnt/ß-catenin and Wnt/planar cell polarity pathways. There are at least three highly conserved Dvl proteins in vertebrates, but the implication of each Dvl in key early developmental processes remains poorly understood. In this study, we use genome-editing approach to generate different combinations of maternal and zygotic dvl mutants in zebrafish, and examine their functions during early development. Maternal transcripts for dvl2 and dvl3a are most abundantly expressed, whereas the transcript levels of other dvl genes are negligible. Phenotypic and molecular analyses show that early dorsal fate specification is not affected in maternal and zygotic dvl2 and dvl3a double mutants, suggesting that the two proteins may be dispensable for the activation of maternal Wnt/ß-catenin signaling. Interestingly, convergence and extension movements and anteroposterior patterning require both maternal and the zygotic functions of Dvl2 and Dvl3a, but these processes are more sensitive to Dvl2 dosage. Zygotic dvl2 and dvl3a double mutants display mild axis extension defect with correct anteroposterior patterning. However, maternal and zygotic double mutants exhibit most strongly impaired convergence and extension movements, severe trunk and posterior deficiencies, and frequent occurrence of cyclopia and craniofacial defects. Our results suggest that Dvl2 and Dvl3a products are required for the activation of zygotic Wnt/ß-catenin signaling and Wnt/planar cell polarity pathway, and regulate zygotic developmental processes in a dosage-dependent manner. This work provides insight into the mechanisms of Dvl-mediated Wnt signaling pathways during early vertebrate development. The embryogenesis of most animals is first supported by maternal gene products accumulated in the oocyte, and then by the expression of genes from the zygote. In all vertebrates, there are at least three Dishevelled (Dvl) proteins, which play critical roles in normal development and human diseases. They are both maternally and zygotically expressed, and can activate the ß-catenin-dependent Wnt pathway that regulates gene expression and cell fate, and the ß-catenin-independent Wnt pathway that orchestrates cell movements. In zebrafish embryo, Dvl2 and Dvl3a are most abundant, but their functions are not fully understood. We find that maternally and zygotically expressed Dvl2 plays a predominant role in the elongation of the anteroposterior axis, and the expression of genes involved in the development of the posterior region. Dvl3a cooperates with Dvl2 in these processes. Analyses after loss-of-function of these genes indicate that deficiency of maternal and zygotic Dvl2 and Dvl3a results in embryos with cyclopia, craniofacial defects, and severe abnormality in the trunk and posterior regions. Many human birth defects and other diseases, like cancer, are attributed to the dysfunction of the Wnt pathways. Our results help to understand the mechanisms of Dvl-mediated Wnt pathway activation, and the causes of developmental disorders.
Collapse
|
18
|
Mukiibi R, Vinsky M, Keogh KA, Fitzsimmons C, Stothard P, Waters SM, Li C. Transcriptome analyses reveal reduced hepatic lipid synthesis and accumulation in more feed efficient beef cattle. Sci Rep 2018; 8:7303. [PMID: 29740082 PMCID: PMC5940658 DOI: 10.1038/s41598-018-25605-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/12/2018] [Indexed: 11/09/2022] Open
Abstract
The genetic mechanisms controlling residual feed intake (RFI) in beef cattle are still largely unknown. Here we performed whole transcriptome analyses to identify differentially expressed (DE) genes and their functional roles in liver tissues between six extreme high and six extreme low RFI steers from three beef breed populations including Angus, Charolais, and Kinsella Composite (KC). On average, the next generation sequencing yielded 34 million single-end reads per sample, of which 87% were uniquely mapped to the bovine reference genome. At false discovery rate (FDR) < 0.05 and fold change (FC) > 2, 72, 41, and 175 DE genes were identified in Angus, Charolais, and KC, respectively. Most of the DE genes were breed-specific, while five genes including TP53INP1, LURAP1L, SCD, LPIN1, and ENSBTAG00000047029 were common across the three breeds, with TP53INP1, LURAP1L, SCD, and LPIN1 being downregulated in low RFI steers of all three breeds. The DE genes are mainly involved in lipid, amino acid and carbohydrate metabolism, energy production, molecular transport, small molecule biochemistry, cellular development, and cell death and survival. Furthermore, our differential gene expression results suggest reduced hepatic lipid synthesis and accumulation processes in more feed efficient beef cattle of all three studied breeds.
Collapse
Affiliation(s)
- Robert Mukiibi
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Michael Vinsky
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, T4L 1W1, Canada
| | - Kate A Keogh
- Animal and Bioscience Research Department, Teagasc, Grange, Dunsany, County Meath, Ireland
| | - Carolyn Fitzsimmons
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada.,Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, T4L 1W1, Canada
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Sinéad M Waters
- Animal and Bioscience Research Department, Teagasc, Grange, Dunsany, County Meath, Ireland
| | - Changxi Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada. .,Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, T4L 1W1, Canada.
| |
Collapse
|