1
|
Jarrar Y, Ghishan M, Khirfan F, Hakooz N. Genetic variants in NUDT15 gene their clinical implications in cancer therapy. Drug Metab Pers Ther 2025:dmdi-2025-0003. [PMID: 40219790 DOI: 10.1515/dmpt-2025-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025]
Abstract
Individual variations in the response to thiopurine-based anticancer drugs are influenced by genetic and environmental factors, making it challenging to optimize dosing and minimize toxicity. Among the key genes involved, genetic variations in the nudix hydrolase 15 (NUDT15) gene affect on thiopurine metabolism, thus influencing drug efficacy and the risk of severe adverse effects, such as myelosuppression, These variations also contribute to inter-individual differences in drug tolerance and clinical outcomes. Despite the recognized impact of NUDT15 variations, there has been limited comprehensive exploration of these variants and their clinical significance in thiopurine therapy. This review provides a thorough analysis of NUDT15 genetic variants by synthesizing findings from prior clinical studies and employing in silico analyses to predict the functional effects of variants with uncertain significance. Comprehensive analysis of NUDT15 variants and their interactions with other metabolic pathways could offer valuable insights for advancing personalized medicine in cancer treatment. This review aims to establish a foundation for integrating NUDT15 genetic information into the clinical practice, reducing toxicity, and improved therapeutic outcomes in patients undergoing thiopurine-based chemotherapy.
Collapse
Affiliation(s)
- Yazun Jarrar
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
| | - Maria Ghishan
- Department of Pharmaceutical Science, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Fatima Khirfan
- Department of Pharmaceutical Science, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Nancy Hakooz
- School of Pharmacy, The University of Jordan, Amman, Jordan
| |
Collapse
|
2
|
Lin J, Yin Y, Cao J, Zou B, Han K, Chen Y, Li S, Huang C, Chen J, Lv Y, Xu S, Xie D, Wang F. Nudix Hydrolase 13 Impairs the Initiation of Colorectal Cancer by Inhibiting PKM1 ADP-Ribosylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410058. [PMID: 39921866 PMCID: PMC11967829 DOI: 10.1002/advs.202410058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/06/2025] [Indexed: 02/10/2025]
Abstract
Metabolic dysregulation has been implicated as a key factor in colorectal cancer (CRC) initiation, however, the underlying driving forces and mechanisms remain poorly understood. Herein, transcriptome profiling of paired early-stage CRCs and adenomas identifies Nudix hydrolase 13 (NUDT13) as a critical suppressor. Elevated NUDT13 expression impedes the proliferation of CRC cells under hypoxic conditions and markedly inhibits CRC initiation by upregulating PKM1. Mechanistically, NUDT13 directly binds and stabilizes PKM1 protein by reducing its poly ADP-ribosylation (PARylation), which is catalyzed by PARP1 at E275/D281/E282/E285/D296, thereby inducing an oxidative phosphorylation (OXPHOS) phenotype in CRC cells. Moreover, spatiotemporal knockout of Nudt13 enhances intestinal tumorigenesis in mice, which can be significantly suppressed by PARP1 inhibitor Olaparib. Notably, residues E245/E248/E249 within the Nudix box motif of NUDT13 are essential for PKM1 PARylation, and a mimic peptide derived from this motif is sufficient to stabilize PKM1 protein and robustly inhibit CRC tumorigenesis. Collectively, this study reveals a previously unknown PARylation-dependent mechanism that regulates PKM1 protein stability and switches the metabolic pathway of CRC cells, providing a promising target for CRC treatment.
Collapse
Affiliation(s)
- Jinlong Lin
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- Department of Thoracic SurgerySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yixin Yin
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- Department of AnesthesiologySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Jinghua Cao
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Bingxu Zou
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Kai Han
- Department of Colorectal SurgerySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yufan Chen
- Department of EndoscopySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Siyu Li
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Cijun Huang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Jiewei Chen
- Department of PathologySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yongrui Lv
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Shuidan Xu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Dan Xie
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- Department of PathologySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Fengwei Wang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| |
Collapse
|
3
|
Strefeler A, Baker ZN, Chollet S, Guerra RM, Ivanisevic J, Gallart-Ayala H, Pagliarini DJ, Jourdain AA. Uridine-sensitized screening identifies genes and metabolic regulators of nucleotide synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642569. [PMID: 40161720 PMCID: PMC11952425 DOI: 10.1101/2025.03.11.642569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Nucleotides are essential for nucleic acid synthesis, signaling, and metabolism, and can be synthesized de novo or through salvage. Rapidly proliferating cells require large amounts of nucleotides, making nucleotide metabolism a widely exploited target for cancer therapy. However, resistance frequently emerges, highlighting the need for a deeper understanding of nucleotide regulation. Here, we harness uridine salvage and CRISPR-Cas9 screening to reveal regulators of de novo pyrimidine synthesis. We identify several factors and report that pyrimidine synthesis can continue in the absence of coenzyme Q (CoQ), the canonical electron acceptor in de novo synthesis. We further investigate NUDT5 and report its conserved interaction with PPAT, the rate-limiting enzyme in purine synthesis. We show that in the absence of NUDT5, hyperactive purine synthesis siphons the phosphoribosyl pyrophosphate (PRPP) pool at the expense of pyrimidine synthesis, promoting resistance to chemotherapy. Intriguingly, the interaction between NUDT5 and PPAT appears to be disrupted by PRPP, highlighting intricate allosteric regulation. Our findings reveal a fundamental mechanism for maintaining nucleotide balance and position NUDT5 as a potential biomarker for predicting resistance to chemotherapy.
Collapse
Affiliation(s)
- Abigail Strefeler
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Zakery N Baker
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, USA
| | - Sylvain Chollet
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Rachel M Guerra
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, USA
| | | | | | - David J Pagliarini
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, USA
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, USA
| | - Alexis A Jourdain
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
4
|
Hormann FM, Rudd SG. Nelarabine in T-cell acute lymphoblastic leukemia: intracellular metabolism and molecular mode-of-action. Leukemia 2025; 39:531-542. [PMID: 39962329 PMCID: PMC11879874 DOI: 10.1038/s41375-025-02529-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 03/06/2025]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) patients often have a poor 5-year event-free survival. The only T-ALL specific drug in clinical practice is nelarabine. A prodrug of the deoxyguanosine analog ara-G, nelarabine is a rationally designed agent selective for the treatment of T-cell malignancies. Originally approved for relapsed/refractory T-ALL, it is increasingly used in T-ALL therapy and is currently being evaluated in upfront treatment. Whilst the clinical use of nelarabine has been the topic of multiple review articles, a thorough overview of the preclinical data detailing the molecular underpinnings of its anti-leukemic activity is lacking, which is critical to inform mechanism-based use. Thus, in the present article we conducted a semi-systematic review of the literature and critically evaluated the preclinical knowledge on the molecular pharmacology of nelarabine. Whilst early studies identified ara-G triphosphate to be the principal active metabolite and nuclear DNA synthesis to be a key target, many fundamental questions remain that could inform upon future use of this therapy. These include the nature of nelarabine-induced DNA lesions and their repair, together with additional cellular targets of ara-G metabolites and their role in efficacy and toxicity. A critical avenue of research in need of development is investigation of nelarabine combination therapies, both in the context of current T-ALL chemotherapy regimens and with emerging anti-leukemic agents, and we highlight some areas to pursue. Altogether, we discuss what we can learn from the preclinical literature as a whole and present our view for future research regarding nelarabine treatment in T-ALL.
Collapse
Affiliation(s)
- Femke M Hormann
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Sean G Rudd
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Kim H, Kim YZ, Kim SY, Choe YH, Kim MJ. Comparison of Effects on 6-Thioguanine Nucleotides According to Mesalazine Formulation in Pediatric Patients with Ulcerative Colitis. Clin Ther 2025; 47:196-203. [PMID: 39753503 DOI: 10.1016/j.clinthera.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 02/21/2025]
Abstract
PURPOSE Mesalazine and thiopurines are important therapeutic agents for pediatric patients with ulcerative colitis (UC). Mesalazine, which may be administered in different forms depending on delivery mechanisms, can affect thiopurine metabolism, leading to increased 6-thioguanine nucleotides (6-TGN) levels. Therefore, when using these two drugs simultaneously, their interactions must be considered. This study aimed to analyze 6-TGN according to mesalazine formulation in pediatric patients with UC. METHODS We retrospectively reviewed the data of 236 pediatric patients with UC who visited a single health center between January 2021 and December 2023. Among the enrolled patients, 198 were administered thiopurines, and of these, 136 underwent testing for 6-TGN. FINDINGS The mean dose of azathioprine (AZA) was 0.66 mg/kg, and the mean 6-TGN level was 211.64 pmol/8 × 10^8 red blood cells (RBCs). The mean 6-TGN level for the group concurrently using time-dependent mesalazine and AZA was 245.00 pmol/8 × 10^8 RBCs, while that for the group concurrently using multimatrix mesalazine (MMX) and AZA was 141.97 pmol/8 × 10^8 RBCs (P < 0.001). In the same patients, the mean 6-TGN level during time-dependent mesalazine treatment was 290.34 pmol/8 × 108 RBCs, whereas the mean 6-TGN level measured after switching to MMX was 148.54 pmol/8 × 108 RBCs (P = 0.016). IMPLICATIONS The group treated with MMX and AZA had a lower mean 6-TGN level than the group treated with time-dependent mesalazine and AZA. The mean 6-TGN level significantly decreased after switching from time-dependent mesalazine to MMX in the same patients. Therefore, when administering MMX, a higher dose of AZA is necessary to reach the target 6-TGN level, compared to the dose required when using time-dependent mesalazine.
Collapse
Affiliation(s)
- Hansol Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yoon Zi Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seon Young Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yon Ho Choe
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mi Jin Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
6
|
Lengyel M, Ma Y, Gelashvili Z, Peng S, Quraishi M, Niethammer P. The G-protein coupled receptor OXER1 is a tissue redox sensor essential for intestinal epithelial barrier integrity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636712. [PMID: 39974905 PMCID: PMC11839128 DOI: 10.1101/2025.02.05.636712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Generation of reactive oxygen species is an important part of the innate immune response. Generating microbicidal levels of reactive oxygen species (ROS) requires adaptation of mucosal barriers. High tolerance of ROS provides improved innate immune defenses against pathogens, whereas low tolerance renders host cells prone to chronic toxicity and mutagenesis, which can promote inflammation (e.g., in asthma and Crohn's disease) and cancerogenesis. The mechanisms that sense and mediate host tolerance to ROS are little understood. In this study, we discover an unexpected role for the redox-sensitive, chemokine-like lipid 5-oxo-eicosatetraenoic acid (5-KETE) in redox adaptation. 5-KETE is known to attract leukocytes to damaged/infected mucosal barriers by signaling through its receptor, OXER1. Suggestive of a distinct non-immune function, we here report that the loss of the OXER1 ortholog Hcar1-4 causes barrier defects and baseline inflammation in the intestine of live zebrafish larvae. In zebrafish and cultured human cells, OXER1 signaling protects against oxidative nucleotide lesions by inducing DNA-protective Nudix hydrolases. Our data reveal the oxoeicosanoid pathway as a conserved ROS resilience mechanism that fortifies pathogen-exposed mucosal linings against increased oxidative stress in vivo.
Collapse
Affiliation(s)
- Miklos Lengyel
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yanan Ma
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zaza Gelashvili
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Siyang Peng
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10021,USA
| | - Meysoon Quraishi
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
7
|
Almansour NM. Identification of promising inhibitors against breast cancer disease by targeting NUDIX hydrolase 5 (NUDT5) biomolecule. J Biomol Struct Dyn 2025; 43:1171-1182. [PMID: 38063166 DOI: 10.1080/07391102.2023.2291175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/12/2023] [Indexed: 01/16/2025]
Abstract
It is well documented that NUDT5 enzyme inhibition in breast cancer cell lines arrest cancer cells growth, invasiveness and migration. The NUDT5 enzyme enhances breast cancer aggressiveness and act as key regulator of oncogenic pathways. Similarly, the NUDT5 enzyme plays a primer role in ATP-dependent cellular processes and proliferation in breast cancer. Thus, the NUDT5 enzyme plays a profound contribution in promoting breast cancers carcinogenesis and could be an ideal target for anti-cancer drug discovery. In this work, LAS_51382001, LAS_51177972 and LAS_51380924 with binding energy of -12.64 kcal/mol, -11.59 kcal/mol and -10.01 kcal/mol, respectively were filtered as lead molecules. The control molecule binding energy was -10.87 kcal/mol. The system dynamics were found uniform in molecular dynamics simulation studies and observed with no major structural changes. Among the leads, the LAS_51177972 showed the most stable binding energy values. The MM-GBSA binding energy of the compound was -37.07 kcal/mol and MM-PBSA binding energy of -43.56 kcal/mol. Similarly, the compound revealed very stable WaterSwap absolute binding energy values; Bennett's, TI and FEP energy of -36.2 kcal/mol, -36.13 kcal/mol and -36.58 kcal/mol, respectively. Similarly, the leads reported very favorable physicochemical properties, water solubility, pharmacokinetics, druglikeness and medicinal chemistry properties. In a nutshell, the compounds are potent in term of the current computational study however, need to be subjected to experimental studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nahlah Makki Almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| |
Collapse
|
8
|
Frick DN, Shittu M, Bock CR, Wardle ZP, Rauf AA, Ramos JN, Thomson JG, Sheibley DJ, O'Handley SF. Optimization of a high throughput screening platform to identify inhibitors of asymmetric diadenosine polyphosphatases. Anal Biochem 2025; 697:115713. [PMID: 39521360 PMCID: PMC11624979 DOI: 10.1016/j.ab.2024.115713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
When stressed, cells synthesize di-adenosine polyphosphates (ApnA), and cellular organisms also express proteins that degrade these compounds to release ATP. Most of these proteins are members of the nudix hydrolase superfamily, and several are involved in bacterial pathogenesis, neurodevelopment, and cancer. The goal of this project is to assist in the discovery of inhibitors of these enzymes that could be used to study ApnA function and the cellular role of these nudix enzymes. Because these enzymes cleave Ap4A and Ap5A to produce ATP, two standard ATP detection techniques were optimized and compared here for their suitability for high throughput screening. In the first assay, cleavage is monitored by coupling to a reaction catalyzed by firefly luciferase. In the second assay, cleavage is detected by coupling to hexokinase, glucose 6-phosphate dehydrogenase, and diaphorase. Although the former assay was more sensitive, the latter was more reproducible, linear, and suitable for screening and kinetic analyses. The assays were used to characterize the kinetics of reactions catalyzed by various nudix enzymes isolated from E. coli, humans, and Mycobacterium tuberculosis, the bacterium that causes tuberculosis. Results reveal subtle differences between the proteins that might be exploited to identify specific small molecule inhibitors.
Collapse
Affiliation(s)
- David N Frick
- Department of Chemistry & Biochemistry, University of Wisconsin, Milwaukee, United States.
| | - Mujidat Shittu
- Department of Chemistry & Biochemistry, University of Wisconsin, Milwaukee, United States
| | - Chase R Bock
- Department of Chemistry & Biochemistry, University of Wisconsin, Milwaukee, United States
| | - Zoe P Wardle
- Department of Chemistry & Biochemistry, University of Wisconsin, Milwaukee, United States
| | - Abdullah A Rauf
- Department of Chemistry & Biochemistry, University of Wisconsin, Milwaukee, United States
| | - Julian N Ramos
- School of Chemistry and Materials Science, Rochester Institute of Technology, United States
| | - Joshua G Thomson
- School of Chemistry and Materials Science, Rochester Institute of Technology, United States
| | - Daniel J Sheibley
- School of Chemistry and Materials Science, Rochester Institute of Technology, United States
| | - Suzanne F O'Handley
- School of Chemistry and Materials Science, Rochester Institute of Technology, United States.
| |
Collapse
|
9
|
Maheshwari H, Garg P, Srivastava P. In silico analysis predicts mutational consequences of CITED2, NUDT4, and Ar18B in patients with bipolar disorder. Behav Brain Res 2025; 476:115257. [PMID: 39299576 DOI: 10.1016/j.bbr.2024.115257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/08/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Bipolar disorder is a mood-related disorder, which can be portrayed as extreme shifts in energy, mood, and activity levels which can also be characterized by manic highs and depressive lows that can be often misdiagnosed as unipolar disorder due to primitive diagnostics techniques based on clinical assessments as well as diagnostic complexities arising due to its heterogeneous nature and overlapping symptoms with conditions like schizophrenia. leading to delays in treatment Strong evidence in support of genetic and epigenetic aspects of bipolar disorder, including mechanisms such as compromised hypothalamic-pituitary-adrenal axis, immune-inflammatory imbalances, oxidative stress, and mitochondrial dysfunction are found. Moreover, some previous research has already stated the role of genes like CITED2, NUDT4, and Arl8B in these processes. The primary goal of this study is to investigate the involvement of the genes in exploring and validating their potential as biomarkers for bipolar disorder. In silico tools like MutationTaster, PolyPhen2, SIFT, GTEx, PhenoScanner, and RegulomeDB were used to perform mutational and gene expression analyses. Results revealed potentially dangerous mutations caused in CITED2, NUDT4, and Arl8B, those which can have diverse outcomes. RegulomeDB, GTEx, and PhenoScanner reveal the involvement of these genes in various brain regions highlighting their relevance to bipolar disorder. This analysis suggests the potential utility of CITED2, NUDT4, and Arl8B as diagnostic markers hence shedding light on their roles to elaborate the molecular range of bipolar disorder. The study also contributes to providing valuable insights into the genetic and molecular basis of bipolar disorders.
Collapse
Affiliation(s)
- Harshita Maheshwari
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India
| | - Prekshi Garg
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India
| | - Prachi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India.
| |
Collapse
|
10
|
Samarskaya VO, Koblova S, Suprunova T, Rogozhin EA, Spechenkova N, Yakunina S, Love AJ, Kalinina NO, Taliansky M. Poly ADP-Ribosylation in a Plant Pathogenic Oomycete Phytophthora infestans: A Key Controller of Growth and Host Plant Colonisation. J Fungi (Basel) 2025; 11:29. [PMID: 39852448 PMCID: PMC11766942 DOI: 10.3390/jof11010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
ADP-ribosylation is a reversible modification of proteins and nucleic acids, which controls major cellular processes, including DNA damage repair, cell proliferation and differentiation, metabolism, stress, and immunity in plants and animals. The involvement of ADP-ribosylation in the life cycle of Dictyostelium and some filamentous fungi has also been demonstrated. However, the role of this process in pathogenic oomycetes has never been addressed. Here, we show that the Phytophthora infestans genome contains two PARP-like protein genes (PiPARP1 and PiPARP2), and provide evidence of PARylation activity for one of them (PiPARP2). Using dsRNA-mediated RNA silencing of the PiPARP2 gene and chemical (pharmacological) inhibition of PARP activity by 3-aminobenzamide (3AB) PARP inhibitor, we demonstrate the critical functional role of ADP-ribosylation in Phytophthora mycelium growth. Virulence test on detached leaves also suggests an important role of ADP-ribosylation in Phytophthora host plant colonisation and pathogenesis. On a practical level, our data suggest that targeting the PARylation system may constitute a novel powerful approach for the management of Phytophthora diseases.
Collapse
Affiliation(s)
- Viktoriya O. Samarskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (E.A.R.)
| | - Sofya Koblova
- Doka-Gene Technologies Ltd., Moscow Region, 141880 Rogachevo, Russia; (S.K.); (T.S.)
| | - Tatiana Suprunova
- Doka-Gene Technologies Ltd., Moscow Region, 141880 Rogachevo, Russia; (S.K.); (T.S.)
| | - Eugene A. Rogozhin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (E.A.R.)
| | - Nadezhda Spechenkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (E.A.R.)
| | - Sofiya Yakunina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (E.A.R.)
| | - Andrew J. Love
- James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
| | - Natalia O. Kalinina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (E.A.R.)
- James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
| |
Collapse
|
11
|
Laurent F, Bartsch SM, Shukla A, Rico-Resendiz F, Couto D, Fuchs C, Nicolet J, Loubéry S, Jessen HJ, Fiedler D, Hothorn M. Inositol pyrophosphate catabolism by three families of phosphatases regulates plant growth and development. PLoS Genet 2024; 20:e1011468. [PMID: 39531477 DOI: 10.1371/journal.pgen.1011468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Inositol pyrophosphates (PP-InsPs) are nutrient messengers whose cellular levels are precisely regulated. Diphosphoinositol pentakisphosphate kinases (PPIP5Ks) generate the active signaling molecule 1,5-InsP8. PPIP5Ks harbor phosphatase domains that hydrolyze PP-InsPs. Plant and Fungi Atypical Dual Specificity Phosphatases (PFA-DSPs) and NUDIX phosphatases (NUDTs) are also involved in PP-InsP degradation. Here, we analyze the relative contributions of the three different phosphatase families to plant PP-InsP catabolism. We report the biochemical characterization of inositol pyrophosphate phosphatases from Arabidopsis and Marchantia polymorpha. Overexpression of different PFA-DSP and NUDT enzymes affects PP-InsP levels and leads to stunted growth phenotypes in Arabidopsis. nudt17/18/21 knock-out mutants have altered PP-InsP pools and gene expression patterns, but no apparent growth defects. In contrast, Marchantia polymorpha Mppfa-dsp1ge, Mpnudt1ge and Mpvip1ge mutants display severe growth and developmental phenotypes and associated changes in cellular PP-InsP levels. Analysis of Mppfa-dsp1geand Mpvip1ge mutants supports a role for PP-InsPs in Marchantia phosphate signaling, and additional functions in nitrate homeostasis and cell wall biogenesis. Simultaneous elimination of two phosphatase activities enhanced the observed growth phenotypes. Taken together, PPIP5K, PFA-DSP and NUDT inositol pyrophosphate phosphatases regulate growth and development by collectively shaping plant PP-InsP pools.
Collapse
Affiliation(s)
- Florian Laurent
- Structural Biology Laboratory, Department of Plant Sciences, University of Geneva, Geneva, Switzerland
| | - Simon M Bartsch
- Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
- Institute of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anuj Shukla
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Felix Rico-Resendiz
- Structural Biology Laboratory, Department of Plant Sciences, University of Geneva, Geneva, Switzerland
| | - Daniel Couto
- Structural Biology Laboratory, Department of Plant Sciences, University of Geneva, Geneva, Switzerland
| | - Christelle Fuchs
- Plant Imaging Unit, Department of Plant Sciences, University of Geneva, Geneva, Switzerland
| | - Joël Nicolet
- Structural Biology Laboratory, Department of Plant Sciences, University of Geneva, Geneva, Switzerland
| | - Sylvain Loubéry
- Plant Imaging Unit, Department of Plant Sciences, University of Geneva, Geneva, Switzerland
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Dorothea Fiedler
- Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
- Institute of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Hothorn
- Structural Biology Laboratory, Department of Plant Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
12
|
Lin YS, Tsai YC, Li CJ, Wei TT, Wang JL, Lin BW, Wu YN, Wu SR, Lin SC, Lin SC. Overexpression of NUDT16L1 sustains proper function of mitochondria and leads to ferroptosis insensitivity in colorectal cancer. Redox Biol 2024; 77:103358. [PMID: 39317106 PMCID: PMC11465047 DOI: 10.1016/j.redox.2024.103358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
Cancer research is continuously exploring new avenues to improve treatments, and ferroptosis induction has emerged as a promising approach. However, the lack of comprehensive analysis of the ferroptosis sensitivity in different cancer types has limited its clinical application. Moreover, identifying the key regulator that influences the ferroptosis sensitivity during cancer progression remains a major challenge. In this study, we shed light on the role of ferroptosis in colorectal cancer and identified a novel ferroptosis repressor, NUDT16L1, that contributes to the ferroptosis insensitivity in this cancer type. Mechanistically, NUDT16L1 promotes ferroptosis insensitivity in colon cancer by enhancing the expression of key ferroptosis repressor and mitochondrial genes through direct binding to NAD-capped RNAs and the indirect action of MALAT1. Our findings also reveal that NUDT16L1 localizes to the mitochondria to maintain its proper function by preventing mitochondrial DNA leakage after treatment of ferroptosis inducer in colon cancer cells. Importantly, our orthotopic injection and Nudt16l1 transgenic mouse models of colon cancer demonstrated the critical role of NUDT16L1 in promoting tumor growth. Moreover, clinical specimens revealed that NUDT16L1 was overexpressed in colorectal cancer, indicating its potential as a therapeutic target. Finally, our study shows the therapeutic potential of a NUDT16L1 inhibitor in vitro, in vivo and ex vivo. Taken together, these findings provide new insights into the crucial role of NUDT16L1 in colorectal cancer and highlight its potential as a promising therapeutic target.
Collapse
Affiliation(s)
- Yi-Syuan Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Chuan Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Tzu-Tang Wei
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jui-Lin Wang
- National Laboratory Animal Center, National Applied Research Laboratories, Tainan, Taiwan
| | - Bo-Wen Lin
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Na Wu
- School of Dentistry and Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Rung Wu
- School of Dentistry and Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shin-Chih Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Chieh Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
13
|
Taiyab A, Ashraf A, Sulaimani MN, Rathi A, Shamsi A, Hassan MI. Role of MTH1 in oxidative stress and therapeutic targeting of cancer. Redox Biol 2024; 77:103394. [PMID: 39418911 PMCID: PMC11532495 DOI: 10.1016/j.redox.2024.103394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
Cancer cells maintain high levels of reactive oxygen species (ROS) to drive their growth, but ROS can trigger cell death through oxidative stress and DNA damage. To survive enhanced ROS levels, cancer cells activate their antioxidant defenses. One such defense is MTH1, an enzyme that prevents the incorporation of oxidized nucleotides into DNA, thus preventing DNA damage and allowing cancer to proliferate. MTH1 levels are often elevated in many cancers, and thus, inhibiting MTH1 is an attractive strategy for suppressing tumor growth and metastasis. Targeted MTH1 inhibition can induce DNA damage in cancer cells, exploiting their vulnerability to oxidative stress and selectively targeting them for destruction. Targeting MTH1 is promising for cancer treatment because normal cells have lower ROS levels and are less dependent on these pathways, making the approach both effective and specific to cancer. This review aims to investigate the potential of MTH1 as a therapeutic target, especially in cancer treatment, offering detailed insights into its structure, function, and role in disease progression. We also discussed various MTH1 inhibitors that have been developed to selectively induce oxidative damage in cancer cells, though their effectiveness varies. In addition, this review provide deeper mechanistic insights into the role of MTH1 in cancer prevention and oxidative stress management in various diseases.
Collapse
Affiliation(s)
- Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Md Nayab Sulaimani
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Aanchal Rathi
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, P.O. Box 346, United Arab Emirates.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
14
|
Huang Y, Kumar S, Lee J, Lü W, Du J. Coupling enzymatic activity and gating in an ancient TRPM chanzyme and its molecular evolution. Nat Struct Mol Biol 2024; 31:1509-1521. [PMID: 38773335 PMCID: PMC11479946 DOI: 10.1038/s41594-024-01316-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 04/12/2024] [Indexed: 05/23/2024]
Abstract
Channel enzymes represent a class of ion channels with enzymatic activity directly or indirectly linked to their channel function. We investigated a TRPM2 chanzyme from choanoflagellates that integrates two seemingly incompatible functions into a single peptide: a channel module activated by ADP-ribose with high open probability and an enzyme module (NUDT9-H domain) consuming ADP-ribose at a remarkably slow rate. Using time-resolved cryogenic-electron microscopy, we captured a complete series of structural snapshots of gating and catalytic cycles, revealing the coupling mechanism between channel gating and enzymatic activity. The slow kinetics of the NUDT9-H enzyme module confers a self-regulatory mechanism: ADPR binding triggers NUDT9-H tetramerization, promoting channel opening, while subsequent hydrolysis reduces local ADPR, inducing channel closure. We further demonstrated how the NUDT9-H domain has evolved from a structurally semi-independent ADP-ribose hydrolase module in early species to a fully integrated component of a gating ring essential for channel activation in advanced species.
Collapse
Affiliation(s)
- Yihe Huang
- Van Andel Institute, Grand Rapids, MI, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Junuk Lee
- Van Andel Institute, Grand Rapids, MI, USA
| | - Wei Lü
- Van Andel Institute, Grand Rapids, MI, USA.
| | - Juan Du
- Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
15
|
Scaletti ER, Unterlass JE, Almlöf I, Koolmeister T, Vallin KS, Kapsitidou D, Tsuber V, Helleday T, Stenmark P, Jemth AS. Kinetic and structural characterization of NUDT15 and NUDT18 as catalysts of isoprene pyrophosphate hydrolysis. FEBS J 2024; 291:4301-4322. [PMID: 38944687 DOI: 10.1111/febs.17202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/19/2024] [Accepted: 06/06/2024] [Indexed: 07/01/2024]
Abstract
Isoprene pyrophosphates play a crucial role in the synthesis of a diverse array of essential nonsterol and sterol biomolecules and serve as substrates for posttranslational isoprenylation of proteins, enabling specific anchoring to cellular membranes. Hydrolysis of isoprene pyrophosphates would be a means to modulate their levels, downstream products, and protein isoprenylation. While NUDIX hydrolases from plants have been described to catalyze the hydrolysis of isoprene pyrophosphates, homologous enzymes with this function in animals have not yet been reported. In this study, we screened an extensive panel of human NUDIX hydrolases for activity in hydrolyzing isoprene pyrophosphates. We found that human nucleotide triphosphate diphosphatase NUDT15 and 8-oxo-dGDP phosphatase NUDT18 efficiently catalyze the hydrolysis of several physiologically relevant isoprene pyrophosphates. Notably, we demonstrate that geranyl pyrophosphate is an excellent substrate for NUDT18, with a catalytic efficiency of 2.1 × 105 m-1·s-1, thus making it the best substrate identified for NUDT18 to date. Similarly, geranyl pyrophosphate proved to be the best isoprene pyrophosphate substrate for NUDT15, with a catalytic efficiency of 4.0 × 104 M-1·s-1. LC-MS analysis of NUDT15 and NUDT18 catalyzed isoprene pyrophosphate hydrolysis revealed the generation of the corresponding monophosphates and inorganic phosphate. Furthermore, we solved the crystal structure of NUDT15 in complex with the hydrolysis product geranyl phosphate at a resolution of 1.70 Å. This structure revealed that the active site nicely accommodates the hydrophobic isoprenoid moiety and helped identify key binding residues. Our findings imply that isoprene pyrophosphates are endogenous substrates of NUDT15 and NUDT18, suggesting they are involved in animal isoprene pyrophosphate metabolism.
Collapse
Affiliation(s)
- Emma R Scaletti
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Judith E Unterlass
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Ingrid Almlöf
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Tobias Koolmeister
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Karl S Vallin
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Despina Kapsitidou
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Viktoriia Tsuber
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Thomas Helleday
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Ann-Sofie Jemth
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, 171 77, Sweden
| |
Collapse
|
16
|
Moura RDD, Mattos PDD, Valente PF, Hoch NC. Molecular mechanisms of cell death by parthanatos: More questions than answers. Genet Mol Biol 2024; 47Suppl 1:e20230357. [PMID: 39356140 PMCID: PMC11445734 DOI: 10.1590/1678-4685-gmb-2023-0357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/16/2024] [Indexed: 10/03/2024] Open
Abstract
Regulated cell death by a non-apoptotic pathway known as parthanatos is increasingly recognised as a central player in pathological processes, including ischaemic tissue damage and neurodegenerative diseases. Parthanatos is activated under conditions that induce high levels of DNA damage, leading to hyperactivation of the DNA damage sensor PARP1. While this strict dependence on PARP1 activation is a defining feature of parthanatos that distinguishes it from other forms of cell death, the molecular events downstream of PARP1 activation remain poorly understood. In this mini-review, we highlight a number of important questions that remain to be answered about this enigmatic form of cell death.
Collapse
Affiliation(s)
- Rafael Dias de Moura
- Universidade de São Paulo, Instituto de Química, Departamento de Bioquímica, São Paulo, SP, Brasil
| | | | | | - Nícolas Carlos Hoch
- Universidade de São Paulo, Instituto de Química, Departamento de Bioquímica, São Paulo, SP, Brasil
| |
Collapse
|
17
|
Benoni B, Potužník J, Škríba A, Benoni R, Trylcova J, Tulpa M, Spustová K, Grab K, Mititelu MB, Pačes J, Weber J, Stanek D, Kowalska J, Bednarova L, Keckesova Z, Vopalensky P, Gahurova L, Cahova H. HIV-1 Infection Reduces NAD Capping of Host Cell snRNA and snoRNA. ACS Chem Biol 2024; 19:1243-1249. [PMID: 38747804 PMCID: PMC11197007 DOI: 10.1021/acschembio.4c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/22/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD) is a critical component of the cellular metabolism and also serves as an alternative 5' cap on various RNAs. However, the function of the NAD RNA cap is still under investigation. We studied NAD capping of RNAs in HIV-1-infected cells because HIV-1 is responsible for the depletion of the NAD/NADH cellular pool and causing intracellular pellagra. By applying the NAD captureSeq protocol to HIV-1-infected and uninfected cells, we revealed that four snRNAs (e.g., U1) and four snoRNAs lost their NAD cap when infected with HIV-1. Here, we provide evidence that the presence of the NAD cap decreases the stability of the U1/HIV-1 pre-mRNA duplex. Additionally, we demonstrate that reducing the quantity of NAD-capped RNA by overexpressing the NAD RNA decapping enzyme DXO results in an increase in HIV-1 infectivity. This suggests that NAD capping is unfavorable for HIV-1 and plays a role in its infectivity.
Collapse
Affiliation(s)
- Barbora Benoni
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
- First
Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague, Czechia
| | - Jiří
František Potužník
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
- Faculty
of Science, Department of Cell Biology, Charles University, Viničná 7, 121 08 Prague 2, Czechia
| | - Anton Škríba
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - Roberto Benoni
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - Jana Trylcova
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - Matouš Tulpa
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
- Faculty
of Science, Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 8, 121 08 Prague 2, Czechia
| | - Kristína Spustová
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - Katarzyna Grab
- Division
of Biophysics, Faculty of Physics, University
of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Maria-Bianca Mititelu
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
- Faculty
of Science, Department of Cell Biology, Charles University, Viničná 7, 121 08 Prague 2, Czechia
| | - Jan Pačes
- Institute
of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czechia
| | - Jan Weber
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - David Stanek
- Institute
of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czechia
| | - Joanna Kowalska
- Division
of Biophysics, Faculty of Physics, University
of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Lucie Bednarova
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - Zuzana Keckesova
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - Pavel Vopalensky
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - Lenka Gahurova
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
- Department
of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czechia
| | - Hana Cahova
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| |
Collapse
|
18
|
Balıkçı E, Marques ASMC, Bauer LG, Seupel R, Bennett J, Raux B, Buchan K, Simelis K, Singh U, Rogers C, Ward J, Cheng C, Szommer T, Schützenhofer K, Elkins JM, Sloman DL, Ahel I, Fedorov O, Brennan PE, Huber KVM. Unexpected Noncovalent Off-Target Activity of Clinical BTK Inhibitors Leads to Discovery of a Dual NUDT5/14 Antagonist. J Med Chem 2024; 67:7245-7259. [PMID: 38635563 PMCID: PMC11089510 DOI: 10.1021/acs.jmedchem.4c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
Cofactor mimicry represents an attractive strategy for the development of enzyme inhibitors but can lead to off-target effects due to the evolutionary conservation of binding sites across the proteome. Here, we uncover the ADP-ribose (ADPr) hydrolase NUDT5 as an unexpected, noncovalent, off-target of clinical BTK inhibitors. Using a combination of biochemical, biophysical, and intact cell NanoBRET assays as well as X-ray crystallography, we confirm catalytic inhibition and cellular target engagement of NUDT5 and reveal an unusual binding mode that is independent of the reactive acrylamide warhead. Further investigation of the prototypical BTK inhibitor ibrutinib also revealed potent inhibition of the largely unstudied NUDIX hydrolase family member NUDT14. By exploring structure-activity relationships (SARs) around the core scaffold, we identify a potent, noncovalent, and cell-active dual NUDT5/14 inhibitor. Cocrystallization experiments yielded new insights into the NUDT14 hydrolase active site architecture and inhibitor binding, thus providing a basis for future chemical probe design.
Collapse
Affiliation(s)
- Esra Balıkçı
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - Anne-Sophie M. C. Marques
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - Ludwig G. Bauer
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - Raina Seupel
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - James Bennett
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - Brigitt Raux
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - Karly Buchan
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - Klemensas Simelis
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - Usha Singh
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - Catherine Rogers
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - Jennifer Ward
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - Carol Cheng
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - Tamas Szommer
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - Kira Schützenhofer
- Sir
William Dunn School of Pathology, University
of Oxford, South Parks
Road, Oxford OX1 3RE, U.K.
| | - Jonathan M. Elkins
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - David L. Sloman
- Departments
of Discovery Chemistry, Merck & Co.
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Ivan Ahel
- Sir
William Dunn School of Pathology, University
of Oxford, South Parks
Road, Oxford OX1 3RE, U.K.
| | - Oleg Fedorov
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - Paul E. Brennan
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Alzheimer’s
Research UK Oxford Drug Discovery Institute, Nuffield Department of
Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - Kilian V. M. Huber
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| |
Collapse
|
19
|
Khan A, Mallick M, Ladke JS, Bhandari R. The ring rules the chain - inositol pyrophosphates and the regulation of inorganic polyphosphate. Biochem Soc Trans 2024; 52:567-580. [PMID: 38629621 DOI: 10.1042/bst20230256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
The maintenance of phosphate homeostasis serves as a foundation for energy metabolism and signal transduction processes in all living organisms. Inositol pyrophosphates (PP-InsPs), composed of an inositol ring decorated with monophosphate and diphosphate moieties, and inorganic polyphosphate (polyP), chains of orthophosphate residues linked by phosphoanhydride bonds, are energy-rich biomolecules that play critical roles in phosphate homeostasis. There is a complex interplay between these two phosphate-rich molecules, and they share an interdependent relationship with cellular adenosine triphosphate (ATP) and inorganic phosphate (Pi). In eukaryotes, the enzymes involved in PP-InsP synthesis show some degree of conservation across species, whereas distinct enzymology exists for polyP synthesis among different organisms. In fact, the mechanism of polyP synthesis in metazoans, including mammals, is still unclear. Early studies on PP-InsP and polyP synthesis were conducted in the slime mould Dictyostelium discoideum, but it is in the budding yeast Saccharomyces cerevisiae that a clear understanding of the interplay between polyP, PP-InsPs, and Pi homeostasis has now been established. Recent research has shed more light on the influence of PP-InsPs on polyP in mammals, and the regulation of both these molecules by cellular ATP and Pi levels. In this review we will discuss the cross-talk between PP-InsPs, polyP, ATP, and Pi in the context of budding yeast, slime mould, and mammals. We will also highlight the similarities and differences in the relationship between these phosphate-rich biomolecules among this group of organisms.
Collapse
Affiliation(s)
- Azmi Khan
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Manisha Mallick
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Jayashree S Ladke
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| |
Collapse
|
20
|
Zhang Z, Samsa WE, Gong Z. NUDT16 regulates CtIP PARylation to dictate homologous recombination repair. Nucleic Acids Res 2024; 52:3761-3777. [PMID: 38324469 PMCID: PMC11039996 DOI: 10.1093/nar/gkae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
CtIP initiates DNA end resection and mediates homologous recombination (HR) repair. However, the underlying mechanisms of CtIP regulation and how the control of its regulation affects DNA repair remain incompletely characterized. In this study, NUDT16 loss decreases CtIP protein levels and impairs CtIP recruitment to double-strand breaks (DSBs). Furthermore, overexpression of a catalytically inactive NUDT16 mutant is unable to rescue decreased CtIP protein and impaired CtIP recruitment to DSBs. In addition, we identified a novel posttranslational modification of CtIP by ADP-ribosylation that is targeted by a PAR-binding E3 ubiquitin ligase, RNF146, leading to CtIP ubiquitination and degradation. These data suggest that the hydrolase activity of NUDT16 plays a major role in controlling CtIP protein levels. Notably, ADP-ribosylation of CtIP is required for its interaction with NUDT16, its localization at DSBs, and for HR repair. Interestingly, NUDT16 can also be ADP-ribosylated. The ADP-ribosylated NUDT16 is critical for CtIP protein stability, CtIP recruitment to DSBs, and HR repair in response to DNA damage. In summary, we demonstrate that NUDT16 and its PARylation regulate CtIP stability and CtIP recruitment to DSBs, providing new insights into our understanding of the regulation of CtIP-mediated DNA end resection in the HR repair pathway.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - William E Samsa
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Zihua Gong
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| |
Collapse
|
21
|
Massey JC, Magagnoli J, Sutton SS, Buckhaults PJ, Wyatt MD. Collateral damage of NUDT15 deficiency in cancer provides a cancer pharmacogenetic therapeutic window with thiopurines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588560. [PMID: 38645136 PMCID: PMC11030356 DOI: 10.1101/2024.04.08.588560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Genome instability is a hallmark of cancer and are driven by mutations in oncogenes and tumor suppressor genes. Despite successes seen with select targeted therapeutics, this type of personalized medicine is only beneficial for a small subpopulation of cancer patients who have one of a few actionable genetic changes. Most tumors also contain hundreds of passenger mutations that offered no fitness advantage or disadvantage during tumor evolution. Mutations in known pharmacogenetic (PGx) loci for which germline variants encode variability in drug response can cause somatically acquired drug sensitivity. The NUDT15 gene is a known PGx locus that participates in the rate-limiting metabolism of thiopurines. People with two defective germline alleles of NUDT15 are hypersensitive to the toxic effects of thiopurines. NUDT15 is located adjacent to the Retinoblastoma ( RB1 ) tumor suppressor gene, which often undergoes homozygous deletion in retinoblastomas and other epithelial cancers. We observed that RB1 undergoes homozygous deletions in 9.4% of prostate adenocarcinomas and 2.5% of ovarian cancers, and in nearly all of these cases NUDT15 is also lost. Moreover, 44% of prostate adenocarcinomas and over 60% of ovarian cancers have lost one allele of NUDT15, which predicts that a majority of all prostate and ovarian cancers have somatically acquired hypersensitivity to thiopurine treatment. We performed a retrospective analysis of >16,000 patients in the US Veterans Administration health care system and found concurrent xanthine oxidase inhibition (XOi) and thiopurine usage for non-cancer indications is significantly associated with reduced incidence of prostate cancer. The hazard ratio for the development of prostate cancer in patients treated with thiopurines and XOi was 0.562 (0.301-1.051) for the unmatched cohort and 0.389 (0.185-0.819) for the propensity score matched cohort. We experimentally depleted NUDT15 from ovarian and prostate cancer cell lines and observed a dramatic sensitization to thiopurine-induced and DNA damage-dependent toxicity. These results indicate that somatic loss of NUDT15 predicts therapeutic sensitivity to a low cost and well tolerated drug with a broad therapeutic window.
Collapse
|
22
|
Viana Neto AM, Guerreiro DD, Martins JAM, Vasconcelos FÁR, Melo RÉBF, Velho ALMCS, Neila-Montero M, Montes-Garrido R, Nagano CS, Araújo AA, Moura AA. Sperm traits and seminal plasma proteome of locally adapted hairy rams subjected to intermittent scrotal insulation. Anim Reprod Sci 2024; 263:107439. [PMID: 38447240 DOI: 10.1016/j.anireprosci.2024.107439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024]
Abstract
The present study evaluated the effects of heat stress on reproductive parameters of hairy rams. Six animals were subjected to scrotal insulation during four consecutive nights (6 PM - 6 AM). Day (D) 0 was the first day of insulation. Scrotal circumference increased from 30.5 ± 0.3 cm (at pre-insulation) to 31.8 ± 0.4 cm on D4, decreased 3.9 cm on D28, returning to 30.6 ± 0.6 cm on D57. Sperm concentration decreased from 3.7 ± 0.12 ×109 sperm/mL before insulation to 2.6 ± 0.1 ×109 on D23, returning to normal on D57. Sperm motility averaged 75 ± 2.9% before insulation, was undetectable on D23, and became normal on D77. Sperm with normal morphology reached 5.9 ± 2.6% on D35 but recovered (86.8 ± 2.1%) on D91. Sperm DNA integrity decreased from 86.5 ± 4.7% before insulation to 11.1 ± 3.7% on D63, returning to pre-insulation values on D120. Sperm BSP immunostaining was reduced after scrotal insulation. Variations in seminal protein abundances coincided with changes in sperm parameters. Seminal plasma superoxide dismutase, carboxypeptidase Q-precursor and NPC intracellular cholesterol transporter 2 decreased on D18, returning to normal after D28. Albumin, inhibitor of carbonic anhydrase precursor, EGF-like repeat and discoid I-like domain-containing protein 3 and polymeric immunoglobulin receptor increased after insulation. In summary, intermittent scrotal insulation drastically altered ram sperm attributes and seminal proteins, especially those associated with oxidative stress. Knowledge of animal´s response to thermal stress is vital in the scenario of climate changes.
Collapse
Affiliation(s)
| | - Denise D Guerreiro
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Jorge A M Martins
- School of Veterinary Medicine, Federal University of Cariri, Juazeiro do Norte, Brazil
| | | | - R Évila B F Melo
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | | | - Marta Neila-Montero
- Itra-ULE, Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Rafael Montes-Garrido
- Itra-ULE, Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Celso S Nagano
- Department of Fisheries Engineering, Federal University of Ceará, Fortaleza, Brazil
| | - Airton A Araújo
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil; School of Veterinary Medicine, Ceará State University, Fortaleza, Brazil
| | - Arlindo A Moura
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil.
| |
Collapse
|
23
|
František Potužník J, Nešuta O, Škríba A, Voleníková B, Mititelu MB, Mancini F, Serianni V, Fernandez H, Spustová K, Trylčová J, Vopalensky P, Cahová H. Diadenosine Tetraphosphate (Ap 4 A) Serves as a 5' RNA Cap in Mammalian Cells. Angew Chem Int Ed Engl 2024; 63:e202314951. [PMID: 37934413 DOI: 10.1002/anie.202314951] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/08/2023]
Abstract
The recent expansion of the field of RNA chemical modifications has changed our understanding of post-transcriptional gene regulation. Apart from internal nucleobase modifications, 7-methylguanosine was long thought to be the only eukaryotic RNA cap. However, the discovery of non-canonical RNA caps in eukaryotes revealed a new niche of previously undetected RNA chemical modifications. We are the first to report the existence of a new non-canonical RNA cap, diadenosine tetraphosphate (Ap4 A), in human and rat cell lines. Ap4 A is the most abundant dinucleoside polyphosphate in eukaryotic cells and can be incorporated into RNA by RNA polymerases as a non-canonical initiating nucleotide (NCIN). Using liquid chromatography-mass spectrometry (LC-MS), we show that the amount of capped Ap4 A-RNA is independent of the cellular concentration of Ap4 A. A decapping enzyme screen identifies two enzymes cleaving Ap4 A-RNA,NUDT2 and DXO, both of which also cleave other substrate RNAs in vitro. We further assess the translatability and immunogenicity of Ap4 A-RNA and show that although it is not translated, Ap4 A-RNA is recognized as self by the cell and does not elicit an immune response, making it a natural component of the transcriptome. Our findings open a previously unexplored area of eukaryotic RNA regulation.
Collapse
Affiliation(s)
- Jiří František Potužník
- Chemical Biology of Nucleic, Acids, Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, Prague, 6, Czechia
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, 2, Czechia
| | - Ondřej Nešuta
- Chemical Biology of Nucleic, Acids, Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, Prague, 6, Czechia
| | - Anton Škríba
- Chemical Biology of Nucleic, Acids, Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, Prague, 6, Czechia
| | - Barbora Voleníková
- Chemical Biology of Nucleic, Acids, Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, Prague, 6, Czechia
| | - Maria-Bianca Mititelu
- Chemical Biology of Nucleic, Acids, Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, Prague, 6, Czechia
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, 2, Czechia
| | - Flaminia Mancini
- Chemical Biology of Nucleic, Acids, Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, Prague, 6, Czechia
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, 2, Czechia
| | - Valentina Serianni
- Chemical Biology of Nucleic, Acids, Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, Prague, 6, Czechia
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, 2, Czechia
| | - Henri Fernandez
- Chemical Biology of Nucleic, Acids, Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, Prague, 6, Czechia
| | - Kristína Spustová
- Chemical Biology of Nucleic, Acids, Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, Prague, 6, Czechia
| | - Jana Trylčová
- Chemical Biology of Nucleic, Acids, Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, Prague, 6, Czechia
| | - Pavel Vopalensky
- Chemical Biology of Nucleic, Acids, Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, Prague, 6, Czechia
| | - Hana Cahová
- Chemical Biology of Nucleic, Acids, Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, Prague, 6, Czechia
| |
Collapse
|
24
|
Potužník JF, Cahova H. If the 5' cap fits (wear it) - Non-canonical RNA capping. RNA Biol 2024; 21:1-13. [PMID: 39007883 PMCID: PMC11253889 DOI: 10.1080/15476286.2024.2372138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
RNA capping is a prominent RNA modification that influences RNA stability, metabolism, and function. While it was long limited to the study of the most abundant eukaryotic canonical m7G cap, the field recently went through a large paradigm shift with the discovery of non-canonical RNA capping in bacteria and ultimately all domains of life. The repertoire of non-canonical caps has expanded to encompass metabolite caps, including NAD, FAD, CoA, UDP-Glucose, and ADP-ribose, alongside alarmone dinucleoside polyphosphate caps, and methylated phosphate cap-like structures. This review offers an introduction into the field, presenting a summary of the current knowledge about non-canonical RNA caps. We highlight the often still enigmatic biological roles of the caps together with their processing enzymes, focusing on the most recent discoveries. Furthermore, we present the methods used for the detection and analysis of these non-canonical RNA caps and thus provide an introduction into this dynamic new field.
Collapse
Affiliation(s)
- Jiří František Potužník
- Institute of Organic Chemistry and Biochemistry of the CAS, Prague 6, Czechia
- Department of Cell Biology, Charles University, Faculty of Science, Prague 2, Czechia
| | - Hana Cahova
- Institute of Organic Chemistry and Biochemistry of the CAS, Prague 6, Czechia
| |
Collapse
|
25
|
Huth T, Dreher EC, Lemke S, Fritzsche S, Sugiyanto RN, Castven D, Ibberson D, Sticht C, Eiteneuer E, Jauch A, Pusch S, Albrecht T, Goeppert B, Candia J, Wang XW, Ji J, Marquardt JU, Nahnsen S, Schirmacher P, Roessler S. Chromosome 8p engineering reveals increased metastatic potential targetable by patient-specific synthetic lethality in liver cancer. SCIENCE ADVANCES 2023; 9:eadh1442. [PMID: 38134284 PMCID: PMC10745716 DOI: 10.1126/sciadv.adh1442] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Large-scale chromosomal aberrations are prevalent in human cancer, but their function remains poorly understood. We established chromosome-engineered hepatocellular carcinoma cell lines using CRISPR-Cas9 genome editing. A 33-mega-base pair region on chromosome 8p (chr8p) was heterozygously deleted, mimicking a frequently observed chromosomal deletion. Using this isogenic model system, we delineated the functional consequences of chr8p loss and its impact on metastatic behavior and patient survival. We found that metastasis-associated genes on chr8p act in concert to induce an aggressive and invasive phenotype characteristic for chr8p-deleted tumors. Genome-wide CRISPR-Cas9 viability screening in isogenic chr8p-deleted cells served as a powerful tool to find previously unidentified synthetic lethal targets and vulnerabilities accompanying patient-specific chromosomal alterations. Using this target identification strategy, we showed that chr8p deletion sensitizes tumor cells to targeting of the reactive oxygen sanitizing enzyme Nudix hydrolase 17. Thus, chromosomal engineering allowed for the identification of novel synthetic lethalities specific to chr8p loss of heterozygosity.
Collapse
Affiliation(s)
- Thorben Huth
- Heidelberg University, Medical Faculty, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Emely C. Dreher
- Heidelberg University, Medical Faculty, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Steffen Lemke
- Quantitative Biology Center (QBiC), University of Tübingen, 72076 Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, 72076 Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
| | - Sarah Fritzsche
- Heidelberg University, Medical Faculty, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Raisatun N. Sugiyanto
- Heidelberg University, Medical Faculty, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Darko Castven
- Department of Medicine I, University Medical Center Schleswig Holstein, 23538 Lübeck, Germany
| | - David Ibberson
- Deep Sequencing Core Facility, CellNetworks Excellence Cluster, Heidelberg University, 69120 Heidelberg, Germany
| | - Carsten Sticht
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Eva Eiteneuer
- Heidelberg University, Medical Faculty, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics, Heidelberg University, 69120 Heidelberg, Germany
| | - Stefan Pusch
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thomas Albrecht
- Heidelberg University, Medical Faculty, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Benjamin Goeppert
- Heidelberg University, Medical Faculty, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Institute of Tissue Medicine and Pathology, University of Bern, 3008 Bern, Switzerland
- Institute of Pathology and Neuropathology, RKH Klinikum Ludwigsburg, 71640 Ludwigsburg, Germany
| | - Julián Candia
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis and Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Junfang Ji
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jens U. Marquardt
- Department of Medicine I, University Medical Center Schleswig Holstein, 23538 Lübeck, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
- Biomedical Data Science, Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
- The M3 Research Center, University of Tübingen, 72076 Tübingen, Germany
| | - Peter Schirmacher
- Heidelberg University, Medical Faculty, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Stephanie Roessler
- Heidelberg University, Medical Faculty, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
26
|
Gomes-Filho JV, Breuer R, Morales-Filloy HG, Pozhydaieva N, Borst A, Paczia N, Soppa J, Höfer K, Jäschke A, Randau L. Identification of NAD-RNA species and ADPR-RNA decapping in Archaea. Nat Commun 2023; 14:7597. [PMID: 37989750 PMCID: PMC10663502 DOI: 10.1038/s41467-023-43377-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
NAD is a coenzyme central to metabolism that also serves as a 5'-terminal cap for bacterial and eukaryotic transcripts. Thermal degradation of NAD can generate nicotinamide and ADP-ribose (ADPR). Here, we use LC-MS/MS and NAD captureSeq to detect and identify NAD-RNAs in the thermophilic model archaeon Sulfolobus acidocaldarius and in the halophilic mesophile Haloferax volcanii. None of the four Nudix proteins of S. acidocaldarius catalyze NAD-RNA decapping in vitro, but one of the proteins (Saci_NudT5) promotes ADPR-RNA decapping. NAD-RNAs are converted into ADPR-RNAs, which we detect in S. acidocaldarius total RNA. Deletion of the gene encoding the 5'-3' exonuclease Saci-aCPSF2 leads to a 4.5-fold increase in NAD-RNA levels. We propose that the incorporation of NAD into RNA acts as a degradation marker for Saci-aCPSF2. In contrast, ADPR-RNA is processed by Saci_NudT5 into 5'-p-RNAs, providing another layer of regulation for RNA turnover in archaeal cells.
Collapse
Affiliation(s)
| | - Ruth Breuer
- Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | | | | | - Andreas Borst
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Frankfurt am Main, Germany
| | - Nicole Paczia
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jörg Soppa
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Frankfurt am Main, Germany
| | - Katharina Höfer
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- SYNMIKRO, Center for Synthetic Microbiology, Marburg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany
| | - Lennart Randau
- Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany.
- SYNMIKRO, Center for Synthetic Microbiology, Marburg, Germany.
| |
Collapse
|
27
|
Sokołowska B, Orłowska M, Okrasińska A, Piłsyk S, Pawłowska J, Muszewska A. What can be lost? Genomic perspective on the lipid metabolism of Mucoromycota. IMA Fungus 2023; 14:22. [PMID: 37932857 PMCID: PMC10629195 DOI: 10.1186/s43008-023-00127-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 10/23/2023] [Indexed: 11/08/2023] Open
Abstract
Mucoromycota is a phylum of early diverging fungal (EDF) lineages, of mostly plant-associated terrestrial fungi. Some strains have been selected as promising biotechnological organisms due to their ability to produce polyunsaturated fatty acids and efficient conversion of nutrients into lipids. Others get their lipids from the host plant and are unable to produce even the essential ones on their own. Following the advancement in EDF genome sequencing, we carried out a systematic survey of lipid metabolism protein families across different EDF lineages. This enabled us to explore the genomic basis of the previously documented ability to produce several types of lipids within the fungal tree of life. The core lipid metabolism genes showed no significant diversity in distribution, however specialized lipid metabolic pathways differed in this regard among different fungal lineages. In total 165 out of 202 genes involved in lipid metabolism were present in all tested fungal lineages, while remaining 37 genes were found to be absent in some of fungal lineages. Duplications were observed for 69 genes. For the first time we demonstrate that ergosterol is not being produced by several independent groups of plant-associated fungi due to the losses of different ERG genes. Instead, they possess an ancestral pathway leading to the synthesis of cholesterol, which is absent in other fungal lineages. The lack of diacylglycerol kinase in both Mortierellomycotina and Blastocladiomycota opens the question on sterol equilibrium regulation in these organisms. Early diverging fungi retained most of beta oxidation components common with animals including Nudt7, Nudt12 and Nudt19 pointing at peroxisome divergence in Dikarya. Finally, Glomeromycotina and Mortierellomycotina representatives have a similar set of desaturases and elongases related to the synthesis of complex, polyunsaturated fatty acids pointing at an ancient expansion of fatty acid metabolism currently being explored by biotechnological studies.
Collapse
Affiliation(s)
- Blanka Sokołowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
- Faculty of Biology, Biological and Chemical Research Centre, Institute of Evolutionary Biology, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Małgorzata Orłowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
- Faculty of Biology, Biological and Chemical Research Centre, Institute of Evolutionary Biology, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Alicja Okrasińska
- Faculty of Biology, Biological and Chemical Research Centre, Institute of Evolutionary Biology, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Sebastian Piłsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Julia Pawłowska
- Faculty of Biology, Biological and Chemical Research Centre, Institute of Evolutionary Biology, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
28
|
Li Z, Luo A, Xie B. The Complex Network of ADP-Ribosylation and DNA Repair: Emerging Insights and Implications for Cancer Therapy. Int J Mol Sci 2023; 24:15028. [PMID: 37834477 PMCID: PMC10573881 DOI: 10.3390/ijms241915028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
ADP-ribosylation is a post-translational modification of proteins that plays a key role in various cellular processes, including DNA repair. Recently, significant progress has been made in understanding the mechanism and function of ADP-ribosylation in DNA repair. ADP-ribosylation can regulate the recruitment and activity of DNA repair proteins by facilitating protein-protein interactions and regulating protein conformations. Moreover, ADP-ribosylation can influence additional post-translational modifications (PTMs) of proteins involved in DNA repair, such as ubiquitination, methylation, acetylation, phosphorylation, and SUMOylation. The interaction between ADP-ribosylation and these additional PTMs can fine-tune the activity of DNA repair proteins and ensure the proper execution of the DNA repair process. In addition, PARP inhibitors have been developed as a promising cancer therapeutic strategy by exploiting the dependence of certain cancer types on the PARP-mediated DNA repair pathway. In this paper, we review the progress of ADP-ribosylation in DNA repair, discuss the crosstalk of ADP-ribosylation with additional PTMs in DNA repair, and summarize the progress of PARP inhibitors in cancer therapy.
Collapse
Affiliation(s)
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Bingteng Xie
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
29
|
Lukaszewicz M, Ferenc-Mrozek A, Kokosza J, Stefaniuk A, Stepinski J, Bojarska E, Darzynkiewicz E. Mammalian Nudt15 hydrolytic and binding activity on methylated guanosine mononucleotides. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:487-495. [PMID: 37644211 PMCID: PMC10618335 DOI: 10.1007/s00249-023-01678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/06/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
The Nudt15 enzyme of the NUDIX protein family is the subject of extensive study due to its action on thiopurine drugs used in the treatment of cancer and inflammatory diseases. In addition to thiopurines, Nudt15 is enzymatically active in vitro on several nucleotide substrates. It has also been suggested that this enzyme may play a role in 5'RNA turnover by hydrolyzing m7GDP, a product of mRNA decapping. However, no detailed studies on this substrate with Nudt15 are available. Here, we analyzed the enzymatic activity of Nudt15 with m7GDP, its triphosphate form m7GTP, and the trimethylated counterparts (m32,2,7GDP and m32,2,7GTP). Kinetic data revealed a moderate activity of Nudt15 toward these methylated mononucleotides compared to the dGTP substrate. However m7GDP and m32,2,7GDP showed a distinct stabilization of Nudt15 upon ligand binding, in the same range as dGTP, and thus these two mononucleotides may be used as leading structures in the design of small molecule binders of Nudt15.
Collapse
Affiliation(s)
- Maciej Lukaszewicz
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland.
| | - Aleksandra Ferenc-Mrozek
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Julia Kokosza
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Anna Stefaniuk
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Janusz Stepinski
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Elzbieta Bojarska
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Edward Darzynkiewicz
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| |
Collapse
|
30
|
Broderick K, Moutaoufik MT, Aly KA, Babu M. Sanitation enzymes: Exquisite surveillance of the noncanonical nucleotide pool to safeguard the genetic blueprint. Semin Cancer Biol 2023; 94:11-20. [PMID: 37211293 DOI: 10.1016/j.semcancer.2023.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023]
Abstract
Reactive oxygen species (ROS) are common products of normal cellular metabolism, but their elevated levels can result in nucleotide modifications. These modified or noncanonical nucleotides often integrate into nascent DNA during replication, causing lesions that trigger DNA repair mechanisms such as the mismatch repair machinery and base excision repair. Four superfamilies of sanitization enzymes can effectively hydrolyze noncanonical nucleotides from the precursor pool and eliminate their unintended incorporation into DNA. Notably, we focus on the representative MTH1 NUDIX hydrolase, whose enzymatic activity is ostensibly nonessential under normal physiological conditions. Yet, the sanitization attributes of MTH1 are more prevalent when ROS levels are abnormally high in cancer cells, rendering MTH1 an interesting target for developing anticancer treatments. We discuss multiple MTH1 inhibitory strategies that have emerged in recent years, and the potential of NUDIX hydrolases as plausible targets for the development of anticancer therapeutics.
Collapse
Affiliation(s)
- Kirsten Broderick
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | | | - Khaled A Aly
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada.
| |
Collapse
|
31
|
Debar L, Ishak L, Moretton A, Anoosheh S, Morel F, Jenninger L, Balandier I, Vernet P, Hofer A, van den Wildenberg S, Farge G. NUDT6 and NUDT9, two mitochondrial members of the NUDIX family, have distinct hydrolysis activities. Mitochondrion 2023:S1567-7249(23)00054-5. [PMID: 37343711 DOI: 10.1016/j.mito.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
The 22 members of the NUDIX (NUcleoside DIphosphate linked to another moiety, X) hydrolase superfamily can hydrolyze a variety of phosphorylated molecules including (d)NTPs and their oxidized forms, nucleotide sugars, capped mRNAs and dinucleotide coenzymes such as NADH and FADH. Beside this broad range of enzymatic substrates, the NUDIX proteins can also be found in different cellular compartments, mainly in the nucleus and in the cytosol, but also in the peroxisome and in the mitochondria. Here we studied two members of the family, NUDT6 and NUDT9. We showed that NUDT6 is expressed in human cells and localizes exclusively to mitochondria and we confirmed that NUDT9 has a mitochondrial localization. To elucidate their potential role within this organelle, we investigated the functional consequences at the mitochondrial level of NUDT6- and NUDT9-deficiency and found that the depletion of either of the two proteins results in an increased activity of the respiratory chain and an alteration of the mitochondrial respiratory chain complexes expression. We demonstrated that NUDT6 and NUDT9 have distinct substrate specificity in vitro, which is dependent on the cofactor used. They can both hydrolyze a large range of low molecular weight compounds such as NAD+(H), FAD and ADPR, but NUDT6 is mainly active towards NADH, while NUDT9 displays a higher activity towards ADPR.
Collapse
Affiliation(s)
- Louis Debar
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 CLERMONT-FERRAND, France
| | - Layal Ishak
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Amandine Moretton
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 CLERMONT-FERRAND, France
| | - Saber Anoosheh
- Umeå University, Department of Medical Biochemistry and Biophysics, SE-90187 Umeå, Sweden
| | - Frederic Morel
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 CLERMONT-FERRAND, France
| | - Louise Jenninger
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Isabelle Balandier
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 CLERMONT-FERRAND, France
| | - Patrick Vernet
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 CLERMONT-FERRAND, France
| | - Anders Hofer
- Umeå University, Department of Medical Biochemistry and Biophysics, SE-90187 Umeå, Sweden
| | - Siet van den Wildenberg
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 CLERMONT-FERRAND, France; Université Clermont Auvergne, CNRS, IRD, Université Jean Monnet Saint Etienne, LMV, F-63000 Clermont-Ferrand, France
| | - Geraldine Farge
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 CLERMONT-FERRAND, France.
| |
Collapse
|
32
|
Lukaszewicz M, Mrozek AF, Bojarska E, Stelmach J, Stepinski J, Darzynkiewicz E. Contribution of Nudt12 enzyme to differentially methylated dinucleotides of 5'RNA cap structure. Biochim Biophys Acta Gen Subj 2023:130400. [PMID: 37301333 DOI: 10.1016/j.bbagen.2023.130400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/17/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Recent findings have substantially broadened our knowledge about the diversity of modifications of the 5'end of RNAs, an issue generally attributed to mRNA cap structure (m7GpppN). Nudt12 is one of the recently described new enzymatic activities involved in cap metabolism. However, in contrast to its roles in metabolite-cap turnover (e.g., NAD-cap) and NADH/NAD metabolite hydrolysis, little is known regarding its hydrolytic activity towards dinucleotide cap structures. In order to gain further insight into this Nudt12 activity, comprehensive analysis with a spectrum of cap-like dinucleotides was performed with respect to different nucleotide types adjacent to the (m7)G moiety and its methylation status. Among the tested compounds, GpppA, GpppAm, and Gpppm6Am were identified as novel potent Nudt12 substrates, with KM values in the same range as that of NADH. Interestingly, substrate inhibition of Nudt12 catalytic activity was detected in the case of the GpppG dinucleotide, a phenomenon not reported to date. Finally, comparison of Nudt12 with DcpS and Nud16, two other enzymes with known activity on dinucleotide cap structures, revealed their overlapping and more specific substrates. Altogether, these findings provide a basis for clarifying the role of Nudt12 in cap-like dinucleotide turnover.
Collapse
Affiliation(s)
- Maciej Lukaszewicz
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.
| | - Aleksandra-Ferenc Mrozek
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Elzbieta Bojarska
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Joanna Stelmach
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Janusz Stepinski
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Edward Darzynkiewicz
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
33
|
Wojtczak BA, Bednarczyk M, Sikorski PJ, Wojtczak A, Surynt P, Kowalska J, Jemielity J. Synthesis and Evaluation of Diguanosine Cap Analogs Modified at the C8-Position by Suzuki-Miyaura Cross-Coupling: Discovery of 7-Methylguanosine-Based Molecular Rotors. J Org Chem 2023. [PMID: 37209102 DOI: 10.1021/acs.joc.3c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Chemical modifications of the mRNA cap structure can enhance the stability, translational properties, and half-life of mRNAs, thereby altering the therapeutic properties of synthetic mRNA. However, cap structure modification is challenging because of the instability of the 5'-5'-triphosphate bridge and N7-methylguanosine. The Suzuki-Miyaura cross-coupling reaction between boronic acid and halogen compound is a mild, convenient, and potentially applicable approach for modifying biomolecules. Herein, we describe two methods to synthesize C8-modified cap structures using the Suzuki-Miyaura cross-coupling reaction. Both methods employed phosphorimidazolide chemistry to form the 5',5'-triphosphate bridge. However, in the first method, the introduction of the modification via the Suzuki-Miyaura cross-coupling reaction at the C8 position occurs postsynthetically, at the dinucleotide level, whereas in the second method, the modification was introduced at the level of the nucleoside 5'-monophosphate, and later, the triphosphate bridge was formed. Both methods were successfully applied to incorporate six different groups (methyl, cyclopropyl, phenyl, 4-dimethylaminophenyl, 4-cyanophenyl, and 1-pyrene) into either the m7G or G moieties of the cap structure. Aromatic substituents at the C8-position of guanosine form a push-pull system that exhibits environment-sensitive fluorescence. We demonstrated that this phenomenon can be harnessed to study the interaction with cap-binding proteins, e.g., eIF4E, DcpS, Nudt16, and snurportin.
Collapse
Affiliation(s)
- Blazej A Wojtczak
- Centre of New Technologies, University of Warsaw; S. Banacha 2c, 02-097 Warsaw, Poland
| | - Marcelina Bednarczyk
- Centre of New Technologies, University of Warsaw; S. Banacha 2c, 02-097 Warsaw, Poland
- Faculty of Physics, University of Warsaw; L. Pasteura 5, 02-093, Warsaw, Poland
| | - Pawel J Sikorski
- Centre of New Technologies, University of Warsaw; S. Banacha 2c, 02-097 Warsaw, Poland
| | - Anna Wojtczak
- Faculty of Physics, University of Warsaw; L. Pasteura 5, 02-093, Warsaw, Poland
| | - Piotr Surynt
- Centre of New Technologies, University of Warsaw; S. Banacha 2c, 02-097 Warsaw, Poland
- Faculty of Physics, University of Warsaw; L. Pasteura 5, 02-093, Warsaw, Poland
| | - Joanna Kowalska
- Faculty of Physics, University of Warsaw; L. Pasteura 5, 02-093, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw; S. Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
34
|
Banfield MJ. Manipulation of plant immunity via an mRNA decapping pathogen effector. THE NEW PHYTOLOGIST 2023. [PMID: 37096655 DOI: 10.1111/nph.18921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Affiliation(s)
- Mark J Banfield
- Department of Biochemistry & Metabolism, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| |
Collapse
|
35
|
Zegarra V, Mais CN, Freitag J, Bange G. The mysterious diadenosine tetraphosphate (AP4A). MICROLIFE 2023; 4:uqad016. [PMID: 37223742 PMCID: PMC10148737 DOI: 10.1093/femsml/uqad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/15/2023] [Accepted: 04/21/2023] [Indexed: 05/25/2023]
Abstract
Dinucleoside polyphosphates, a class of nucleotides found amongst all the Trees of Life, have been gathering a lot of attention in the past decades due to their putative role as cellular alarmones. In particular, diadenosine tetraphosphate (AP4A) has been widely studied in bacteria facing various environmental challenges and has been proposed to be important for ensuring cellular survivability through harsh conditions. Here, we discuss the current understanding of AP4A synthesis and degradation, protein targets, their molecular structure where possible, and insights into the molecular mechanisms of AP4A action and its physiological consequences. Lastly, we will briefly touch on what is known with regards to AP4A beyond the bacterial kingdom, given its increasing appearance in the eukaryotic world. Altogether, the notion that AP4A is a conserved second messenger in organisms ranging from bacteria to humans and is able to signal and modulate cellular stress regulation seems promising.
Collapse
Affiliation(s)
- Victor Zegarra
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University Marburg, Marburg 35043, Germany
| | - Christopher-Nils Mais
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University Marburg, Marburg 35043, Germany
| | - Johannes Freitag
- Department of Biology, Philipps University Marburg, Marburg 35043, Germany
| | - Gert Bange
- Corresponding author. Karl-von-Frisch Strasse 14, 35043 Marburg, Germany. E-mail:
| |
Collapse
|
36
|
Walter M, Mayr F, Hanna BMF, Cookson V, Mortusewicz O, Helleday T, Herr P. NUDT22 promotes cancer growth through pyrimidine salvage. Oncogene 2023; 42:1282-1293. [PMID: 36871087 PMCID: PMC10101856 DOI: 10.1038/s41388-023-02643-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023]
Abstract
The NUDIX hydrolase NUDT22 converts UDP-glucose into glucose-1-phosphate and the pyrimidine nucleotide uridine monophosphate but a biological significance for this biochemical reaction has not yet been established. Glucose-1-phosphate is an important metabolite for energy and biomass production through glycolysis and nucleotides required for DNA replication are produced through energetically expensive de novo or energy-efficient salvage pathways. Here, we describe p53-regulated pyrimidine salvage through NUDT22-dependent hydrolysis of UDP-glucose to maintain cancer cell growth and to prevent replication stress. NUDT22 expression is consistently elevated in cancer tissues and high NUDT22 expression correlates with worse survival outcomes in patients indicating an increased dependency of cancer cells to NUDT22. Furthermore, we show that NUDT22 transcription is induced after inhibition of glycolysis, MYC-mediated oncogenic stress, and DNA damage directly through p53. NUDT22-deficient cancer cells suffer from growth retardation, S-phase delay, and slower DNA replication fork speed. Uridine supplementation rescues replication fork progression and alleviates replication stress and DNA damage. Conversely, NUDT22 deficiency sensitizes cells to de novo pyrimidine synthesis inhibition in vitro and reduces cancer growth in vivo. In conclusion, NUDT22 maintains pyrimidine supply in cancer cells and depletion of NUDT22 leads to genome instability. Targeting NUDT22 therefore has high potential for therapeutic applications in cancer therapy.
Collapse
Affiliation(s)
- Melanie Walter
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
| | - Florian Mayr
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institute, 171 76, Stockholm, Sweden
| | - Bishoy M F Hanna
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institute, 171 76, Stockholm, Sweden
| | - Victoria Cookson
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
| | - Oliver Mortusewicz
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institute, 171 76, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institute, 171 76, Stockholm, Sweden
| | - Patrick Herr
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK.
| |
Collapse
|
37
|
Huang Y, Lü W, Du J. Coupling enzymatic activity and gating in an ancient TRPM chanzyme and its molecular evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.533055. [PMID: 36993210 PMCID: PMC10055075 DOI: 10.1101/2023.03.16.533055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The canonical ion channels gated by chemical ligands use the free energy of agonist binding to open the channel pore, returning to a closed state upon agonist departure. A unique class of ion channels, known as channel-enzymes (chanzymes), possess additional enzymatic activity that is directly or indirectly linked to their channel function. Here we investigated a TRPM2 chanzyme from choanoflagellates, an evolutionary ancestor of all metazoan TRPM channels, which integrates two seemingly incompatible functions into a single peptide: a channel module activated by ADP ribose (ADPR) with high open probability and an enzyme module (NUDT9-H domain) consuming ADPR at a remarkably slow rate. Using time-resolved cryo- electron microscopy (cryo-EM), we captured a complete series of structural snapshots of the gating and catalytic cycles, revealing the coupling mechanism between channel gating and enzymatic activity. Our results showed that the slow kinetics of the NUDT9-H enzyme module confers a novel self-regulatory mechanism, whereby the enzyme module modulates channel gating in a binary manner. Binding of ADPR to NUDT9-H first triggers tetramerization of the enzyme modules, promoting channel opening, while the subsequent hydrolysis reaction reduces local ADPR availability, inducing channel closure. This coupling enables the ion-conducting pore to alternate rapidly between open and closed states, avoiding Mg 2+ and Ca 2+ overload. We further demonstrated how the NUDT9-H domain has evolved from a structurally semi-independent ADPR hydrolase module in early species TRPM2 to a fully integrated component of a gating ring essential for channel activation in advanced species TRPM2. Our study demonstrated an example of how organisms can adapt to their environments at the molecular level.
Collapse
|
38
|
Gómez-Rubio E, Garcia-Marin J. Molecular dynamics simulations reveal the impact of NUDT15 R139C and R139H variants in structural conformation and dynamics. J Biomol Struct Dyn 2023; 41:14812-14821. [PMID: 36907600 DOI: 10.1080/07391102.2023.2187626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/22/2023] [Indexed: 03/14/2023]
Abstract
NUDT15, also known as MTH2, is a member of the NUDIX protein family that catalyzes the hydrolysis of nucleotides and deoxynucleotides, as well as thioguanine analogues. NUDT15 has been reported as a DNA sanitizer in humans, and more recent studies have shown that some genetic variants are related to a poor prognosis in neoplastic and immunologic diseases treated with thioguanine drugs. Despite this, the role of NUDT15 in physiology and molecular biology is quite unclear, as is the mechanism of action of this enzyme. The existence of clinically relevant variants has prompted the study of these enzymes, whose capacity to bind and hydrolyze thioguanine nucleotides is still poorly understood. By using a combination of biomolecular modeling techniques and molecular dynamics, we have studied the monomeric wild type NUDT15 as well as two important variants, R139C and R139H. Our findings reveal not only how nucleotide binding stabilizes the enzyme but also how two loops are responsible for keeping the enzyme in a packed, close conformation. Mutations in α2 helix affect a network of hydrophobic and π-interactions that enclose the active site. This knowledge contributes to the understanding of NUDT15 structural dynamics and will be valuable for the design of new chemical probes and drugs targeting this protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Elena Gómez-Rubio
- Departamento de Biología Estructural y Química, Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, Spain
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Javier Garcia-Marin
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química Andrés M. del Río (IQAR), Universidad de Alcalá (IRYCIS), Madrid, Spain
| |
Collapse
|
39
|
Duarte-Pereira S, Matos S, Oliveira JL, Silva RM. Study of NAD-interacting proteins highlights the extent of NAD regulatory roles in the cell and its potential as a therapeutic target. J Integr Bioinform 2023:jib-2022-0049. [PMID: 36880517 PMCID: PMC10389049 DOI: 10.1515/jib-2022-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) levels are essential for the normal physiology of the cell and are strictly regulated to prevent pathological conditions. NAD functions as a coenzyme in redox reactions, as a substrate of regulatory proteins, and as a mediator of protein-protein interactions. The main objectives of this study were to identify the NAD-binding and NAD-interacting proteins, and to uncover novel proteins and functions that could be regulated by this metabolite. It was considered if cancer-associated proteins were potential therapeutic targets. Using multiple experimental databases, we defined datasets of proteins that directly interact with NAD - the NAD-binding proteins (NADBPs) dataset - and of proteins that interact with NADBPs - the NAD-protein-protein interactions (NAD-PPIs) dataset. Pathway enrichment analysis revealed that NADBPs participate in several metabolic pathways, while NAD-PPIs are mostly involved in signalling pathways. These include disease-related pathways, namely, three major neurodegenerative disorders: Alzheimer's disease, Huntington's disease, and Parkinson's disease. Then, the complete human proteome was further analysed to select potential NADBPs. TRPC3 and isoforms of diacylglycerol (DAG) kinases, which are involved in calcium signalling, were identified as new NADBPs. Potential therapeutic targets that interact with NAD were identified, that have regulatory and signalling functions in cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Sara Duarte-Pereira
- IEETA/DETI, University of Aveiro, Aveiro, Portugal.,Department of Medical Sciences, iBiMED - Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Sérgio Matos
- IEETA/DETI, University of Aveiro, Aveiro, Portugal.,LASI - Intelligent Systems Associate Laboratory, Guimarães, Portugal
| | - José Luís Oliveira
- IEETA/DETI, University of Aveiro, Aveiro, Portugal.,LASI - Intelligent Systems Associate Laboratory, Guimarães, Portugal
| | - Raquel M Silva
- Department of Medical Sciences, iBiMED - Institute of Biomedicine, University of Aveiro, Aveiro, Portugal.,Universidade Católica Portuguesa, Faculty of Dental Medicine, Center for Interdisciplinary Research in Health (CIIS), Viseu, Portugal
| |
Collapse
|
40
|
Larson J, Tokmina-Lukaszewska M, Fausset H, Spurzem S, Cox S, Cooper G, Copié V, Bothner B. Arsenic Exposure Causes Global Changes in the Metalloproteome of Escherichia coli. Microorganisms 2023; 11:382. [PMID: 36838347 PMCID: PMC9965246 DOI: 10.3390/microorganisms11020382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/03/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Arsenic is a toxic metalloid with differential biological effects, depending on speciation and concentration. Trivalent arsenic (arsenite, AsIII) is more toxic at lower concentrations than the pentavalent form (arsenate, AsV). In E. coli, the proteins encoded by the arsRBC operon are the major arsenic detoxification mechanism. Our previous transcriptional analyses indicate broad changes in metal uptake and regulation upon arsenic exposure. Currently, it is not known how arsenic exposure impacts the cellular distribution of other metals. This study examines the metalloproteome of E. coli strains with and without the arsRBC operon in response to sublethal doses of AsIII and AsV. Size exclusion chromatography coupled with inductively coupled plasma mass spectrometry (SEC-ICPMS) was used to investigate the distribution of five metals (56Fe, 24Mg, 66Zn, 75As, and 63Cu) in proteins and protein complexes under native conditions. Parallel analysis by SEC-UV-Vis spectroscopy monitored the presence of protein cofactors. Together, these data reveal global changes in the metalloproteome, proteome, protein cofactors, and soluble intracellular metal pools in response to arsenic stress in E. coli. This work brings to light one outcome of metal exposure and suggests that metal toxicity on the cellular level arises from direct and indirect effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59715, USA
| |
Collapse
|
41
|
Nash B, Gregory WF, White RR, Protasio AV, Gygi SP, Selkirk ME, Weekes MP, Artavanis-Tsakonas K. Large-scale proteomic analysis of T. spiralis muscle-stage ESPs identifies a novel upstream motif for in silico prediction of secreted products. FRONTIERS IN PARASITOLOGY 2023; 2:1078443. [PMID: 39816813 PMCID: PMC11731790 DOI: 10.3389/fpara.2023.1078443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2025]
Abstract
The Trichinella genus contains parasitic nematodes capable of infecting a wide range of hosts including mammals, birds and reptiles. Like other helminths, T. spiralis secretes a complex mixture of bioactive molecules capable of modulating its immediate surroundings and creating a hospitable environment for growth, survival and ultimately transmission. The constitution of these excretory-secretory products (ESPs) changes depending on the tissue niche and the specific stage of parasite development. Unique to T. spiralis is a true intracellular stage wherein larvae develop inside striated myotubes. Remarkably, the parasite larvae do not destroy the host cell but rather reprogram it to support their presence and growth. This transformation is largely mediated through stage-specific secretions released into the host cell cytoplasm. In this study, we apply state of the art proteomics and computational approaches to elucidate the composition and functions of muscle-stage T. spiralis ESPs. Moreover, we define a recurring, upstream motif associated with the stichosome, the main secretory organ of this worm, and can be used to predict secreted proteins across experimentally less tractable T. spiralis life cycle stages.
Collapse
Affiliation(s)
- Bradley Nash
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - William F. Gregory
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Rhiannon R. White
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Anna V. Protasio
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Steve P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| | - Murray E. Selkirk
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
42
|
Masutani M, Miwa M, Poltronieri P. NAD + Consuming Enzymes: Involvement in Therapies and Prevention of Human Diseases. Anticancer Agents Med Chem 2023; 23:1351-1354. [PMID: 36959156 DOI: 10.2174/1871520623666230320153757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/25/2023]
Abstract
Neuroprotection is one of the hot topics in medicine. Alzheimer's disease, amyotrophic lateral sclerosis, retinal pigment epithelial (RPE) degeneration, and axonal degeneration have been studied for the involvement of NAD depletion. Localized NAD+ depletion could lead to overactivation and crowding of local NAD+ salvage pathways. It has been stated that NAD+ depletion caused by PARPs and PAR cycling has been related to metabolic diseases and cancer. Additionally, it is now acknowledged that SARM1 dependent NAD+ depletion causes axon degeneration. New targeted therapeutics, such as SARM1 inhibitors, and NAD+ salvage drugs will help alleviate the dysfunctions affecting cell life and death in neurodegeneration as well as in metabolic diseases and cancer.
Collapse
Affiliation(s)
- Mitsuko Masutani
- Department of Molecular and Genomic Biomedicine, Graduate School of Biomedical Sciences, Center for Bioinformatics and Molecular Medicine, Nagasaki, Japan
| | - Masanao Miwa
- Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Palmiro Poltronieri
- Institute of Sciences of Food Productions (ISPA-CNR), National Research Council of Italy, Lecce, Italy
| |
Collapse
|
43
|
Helleday T. Mitotic MTH1 Inhibitors in Treatment of Cancer. Cancer Treat Res 2023; 186:223-237. [PMID: 37978139 DOI: 10.1007/978-3-031-30065-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The DNA damage response (DDR) protein MTH1 is sanitising the oxidized dNTP pool and preventing incorporation of oxidative damage into DNA and has an emerging role in mitosis. It is a stress-induced protein and often found to be overexpressed in cancer. Mitotic MTH1 inhibitors arrest cells in mitosis and result in incorporation of oxidative damage into DNA and selective killing of cancer cells. Here, I discuss the leading mitotic MTH1 inhibitor TH1579 (OXC-101, karonudib), now being evaluated in clinical trials, and describe its dual effect on mitosis and incorporation of oxidative DNA damage in cancer cells. I describe why MTH1 inhibitors that solely inhibits the enzyme activity fail to kill cancer cells and discuss if MTH1 is a valid target for cancer treatment. I discuss emerging roles of MTH1 in regulating tubulin polymerisation and mitosis and the necessity of developing the basic science insights along with translational efforts. I also give a perspective on how edgetic perturbation is making target validation difficult in the DDR field.
Collapse
Affiliation(s)
- Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, UK.
| |
Collapse
|
44
|
Rack JGM, Ahel I. A Simple Method to Study ADP-Ribosylation Reversal: From Function to Drug Discovery. Methods Mol Biol 2023; 2609:111-132. [PMID: 36515833 DOI: 10.1007/978-1-0716-2891-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ADP-ribosylation is an ancient modification of proteins, nucleic acids, and other biomolecules found in all kingdoms of life as well as in certain viruses. The regulation of fundamental (patho)physiological processes by ADP-ribosylation, including the cellular stress response, inflammation, and immune response to bacterial and viral pathogens, has created a strong interest into the study of modification establishment and removal to explore novel therapeutic approaches. Beyond ADP-ribosylation in humans, direct targeting of factors that alter host ADP-ribosylation signaling (e.g., viral macrodomains) or utilize ADP-ribosylation to manipulate host cell behavior (e.g., bacterial toxins) were shown to reduce virulence and disease severity. However, the realization of these therapeutic potentials is thus far hampered by the unavailability of simple, high-throughput methods to study the modification "writers" and "erasers" and screen for novel inhibitors.Here, we describe a scalable method for the measurement of (ADP-ribosyl)hydrolase activity. The assay relies on the conversion of ADP-ribose released from a modified substrate by the (ADP-ribosyl)hydrolase under investigation into AMP by the phosphodiesterase NudT5 into bioluminescence via a commercially available detection assay. Moreover, this method can be utilized to study the role of nudix- or ENPP-type phosphodiesterases in ADP-ribosylation processing and may also be adapted to investigate the activity of (ADP-ribosyl)transferases. Overall, this method is applicable for both basic biochemical characterization and screening of large drug libraries; hence, it is highly adaptable to diverse project needs.
Collapse
Affiliation(s)
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
45
|
Marcos Santos L, da Silveira NJF. Current Fragment-to-lead Approaches Starting from the 7-azaindole: The Pharmacological Versatility of a Privileged Molecular Fragment. Curr Top Med Chem 2023; 23:2116-2130. [PMID: 37461366 DOI: 10.2174/1568026623666230718100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/03/2023] [Accepted: 06/15/2023] [Indexed: 09/09/2023]
Abstract
Fragment-based drug discovery is one of the most powerful paradigms in the recent context of medicinal chemistry and is being widely practiced by academic and industrial researchers. Currently, azaindoles are among the most exploited molecular fragments in pharmaceutical innovation projects inspired by fragment-to-lead strategies. The 7-azaindole is the most prominent representative within this remarkable family of pyrrolopyridine fragments, as it is present in the chemical structure of several approved antitumor drugs and also of numerous therapeutic candidates. In this paper, a brief overview on existing proofs of concept in the literature will be presented, as well as some recent works that corroborate 7-azaindole as a privileged and pharmacologically versatile molecular fragment.
Collapse
Affiliation(s)
- Leandro Marcos Santos
- Laboratory of Molecular Modeling and Computer Simulation / MolMod-CS (D311-F), Institute of Chemistry, Federal University of Alfenas / UNIFAL-MG, Alfenas, Minas Gerais, 37130-001, Brazil
- Pharmaceutical Chemistry Research Laboratory / LQFar (D202A), Department of Food and Medicines, Faculty of Pharmaceutical Sciences, Federal University of Alfenas / UNIFAL-MG, Alfenas, Minas Gerais, 37130-001, Brazil
| | - Nelson José Freitas da Silveira
- Laboratory of Molecular Modeling and Computer Simulation / MolMod-CS (D311-F), Institute of Chemistry, Federal University of Alfenas / UNIFAL-MG, Alfenas, Minas Gerais, 37130-001, Brazil
| |
Collapse
|
46
|
Qi H, Grace Wright RH, Beato M, Price BD. The ADP-ribose hydrolase NUDT5 is important for DNA repair. Cell Rep 2022; 41:111866. [PMID: 36543120 DOI: 10.1016/j.celrep.2022.111866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 09/16/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
DNA damage leads to rapid synthesis of poly(ADP-ribose) (pADPr), which is important for damage signaling and repair. pADPr chains are removed by poly(ADP-ribose) glycohydrolase (PARG), releasing free mono(ADP-ribose) (mADPr). Here, we show that the NUDIX hydrolase NUDT5, which can hydrolyze mADPr to ribose-5-phosphate and either AMP or ATP, is recruited to damage sites through interaction with PARG. NUDT5 does not regulate PARP or PARG activity. Instead, loss of NUDT5 reduces basal cellular ATP levels and exacerbates the decrease in cellular ATP that occurs during DNA repair. Further, loss of NUDT5 activity impairs RAD51 recruitment, attenuates the phosphorylation of key DNA-repair proteins, and reduces both H2A.Z exchange at damage sites and repair by homologous recombination. The ability of NUDT5 to hydrolyze mADPr, and/or regulate cellular ATP, may therefore be important for efficient DNA repair. Targeting NUDT5 to disrupt PAR/mADPr and energy metabolism may be an effective anti-cancer strategy.
Collapse
Affiliation(s)
- Hongyun Qi
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA 02215, USA
| | - Roni Helene Grace Wright
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, 08195 Barcelona, Spain
| | - Miguel Beato
- Centro de Regulación Genòmica (CRG), The Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Brendan D Price
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA 02215, USA.
| |
Collapse
|
47
|
Hong X, Hu Y, Yuan Z, Fang Z, Zhang X, Yuan Y, Guo C. Oxidatively Damaged Nucleic Acid: Linking Diabetes and Cancer. Antioxid Redox Signal 2022; 37:1153-1167. [PMID: 35946074 DOI: 10.1089/ars.2022.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Our current knowledge of the mechanism between diabetes and cancer is limited. Oxidatively damaged nucleic acid is considered a critical factor to explore the connections between these two diseases. Recent Advances: The link between diabetes mellitus and cancer has attracted increasing attention in recent years. Emerging evidence supports that oxidatively damaged nucleic acid caused by an imbalance between reactive oxygen species generation and elimination is a bridge connecting diabetes and cancer. 8-Oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydroguanosine assume important roles as biomarkers in assessing the relationship between oxidatively damaged nucleic acid and cancer. Critical Issues: The consequences of diabetes are extensive and may lead to the occurrence of cancer by influencing a combination of factors. At present, there is no direct evidence that diabetes causes cancer by affecting a single factor. Furthermore, the difficulty in controlling variables and differences in detection methods lead to poor reliability and repeatability of results, and there are no clear cutoff values for biomarkers to indicate cancer risk. Future Directions: A better understanding of connections as well as mechanisms between diabetes and cancer is still needed. Both diabetes and cancer are currently intractable diseases. Further exploration of the specific mechanism of oxidatively damaged nucleic acid in the connection between diabetes and cancer is urgently needed. In the future, it is necessary to further take oxidatively damaged nucleic acid as an entry point to provide new ideas for the diagnosis and treatment of diabetes and cancer. Experimental drugs targeting the repair process of oxidatively generated damage require an extensive preclinical evaluation and could ultimately provide new treatment strategies for these diseases. Antioxid. Redox Signal. 37, 1153-1167.
Collapse
Affiliation(s)
- Xiujuan Hong
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqiu Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijun Yuan
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihao Fang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
48
|
BenDavid E, Pfaller CK, Pan Y, Samuel CE, Ma D. Host 5'-3' Exoribonuclease XRN1 Acts as a Proviral Factor for Measles Virus Replication by Downregulating the dsRNA-Activated Kinase PKR. J Virol 2022; 96:e0131922. [PMID: 36300942 PMCID: PMC9683022 DOI: 10.1128/jvi.01319-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/22/2022] [Indexed: 11/20/2022] Open
Abstract
Many negative-sense RNA viruses, including measles virus (MeV), are thought to carry out much of their viral replication in cytoplasmic membraneless foci known as inclusion bodies (IBs). The mechanisms by which IBs facilitate efficient viral replication remain largely unknown but may involve an intricate network of regulation at the host-virus interface. Viruses are able to modulate such interactions by a variety of strategies including adaptation of their genomes and "hijacking" of host proteins. The latter possibility broadens the molecular reservoir available for a virus to enhance its replication and/or antagonize host antiviral responses. Here, we show that the cellular 5'-3' exoribonuclease, XRN1, is a host protein hijacked by MeV. We found that upon MeV infection, XRN1 is translocated to cytoplasmic IBs where it acts in a proviral manner by preventing the accumulation of double-stranded RNA (dsRNA) within the IBs. This leads to the suppression of the dsRNA-induced innate immune responses mediated via the protein kinase R (PKR)-integrated stress response (ISR) pathway. IMPORTANCE Measles virus remains a major global health threat due to its high transmissibility and significant morbidity in children and immunocompromised individuals. Although there is an effective vaccine against MeV, a large population in the world remains without access to the vaccine, contributing to more than 7,000,000 measles cases and 60,000 measles deaths in 2020 (CDC). For negative-sense RNA viruses including MeV, one active research area is the exploration of virus-host interactions occurring at cytoplasmic IBs where viral replication takes place. In this study we present evidence suggesting a model in which MeV IBs antagonize host innate immunity by recruiting XRN1 to reduce dsRNA accumulation and subsequent PKR kinase activation/ISR induction. In the absence of XRN1, the increased dsRNA level acts as a potent activator of the antiviral PKR/ISR pathway leading to suppression of global cap-dependent mRNA translation and inhibition of viral replication.
Collapse
Affiliation(s)
- Ethan BenDavid
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California, USA
| | | | - Yue Pan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Charles E. Samuel
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California, USA
- Neuroscience Research Institute, University of California, Santa Barbara, California, USA
| | - Dzwokai Ma
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California, USA
- Neuroscience Research Institute, University of California, Santa Barbara, California, USA
| |
Collapse
|
49
|
Helleday T, Rudd SG. Targeting the DNA damage response and repair in cancer through nucleotide metabolism. Mol Oncol 2022; 16:3792-3810. [PMID: 35583750 PMCID: PMC9627788 DOI: 10.1002/1878-0261.13227] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 12/24/2022] Open
Abstract
The exploitation of the DNA damage response and DNA repair proficiency of cancer cells is an important anticancer strategy. The replication and repair of DNA are dependent upon the supply of deoxynucleoside triphosphate (dNTP) building blocks, which are produced and maintained by nucleotide metabolic pathways. Enzymes within these pathways can be promising targets to selectively induce toxic DNA lesions in cancer cells. These same pathways also activate antimetabolites, an important group of chemotherapies that disrupt both nucleotide and DNA metabolism to induce DNA damage in cancer cells. Thus, dNTP metabolic enzymes can also be targeted to refine the use of these chemotherapeutics, many of which remain standard of care in common cancers. In this review article, we will discuss both these approaches exemplified by the enzymes MTH1, MTHFD2 and SAMHD1. © 2022 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
Collapse
Affiliation(s)
- Thomas Helleday
- Science for Life LaboratoryDepartment of Oncology‐PathologyKarolinska InstitutetStockholmSweden
- Department of Oncology and Metabolism, Weston Park Cancer CentreUniversity of SheffieldUK
| | - Sean G. Rudd
- Science for Life LaboratoryDepartment of Oncology‐PathologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
50
|
Mattay J. Noncanonical metabolite RNA caps: Classification, quantification, (de)capping, and function. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1730. [PMID: 35675554 DOI: 10.1002/wrna.1730] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The 5' cap of eukaryotic mRNA is a hallmark for cellular functions from mRNA stability to translation. However, the discovery of novel 5'-terminal RNA caps derived from cellular metabolites has challenged this long-standing singularity in both eukaryotes and prokaryotes. Reminiscent of the 7-methylguanosine (m7G) cap structure, these noncanonical caps originate from abundant coenzymes such as NAD, FAD, or CoA and from metabolites like dinucleoside polyphosphates (NpnN). As of now, the significance of noncanonical RNA caps is elusive: they differ for individual transcripts, occur in distinct types of RNA, and change in response to environmental stimuli. A thorough comparison of their prevalence, quantity, and characteristics is indispensable to define the distinct classes of metabolite-capped RNAs. This is achieved by a structured analysis of all present studies covering functional, quantitative, and sequencing data which help to uncover their biological impact. The biosynthetic strategies of noncanonical RNA capping and the elaborate decapping machinery reveal the regulation and turnover of metabolite-capped RNAs. With noncanonical capping being a universal and ancient phenomenon, organisms have developed diverging strategies to adapt metabolite-derived caps to their metabolic needs, but ultimately to establish noncanonical RNA caps as another intriguing layer of RNA regulation. This article is categorized under: RNA Processing > Capping and 5' End Modifications RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Johanna Mattay
- Institute of Biochemistry, University of Münster, Münster, Germany
| |
Collapse
|