1
|
Hellmann MJ, Marongiu GL, Gorzelanny C, Moerschbacher BM, Cord-Landwehr S. Hydrolysis of chitin and chitosans by the human chitinolytic enzymes: chitotriosidase, acidic mammalian chitinase, and lysozyme. Int J Biol Macromol 2025; 297:139789. [PMID: 39805453 DOI: 10.1016/j.ijbiomac.2025.139789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Human chitinolytic enzymes trigger growing interest, not only because a wide range of diseases and allergic responses are linked to chitinous components of pathogens, including their interplay with human enzymes, but also due to the increasing use of chitosans in biomedical applications. Here, we present a detailed side-by-side analysis of the only two human chitinases, chitotriosidase and acidic mammalian chitinase, as well as human lysozyme. By analyzing the cleavage of well-characterized chitosan polymers and defined chitin and chitosan oligomers, we report mild processivity and a quantitative subsite preference typical for GH18 chitinases for chitotriosidase and acidic mammalian chitinase. In contrast, lysozyme is negligibly processive and preferentially binds acetylated units at subsites -2, -1, and +1, thus exhibiting an even higher overall preference for acetylated units. A common feature of all three enzymes is their endo-chitinase behavior. For efficient hydrolysis, chitotriosidase or lysozyme require substrates of ≥4 or ≥5 units, respectively, and we identified defined chitosan oligomers which can competitively inhibit chitotriosidase. Knowledge about the enzymes' actions provides insight into the metabolic fate of chitin and chitosans in the human body, which is crucial to develop and approve chitosan applications, and to elucidate molecular mechanisms in chitin-associated diseases.
Collapse
Affiliation(s)
- Margareta J Hellmann
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Gian Luca Marongiu
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Christian Gorzelanny
- Experimental Dermatology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Stefan Cord-Landwehr
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| |
Collapse
|
2
|
Richter C, Cord-Landwehr S, Singh R, Ryll J, Moerschbacher BM. Dissecting and optimizing bioactivities of chitosans by enzymatic modification. Carbohydr Polym 2025; 349:122958. [PMID: 39638513 DOI: 10.1016/j.carbpol.2024.122958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
Chitosans are versatile biopolymers with antimicrobial and plant-strengthening properties relevant to agriculture. However, a limited understanding of molecular structure-function relationships and cellular modes of action of chitosans hampers the development of effective chitosan-based agro-biologics. We partially hydrolyzed a chitosan polymer (degree of polymerization DP 800, fraction of acetylation FA 0.2) using acetic acid, a GH18 chitinase, or a GH8 chitosanase. All hydrolysates contained mixtures of chitosan oligomers and small polymers, but their composition in terms of DP, FA, and pattern of acetylation (PA) differed greatly. Importantly, chitinase products had mostly deacetylated residues at their ends, flanking mostly deacetylated residues, and vice versa for chitosanase products, while the products of acid hydrolysis had random PA. Acid hydrolysis did not significantly change antifungal and antibacterial activities. In contrast, chitinase hydrolysis slightly increased antibacterial, and chitosanase almost abolished antifungal activity. Elicitor and priming activities in the plant Arabidopsis were unchanged by acid, destroyed by chitinase, and increased by chitosanase hydrolysis. Transcriptomic analysis revealed that the chitosan polymer strongly induced genes involved in photosynthesis, while the chitosanase hydrolysate strongly induced genes involved in disease resistance. Clearly, different bioactivities require different chitosans, and enzymatic modification can fine-tune these activities as required for different agricultural products.
Collapse
Affiliation(s)
- Carolin Richter
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Stefan Cord-Landwehr
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Ratna Singh
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Judith Ryll
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Bruno M Moerschbacher
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| |
Collapse
|
3
|
Peng CY, Wu Y, Hua QL, Shen YB. Hydrological transport and endosperm weakening mechanisms during dormancy release in Tilia henryana seeds. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154405. [PMID: 39689459 DOI: 10.1016/j.jplph.2024.154405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 11/12/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024]
Abstract
Seed germination is a pivotal stage in the plant life cycle, with endosperm weakening and radicle elongation serving as crucial prerequisites for successful endospermic seed germination. Tilia henryana seeds exhibit deep dormancy, necessitating a period of 2-3 years to germinate in a natural environment, and the germination rate is extremely low. This study employed morphological and physiological approaches to dynamically analyzing the hydrological mechanism and the endosperm weakening process during the dormancy release of T. henryana seeds. It was found that there was no physiological post-ripening effect of embryos, but there were mechanical and physiological obstacles in endosperm. During the dormancy release process of T. henryana seeds, initial endosperm weakening occurred at the radicle-endosperm interface. In this process, the GA/ABA level is imbalanced along with a continuous decrease in IAA and SA levels. Substantial depletion of storage materials within cells resulted in degradation of endosperm cell contents, forming numerous cavities through which significant amounts of free water entered. As moisture content increased, endosperm hardness gradually decreased to approximately 5 N/0.09 cm2. Furthermore, the area and content of lignin and cellulose were reduced by 58.91% and 84.49%, respectively, while the hemicellulose and pectin contents were decreased by 72.11% and 83.50%, in that order. Following treatment, the activity of pectin lyase, propectinase, galacturonase, and cellulase was observed to be 5.81, 8.72, 5.96, and 9.43 times higher, respectively, in comparison to their respective activities before treatment. The physiological changes facilitated the rapid rupture of the endosperm cell wall, leading to a transition in cell morphology from palisade-like to irregular and interlocking, thereby further expediting the weakening and cleavage of the endosperm. Additionally, T. henryana seeds exhibited high carbohydrate composition content throughout their dormancy release process, this extensive utilization of storage substances provided energy for radicle elongation and expansion.
Collapse
Affiliation(s)
- Chen Yin Peng
- College of Forestry, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing, Jiangsu, 210037, PR China; State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Yu Wu
- College of Forestry, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing, Jiangsu, 210037, PR China; Co-innovation Center for Sustainable Forestry in Southern China, Southern Tree Inspection Center National Forestry Administration, 159 Longpan Road, Xuanwu District, Nanjing, Jiangsu, 210037, PR China
| | - Qi Long Hua
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Woodhouse Lane, Leeds, West Yorkshire, LS2 9JT, UK
| | - Yong Bao Shen
- College of Forestry, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing, Jiangsu, 210037, PR China; Co-innovation Center for Sustainable Forestry in Southern China, Southern Tree Inspection Center National Forestry Administration, 159 Longpan Road, Xuanwu District, Nanjing, Jiangsu, 210037, PR China.
| |
Collapse
|
4
|
Hellmann MJ, Gillet D, Trombotto S, Raetz S, Moerschbacher BM, Cord-Landwehr S. Heterogeneously deacetylated chitosans possess an unexpected regular pattern favoring acetylation at every third position. Nat Commun 2024; 15:6695. [PMID: 39107282 PMCID: PMC11303684 DOI: 10.1038/s41467-024-50857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/23/2024] [Indexed: 08/09/2024] Open
Abstract
Chitosans are promising biopolymers for diverse applications, with material properties and bioactivities depending i.a. on their pattern of acetylation (PA). Commercial chitosans are typically produced by heterogeneous deacetylation of chitin, but whether this process yields chitosans with a random or block-wise PA has been debated for decades. Using a combination of recently developed in vitro assays and in silico modeling surprisingly revealed that both hypotheses are wrong; instead, we found a more regular PA in heterogeneously deacetylated chitosans, with acetylated units overrepresented at every third position in the polymer chain. Compared to random-PA chitosans produced by homogeneous deacetylation of chitin or chemical N-acetylation of polyglucosamine, this regular PA increases the elicitation activity in plants, and generates different product profiles and distributions after enzymatic and chemical cleavage. A regular PA may be beneficial for some applications but detrimental for others, stressing the relevance of the production process for product development.
Collapse
Affiliation(s)
- Margareta J Hellmann
- Institute for Biology and Biotechnology of Plants, University of Münster, 48143, Münster, Germany
| | - Dominique Gillet
- Gillet Chitosan SAS, La Ville Es Comte, 22350, Plumaudan, France
| | - Stéphane Trombotto
- Ingénierie des Matériaux Polymères (IMP), UMR 5223, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, Université Jean Monnet Saint-Etienne, F-69622, Villeurbanne, France
| | - Sonja Raetz
- Institute for Biology and Biotechnology of Plants, University of Münster, 48143, Münster, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, 48143, Münster, Germany.
| | - Stefan Cord-Landwehr
- Institute for Biology and Biotechnology of Plants, University of Münster, 48143, Münster, Germany
| |
Collapse
|
5
|
Suzuki M, Saito A, Kobayashi M, Yokoyama T, Omiya S, Li J, Sugita K, Miki K, Saito JI, Ando A. Crystal structure of the GH-46 subclass III chitosanase from Bacillus circulans MH-K1 in complex with chitotetraose. Biochim Biophys Acta Gen Subj 2024; 1868:130549. [PMID: 38158023 DOI: 10.1016/j.bbagen.2023.130549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Chitosanases (EC 3.2.1.132) hydrolyze chitosan which is a polymer of glucosamine (GlcN) linked by β - 1,4 bonds, and show cleavage specificity against partially acetylated chitosan containing N-acetylglucosamine (GlcNAc) residues. Chitosanases' structural underpinnings for cleavage specificity and the conformational switch from open to closed structures are still a mystery. METHODS The GH-46 subclass III chitosanase from Bacillus circulans MH-K1 (MH-K1 chitosanase), which also catalyzes the hydrolysis of GlcN-GlcNAc bonds in addition to GlcN-GlcN, has had its chitotetraose [(GlcN)4]-complexed crystal structure solved at 1.35 Å resolution. RESULTS The MH-K1 chitosanase's (GlcN)4-bound structure has numerous structural similarities to other GH-46 chitosanases in terms of substrate binding and catalytic processes. However, subsite -1, which is absolutely specific for GlcN, seems to characterize the structure of a subclass III chitosanase due to its distinctive length and angle of a flexible loop. According to a comparison of the (GlcN)4-bound and apo-form structures, the particular binding of a GlcN residue at subsite -2 through Asp77 causes the backbone helix to kink, which causes the upper- and lower-domains to approach closely when binding a substrate. CONCLUSIONS Although GH-46 chitosanases vary in the finer details of the subsites defining cleavage specificity, they share similar structural characteristics in substrate-binding, catalytic processes, and potentially in conformational change. GENERAL SIGNIFICANCE The precise binding of a GlcN residue to the -2 subsite is essential for the conformational shift that occurs in all GH-46 chitosanases, as shown by the crystal structures of the apo- and substrate-bound forms of MH-K1 chitosanase.
Collapse
Affiliation(s)
- Michihiko Suzuki
- Molecular Analysis Center, Research Unit, R&D Division, Kyowa Kirin, Sunto-gun, Shizuoka 411-8731, Japan
| | - Akihiro Saito
- Department of Nanobiology, Graduate School of Advanced and Integration Science, Chiba University, Matsudo, Chiba 271-8510, Japan; Department of Materials and Life Science, Faculty of Science and Technology, Shizuoka Institute of Science and Technology, Fukuroi, Shizuoka 437-8555, Japan.
| | - Mariko Kobayashi
- Department of Nanobiology, Graduate School of Advanced and Integration Science, Chiba University, Matsudo, Chiba 271-8510, Japan
| | - Tomofumi Yokoyama
- Department of Nanobiology, Graduate School of Advanced and Integration Science, Chiba University, Matsudo, Chiba 271-8510, Japan
| | - Shoko Omiya
- Department of Nanobiology, Graduate School of Advanced and Integration Science, Chiba University, Matsudo, Chiba 271-8510, Japan
| | - Jian Li
- Department of Nanobiology, Graduate School of Advanced and Integration Science, Chiba University, Matsudo, Chiba 271-8510, Japan
| | - Kei Sugita
- Department of Nanobiology, Graduate School of Advanced and Integration Science, Chiba University, Matsudo, Chiba 271-8510, Japan
| | - Kunio Miki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Jun-Ichi Saito
- Molecular Analysis Center, Research Unit, R&D Division, Kyowa Kirin, Sunto-gun, Shizuoka 411-8731, Japan
| | - Akikazu Ando
- Department of Nanobiology, Graduate School of Advanced and Integration Science, Chiba University, Matsudo, Chiba 271-8510, Japan
| |
Collapse
|
6
|
Hellmann MJ, Moerschbacher BM, Cord-Landwehr S. Fast insights into chitosan-cleaving enzymes by simultaneous analysis of polymers and oligomers through size exclusion chromatography. Sci Rep 2024; 14:3417. [PMID: 38341520 PMCID: PMC10858908 DOI: 10.1038/s41598-024-54002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
The thorough characterization of chitosan-cleaving enzymes is crucial to unveil structure-function relationships of this promising class of biomolecules for both, enzymatic fingerprinting analyses and to use the enzymes as biotechnological tools to produce tailor-made chitosans for diverse applications. Analyzing polymeric substrates as well as oligomeric products has been established as an effective way to understand the actions of enzymes, but it currently requires separate, rather laborious methods to obtain the full picture. Here, we present ultra high performance size exclusion chromatography coupled to refractive index and mass spectrometry detection (UHPSEC-RI-MS) as a straightforward method for the semi-quantitative analysis of chitosan oligomers of up to ten monomers in length. Additionally, the method allows to determine the average molecular weight of the remaining polymers and its distribution. By sampling live from an ongoing enzymatic reaction, UHPSEC-RI-MS offers the unique opportunity to analyze polymers and oligomers simultaneously-i.e., to monitor the molecular weight reduction of the polymeric substrate over the course of the digestion, while at the same time analyzing the emerging oligomeric products in a semi-quantitative manner. In this way, a single simple analysis yields detailed insights into an enzyme's action on a given substrate.
Collapse
Affiliation(s)
- Margareta J Hellmann
- Institute for Biology and Biotechnology of Plants, University of Münster, 48143, Münster, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, 48143, Münster, Germany.
| | - Stefan Cord-Landwehr
- Institute for Biology and Biotechnology of Plants, University of Münster, 48143, Münster, Germany
| |
Collapse
|
7
|
Paudel L, Pardhe BD, Han SR, Lee JH, Oh TJ. Identification and evaluation of CAZyme genes, along with functional characterization of a new GH46 chitosanase from Streptomyces sp. KCCM12257. Int J Biol Macromol 2023; 253:127457. [PMID: 37844821 DOI: 10.1016/j.ijbiomac.2023.127457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
The genomic analysis of Streptomyces sp. KCCM12257 presented 233 CAZyme genes with a predominant glycosyl hydrolase family. This contributes degradation of various polysaccharides including chitin and chitosan, and other promising candidates for the production of different oligosaccharides. We screened the strain providing different polysaccharides as a sole source of carbon and strain KCCM12257, showed higher activity towards colloidal chitosan. Further, we identified and characterized a new chitosanase (MDI5907146) of GH46 family. There was no activity towards chitin, carboxymethylcellulose, or even with chitosan powder. This enzyme acts on colloidal chitosan and hydrolyzes it down into monoacetyl chitobiose, which consists of two glucosamine units with an acetyl group attached to them. The maximum enzyme activity was observed at pH 6.5 and 40 °C using colloidal chitosan as a substrate. The Co2+ metal ions almost double the reaction as compared to other metal ions. The dissociation constant (Km) and of colloidal chitosan (≥90 % and ≥75%DD) were 3.03 mg/ml and 5.01 mg/ml respectively, while maximum velocity (Vmax) values were found to be 36 mg/ml, and 30 μM/μg/min, respectively. Similarly, catalytic efficiency (Kcat/Km) of colloidal chitosan with ≥90 %DD was 1.9 fold higher than colloidal chitosan with ≥75%DD.
Collapse
Affiliation(s)
- Lakshan Paudel
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, Republic of Korea
| | - Bashu Dev Pardhe
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, Republic of Korea
| | - So-Ra Han
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, Republic of Korea; Genome-based BioIT Convergence Institute, Asan 31460, Republic of Korea; Bio Big Data-based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan 31460, Republic of Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Materials, Korea Polar Research Institute, Incheon 21990, Republic of Korea.
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, Republic of Korea; Genome-based BioIT Convergence Institute, Asan 31460, Republic of Korea; Bio Big Data-based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan 31460, Republic of Korea; Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan 31460, Republic of Korea.
| |
Collapse
|
8
|
Kulig D, Król-Kilińska Ż, Bobak Ł, Żarowska B, Jarmoluk A, Zimoch-Korzycka A. Functional Properties of Chitosan Oligomers Obtained by Enzymatic Hydrolysis. Polymers (Basel) 2023; 15:3801. [PMID: 37765659 PMCID: PMC10534541 DOI: 10.3390/polym15183801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/09/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
The aims of this study were to obtain chitooligosaccharides (COS) from chitosan (CH) with improved functional properties and comparison of the use of two different enzymes: commercial cellulase (CL) and the dedicated enzyme chitosanase (CS). After enzymatic reaction, chitosan oligomers (NFs) were isolated by methanol into two fractions: precipitate (HMF) and supernatant (LMF). The occurrence of a hydrolysis reaction was confirmed by an increased reducing sugar content and viscosity reduction of chitosan oligomers. CPMAS 13C NMR analysis confirmed the dissimilar cleavage mechanism of the enzymes used. LMF and NF fractions were characterised by improved solubility in water (94.56%) compared to the HMF and CH samples (70.64%). Thermogravimetric analysis (TGA) showed that the HMF decomposed in two-stage process while CH, NF, and LMF decomposed in a three-stage process. The greatest mass loss of LMF samples (58.35%) suggests their sensitivity to high-temperature treatments. COS were a mixture of DP (degrees of polymerisation) from 3 to 18 hetero-chitooligomers, with an average Mw of <3 kDa. CL consisted of more low-DP products (DP 3-7) than COS made with CS. LMF characterised by DP~2 showed lower DPPH radical scavenging activity than HMF and NF with DP 3-7. The ability to reduce Escherichia coli increased in the given order: LMF > NF > HMF > CH.
Collapse
Affiliation(s)
- Dominika Kulig
- Department of Functional Food Development, Faculty of Food Science and Biotechnology, Wroclaw University of Environmental and Life Sciences, 37 Chelmonskiego St., 51-630 Wroclaw, Poland; (Ż.K.-K.); (Ł.B.); (A.J.); (A.Z.-K.)
| | - Żaneta Król-Kilińska
- Department of Functional Food Development, Faculty of Food Science and Biotechnology, Wroclaw University of Environmental and Life Sciences, 37 Chelmonskiego St., 51-630 Wroclaw, Poland; (Ż.K.-K.); (Ł.B.); (A.J.); (A.Z.-K.)
| | - Łukasz Bobak
- Department of Functional Food Development, Faculty of Food Science and Biotechnology, Wroclaw University of Environmental and Life Sciences, 37 Chelmonskiego St., 51-630 Wroclaw, Poland; (Ż.K.-K.); (Ł.B.); (A.J.); (A.Z.-K.)
| | - Barbara Żarowska
- Department of Biotechnology and Food Microbiology, The Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 37 Chelmonskiego St., 51-630 Wroclaw, Poland;
| | - Andrzej Jarmoluk
- Department of Functional Food Development, Faculty of Food Science and Biotechnology, Wroclaw University of Environmental and Life Sciences, 37 Chelmonskiego St., 51-630 Wroclaw, Poland; (Ż.K.-K.); (Ł.B.); (A.J.); (A.Z.-K.)
| | - Anna Zimoch-Korzycka
- Department of Functional Food Development, Faculty of Food Science and Biotechnology, Wroclaw University of Environmental and Life Sciences, 37 Chelmonskiego St., 51-630 Wroclaw, Poland; (Ż.K.-K.); (Ł.B.); (A.J.); (A.Z.-K.)
| |
Collapse
|
9
|
Abedin RMA, Abd Elwaly DRM, Abd El-Salam AE. Production, statistical evaluation and characterization of chitosanase from Fusarium oxysporum D18. ANN MICROBIOL 2023; 73:27. [DOI: 10.1186/s13213-023-01731-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/17/2023] [Indexed: 09/01/2023] Open
Abstract
Abstract
Purpose
The present research work focuses on the extraction of chitosanase enzyme from soil fungi. Chitosan hydrolysis by chitosanase is one of the most effective methods to produce chitosan oligosaccharides which are new biomaterials that have many biological activities such as antitumour, antioxidant, antidiabetic and antimicrobial.
Method
A strain producing chitosanase was screened and identified as Fusarium oxysporum D18 with an accession number OL343607. Various physiological parameters (incubation type, carbon source, additive nitrogen source, statistical evaluation, solid state fermentation) were assessed to increase chitosanase production.
Results
Fusarium oxysporum D18 produced a considerable value of chitosanase (1.220 U/ml). After 7 days of incubation, the best carbon source was lactose, and the best nitrogen source was ammonium chloride. Statistical evaluation was carried out by using Plackett–Burman and Box-Behnken designs. The highest chitosanase production (1.994 U/ml) was induced by the medium composition g/l: KH2PO4 (1.5), MgSO4 (0.269), lactose (18), NH4Cl (1.26), pH (6.68), using a 5-day-old inoculum and chitosanase activity was 1.63 folds that of the original medium. The production of chitosanase by Fusarium oxysporum D18 in solid state cultures using different solid substrates was studied and the best solid substrate for higher chitosanase activity (2.246 U/ml) was raw shrimp heads and shells and chitosanase activity was 1.13 folds that of the optimized liquid cultures. An extracellular chitosanase was isolated and partially purified by using 75% saturation of ammonium sulphate. The highest chitosanase activity (3.667 U/ml) with a specific activity of 0.390 U/mg protein was obtained at enzyme protein concentration of 9.391 mg/ml, substrate concentration of 1.2 % (w/v), Vmax of the enzyme of approximately 0.430 U/mg protein, and KM of 0.26 % (w/v), at pH 5.6 and reaction temperature of 50 °C. The activity of the purified and characterized chitosanase increased by 3 times than that the original isolate activity. The enzyme was thermostable and retained about 55% of its original activity after heating at 70 °C for 15 min. The enzyme preparations were activated by Ca2+ ions and inactivated by Zn+2, Cu+2 ions, and EDTA.
Conclusion
An antitumour activity of chitooligosaccharides produced by the chitosanase was applied to the MCF-7 (breast carcinoma cells) and they had a cytotoxicity inhibitory effect against them about IC50 = 448 μg/ml.
Collapse
|
10
|
Abedin RMA, Elwaly DRMA, El-salam AEA. Production, Statistical Evaluation and Characterization of Chitosanase from Fusarium oxysporum D18.. [DOI: 10.21203/rs.3.rs-2898996/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Purpose The present research work focuses on the extraction of chitosanase enzyme from soil fungi. Chitosan hydrolysis by chitosanase is one of the most effective methods to produce chitosan oligosaccharides which are new biomaterials that have many biological activities such as antitumor, antioxidant, antidiabetic and antimicrobial.
Method: A strain producing chitosanase was screened and identified as Fusarium oxysporum D18 with an accession number OL343607. Various physiological parameters (incubation type, carbon source, additive nitrogen source, statistical evaluation, solid state fermentation) were assessed to increase chitosanase production.
Results: Fusarium oxysporum D18 produced a considerable value of chitosanase, (1.220 U/ml). after 7 days of incubation, the best carbon source was lactose, and the best nitrogen source was ammonium chloride. Statistical evaluation was carried out by using Plackett-Burman and Box-Behnken designs. The highest chitosanase production, (1.994 U/ml) was induced by the medium composition g/L: KH2PO4 (1.5), MgSO4 (0.269), lactose (18), NH4Cl (1.26), pH (6.68), using a 5-day old inoculum and chitosanase activity was 1.63 folds that of the original medium. The production of chitosanase by Fusarium oxysporum D18 in solid state cultures using different solid substrates was studied and the best solid substrate for higher chitosanase activity (2.246 U/ml) was raw shrimp heads and shells and chitosanase activity was 1.13 folds that of the optimized liquid cultures. An extracellular chitosanase was isolated and partially purified by using 75 % saturation of ammonium sulphate. The highest chitosanase activity (3.667 U/ml) was obtained at enzyme protein concentration, (9.391 mg/ml), substrate concentration, (1.20%), Vmax of the enzyme was approximately (4.04 U/ml), km was (0.26%), at pH, (5.6) and reaction temperature, (50°C). The activity of the purified and characterized chitosanase increased by 3 times than that the original isolate activity. The enzyme was thermostable and retained about 55% of its original activity after heating at 70°C for 15 min. The enzyme preparations were activated by Ca2+ ions and inactivated by Zn+2, Cu+2 ions, and EDTA.
Conclusion: An antitumor activity of chitooligosaccharides produced by the chitosanase was applied to the MCF-7 (breast carcinoma cells) and they had a cytotoxicity inhibitory effect against them about IC50 = (448 μg/ml).
Collapse
|
11
|
Bacterial chitinases: genetics, engineering and applications. World J Microbiol Biotechnol 2022; 38:252. [DOI: 10.1007/s11274-022-03444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
|
12
|
Sreekumar S, Wattjes J, Niehues A, Mengoni T, Mendes AC, Morris ER, Goycoolea FM, Moerschbacher BM. Biotechnologically produced chitosans with nonrandom acetylation patterns differ from conventional chitosans in properties and activities. Nat Commun 2022; 13:7125. [PMID: 36418307 PMCID: PMC9684148 DOI: 10.1038/s41467-022-34483-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Chitosans are versatile biopolymers with multiple biological activities and potential applications. They are linear copolymers of glucosamine and N-acetylglucosamine defined by their degree of polymerisation (DP), fraction of acetylation (FA), and pattern of acetylation (PA). Technical chitosans produced chemically from chitin possess defined DP and FA but random PA, while enzymatically produced natural chitosans probably have non-random PA. This natural process has not been replicated using biotechnology because chitin de-N-acetylases do not efficiently deacetylate crystalline chitin. Here, we show that such enzymes can partially N-acetylate fully deacetylated chitosan in the presence of excess acetate, yielding chitosans with FA up to 0.7 and an enzyme-dependent non-random PA. The biotech chitosans differ from technical chitosans both in terms of physicochemical and nanoscale solution properties and biological activities. As with synthetic block co-polymers, controlling the distribution of building blocks within the biopolymer chain will open a new dimension of chitosan research and exploitation.
Collapse
Affiliation(s)
- Sruthi Sreekumar
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany ,grid.5170.30000 0001 2181 8870Research Group for Food Production Engineering, Laboratory of Nano-BioScience, National Food Institute, Technical University of Denmark, 2800 Kgs Lyngby, Denmark ,grid.9909.90000 0004 1936 8403School of Food Science and Nutrition, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Jasper Wattjes
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany ,grid.5170.30000 0001 2181 8870Research Group for Food Production Engineering, Laboratory of Nano-BioScience, National Food Institute, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Anna Niehues
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany
| | - Tamara Mengoni
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany
| | - Ana C. Mendes
- grid.5170.30000 0001 2181 8870Research Group for Food Production Engineering, Laboratory of Nano-BioScience, National Food Institute, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Edwin R. Morris
- grid.7872.a0000000123318773School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Francisco M. Goycoolea
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany ,grid.9909.90000 0004 1936 8403School of Food Science and Nutrition, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Bruno M. Moerschbacher
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany
| |
Collapse
|
13
|
Urs MJ, Moerschbacher BM, Cord-Landwehr S. Quantitative enzymatic-mass spectrometric analysis of the chitinous polymers in fungal cell walls. Carbohydr Polym 2022; 301:120304. [DOI: 10.1016/j.carbpol.2022.120304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
14
|
Su H, Sun J, Jia Z, Zhao H, Mao X. Insights into promiscuous chitosanases: the known and the unknown. Appl Microbiol Biotechnol 2022; 106:6887-6898. [PMID: 36178516 DOI: 10.1007/s00253-022-12198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022]
Abstract
Chitosanase, a glycoside hydrolase (GH), catalyzes the cleavage of β-1,4-glycosidic bonds in polysaccharides and is widely distributed in nature. Many organisms produce chitosanases, and numerous chitosanases in the GH families have been intensely studied. The reported chitosanases mainly cleaved the inter-glucosamine glycosidic bonds, while substrate specificity is not strictly unique due to the existence of bifunctional or multifunctional activity profiles. The promiscuity of chitosanases is essential for the different pathways of biomass polysaccharide conversion and understanding of the chitosanase evolutionary process. However, the reviews for this aspect are completely unknown. This review provides an overview of the promiscuous activities, also considering the substrate and product specificity of chitosanases observed to date. These contribute to important implications for the future discovery and research of promiscuous chitosanases and applications related to biomass conversion. KEY POINTS: • The promiscuity of chitosanases is reviewed for the first time. • The current review provides insights into the substrate specificity of chitosanases. • The mode-product relationship and prospect of promiscuous chitosanases are highlighted.
Collapse
Affiliation(s)
- Haipeng Su
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Zhenrong Jia
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Hongjun Zhao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China. .,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
15
|
Cao S, Gao P, Xia W, Liu S, Liu X. Cloning and characterization of a novel GH75 family chitosanase from Penicillium oxalicum M2. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Xu Y, Li L, Cao S, Zhu B, Yao Z. An updated comprehensive review of advances on structural features, catalytic mechanisms, modification methods and applications of chitosanases. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Enhancement of the performance of the GH75 family chitosanases by fusing a carbohydrate binding module and insights into their substrate binding mechanisms. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Su H, Sun J, Guo C, Jia Z, Mao X. New Insights into Bifunctional Chitosanases with Hydrolysis Activity toward Chito- and Cello-Substrates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6168-6176. [PMID: 35549271 DOI: 10.1021/acs.jafc.2c01577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the present study, we carried out a comprehensive investigation of glycoside hydrolase (GH) 46 model-chitosanases based on cleavage specificity classification to understand their unknown bifunctional activity. We for the first time show that GH46 chitosanase CsnMHK1 from Bacillus circulans MH-K1, which was previously thought to be strictly exclusive to chitosan, can hydrolyze both chito- and cello-substrates. We determined the digestion direction of bifunctional chitosanase CsnMHK1 from class III and compared it with class II chitosanase belonging to GH8, providing insight into unique substrate specificities and a new perspective on its reclassification. The results lead us to challenge the current understanding of chitosanase substrate specificity based on GH taxonomy classification and suggest that the prevalence from the common bifunctional activity may have occurred. Altogether, these data contribute to the understanding of chitosanase recognition and hydrolysis toward chito- and cello-substrates, which is valuable for future studies on chitosanases.
Collapse
Affiliation(s)
- Haipeng Su
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chaoran Guo
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhenrong Jia
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
19
|
Zhang W, Zhou J, Gu Q, Sun R, Yang W, Lu Y, Wang C, Yu X. Heterologous Expression of GH5 Chitosanase in Pichia pastoris and Antioxidant Biological Activity of Its Chitooligosacchride Hydrolysate. J Biotechnol 2022; 348:55-63. [PMID: 35304164 DOI: 10.1016/j.jbiotec.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 11/25/2022]
Abstract
Chitosanase was widely used in the production of bioactive chitooligosacchride (CHOS) due to their safety, controllability, environmental protection, and biodegradability. Studies showed that the bioactivity of CHOS is closely related to its degree of polymerization. Therefore, the production of ideal polymerized CHOS becomes our primary goal. In this study, the glycosyl hydrolase (GH) family 5 chitosanase was successfully expressed heterologously in Pichia pastoris. After 96h of high-density fermentation, the chitosanase activity reached 90.62 U·mL-1, the protein content reached 9.76mg·mL-1. When 2% chitosan was hydrolyzed by crude enzyme (20U/mL), the hydrolysis rate reached 91.2% after 8h, producing a mixture of CHOS with 2-4 desirable degrees of polymerization (DP). Then, the antioxidant activity of CHOS mixture was investigated, and the results showed that the antioxidant effect was concentration-dependent and had great application potential in the field of nutrition.
Collapse
Affiliation(s)
- Wenshuai Zhang
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianli Zhou
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Qiuya Gu
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ruobin Sun
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wenhua Yang
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yu Lu
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Congcong Wang
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaobin Yu
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
20
|
A Novel Chitosanase from Penicillium oxalicum M2 for Chitooligosaccharide Production: Purification, Identification and Characterization. Mol Biotechnol 2022; 64:947-957. [PMID: 35262875 DOI: 10.1007/s12033-022-00461-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/06/2022] [Indexed: 01/08/2023]
Abstract
This study discovered a novel chitosanase from Penicillium oxalicum M2 based on a new screening strategy. An extracellular chitosanase was isolated and purified from the fermentation broth of Penicillium oxalicum M2. A 19.34-fold purification was achieved on a cation exchange column. Using sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, chitosanase was determined at approximately 42 kDa without any subunits. The sequence of peptide in the protein was identified as SALNKNYITNFSTLR by MALTI-TOF/TOF MS. The maximum catalytic activity of the purified enzyme was 60.45 U/mg at the optimum pH and temperature of 5.5 and 60 °C. The enzyme activity held stability in the range of 35-50 °C and pH 3-4.5. Ca2+, Mn2+, non-ionic surfactants (Tween 20/40/60/80 and Trition X-100) and some common reducing agents (DTT and β-ME) could significantly activate chitosanase. The purified enzyme showed rigorous specificity to chitosan as a substrate. The hydrolysate in the final stage of hydrolysis consisted of chitooligosaccharides with a degree of polymerization ranging from 2 to 5 and without glucosamine or acetylglucosamine. The monomeric enzyme obtained by one-step purification reveal applications potential in sugar industry, and expanded our understanding of the GH75 family chitosanases simultaneously.
Collapse
|
21
|
Cord-Landwehr S, Moerschbacher BM. Deciphering the ChitoCode: fungal chitins and chitosans as functional biopolymers. Fungal Biol Biotechnol 2021; 8:19. [PMID: 34893090 PMCID: PMC8665597 DOI: 10.1186/s40694-021-00127-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022] Open
Abstract
Chitins and chitosans are among the most widespread and versatile functional biopolymers, with interesting biological activities and superior material properties. While chitins are evolutionary ancient and present in many eukaryotes except for higher plants and mammals, the natural distribution of chitosans, i.e. extensively deacetylated derivatives of chitin, is more limited. Unequivocal evidence for its presence is only available for fungi where chitosans are produced from chitin by the action of chitin deacetylases. However, neither the structural details such as fraction and pattern of acetylation nor the physiological roles of natural chitosans are known at present. We hypothesise that the chitin deacetylases are generating chitins and chitosans with specific acetylation patterns and that these provide information for the interaction with specific chitin- and chitosan-binding proteins. These may be structural proteins involved in the assembly of the complex chitin- and chitosan-containing matrices such as fungal cell walls and insect cuticles, chitin- and chitosan-modifying and -degrading enzymes such as chitin deacetylases, chitinases, and chitosanases, but also chitin- and chitosan-recognising receptors of the innate immune systems of plants, animals, and humans. The acetylation pattern, thus, may constitute a kind of 'ChitoCode', and we are convinced that new in silico, in vitro, and in situ analytical tools as well as new synthetic methods of enzyme biotechnology and organic synthesis are currently offering an unprecedented opportunity to decipher this code. We anticipate a deeper understanding of the biology of chitin- and chitosan-containing matrices, including their synthesis, assembly, mineralisation, degradation, and perception. This in turn will improve chitin and chitosan biotechnology and the development of reliable chitin- and chitosan-based products and applications, e.g. in medicine and agriculture, food and feed sciences, as well as cosmetics and material sciences.
Collapse
Affiliation(s)
- Stefan Cord-Landwehr
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany.
| |
Collapse
|
22
|
Zheng L, Guo Z, Cao S, Zhu B. Elucidating the degradation pattern of a new cold-tolerant pectate lyase used for efficient preparation of pectin oligosaccharides. BIORESOUR BIOPROCESS 2021; 8:121. [PMID: 38650291 PMCID: PMC10992097 DOI: 10.1186/s40643-021-00475-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/28/2021] [Indexed: 01/17/2023] Open
Abstract
The cold-active pectate lyases have drawn increasing attention in food and biotechnological applications due to their ability to retain high catalytic efficiency under lower temperatures, which could be helpful for energy saving, cost reduction and flavor preservation. Herein, a new cold-tolerant pectate lyase (ErPelPL1) gene from Echinicola rosea was cloned and heterologously expressed in Escherichia coli. Interestingly, ErPelPL1 retained high catalytic activity even at a low temperature (4 °C). ErPelPL1 exhibited optimal activity at 35 ℃, pH 8.0 with 1 mM of Ca2+. It showed high specific activity towards polygalacturonic acid (34.7 U/mg) and sodium polygalacturonate (59.3 U/mg). The combined thin-layer chromatography (TLC), fast protein liquid chromatography (FPLC) and electrospray ionization mass spectrometry (ESI-MS) results indicated that ErPelPL1 endolytically degraded pectic substances into the oligosaccharides with degrees of depolymerization (Dps) of 1-6. In conclusion, this study mainly conducted biochemical characterization and product analysis of a cold-tolerant pectate lyase. Therefore, it provides a promising enzyme candidate for food and biotechnological applications.
Collapse
Affiliation(s)
- Ling Zheng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Zilong Guo
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Shengsheng Cao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
23
|
Engineering of a chitosanase fused to a carbohydrate-binding module for continuous production of desirable chitooligosaccharides. Carbohydr Polym 2021; 273:118609. [PMID: 34561008 DOI: 10.1016/j.carbpol.2021.118609] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 01/16/2023]
Abstract
Chitooligosaccharides (CHOS) with multiple biological activities are usually produced through enzymatic hydrolysis of chitosan or chitin. However, purification and recycling of the enzyme have largely limited the advancement of CHOS bioproduction. Here, we engineered a novel enzyme by fusing the native chitosanase Csn75 with a carbohydrate-binding module (CBM) that can specifically bind to curdlan. The recombinase Csn75-CBM was successfully expressed by Pichia pastoris and allowed one-step purification and immobilization in the chitosanase immobilized curdlan packed-bed reactor (CICPR), where a maximum adsorption capacity of 39.59 mg enzyme/g curdlan was achieved. CHOS with degrees of polymerization of 2-5 (a hydrolysis yield of 97.75%), 3-6 (75.45%), and 3-7 (73.2%) were continuously produced by adjusting the ratio of enzyme and chitosan or the flow rate of chitosan. Moreover, the CICPR exhibited good stability and reusability after several cycles. The recombinase Csn75-CBM has greatly improved the efficiency of the bioproduction of CHOS.
Collapse
|
24
|
Ding Z, Cheng R, Yang Y, Zhao Y, Ge W, Sun X, Xu X, Wang S, Zhang J. The succinoglycan riclin restores beta cell function through the regulation of macrophages on Th1 and Th2 differentiation in type 1 diabetic mice. Food Funct 2021; 12:11611-11624. [PMID: 34714317 DOI: 10.1039/d1fo02315b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bacterial succinoglycan is found suitable as a viscosifying and emulsifying agent in the food industry. Riclin is a de-succinyl succinoglycan from an Agrobacterium isolate. Our previous study has revealed that riclin exerts special anti-inflammatory effects in vitro and in vivo. This study aims to determine the effects of riclin on preventing against immunological injury of beta cells in a type 1 diabetic model. We found that orally riclin effectively restores beta-cell function and improves the complications of streptozotocin (STZ)-induced diabetes. Riclin also reduces STZ-induced liver and kidney damage, and balances the inappropriate ratio of T helper type 1 cell (Th1)/type 2 cell (Th2) in the spleen and pancreatic draining lymph nodes of the STZ-induced diabetic mice. In a co-culture system with the islet β cell MIN6 and macrophage RAW 264.7, riclin reduces the levels of IFN-γ and IL-1β, protecting against STZ-caused MIN6 cell injury. We identified that riclin specifically binds to the membrane of macrophages and regulates the ratio of IL-10 and IL-12, thereby inhibiting the macrophage-mediated polarization of Th1 cells and promoting the differentiation of Th2 cells, which depends on the dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) receptor. Moreover, orally riclin significantly decreases the incidence of STZ-induced hyperglycemia (7.1% in riclin vs. 92.9% in STZ), and prevents autoimmune diabetes in non-obese diabetic (NOD) mice, with 87.5% of mice free of diabetes compared to 46.6% of the control mice. These results suggest that riclin has potential to be a functional food to prevent and improve autoimmune diabetes and related diseases.
Collapse
Affiliation(s)
- Zhao Ding
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Rui Cheng
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Yunxia Yang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Yang Zhao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Wenhao Ge
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Xiaqing Sun
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Shiming Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China.
| |
Collapse
|
25
|
In silico and in vitro analysis of an Aspergillus niger chitin deacetylase to decipher its subsite sugar preferences. J Biol Chem 2021; 297:101129. [PMID: 34478709 PMCID: PMC8488497 DOI: 10.1016/j.jbc.2021.101129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022] Open
Abstract
Chitin deacetylases (CDAs) are found in many different organisms ranging from marine bacteria to fungi and insects. These enzymes catalyze the removal of acetyl groups from chitinous substrates generating various chitosans, linear copolymers consisting of N-acetylglucosamine (GlcNAc) and glucosamine. CDAs influence the degree of acetylation of chitosans as well as their pattern of acetylation, a parameter that was recently shown to influence the physicochemical properties and biological activities of chitosans. The binding site of CDAs typically consists of around four subsites, each accommodating a single sugar unit of the substrate. It has been hypothesized that the subsite preferences for GlcNAc or glucosamine units play a crucial role in the acetylation pattern they generate, but so far, this characteristic was largely ignored and still lacks structural data on the involved residues. Here, we determined the crystal structure of an Aspergillus niger CDA. Then, we used molecular dynamics simulations, backed up with a variety of in vitro activity assays using different well-defined polymeric and oligomeric substrates, to study this CDA in detail. We found that Aspergillus niger CDA strongly prefers a GlcNAc sugar unit at its −1 subsite and shows a weak GlcNAc preference at the other noncatalytic subsites, which was apparent both when deacetylating and N-acetylating oligomeric substrates. Overall, our results show that the combination of in vitro and in silico methods used here enables the detailed analysis of CDAs, including their subsite preferences, which could influence their substrate targets and the characteristics of chitosans produced by these species.
Collapse
|
26
|
Zheng L, Xu Y, Li Q, Zhu B. Pectinolytic lyases: a comprehensive review of sources, category, property, structure, and catalytic mechanism of pectate lyases and pectin lyases. BIORESOUR BIOPROCESS 2021; 8:79. [PMID: 38650254 PMCID: PMC10992409 DOI: 10.1186/s40643-021-00432-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 12/22/2022] Open
Abstract
Pectate lyases and pectin lyases have essential roles in various biotechnological applications, such as textile industry, paper making, pectic wastewater pretreatment, juice clarification and oil extraction. They can effectively cleave the α-1,4-glycosidic bond of pectin molecules back bone by β-elimination reaction to produce pectin oligosaccharides. In this way, it will not generate highly toxic methanol and has the advantages of good enzymatic selectivity, less by-products, mild reaction conditions and high efficiency. However, numerous researches have been done for several decades; there are still no comprehensive reviews to summarize the recent advances of pectate lyases and pectin lyases. This review tries to fill this gap by providing all relevant information, including the substrate, origin, biochemical properties, sequence analysis, mode of action, the three-dimensional structure and catalytic mechanism.
Collapse
Affiliation(s)
- Ling Zheng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yinxiao Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Qian Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, P. R. China.
| |
Collapse
|
27
|
Zhou Z, Wang X. Improve thermostability of Bacillus sp. TS chitosanase through structure-based alignment. Sci Rep 2021; 11:15846. [PMID: 34349190 PMCID: PMC8339078 DOI: 10.1038/s41598-021-95369-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022] Open
Abstract
Chitosanases can catalyze the release of chitooligosaccharides which have a number of medical applications. Therefore, Chitosanases are good candidates for large-scale enzymatic synthesis due to their favorable thermostability properties and high catalytic efficiency. To further improve the thermostability of a chitosanase from Bacillus sp. TS, which has a half-life of 5.32 min, we mutated specific serine residues that we identified as potentially relevant through structure comparison with thermophilic CelA from Clostridium thermocellum. Out of a total of 15 mutants, three, namely S265G, S276A, and S347G, show higher thermostability. Their half-lives at 60 °C were calculated as 34.57 min, 36.79 min and 7.2 min. The Km values of S265G, S276A and S347G mutants show substrate binding ability comparable to that of the wild-type enzyme, while the S265G mutant displays a significant decrease of enzymatic activities. Additionally, we studied the synergistic effects of combined mutations, observing that all double mutants and the triple mutant are more stable than the wild-type enzyme and single mutants. Finally, we investigated the mechanisms which might give a reasonable explanation for the improved thermostability via comparative analysis of the resulting 3D structures.
Collapse
Affiliation(s)
- Zhanping Zhou
- Tianjin Sinonocy Biological Technology Co. Ltd., Tianjin, 300308, China
| | - Xiao Wang
- Nanfang College of Sun Yat-Sen University, Guangzhou, 510970, China.
| |
Collapse
|
28
|
Chen T, Cheng G, Jiao S, Ren L, Zhao C, Wei J, Han J, Pei M, Du Y, Li JJ. Expression and Biochemical Characterization of a Novel Marine Chitosanase from Streptomyces niveus Suitable for Preparation of Chitobiose. Mar Drugs 2021; 19:300. [PMID: 34073769 PMCID: PMC8225178 DOI: 10.3390/md19060300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
It is known that bioactivities of chitooligosaccharide (COS) are closely related to the degree of polymerization (DP); therefore, it is essential to prepare COS with controllable DP, such as chitobiose showing high antioxidant and antihyperlipidemia activities. In this study, BLAST, sequence alignment and phylogenetic analysis of characterized glycoside hydrolase (GH) 46 endo-chitosanases revealed that a chitosanase Sn1-CSN from Streptomyces niveus was different from others. Sn1-CSN was overexpressed in E. coli, purified and characterized in detail. It showed the highest activity at pH 6.0 and exhibited superior stability between pH 4.0 and pH 11.0. Sn1-CSN displayed the highest activity at 50 °C and was fairly stable at ≤45 °C. Its apparent kinetic parameters against chitosan (DDA: degree of deacetylation, >94%) were determined, with Km and kcat values of 1.8 mg/mL and 88.3 s-1, respectively. Cu2+ enhanced the activity of Sn1-CSN by 54.2%, whereas Fe3+ inhibited activity by 15.1%. Hydrolysis products of chitosan (DDA > 94%) by Sn1-CSN were mainly composed of chitobiose (87.3%), whereas partially acetylated chitosan with DDA 69% was mainly converted into partially acetylated COS with DP 2-13. This endo-chitosanase has great potential to be used for the preparation of chitobiose and partially acetylated COS with different DPs.
Collapse
Affiliation(s)
- Tong Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China;
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (G.C.); (S.J.); (L.R.); (J.W.); (J.H.)
| | - Gong Cheng
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (G.C.); (S.J.); (L.R.); (J.W.); (J.H.)
| | - Siming Jiao
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (G.C.); (S.J.); (L.R.); (J.W.); (J.H.)
| | - Lishi Ren
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (G.C.); (S.J.); (L.R.); (J.W.); (J.H.)
| | - Chuanfang Zhao
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
| | - Jinhua Wei
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (G.C.); (S.J.); (L.R.); (J.W.); (J.H.)
| | - Juntian Han
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (G.C.); (S.J.); (L.R.); (J.W.); (J.H.)
| | - Meishan Pei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China;
| | - Yuguang Du
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (G.C.); (S.J.); (L.R.); (J.W.); (J.H.)
| | - Jian-Jun Li
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (G.C.); (S.J.); (L.R.); (J.W.); (J.H.)
| |
Collapse
|
29
|
Kang BR, Song YS, Jung WJ. Differential expression of bio-active metabolites produced by chitosan polymers-based Bacillus amyloliquefaciens fermentation. Carbohydr Polym 2021; 260:117799. [PMID: 33712147 DOI: 10.1016/j.carbpol.2021.117799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 11/29/2022]
Abstract
Bacillus amyloliquefaciens strain PPL shows a potential for the control of phytopathogenic fungi. In the present study, upon growing the strain PPL on various forms of chitosan (0.5 % powder, 0.1 % soluble, and 0.15 % colloidal) as the carbon source, the antifungal activity on tomato Fusarium wilt correlated with the activity of chitosanase and β-1,3-glucanase. The colloidal substrate-based strain PPL fermentation displayed the highest degree of spore germination inhibition (79.5 %) and biocontrol efficiency (76.0 %) in tomato by increased biofilm formation. The colloidal culture upregulated the expression of chitosanase gene (5.9-fold), and the powder attributed to the expression of cyclic lipopeptides-genes (2.5-5.7 fold). Moreover, the three chitosan cultures induced the morphological changes of Fusarium oxysporum. These results suggest that the choice of growth substrate synergistically affects the production of secondary metabolites by PPL strain, and consequently its antifungal activity.
Collapse
Affiliation(s)
- Beom Ryong Kang
- Institute of Environmentally-Friendly Agriculture, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yong-Su Song
- Institute of Environmentally-Friendly Agriculture, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Woo-Jin Jung
- Department of Agricultural Chemistry, Institute of Environmentally-Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
30
|
Enzymatic Synthesis and Characterization of Different Families of Chitooligosaccharides and Their Bioactive Properties. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073212] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chitooligosaccharides (COS) are homo- or hetero-oligomers of D-glucosamine (GlcN) and N-acetyl-D-glucosamine (GlcNAc) that can be obtained by chitosan or chitin hydrolysis. Their enzymatic production is preferred over other methodologies (physical, chemical, etc.) due to the mild conditions required, the fewer amounts of waste and its efficiency to control product composition. By properly selecting the enzyme (chitinase, chitosanase or nonspecific enzymes) and the substrate properties (degree of deacetylation, molecular weight, etc.), it is possible to direct the synthesis towards any of the three COS types: fully acetylated (faCOS), partially acetylated (paCOS) and fully deacetylated (fdCOS). In this article, we review the main strategies to steer the COS production towards a specific group. The chemical characterization of COS by advanced techniques, e.g., high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and MALDI-TOF mass spectrometry, is critical for structure–function studies. The scaling of processes to synthesize specific COS mixtures is difficult due to the low solubility of chitin/chitosan, the heterogeneity of the reaction mixtures, and high amounts of salts. Enzyme immobilization can help to minimize such hurdles. The main bioactive properties of COS are herein reviewed. Finally, the anti-inflammatory activity of three COS mixtures was assayed in murine macrophages after stimulation with lipopolysaccharides.
Collapse
|
31
|
Vortmann M, Stumpf AK, Sgobba E, Dirks-Hofmeister ME, Krehenbrink M, Wendisch VF, Philipp B, Moerschbacher BM. A bottom-up approach towards a bacterial consortium for the biotechnological conversion of chitin to L-lysine. Appl Microbiol Biotechnol 2021; 105:1547-1561. [PMID: 33521845 PMCID: PMC7880967 DOI: 10.1007/s00253-021-11112-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/18/2020] [Accepted: 01/12/2021] [Indexed: 01/27/2023]
Abstract
Chitin is an abundant waste product from shrimp and mushroom industries and as such, an appropriate secondary feedstock for biotechnological processes. However, chitin is a crystalline substrate embedded in complex biological matrices, and, therefore, difficult to utilize, requiring an equally complex chitinolytic machinery. Following a bottom-up approach, we here describe the step-wise development of a mutualistic, non-competitive consortium in which a lysine-auxotrophic Escherichia coli substrate converter cleaves the chitin monomer N-acetylglucosamine (GlcNAc) into glucosamine (GlcN) and acetate, but uses only acetate while leaving GlcN for growth of the lysine-secreting Corynebacterium glutamicum producer strain. We first engineered the substrate converter strain for growth on acetate but not GlcN, and the producer strain for growth on GlcN but not acetate. Growth of the two strains in co-culture in the presence of a mixture of GlcN and acetate was stabilized through lysine cross-feeding. Addition of recombinant chitinase to cleave chitin into GlcNAc2, chitin deacetylase to convert GlcNAc2 into GlcN2 and acetate, and glucosaminidase to cleave GlcN2 into GlcN supported growth of the two strains in co-culture in the presence of colloidal chitin as sole carbon source. Substrate converter strains secreting a chitinase or a β-1,4-glucosaminidase degraded chitin to GlcNAc2 or GlcN2 to GlcN, respectively, but required glucose for growth. In contrast, by cleaving GlcNAc into GlcN and acetate, a chitin deacetylase-expressing substrate converter enabled growth of the producer strain in co-culture with GlcNAc as sole carbon source, providing proof-of-principle for a fully integrated co-culture for the biotechnological utilization of chitin. ![]()
Collapse
Affiliation(s)
- Marina Vortmann
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Anna K Stumpf
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149, Münster, Germany
| | - Elvira Sgobba
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, University of Bielefeld, P.O. Box 100131, 33501, Bielefeld, Germany
- Department of Forest Genetics and Plant Physiology, SLU, Skogsmarksgränd 17, 90183, Umeå, Sweden
| | | | | | - Volker F Wendisch
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, University of Bielefeld, P.O. Box 100131, 33501, Bielefeld, Germany
| | - Bodo Philipp
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149, Münster, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany.
| |
Collapse
|
32
|
Bhuvanachandra B, Sivaramakrishna D, Alim S, Preethiba G, Rambabu S, Swamy MJ, Podile AR. New Class of Chitosanase from Bacillus amyloliquefaciens for the Generation of Chitooligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:78-87. [PMID: 33393308 DOI: 10.1021/acs.jafc.0c05078] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chitooligosaccharides (COS) generated from either chitin (chitin oligosaccharides) or chitosan (chitosan oligosaccharides) have a wide range of applications in agriculture, medicine, and other fields. Here, we report the characterization of a chitosanase from Bacillus amyloliquefaciens (BamCsn) and the importance of a tryptophan (Trp), W204, for BamCsn activity. BamCsn hydrolyzed the chitosan polymer by an endo mode. It also hydrolyzed chitin oligosaccharides and interestingly exhibited transglycosylation activity on chitotetraose and chitopentaose. Mutation of W204, a nonconserved amino acid in chitosanases, to W204A abolished the hydrolytic activity of BamCsn, with a change in the structure that resulted in a decreased affinity for the substrate and impaired the catalytic ability. Phylogenetic analysis revealed that BamCsn could belong to a new class of chitosanases that showed unique properties like transglycosylation, cleavage of chitin oligosaccharides, and the presence of W204 residues, which is important for activity. Chitosanases belonging to the BamCsn class showed a high potential to generate COS from chitinous substrates.
Collapse
Affiliation(s)
- Bhoopal Bhuvanachandra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Dokku Sivaramakrishna
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Sk Alim
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Gopi Preethiba
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Samudrala Rambabu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Musti J Swamy
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Appa Rao Podile
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| |
Collapse
|
33
|
Wang Y, Qin Z, Fan L, Zhao L. Structure-function analysis of Gynuella sunshinyii chitosanase uncovers the mechanism of substrate binding in GH family 46 members. Int J Biol Macromol 2020; 165:2038-2048. [PMID: 33080262 DOI: 10.1016/j.ijbiomac.2020.10.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/21/2020] [Accepted: 10/09/2020] [Indexed: 01/10/2023]
Abstract
Chitooligosaccharides (COS) is a kind of functional carbohydrates with great application potential as its various biological functions in food, cosmetics, and pharmaceutical fields. Exploring the relationship between structure and function of chitosanase is essential for the controllable preparation of chitooligosaccharides with the specific degree of polymerization (DP). GsCsn46A is a cold-adapted glycosyl hydrolase (GH) family 46 chitosanase with application potential for the controllable preparation of chitooligosaccharides. Here, we present two complex structures with substrate chitopentaose and chitotetraose of GsCsn46A, respectively. The overall structure of GsCsn46A contains nine α-helices and two β-strands that folds into two globular domains with the substrate between them. The unique binding positions of both chitopentaose and chitotetraose revealed two novel sugar residues in the negatively-numbered subsites of GH family 46 chitosanases. The structure-function analysis of GsCsn46A uncovers the substrate binding and catalysis mechanism of GH family 46 chitosanases. Structural basis mutagenesis in GsCsn46A indicated that altering interactions near +3 subsite would help produce hydrolysis products with higher DP. Specifically, the mutant N21W of GsCsn46A nearly eliminated the ability of hydrolyzing chitotetraose after long-time degradation.
Collapse
Affiliation(s)
- Yani Wang
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen Qin
- School of Life Science, Shanghai University, Shanghai 200444, China
| | - Liqiang Fan
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Liming Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China.
| |
Collapse
|
34
|
Secretory production in Escherichia coli of a GH46 chitosanase from Chromobacterium violaceum, suitable to generate antifungal chitooligosaccharides. Int J Biol Macromol 2020; 165:1482-1495. [PMID: 33017605 DOI: 10.1016/j.ijbiomac.2020.09.221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 01/23/2023]
|
35
|
Preparation of Defined Chitosan Oligosaccharides Using Chitin Deacetylases. Int J Mol Sci 2020; 21:ijms21217835. [PMID: 33105791 PMCID: PMC7660110 DOI: 10.3390/ijms21217835] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
During the past decade, detailed studies using well-defined 'second generation' chitosans have amply proved that both their material properties and their biological activities are dependent on their molecular structure, in particular on their degree of polymerisation (DP) and their fraction of acetylation (FA). Recent evidence suggests that the pattern of acetylation (PA), i.e., the sequence of acetylated and non-acetylated residues along the linear polymer, is equally important, but chitosan polymers with defined, non-random PA are not yet available. One way in which the PA will influence the bioactivities of chitosan polymers is their enzymatic degradation by sequence-dependent chitosan hydrolases present in the target tissues. The PA of the polymer substrates in conjunction with the subsite preferences of the hydrolases determine the type of oligomeric products and the kinetics of their production and further degradation. Thus, the bioactivities of chitosan polymers will at least in part be carried by the chitosan oligomers produced from them, possibly through their interaction with pattern recognition receptors in target cells. In contrast to polymers, partially acetylated chitosan oligosaccharides (paCOS) can be fully characterised concerning their DP, FA, and PA, and chitin deacetylases (CDAs) with different and known regio-selectivities are currently emerging as efficient tools to produce fully defined paCOS in quantities sufficient to probe their bioactivities. In this review, we describe the current state of the art on how CDAs can be used in forward and reverse mode to produce all of the possible paCOS dimers, trimers, and tetramers, most of the pentamers and many of the hexamers. In addition, we describe the biotechnological production of the required fully acetylated and fully deacetylated oligomer substrates, as well as the purification and characterisation of the paCOS products.
Collapse
|
36
|
Sun H, Gao L, Xue C, Mao X. Marine-polysaccharide degrading enzymes: Status and prospects. Compr Rev Food Sci Food Saf 2020; 19:2767-2796. [PMID: 33337030 DOI: 10.1111/1541-4337.12630] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022]
Abstract
Marine-polysaccharide degrading enzymes have recently been studied extensively. They are particularly interesting as they catalyze the cleavage of glycosidic bonds in polysaccharide macromolecules and produce oligosaccharides with low degrees of polymerization. Numerous findings have demonstrated that marine polysaccharides and their biotransformed products possess beneficial properties including antitumor, antiviral, anticoagulant, and anti-inflammatory activities, and they have great value in healthcare, cosmetics, the food industry, and agriculture. Exploitation of enzymes that can degrade marine polysaccharides is in the ascendant, and is important for high-value use of marine biomass resources. In this review, we describe research and prospects regarding the classification, biochemical properties, and catalytic mechanisms of the main types of marine-polysaccharide degrading enzymes, focusing on chitinase, chitosanase, alginate lyase, agarase, and carrageenase, and their product oligosaccharides. The state-of-the-art discussion of marine-polysaccharide degrading enzymes and their properties offers information that might enable more efficient production of marine oligosaccharides. We also highlight current problems in the field of marine-polysaccharide degrading enzymes and trends in their development. Understanding the properties, catalytic mechanisms, and modification of known enzymes will aid the identification of novel enzymes to degrade marine polysaccharides and facilitation of their use in various biotechnological processes.
Collapse
Affiliation(s)
- Huihui Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Li Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
37
|
Miljaković D, Marinković J, Balešević-Tubić S. The Significance of Bacillus spp. in Disease Suppression and Growth Promotion of Field and Vegetable Crops. Microorganisms 2020; 8:microorganisms8071037. [PMID: 32668676 PMCID: PMC7409232 DOI: 10.3390/microorganisms8071037] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/19/2022] Open
Abstract
Bacillus spp. produce a variety of compounds involved in the biocontrol of plant pathogens and promotion of plant growth, which makes them potential candidates for most agricultural and biotechnological applications. Bacilli exhibit antagonistic activity by excreting extracellular metabolites such as antibiotics, cell wall hydrolases, and siderophores. Additionally, Bacillus spp. improve plant response to pathogen attack by triggering induced systemic resistance (ISR). Besides being the most promising biocontrol agents, Bacillus spp. promote plant growth via nitrogen fixation, phosphate solubilization, and phytohormone production. Antagonistic and plant growth-promoting strains of Bacillus spp. might be useful in formulating new preparations. Numerous studies of a wide range of plant species revealed a steady increase in the number of Bacillus spp. identified as potential biocontrol agents and plant growth promoters. Among different mechanisms of action, it remains unclear which individual or combined traits could be used as predictors in the selection of the best strains for crop productivity improvement. Due to numerous factors that influence the successful application of Bacillus spp., it is necessary to understand how different strains function in biological control and plant growth promotion, and distinctly define the factors that contribute to their more efficient use in the field.
Collapse
Affiliation(s)
- Dragana Miljaković
- Department of Microbiological Preparations, Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia;
- Correspondence:
| | - Jelena Marinković
- Department of Microbiological Preparations, Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia;
| | - Svetlana Balešević-Tubić
- Soybean Department, Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia;
| |
Collapse
|
38
|
|
39
|
Cord-Landwehr S, Richter C, Wattjes J, Sreekumar S, Singh R, Basa S, El Gueddari NE, Moerschbacher BM. Patterns matter part 2: Chitosan oligomers with defined patterns of acetylation. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104577] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Robust enzymatic-mass spectrometric fingerprinting analysis of the fraction of acetylation of chitosans. Carbohydr Polym 2020; 231:115684. [PMID: 31888826 DOI: 10.1016/j.carbpol.2019.115684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/29/2019] [Accepted: 11/26/2019] [Indexed: 11/23/2022]
Abstract
We developed a rapid and precise method to determine the fraction of acetylation (FA) of unknown chitosan samples using a combination of enzymatic sample hydrolysis, isotopic labeling, and HILIC-ESI-MS analysis. Chitosans are β-(1,4)-linked, partially N-acetylated and linear polyglucosamines representing an interesting group of functional biopolymers with a broad range of applications. For a better understanding of their structure-function relationships, it is key to have sensitive, accurate structural analysis tools available to determine parameters like the degree of polymerization (DP), fraction of acetylation (FA), or pattern of acetylation (PA). Here, we describe an improved enzymatic/mass spectrometric method for FA analysis of chitosan polymers. In contrast to the original chitinosanase-based mass spectrometric fingerprinting analysis of FA, the new method is independent of the PA and the intermolecular variation in FA (ĐFA) of the chitosan sample. This allows accurate analysis of heterogeneously de-N-acetylated samples representing the majority of commercially available chitosans.
Collapse
|
41
|
Regel EK, Evers M, Liss M, Cord-Landwehr S, Moerschbacher BM. High-Throughput Screening Using UHPLC-MS To Characterize the Subsite Specificities of Chitosanases or Chitinases. Anal Chem 2020; 92:3246-3252. [PMID: 31940178 DOI: 10.1021/acs.analchem.9b05049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Partially acetylated chitosan oligosaccharides (paCOS), consisting of β-1,4-linked N-acetyl-d-glucosamine and d-glucosamine units, possess diverse bioactivities that can be used for applications in, e.g., biomedicine, agriculture, and pharmaceutics. Establishing structure-function relationships and revealing modes of action requires the availability of structurally defined paCOS that can best be produced using chitin- and chitosan-modifying enzymes, such as chitinases and chitosanases, with known and defined subsite specificities. To enlarge the spectrum of such enzymes and, consequently, defined paCOS available, we have developed a two-step, microtiter plate-based high-throughput screening assay that allows quantification of the activity and subsite specificities of chitosan hydrolases. In a first step, the activities of the enzymes are quantified using a reducing end assay, and enzymes with sufficient activity are then screened for their subsite specificities using mass spectrometric analysis of their products when acting on well-defined chitosan polymers as substrates. The rapid UHPLC-ELSD-ESI-MS2 method does not require labeling steps or addition of standards, and the principal component analysis of the fragment ion intensities of just two isomeric oligomer groups, GlcNAc1GlcN3 and GlcNAc2GlcN2, sufficed to identify, in a directed evolution, the site-saturation mutagenesis library of Bacillus sp. MN chitosanase consisting of 167 muteins, enzymes that significantly differed in their subsite specificities from the wildtype enzyme. Detailed analyses of a few selected muteins proved that the screening method is efficient and accurate in predicting altered subsite specificities.
Collapse
Affiliation(s)
- Eva K Regel
- Institute for Biology and Biotechnology of Plants , University of Münster , Schlossplatz 8 , 48143 Münster , Germany
| | - Maximilian Evers
- Institute for Biology and Biotechnology of Plants , University of Münster , Schlossplatz 8 , 48143 Münster , Germany
| | - Michael Liss
- Thermo Fisher Scientific GENEART GmbH , Im Gewerbepark B35 , 93059 Regensburg , Germany
| | - Stefan Cord-Landwehr
- Institute for Biology and Biotechnology of Plants , University of Münster , Schlossplatz 8 , 48143 Münster , Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants , University of Münster , Schlossplatz 8 , 48143 Münster , Germany
| |
Collapse
|
42
|
Basa S, Nampally M, Honorato T, Das SN, Podile AR, El Gueddari NE, Moerschbacher BM. The Pattern of Acetylation Defines the Priming Activity of Chitosan Tetramers. J Am Chem Soc 2020; 142:1975-1986. [PMID: 31895979 DOI: 10.1021/jacs.9b11466] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The biological activity of chitosans depends on their degree of polymerization (DP) and degree of acetylation (DA). However, information could also be carried by the pattern of acetylation (PA): the sequence of β-1,4-linked glucosamine (deacetylated/D) and N-acetylglucosamine (acetylated/A) units. To address this hypothesis, we prepared partially acetylated chitosan oligosaccharides from a chitosan polymer (DA = 35%, DPw = 905) using recombinant chitosan hydrolases with distinct substrate and cleavage specificities. The mixtures were separated into fractions DP4-DP12, which were tested for elicitor and priming activities in rice cells. We confirmed that both activities were influenced by DP, but also observed apparent DA-dependent priming activity, with the ADDD+DADD fraction proving remarkably effective. We then compared all four monoacetylated tetramers prepared using different chitin deacetylases and observed significant differences in priming activity. This demonstrates for the first time that PA influences the biological activity of chitosans, which can now be recognized as bona fide information-carrying molecules.
Collapse
Affiliation(s)
- Sven Basa
- University of Münster , Institute for Biology and Biotechnology of Plants , Schlossplatz 8 , 48143 Münster , Germany
| | - Malathi Nampally
- University of Münster , Institute for Biology and Biotechnology of Plants , Schlossplatz 8 , 48143 Münster , Germany
| | - Talita Honorato
- University of Münster , Institute for Biology and Biotechnology of Plants , Schlossplatz 8 , 48143 Münster , Germany
| | - Subha N Das
- University of Münster , Institute for Biology and Biotechnology of Plants , Schlossplatz 8 , 48143 Münster , Germany.,University of Hyderabad , Department of Plant Sciences, School of Life Sciences , Hyderabad , India
| | - Appa R Podile
- University of Hyderabad , Department of Plant Sciences, School of Life Sciences , Hyderabad , India
| | - Nour E El Gueddari
- University of Münster , Institute for Biology and Biotechnology of Plants , Schlossplatz 8 , 48143 Münster , Germany
| | - Bruno M Moerschbacher
- University of Münster , Institute for Biology and Biotechnology of Plants , Schlossplatz 8 , 48143 Münster , Germany
| |
Collapse
|
43
|
Cloning and Characterization of a Cold-adapted Chitosanase from Marine Bacterium Bacillus sp. BY01. Molecules 2019; 24:molecules24213915. [PMID: 31671673 PMCID: PMC6864755 DOI: 10.3390/molecules24213915] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022] Open
Abstract
Chitosanase plays an important role in the production of chitooligosaccharides (CHOS), which possess various biological activities. Herein, a glycoside hydrolase (GH) family 46 chitosanase-encoding gene, csnB, was cloned from marine bacterium Bacillus sp. BY01 and heterologously expressed in Escherichia coli. The recombinant chitosanase, CsnB, was optimally active at 35 °C and pH 5.0. It was also revealed to be a cold-adapted enzyme, maintaining 39.5% and 40.4% of its maximum activity at 0 and 10 °C, respectively. Meanwhile, CsnB showed wide pH-stability within the range of pH 3.0 to 7.0. Then, an improved reaction condition was built to enhance its thermostability with a final glycerol volume concentration of 20%. Moreover, CsnB was determined to be an endo-type chitosanase, yielding chitosan disaccharides and trisaccharides as the main products. Overall, CsnB provides a new choice for enzymatic CHOS production.
Collapse
|
44
|
Kaczmarek MB, Struszczyk-Swita K, Li X, Szczęsna-Antczak M, Daroch M. Enzymatic Modifications of Chitin, Chitosan, and Chitooligosaccharides. Front Bioeng Biotechnol 2019; 7:243. [PMID: 31612131 PMCID: PMC6776590 DOI: 10.3389/fbioe.2019.00243] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/12/2019] [Indexed: 12/31/2022] Open
Abstract
Chitin and its N-deacetylated derivative chitosan are two biological polymers that have found numerous applications in recent years, but their further deployment suffers from limitations in obtaining a defined structure of the polymers using traditional conversion methods. The disadvantages of the currently used industrial methods of chitosan manufacturing and the increasing demand for a broad range of novel chitosan oligosaccharides (COS) with a fully defined architecture increase interest in chitin and chitosan-modifying enzymes. Enzymes such as chitinases, chitosanases, chitin deacetylases, and recently discovered lytic polysaccharide monooxygenases had attracted considerable interest in recent years. These proteins are already useful tools toward the biotechnological transformation of chitin into chitosan and chitooligosaccharides, especially when a controlled non-degradative and well-defined process is required. This review describes traditional and novel enzymatic methods of modification of chitin and its derivatives. Recent advances in chitin processing, discovery of increasing number of new, well-characterized enzymes and development of genetic engineering methods result in rapid expansion of the field. Enzymatic modification of chitin and chitosan may soon become competitive to conventional conversion methods.
Collapse
Affiliation(s)
- Michal Benedykt Kaczmarek
- Institute of Technical Biochemistry, Lodz University of Technology, Łódź, Poland.,School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | | | - Xingkang Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | | | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
45
|
Gercke D, Regel EK, Singh R, Moerschbacher BM. Rational protein design of Bacillus sp. MN chitosanase for altered substrate binding and production of specific chitosan oligomers. J Biol Eng 2019; 13:23. [PMID: 30918529 PMCID: PMC6419424 DOI: 10.1186/s13036-019-0152-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/21/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Partially acetylated chito-oligosaccharides (paCOS) have a variety of potential applications in different fields, but to harness their benefits, pure paCOS or well-defined paCOS mixtures are essential. For example, if one could produce fully acetylated (A4) and fully deacetylated (D4) tetramers in abundance, all possible variants of tetrameric paCOS could be generated reliably from them. A promising approach for generating defined paCOS is by enzymatic depolymerization of chitosan polymers using chitosanases, since these enzymes' subsite specificities directly influence the composition of the paCOS produced; however, enzymatic production of e.g. D4 is challenging because the substrate is generally hydrolyzed further by most chitosanases. To overcome this, chitosanases could potentially be engineered so that upon hydrolyzing chitosan, they are unable to hydrolyze certain substrates, leaving well-defined oligomers intact in the hydrolysate. RESULTS For this purpose, we performed rational protein engineering on the extensively studied GH 8 chitosanase CSN from Bacillus sp. MN. By specifically targeting residues with a predicted function in substrate binding, we created new muteins incapable of efficiently hydrolyzing the fully deacetylated tetramer D4, and we were able to demonstrate efficient large-scale production of D4 with an altered version of CSN. Furthermore, we were able to uncover differences in the substrate positioning and subsite specificities of the muteins, which result in altered paCOS mixtures produced from partially acetylated chitosan polymers, with possibly altered bioactivities. CONCLUSION The value of protein engineering as a tool for the more efficient production of pure oligomers and potentially bioactive paCOS mixtures was demonstrated by the results and the suitability of specific muteins for the large-scale production of strictly defined, pure paCOS in a batch process was shown using the example of D4.
Collapse
Affiliation(s)
- David Gercke
- University of Muenster, Institute for Biology and Biotechnology of Plants, Schlossplatz 8, 48143 Münster, Germany
| | - Eva K. Regel
- University of Muenster, Institute for Biology and Biotechnology of Plants, Schlossplatz 8, 48143 Münster, Germany
| | - Ratna Singh
- University of Muenster, Institute for Biology and Biotechnology of Plants, Schlossplatz 8, 48143 Münster, Germany
| | - Bruno M. Moerschbacher
- University of Muenster, Institute for Biology and Biotechnology of Plants, Schlossplatz 8, 48143 Münster, Germany
| |
Collapse
|
46
|
Singh R, Weikert T, Basa S, Moerschbacher BM. Structural and biochemical insight into mode of action and subsite specificity of a chitosan degrading enzyme from Bacillus spec. MN. Sci Rep 2019; 9:1132. [PMID: 30718524 PMCID: PMC6362164 DOI: 10.1038/s41598-018-36213-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022] Open
Abstract
Chitosans, partially de-N-acetylated derivatives of chitin, are multifunctional biopolymers. In nature, biological activities of partially acetylated chitosan polymers are mediated in part by their oligomeric breakdown products, which are generated in situ by the action of chitosanolytic enzymes. Understanding chitosanolytic enzymes, therefore, can lead to the production of chitosan oligomers with fully defined structures that may confer specific bioactivities. To address whether defined oligomer products can be produced via chitosanolytic enzymes, we here characterized a GH8 family chitosanase from Bacillus spec. MN, determining its mode of action and product profiles. We found that the enzyme has higher activity towards polymers with lower degree of acetylation. Oligomeric products were dominated by GlcN3, GlcN3GlcNAc1, and GlcN4GlcNAc1. The product distribution from oligomers were GlcN3 > GlcN2. Modeling and simulations show that the binding site comprises subsites ranging from (-3) to (+3), and a putative (+4) subsite, with defined preferences for GlcN or GlcNAc at each subsite. Flexible loops at the binding site facilitate enzyme-substrate interactions and form a cleft at the active site which can open and close. The detailed insight gained here will help to engineer enzyme variants to produce tailored chitosan oligomers with defined structures that can then be used to probe their specific biological activities.
Collapse
Affiliation(s)
- Ratna Singh
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Tobias Weikert
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Sven Basa
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany.
| |
Collapse
|
47
|
Purification and Characterization of A New Cold-Adapted and Thermo-Tolerant Chitosanase from Marine Bacterium Pseudoalteromonas sp. SY39. Molecules 2019; 24:molecules24010183. [PMID: 30621320 PMCID: PMC6337222 DOI: 10.3390/molecules24010183] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/18/2018] [Accepted: 12/29/2018] [Indexed: 12/20/2022] Open
Abstract
Chitosanases play an important role in chitosan degradation, forming enzymatic degradation products with several biological activities. Although many chitosanases have been discovered and studied, the enzymes with special characteristics are still rather rare. In this study, a new chitosanase, CsnM, with an apparent molecular weight of 28 kDa was purified from the marine bacterium Pseudoalteromonas sp. SY39. CsnM is a cold-adapted enzyme, which shows highest activity at 40 °C and exhibits 30.6% and 49.4% of its maximal activity at 10 and 15 °C, respectively. CsnM is also a thermo-tolerant enzyme that recovers 95.2%, 89.1% and 88.1% of its initial activity after boiling for 5, 10 and 20 min, respectively. Additionally, CsnM is an endo-type chitosanase that yields chitodisaccharide as the main product (69.9% of the total product). It’s cold-adaptation, thermo-tolerance and high chitodisaccharide yield make CsnM a superior candidate for biotechnological application to produce chitooligosaccharides.
Collapse
|
48
|
Qin Z, Luo S, Li Y, Chen Q, Qiu Y, Zhao L, Jiang L, Zhou J. Biochemical properties of a novel chitosanase from Bacillus amyloliquefaciens and its use in membrane reactor. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.06.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Bußwinkel F, Goñi O, Cord-Landwehr S, O'Connell S, Moerschbacher BM. Endochitinase 1 (Tv-ECH1) from Trichoderma virens has high subsite specificities for acetylated units when acting on chitosans. Int J Biol Macromol 2018; 114:453-461. [PMID: 29551512 DOI: 10.1016/j.ijbiomac.2018.03.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 12/14/2017] [Accepted: 03/14/2018] [Indexed: 10/17/2022]
Abstract
Chitosans with defined characteristics have been shown to possess reproducible bioactivities for numerous applications. A promising approach for producing chitosans with defined degrees of polymerization (DP), degrees of acetylation (DA), and patterns of acetylation (PA) involves using chitin-modifying enzymes. One such enzyme, the chitinase Tv-ECH1 belonging to the glycoside hydrolase (GH) family 18, seems to have an important role in the biocontrol properties of the fungus Trichoderma virens, suggesting its potential in generating novel chitosans for plant health applications. In this study, the Tv-ECH1 enzyme was overexpressed in the methylotrophic yeast Pichia pastoris, yielding large amounts (up to 2mgmL-1) of purified recombinant enzyme of high activity, high purity, and high stability, making the system promising for industrial production of Tv-ECH1. The purified Tv-ECH1 chitinase displayed a wide optimal pH range from 4.5 to 6 and an optimal temperature of 37°C. Detailed subsite specificity analyses revealed high preference for acetylated residues at all four subsites analyzed (-2, -1, +1, +2), making Tv-ECH1 a promising candidate for the biotechnological production of specific chitosan oligomers and for the characterization of chitosan polymers via enzymatic fingerprinting.
Collapse
Affiliation(s)
- Franziska Bußwinkel
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Oscar Goñi
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Institute of Technology Tralee, Clash, Tralee, County Kerry, Ireland
| | - Stefan Cord-Landwehr
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Shane O'Connell
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Institute of Technology Tralee, Clash, Tralee, County Kerry, Ireland
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| |
Collapse
|
50
|
Regel EK, Weikert T, Niehues A, Moerschbacher BM, Singh R. Protein-engineering of chitosanase from Bacillus sp. MN to alter its substrate specificity. Biotechnol Bioeng 2018; 115:863-873. [PMID: 29280476 DOI: 10.1002/bit.26533] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/30/2017] [Accepted: 12/18/2017] [Indexed: 01/29/2023]
Abstract
Partially acetylated chitosan oligosaccharides (paCOS) have various potential applications in agriculture, biomedicine, and pharmaceutics due to their suitable bioactivities. One method to produce paCOS is partial chemical hydrolysis of chitosan polymers, but that leads to poorly defined mixtures of oligosaccharides. However, the effective production of defined paCOS is crucial for fundamental research and for developing applications. A more promising approach is enzymatic depolymerization of chitosan using chitinases or chitosanases, as the substrate specificity of the enzyme determines the composition of the oligomeric products. Protein-engineering of these enzymes to alter their substrate specificity can overcome the limitations associated with naturally occurring enzymes and expand the spectrum of specific paCOS that can be produced. Here, engineering the substrate specificity of Bacillus sp. MN chitosanase is described for the first time. Two muteins with active site substitutions can accept N-acetyl-D-glucosamine units at their subsite (-2), which is impossible for the wildtype enzyme.
Collapse
Affiliation(s)
- Eva K Regel
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany
| | - Tobias Weikert
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany
| | - Anna Niehues
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany
| | - Ratna Singh
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany
| |
Collapse
|