1
|
Defendini H, Prunier-Leterme N, Robin S, Lameiras S, Baulande S, Simon JC, Jaquiéry J. The release of sexual conflict after sex loss is associated with evolutionary changes in gene expression. Proc Biol Sci 2025; 292:20242631. [PMID: 39876718 PMCID: PMC11775605 DOI: 10.1098/rspb.2024.2631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025] Open
Abstract
Sexual conflict can arise because males and females, while sharing most of their genome, can have different phenotypic optima. Sexually dimorphic gene expression may help reduce conflict, but the expression of many genes may remain sub-optimal owing to unresolved tensions between the sexes. Asexual lineages lack such conflict, making them relevant models for understanding the extent to which sexual conflict influences gene expression. We investigate the evolution of sexual conflict subsequent to sex loss by contrasting the gene expression patterns of sexual and asexual lineages in the pea aphid Acyrthosiphon pisum. Although asexual lineages of this aphid produce a small number of males in autumn, their mating opportunities are limited because of geographic isolation between sexual and asexual lineages. Therefore, gene expression in parthenogenetic females of asexual lineages is no longer constrained by that of other morphs. We found that the expression of genes in males from asexual lineages tended towards the parthenogenetic female optimum, in agreement with theoretical predictions. Surprisingly, males and parthenogenetic females of asexual lineages overexpressed genes normally found in the ovaries and testes of sexual morphs. These changes in gene expression in asexual lineages may arise from the relaxation of selection or the dysregulation of gene networks otherwise used in sexual lineages.
Collapse
Affiliation(s)
- Hélène Defendini
- UMR 1349, IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu and 35000 Rennes, France
| | - Nathalie Prunier-Leterme
- UMR 1349, IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu and 35000 Rennes, France
| | - Stéphanie Robin
- UMR 1349, IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu and 35000 Rennes, France
| | - Sonia Lameiras
- Institut Curie, PSL University, ICGex Next-Generation Sequencing Platform, Paris75005, France
| | - Sylvain Baulande
- Institut Curie, PSL University, ICGex Next-Generation Sequencing Platform, Paris75005, France
| | - Jean-Christophe Simon
- UMR 1349, IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu and 35000 Rennes, France
| | - Julie Jaquiéry
- UMR 1349, IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu and 35000 Rennes, France
| |
Collapse
|
2
|
Kaufmann P, Rönn JL, Immonen E, Arnqvist G. Sex-Specific Dominance of Gene Expression in Seed Beetles. Mol Biol Evol 2024; 41:msae244. [PMID: 39692633 DOI: 10.1093/molbev/msae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024] Open
Abstract
When different alleles are favored in different environments, dominance reversal where alternate alleles are dominant in the environment in which they are favored can generate net balancing selection. The sexes represent two distinct genetic environments and sexually antagonistic (SA) selection can maintain genetic variation, especially when the alleles involved show sex-specific dominance. Sexual dimorphism in gene expression is pervasive and has been suggested to result from SA selection. Yet, whether gene-regulatory variation shows sex-specific dominance is poorly understood. We tested for sex-specific dominance in gene expression using three crosses between homozygous lines derived from a population of a seed beetle, where a previous study documented a signal of dominance reversal for fitness between the sexes. Overall, we found that the dominance effects of variants affecting gene expression were positively correlated between the sexes (r = 0.33 to 0.44). Yet, 586 transcripts showed significant differences in dominance between the sexes. Sex-specific dominance was significantly more common in transcripts with more sex-biased expression, in two of three of our crosses. Among transcripts showing sex-specific dominance, lesser sexual dimorphism in gene expression among heterozygotes was somewhat more common than greater. Gene ontology enrichment analyses showed that functional categories associated with known SA phenotypes in Callosobruchus maculatus were overrepresented among transcripts with sex-specific dominance, including genes involved in metabolic processes and the target-of-rapamycin pathway. Our results support the suggestion that sex-specific dominance of regulatory variants contributes to the maintenance of genetic variation in fitness mediated by SA selection in this species.
Collapse
Affiliation(s)
- Philipp Kaufmann
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, 75234 Uppsala, Sweden
| | | | - Elina Immonen
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, 75234 Uppsala, Sweden
| | - Göran Arnqvist
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, 75234 Uppsala, Sweden
| |
Collapse
|
3
|
Tsuboi M, Takahashi T. Sexually divergent selection, allometric constraints, and the evolution of sexual dimorphism in cichlids from Lake Tanganyika. J Evol Biol 2024; 37:1563-1575. [PMID: 39180283 DOI: 10.1093/jeb/voae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/22/2024] [Accepted: 09/03/2024] [Indexed: 08/26/2024]
Abstract
The evolution of sexual dimorphism is widely acknowledged as a manifestation of sex-specific genetic architecture. Although empirical studies suggested that sexual dimorphism evolves as a joint consequence of constraints arising from genetic architecture and sexually divergent selection, it remains unclear whether and how these established microevolutionary processes scale up to the macroevolutionary patterns of sexual dimorphism among taxa. Here, we studied how sexual selection and parental care drive sexual dimorphism in cichlid fishes from Lake Tanganyika. We found that male-male competition, female choice, and maternal mouthbrooding are associated with sexual dimorphism in body length, body colour, and head length, respectively, despite strong allometric relationships between body length and head length. Within-species (static) allometry of head length on body length evolved as sex-specific responses to mouthbrooding, where females evolved higher intercepts while males evolved steeper slopes. Thus, selection to increase mouth size in mouthbrooders may have broken down and reorganized the pattern of allometric constraints that are inherently strong and concordant between sexes. Furthermore, sex-specific responses to mouthbrooding left a remarkably clear signature on the macroevolutionary pattern, resulting in a decoupling of co-evolution in parameters of static allometries between sexes observed exclusively within maternal mouthbrooders. Our study provides multiple lines of evidence that are consistent with the idea that macroevolutionary patterns of sexual dimorphism in Lake Tanganyika cichlids result from sexually divergent selection. Our approach illustrates that an examination of within-population phenotypic variance in the phylogenetic comparative framework may facilitate nuanced understandings of how macroevolutionary patterns are generated by underlying microevolutionary processes.
Collapse
Affiliation(s)
| | - Tetsumi Takahashi
- Institute of Natural and Environmental Sciences, University of Hyogo, Sanda, Japan
| |
Collapse
|
4
|
Pennell TM, Mank JE, Alonzo SH, Hosken DJ. On the resolution of sexual conflict over shared traits. Proc Biol Sci 2024; 291:20240438. [PMID: 39082243 PMCID: PMC11289733 DOI: 10.1098/rspb.2024.0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
Anisogamy, different-sized male and female gametes, sits at the heart of sexual selection and conflict between the sexes. Sperm producers (males) and egg producers (females) of the same species generally share most, if not all, of the same genome, but selection frequently favours different trait values in each sex for traits common to both. The extent to which this conflict might be resolved, and the potential mechanisms by which this can occur, have been widely debated. Here, we summarize recent findings and emphasize that once the sexes evolve, sexual selection is ongoing, and therefore new conflict is always possible. In addition, sexual conflict is largely a multivariate problem, involving trait combinations underpinned by networks of interconnected genes. Although these complexities can hinder conflict resolution, they also provide multiple possible routes to decouple male and female phenotypes and permit sex-specific evolution. Finally, we highlight difficulty in the study of sexual conflict over shared traits and promising directions for future research.
Collapse
Affiliation(s)
- Tanya M. Pennell
- Centre for Ecology & Conservation, Faculty of Environment, Science and Economy (ESE), University of Exeter, Cornwall Campus, PenrynTR10 9EZ, UK
| | - Judith E. Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Suzanne H. Alonzo
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA95060, USA
| | - David J. Hosken
- Centre for Ecology & Conservation, Faculty of Environment, Science and Economy (ESE), University of Exeter, Cornwall Campus, PenrynTR10 9EZ, UK
| |
Collapse
|
5
|
Cīrulis A, Nordén AK, Churcher AM, Ramm SA, Zadesenets KS, Abbott JK. Sex-limited experimental evolution drives transcriptomic divergence in a hermaphrodite. Genome Biol Evol 2024; 16:evad235. [PMID: 38155579 PMCID: PMC10786194 DOI: 10.1093/gbe/evad235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 12/12/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023] Open
Abstract
The evolution of gonochorism from hermaphroditism is linked with the formation of sex chromosomes, as well as the evolution of sex-biased and sex-specific gene expression to allow both sexes to reach their fitness optimum. There is evidence that sexual selection drives the evolution of male-biased gene expression in particular. However, previous research in this area in animals comes from either theoretical models or comparative studies of already old sex chromosomes. We therefore investigated changes in gene expression under 3 different selection regimes for the simultaneous hermaphrodite Macrostomum lignano subjected to sex-limited experimental evolution (i.e. selection for fitness via eggs, sperm, or a control regime allowing both). After 21 and 22 generations of selection for male-specific or female-specific fitness, we characterized changes in whole-organism gene expression. We found that female-selected lines had changed the most in their gene expression. Although annotation for this species is limited, gene ontology term and Kyoto Encyclopedia of Genes and Genomes pathway analyses suggest that metabolic changes (e.g. biosynthesis of amino acids and carbon metabolism) are an important adaptive component. As predicted, we found that the expression of genes previously identified as testis-biased candidates tended to be downregulated in the female-selected lines. We did not find any significant expression differences for previously identified candidates of other sex-specific organs, but this may simply reflect that few transcripts have been characterized in this way. In conclusion, our experiment suggests that changes in testis-biased gene expression are important in the early evolution of sex chromosomes and gonochorism.
Collapse
Affiliation(s)
- Aivars Cīrulis
- Department of Biology, Lund University, 223 62 Lund, Sweden
- Laboratory of Microbiology and Pathology, Institute of Food Safety, Animal Health and Environment “BIOR,”Riga LV-1076, Latvia
- Faculty of Biology, University of Latvia, Riga LV-1004, Latvia
| | - Anna K Nordén
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Allison M Churcher
- Department of Molecular Biology, National Bioinformatics Infrastructure Sweden, Umeå University, 901 87 Umeå, Sweden
| | - Steven A Ramm
- Department of Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany
- UMR 6553 ECOBIO, Université de Rennes, 35042 Rennes, France
| | - Kira S Zadesenets
- Department of Molecular Genetics, Cell Biology and Bionformatics, The Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russian Federation
| | | |
Collapse
|
6
|
Erkosar B, Dupuis C, Cavigliasso F, Savary L, Kremmer L, Gallart-Ayala H, Ivanisevic J, Kawecki TJ. Evolutionary adaptation to juvenile malnutrition impacts adult metabolism and impairs adult fitness in Drosophila. eLife 2023; 12:e92465. [PMID: 37847744 PMCID: PMC10637773 DOI: 10.7554/elife.92465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023] Open
Abstract
Juvenile undernutrition has lasting effects on adult metabolism of the affected individuals, but it is unclear how adult physiology is shaped over evolutionary time by natural selection driven by juvenile undernutrition. We combined RNAseq, targeted metabolomics, and genomics to study the consequences of evolution under juvenile undernutrition for metabolism of reproductively active adult females of Drosophila melanogaster. Compared to Control populations maintained on standard diet, Selected populations maintained for over 230 generations on a nutrient-poor larval diet evolved major changes in adult gene expression and metabolite abundance, in particular affecting amino acid and purine metabolism. The evolved differences in adult gene expression and metabolite abundance between Selected and Control populations were positively correlated with the corresponding differences previously reported for Selected versus Control larvae. This implies that genetic variants affect both stages similarly. Even when well fed, the metabolic profile of Selected flies resembled that of flies subject to starvation. Finally, Selected flies had lower reproductive output than Controls even when both were raised under the conditions under which the Selected populations evolved. These results imply that evolutionary adaptation to juvenile undernutrition has large pleiotropic consequences for adult metabolism, and that they are costly rather than adaptive for adult fitness. Thus, juvenile and adult metabolism do not appear to evolve independently from each other even in a holometabolous species where the two life stages are separated by a complete metamorphosis.
Collapse
Affiliation(s)
- Berra Erkosar
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Cindy Dupuis
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Fanny Cavigliasso
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Loriane Savary
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Laurent Kremmer
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Hector Gallart-Ayala
- Metabolomics Unit, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland
| | - Julijana Ivanisevic
- Metabolomics Unit, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland
| | - Tadeusz J Kawecki
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| |
Collapse
|
7
|
Abbott JK, Lund-Hansen KK, Olito C. Why is measuring and predicting fitness under genomic conflict so hard? Curr Opin Genet Dev 2023; 81:102070. [PMID: 37369170 DOI: 10.1016/j.gde.2023.102070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/10/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Genomic conflict between the sexes is caused by differences in the optimal male and female reproductive strategies, and is a major contributor to genetic, phenotypic, and life history variation. While early experimental work appeared to strongly support the sexual conflict paradigm, recent work has produced more ambiguous results. Recent advances in experimental evolution studies combined with theoretical arguments can shed light on why measuring fitness under a conflict is so challenging, including the incidental alteration of mating dynamics, demographic effects, and inherent complexity in what quantity selection maximizes. We stress that non-intuitive results do not necessarily mean the absence of conflict, and follow-up experiments to determine why a priori predictions failed can ultimately teach us more than if they had been confirmed.
Collapse
Affiliation(s)
- Jessica K Abbott
- Department of Biology, Lund University, Sölvegatan 37, 223 62 Lund, Sweden.
| | - Katrine K Lund-Hansen
- Department of Biology, Lund University, Sölvegatan 37, 223 62 Lund, Sweden. https://twitter.com/@KLundHansen
| | - Colin Olito
- Department of Biology, Lund University, Sölvegatan 37, 223 62 Lund, Sweden
| |
Collapse
|
8
|
Barata C, Snook RR, Ritchie MG, Kosiol C. Selection on the Fly: Short-Term Adaptation to an Altered Sexual Selection Regime in Drosophila pseudoobscura. Genome Biol Evol 2023; 15:evad113. [PMID: 37341535 PMCID: PMC10319773 DOI: 10.1093/gbe/evad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023] Open
Abstract
Experimental evolution studies are powerful approaches to examine the evolutionary history of lab populations. Such studies have shed light on how selection changes phenotypes and genotypes. Most of these studies have not examined the time course of adaptation under sexual selection manipulation, by resequencing the populations' genomes at multiple time points. Here, we analyze allele frequency trajectories in Drosophila pseudoobscura where we altered their sexual selection regime for 200 generations and sequenced pooled populations at 5 time points. The intensity of sexual selection was either relaxed in monogamous populations (M) or elevated in polyandrous lines (E). We present a comprehensive study of how selection alters population genetics parameters at the chromosome and gene level. We investigate differences in the effective population size-Ne-between the treatments, and perform a genome-wide scan to identify signatures of selection from the time-series data. We found genomic signatures of adaptation to both regimes in D. pseudoobscura. There are more significant variants in E lines as expected from stronger sexual selection. However, we found that the response on the X chromosome was substantial in both treatments, more pronounced in E and restricted to the more recently sex-linked chromosome arm XR in M. In the first generations of experimental evolution, we estimate Ne to be lower on the X in E lines, which might indicate a swift adaptive response at the onset of selection. Additionally, the third chromosome was affected by elevated polyandry whereby its distal end harbors a region showing a strong signal of adaptive evolution especially in E lines.
Collapse
Affiliation(s)
- Carolina Barata
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Michael G Ritchie
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| | - Carolin Kosiol
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| |
Collapse
|
9
|
Tosto NM, Beasley ER, Wong BBM, Mank JE, Flanagan SP. The roles of sexual selection and sexual conflict in shaping patterns of genome and transcriptome variation. Nat Ecol Evol 2023; 7:981-993. [PMID: 36959239 DOI: 10.1038/s41559-023-02019-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/21/2023] [Indexed: 03/25/2023]
Abstract
Sexual dimorphism is one of the most prevalent, and often the most extreme, examples of phenotypic variation within species, and arises primarily from genomic variation that is shared between females and males. Many sexual dimorphisms arise through sex differences in gene expression, and sex-biased expression is one way that a single, shared genome can generate multiple, distinct phenotypes. Although many sexual dimorphisms are expected to result from sexual selection, and many studies have invoked the possible role of sexual selection to explain sex-specific traits, the role of sexual selection in the evolution of sexually dimorphic gene expression remains difficult to differentiate from other forms of sex-specific selection. In this Review, we propose a holistic framework for the study of sex-specific selection and transcriptome evolution. We advocate for a comparative approach, across tissues, developmental stages and species, which incorporates an understanding of the molecular mechanisms, including genomic variation and structure, governing gene expression. Such an approach is expected to yield substantial insights into the evolution of genetic variation and have important applications in a variety of fields, including ecology, evolution and behaviour.
Collapse
Affiliation(s)
- Nicole M Tosto
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Emily R Beasley
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah P Flanagan
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
10
|
Darolti I, Mank JE. Sex-biased gene expression at single-cell resolution: cause and consequence of sexual dimorphism. Evol Lett 2023; 7:148-156. [PMID: 37251587 PMCID: PMC10210449 DOI: 10.1093/evlett/qrad013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/08/2023] [Accepted: 04/06/2023] [Indexed: 05/31/2023] Open
Abstract
Gene expression differences between males and females are thought to be key for the evolution of sexual dimorphism, and sex-biased genes are often used to study the molecular footprint of sex-specific selection. However, gene expression is often measured from complex aggregations of diverse cell types, making it difficult to distinguish between sex differences in expression that are due to regulatory rewiring within similar cell types and those that are simply a consequence of developmental differences in cell-type abundance. To determine the role of regulatory versus developmental differences underlying sex-biased gene expression, we use single-cell transcriptomic data from multiple somatic and reproductive tissues of male and female guppies, a species that exhibits extensive phenotypic sexual dimorphism. Our analysis of gene expression at single-cell resolution demonstrates that nonisometric scaling between the cell populations within each tissue and heterogeneity in cell-type abundance between the sexes can influence inferred patterns of sex-biased gene expression by increasing both the false-positive and false-negative rates. Moreover, we show that, at the bulk level, the subset of sex-biased genes that are the product of sex differences in cell-type abundance can significantly confound patterns of coding-sequence evolution. Taken together, our results offer a unique insight into the effects of allometry and cellular heterogeneity on perceived patterns of sex-biased gene expression and highlight the power of single-cell RNA-sequencing in distinguishing between sex-biased genes that are the result of regulatory change and those that stem from sex differences in cell-type abundance, and hence are a consequence rather than a cause of sexual dimorphism.
Collapse
Affiliation(s)
- Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
van der Bijl W, Mank JE. Sexual selection: Changing the definition of the fittest. Curr Biol 2023; 33:R277-R279. [PMID: 37040712 DOI: 10.1016/j.cub.2023.02.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Sexual selection has long been known to produce rapid evolution of spectacular traits. A new study reveals how sexual selection can also rapidly reshape the genome.
Collapse
Affiliation(s)
- Wouter van der Bijl
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
12
|
Christodoulaki E, Nolte V, Lai WY, Schlötterer C. Natural variation in Drosophila shows weak pleiotropic effects. Genome Biol 2022; 23:116. [PMID: 35578368 PMCID: PMC9109288 DOI: 10.1186/s13059-022-02680-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 04/26/2022] [Indexed: 11/12/2022] Open
Abstract
Background Pleiotropy describes the phenomenon in which a gene affects multiple phenotypes. The extent of pleiotropy is still disputed, mainly because of issues of inadequate power of analyses. A further challenge is that empirical tests of pleiotropy are restricted to a small subset of all possible phenotypes. To overcome these limitations, we propose a new measurement of pleiotropy that integrates across many phenotypes and multiple generations to improve power. Results We infer pleiotropy from the fitness cost imposed by frequency changes of pleiotropic loci. Mixing Drosophila simulans populations, which adapted independently to the same new environment using different sets of genes, we show that the adaptive frequency changes have been accompanied by measurable fitness costs. Conclusions Unlike previous studies characterizing the molecular basis of pleiotropy, we show that many loci, each of weak effect, contribute to genome-wide pleiotropy. We propose that the costs of pleiotropy are reduced by the modular architecture of gene expression, which facilitates adaptive gene expression changes with low impact on other functions. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02680-4.
Collapse
Affiliation(s)
- Eirini Christodoulaki
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210, Vienna, Austria.,Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210, Vienna, Austria
| | - Wei-Yun Lai
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210, Vienna, Austria.,Vienna Graduate School of Population Genetics, Vienna, Austria
| | | |
Collapse
|
13
|
Yao X, Sun S, Zi Y, Liu Y, Yang J, Ren L, Chen G, Cao Z, Hou W, Song Y, Shang J, Jiang H, Li Z, Wang H, Zhang P, Shi L, Li QZ, Yu Y, Zheng Y. Comprehensive microRNA-seq transcriptomic profiling across 11 organs, 4 ages, and 2 sexes of Fischer 344 rats. Sci Data 2022; 9:201. [PMID: 35551205 PMCID: PMC9098487 DOI: 10.1038/s41597-022-01285-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 03/04/2022] [Indexed: 11/08/2022] Open
Abstract
Rat is one of the most widely-used models in chemical safety evaluation and biomedical research. However, the knowledge about its microRNA (miRNA) expression patterns across multiple organs and various developmental stages is still limited. Here, we constructed a comprehensive rat miRNA expression BodyMap using a diverse collection of 320 RNA samples from 11 organs of both sexes of juvenile, adolescent, adult and aged Fischer 344 rats with four biological replicates per group. Following the Illumina TruSeq Small RNA protocol, an average of 5.1 million 50 bp single-end reads was generated per sample, yielding a total of 1.6 billion reads. The quality of the resulting miRNA-seq data was deemed to be high from raw sequences, mapped sequences, and biological reproducibility. Importantly, aliquots of the same RNA samples have previously been used to construct the mRNA BodyMap. The currently presented miRNA-seq dataset along with the existing mRNA-seq dataset from the same RNA samples provides a unique resource for studying the expression characteristics of existing and novel miRNAs, and for integrative analysis of miRNA-mRNA interactions, thereby facilitating better utilization of rats for biomarker discovery.
Collapse
Affiliation(s)
- Xintong Yao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
| | - Shanyue Sun
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
| | - Yi Zi
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
| | - Yaqing Liu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
| | - Jingcheng Yang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
| | - Luyao Ren
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
| | - Guangchun Chen
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Zehui Cao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
| | - Wanwan Hou
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
| | - Yueqiang Song
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
| | - Jun Shang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
| | - He Jiang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
| | - Zhihui Li
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
| | - Haiyan Wang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
| | - Peipei Zhang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
| | - Quan-Zhen Li
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Ying Yu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China.
| | - Yuanting Zheng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
14
|
Garlovsky MD, Holman L, Brooks AL, Novicic ZK, Snook RR. Experimental sexual selection affects the evolution of physiological and life-history traits. J Evol Biol 2022; 35:742-751. [PMID: 35384100 PMCID: PMC9322299 DOI: 10.1111/jeb.14003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 12/16/2022]
Abstract
Sexual selection and sexual conflict are expected to affect all aspects of the phenotype, not only traits that are directly involved in reproduction. Here, we show coordinated evolution of multiple physiological and life-history traits in response to long-term experimental manipulation of the mating system in populations of Drosophila pseudoobscura. Development time was extended under polyandry relative to monogamy in both sexes, potentially due to higher investment in traits linked to sexual selection and sexual conflict. Individuals (especially males) evolving under polyandry had higher metabolic rates and locomotor activity than those evolving under monogamy. Polyandry individuals also invested more in metabolites associated with increased endurance capacity and efficient energy metabolism and regulation, namely lipids and glycogen. Finally, polyandry males were less desiccation- and starvation resistant than monogamy males, suggesting trade-offs between resistance and sexually selected traits. Our results provide experimental evidence that mating systems can impose selection that influences the evolution of non-sexual phenotypes such as development, activity, metabolism and nutrient homeostasis.
Collapse
Affiliation(s)
- Martin D Garlovsky
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Luke Holman
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - Andrew L Brooks
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Zorana K Novicic
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
15
|
Li Richter XY, Hollis B. Softness of selection and mating system interact to shape trait evolution under sexual conflict. Evolution 2021; 75:2335-2347. [PMID: 34396531 PMCID: PMC9293156 DOI: 10.1111/evo.14329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/25/2021] [Accepted: 07/09/2021] [Indexed: 12/01/2022]
Abstract
Sexual selection and sexual conflict play central roles in driving the evolution of male and female traits. Experimental evolution provides a powerful approach to study the operation of these forces under controlled environmental and demographic conditions, thereby allowing direct comparisons of evolutionary trajectories under different treatments such as mating systems. Despite the rapid progress of experimental and statistical techniques that support experimental evolution studies, we still lack clear theoretical predictions on the effects of different mating systems beyond what intuition suggests. For example, polygamy (several males and females in a mating group) and polyandry (one single female and multiple males in a mating group) have each been used as treatments that elevate sexual selection on males and sexual conflict relative to monogamy. However, polygamy and polyandry manipulations sometimes produce different evolutionary outcomes, and the precise reasons why remain elusive. In addition, the softness of selection (i.e., scale of competition within each sex) is known to affect trait evolution, and is an important factor to consider in experimental design. To date, no model has specifically investigated how the softness of selection interacts with different mating systems. Here, we try to fill these gaps by generating clear and readily testable predictions. Our set of models were designed to capture the most important life cycle events in typical experimental evolution studies, and we use simulated changes of sex‐specific gene expression profiles (i.e., feminization or masculinization) to quantify trait evolution under different selection schemes. We show that interactions between the softness of selection and the mating system can produce results that have been identified as counterintuitive in previous empirical work such as polyandry producing stronger feminization than monogamy. We conclude by encouraging a stronger integration of modelling in future experimental evolution studies and pointing out remaining knowledge gaps for future theoretical work.
Collapse
Affiliation(s)
- Xiang-Yi Li Richter
- Institute of Biology, University of Neuchâtel, Neuchâtel, CH-2000, Switzerland
| | - Brian Hollis
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, 29208
| |
Collapse
|
16
|
Zhang J, Li Y, Luo S, Cao M, Zhang L, Li X. Differential gene expression patterns during gametophyte development provide insights into sex differentiation in the dioicous kelp Saccharina japonica. BMC PLANT BIOLOGY 2021; 21:335. [PMID: 34261451 PMCID: PMC8278619 DOI: 10.1186/s12870-021-03117-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND In brown algae, dioicy is the prevalent sexual system, and phenotypic differences between male and female gametophytes have been found in many dioicous species. Saccharina japonica show remarkable sexual dimorphism in gametophytes before gametogenesis. A higher level of phenotypic differentiation was also found in female and male gametes after gametogenesis. However, the patterns of differential gene expression throughout gametophyte development and how these changes might relate to sex-specific fitness at the gamete stage in S. japonica are not well known. RESULTS In this study, differences in gene expression between male and female gametophytes in different developmental stages were investigated using comparative transcriptome analysis. Among the 20,151 genes expressed in the haploid gametophyte generation, 37.53% were sex-biased. The abundance of sex-biased genes in mature gametophytes was much higher than that in immature gametophytes, and more male-biased than female-biased genes were observed in the mature stage. The predicted functions of most sex-biased genes were closely related to the sex-specific characteristics of gametes, including cell wall biosynthesis, sperm motility, and sperm and egg recognition. In addition, 51 genes were specifically expressed in males in both stages, showing great potential as candidate male sex-determining region (SDR) genes. CONCLUSIONS This study describes a thorough investigation into differential gene expression between male and female gametophytes in the dioicous kelp S. japonica. A large number of sex-biased genes in mature gametophytes may be associated with the divergence of phenotypic traits and physiological functions between female gametes (eggs) and male gametes (sperm) during sexual differentiation. These genes may mainly come from new sex-biased genes that have recently evolved in the S. japonica lineage. The duplication of sex-biased genes was detected, which may increase the number of sex-biased genes after gametogenesis in S. japonica to some extent. The excess of male-biased genes over female-biased genes in the mature stage may reflect the different levels of sexual selection across sexes. This study deepens our understanding of the regulation of sex development and differentiation in the dioicous kelp S. japonica.
Collapse
Affiliation(s)
- Jiaxun Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yan Li
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China, Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd., Yantai, 264003, China
| | - Shiju Luo
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China, Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd., Yantai, 264003, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Linan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Xiaojie Li
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China, Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd., Yantai, 264003, China
| |
Collapse
|
17
|
Wiberg RAW, Veltsos P, Snook RR, Ritchie MG. Experimental evolution supports signatures of sexual selection in genomic divergence. Evol Lett 2021; 5:214-229. [PMID: 34136270 PMCID: PMC8190450 DOI: 10.1002/evl3.220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Comparative genomics has contributed to the growing evidence that sexual selection is an important component of evolutionary divergence and speciation. Divergence by sexual selection is implicated in faster rates of divergence of the X chromosome and of genes thought to underlie sexually selected traits, including genes that are sex biased in expression. However, accurately inferring the relative importance of complex and interacting forms of natural selection, demography, and neutral processes that occurred in the evolutionary past is challenging. Experimental evolution provides an opportunity to apply controlled treatments for multiple generations and examine the consequent genomic divergence. Here, we altered sexual selection intensity, elevating sexual selection in polyandrous lines and eliminating it in monogamous lines, and examined patterns of allele frequency divergence in the genome of Drosophila pseudoobscura after more than 160 generations of experimental evolution. Divergence is not uniform across the genome but concentrated in "islands," many of which contain candidate genes implicated in mating behaviors and other sexually selected phenotypes. These are more often seen on the X chromosome, which also shows greater divergence in F ST than neutral expectations. There are characteristic signatures of selection seen in these regions, with lower diversity on the X chromosome than the autosomes, and differences in diversity on the autosomes between selection regimes. Reduced Tajima's D within some of the divergent regions may imply that selective sweeps have occurred, despite considerable recombination. These changes are associated with both differential gene expression between the lines and sex-biased gene expression within the lines. Our results are very similar to those thought to implicate sexual selection in divergence between species and natural populations, and hence provide experimental support for the likely role of sexual selection in driving such types of genetic divergence, but also illustrate how variable outcomes can be for different genomic regions.
Collapse
Affiliation(s)
- R. Axel W. Wiberg
- Centre for Biological DiversityUniversity of St AndrewsSt AndrewsKY16 9THUnited Kingdom
- Current Address: Department of Environmental SciencesZoological InstituteUniversity of BaselBaselCH‐4051Switzerland
| | - Paris Veltsos
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansas66045
| | - Rhonda R. Snook
- Department of ZoologyStockholm UniversityStockholm106 91Sweden
| | - Michael G. Ritchie
- Centre for Biological DiversityUniversity of St AndrewsSt AndrewsKY16 9THUnited Kingdom
| |
Collapse
|
18
|
Gallot A, Sauzet S, Desouhant E. Kin recognition: Neurogenomic response to mate choice and sib mating avoidance in a parasitic wasp. PLoS One 2020; 15:e0241128. [PMID: 33104752 PMCID: PMC7588116 DOI: 10.1371/journal.pone.0241128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 10/08/2020] [Indexed: 12/01/2022] Open
Abstract
Sib mating increases homozygosity, which therefore increases the risk of inbreeding depression. Selective pressures have favoured the evolution of kin recognition and avoidance of sib mating in numerous species, including the parasitoid wasp Venturia canescens. We studied the female neurogenomic response associated with sib mating avoidance after females were exposed to courtship displays by i) unrelated males or ii) related males or iii) no courtship (controls). First, by comparing the transcriptional responses of females exposed to courtship displays to those exposed to controls, we saw a rapid and extensive transcriptional shift consistent with social environment. Second, by comparing the transcriptional responses of females exposed to courtship by related to those exposed to unrelated males, we characterized distinct and repeatable transcriptomic patterns that correlated with the relatedness of the courting male. Network analysis revealed 3 modules of specific ‘sib-responsive’ genes that were distinct from other ‘courtship-responsive’ modules. Therefore, specific neurogenomic states with characteristic brain transcriptomes associated with different behavioural responses affect sib mating avoidance behaviour.
Collapse
Affiliation(s)
- Aurore Gallot
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, Université Lyon 1, Université de Lyon, UMR 5558, Villeurbanne, France
- * E-mail:
| | - Sandrine Sauzet
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, Université Lyon 1, Université de Lyon, UMR 5558, Villeurbanne, France
- Institut de Génétique Humaine, CNRS–Université de Montpellier, UMR 9002, Biology of Repetitive Sequences, Montpellier, France
| | - Emmanuel Desouhant
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, Université Lyon 1, Université de Lyon, UMR 5558, Villeurbanne, France
| |
Collapse
|
19
|
Ruzicka F, Dutoit L, Czuppon P, Jordan CY, Li X, Olito C, Runemark A, Svensson EI, Yazdi HP, Connallon T. The search for sexually antagonistic genes: Practical insights from studies of local adaptation and statistical genomics. Evol Lett 2020; 4:398-415. [PMID: 33014417 PMCID: PMC7523564 DOI: 10.1002/evl3.192] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/13/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Sexually antagonistic (SA) genetic variation-in which alleles favored in one sex are disfavored in the other-is predicted to be common and has been documented in several animal and plant populations, yet we currently know little about its pervasiveness among species or its population genetic basis. Recent applications of genomics in studies of SA genetic variation have highlighted considerable methodological challenges to the identification and characterization of SA genes, raising questions about the feasibility of genomic approaches for inferring SA selection. The related fields of local adaptation and statistical genomics have previously dealt with similar challenges, and lessons from these disciplines can therefore help overcome current difficulties in applying genomics to study SA genetic variation. Here, we integrate theoretical and analytical concepts from local adaptation and statistical genomics research-including F ST and F IS statistics, genome-wide association studies, pedigree analyses, reciprocal transplant studies, and evolve-and-resequence experiments-to evaluate methods for identifying SA genes and genome-wide signals of SA genetic variation. We begin by developing theoretical models for between-sex F ST and F IS, including explicit null distributions for each statistic, and using them to critically evaluate putative multilocus signals of sex-specific selection in previously published datasets. We then highlight new statistics that address some of the limitations of F ST and F IS, along with applications of more direct approaches for characterizing SA genetic variation, which incorporate explicit fitness measurements. We finish by presenting practical guidelines for the validation and evolutionary analysis of candidate SA genes and discussing promising empirical systems for future work.
Collapse
Affiliation(s)
- Filip Ruzicka
- School of Biological SciencesMonash UniversityClaytonVIC 3800Australia
| | - Ludovic Dutoit
- Department of ZoologyUniversity of OtagoDunedin9054New Zealand
| | - Peter Czuppon
- Institute of Ecology and Environmental Sciences, UPEC, CNRS, IRD, INRASorbonne UniversitéParis75252France
- Center for Interdisciplinary Research in Biology, CNRS, Collège de FrancePSL Research UniversityParis75231France
| | - Crispin Y. Jordan
- School of Biomedical SciencesUniversity of EdinburghEdinburghEH8 9XDUnited Kingdom
| | - Xiang‐Yi Li
- Institute of BiologyUniversity of NeuchâtelNeuchatelCH‐2000Switzerland
| | - Colin Olito
- Department of BiologyLund UniversityLundSE‐22362Sweden
| | - Anna Runemark
- Department of BiologyLund UniversityLundSE‐22362Sweden
| | | | | | - Tim Connallon
- School of Biological SciencesMonash UniversityClaytonVIC 3800Australia
| |
Collapse
|
20
|
Schrader M, Keller MK, Lucey GF. Adaptation to monogamy influences parental care but not mating behavior in the burying beetle, Nicrophorus vespilloides. Ecol Evol 2020; 10:6525-6535. [PMID: 32724530 PMCID: PMC7381755 DOI: 10.1002/ece3.6387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/03/2020] [Accepted: 04/22/2020] [Indexed: 01/17/2023] Open
Abstract
The mating system is expected to have an important influence on the evolution of mating and parenting behaviors. Although many studies have used experimental evolution to examine how mating behaviors evolve under different mating systems, this approach has seldom been used to study the evolution of parental care. We used experimental evolution to test whether adaptation to different mating systems involves changes in mating and parenting behaviors in populations of the burying beetle, Nicrophorus vespilloides. We maintained populations under monogamy or promiscuity for six generations. This manipulation had an immediate impact on reproductive performance and adult survival. Compared to monogamy, promiscuity reduced brood size and adult (particularly male) survival during breeding. After six generations of experimental evolution, there was no divergence between monogamous and promiscuous populations in mating behaviors. Parents from the promiscuous populations (especially males) displayed less care than parents from the monogamous populations. Our results are consistent with the hypothesis that male care will increase with the certainty of paternity. However, it appears that this change is not associated with a concurrent change in mating behaviors.
Collapse
|
21
|
Abbott JK, Chippindale AK, Morrow EH. The microevolutionary response to male-limited X-chromosome evolution in Drosophila melanogaster reflects macroevolutionary patterns. J Evol Biol 2020; 33:738-750. [PMID: 32176391 DOI: 10.1111/jeb.13618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/23/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022]
Abstract
Due to its hemizygous inheritance and role in sex determination, the X-chromosome is expected to play an important role in the evolution of sexual dimorphism and to be enriched for sexually antagonistic genetic variation. By forcing the X-chromosome to only be expressed in males over >40 generations, we changed the selection pressures on the X to become similar to those experienced by the Y. This releases the X from any constraints arising from selection in females and should lead to specialization for male fitness, which could occur either via direct effects of X-linked loci or trans-regulation of autosomal loci by the X. We found evidence of masculinization via up-regulation of male-benefit sexually antagonistic genes and down-regulation of X-linked female-benefit genes. Potential artefacts of the experimental evolution protocol are discussed and cannot be wholly discounted, leading to several caveats. Interestingly, we could detect evidence of microevolutionary changes consistent with previously documented macroevolutionary patterns, such as changes in expression consistent with previously established patterns of sexual dimorphism, an increase in the expression of metabolic genes related to mito-nuclear conflict and evidence that dosage compensation effects can be rapidly altered. These results confirm the importance of the X in the evolution of sexual dimorphism and as a source for sexually antagonistic genetic variation and demonstrate that experimental evolution can be a fruitful method for testing theories of sex chromosome evolution.
Collapse
Affiliation(s)
- Jessica K Abbott
- Section for Evolutionary Ecology, Department of Biology, Lund University, Lund, Sweden
| | | | - Edward H Morrow
- Department of Environmental and Life Sciences, Karlstad University, Karlstad, Sweden
| |
Collapse
|
22
|
McKelvey EG, Fabre CC. Recent neurogenetic findings in insect courtship behaviour. CURRENT OPINION IN INSECT SCIENCE 2019; 36:103-110. [PMID: 31546094 DOI: 10.1016/j.cois.2019.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/30/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Insect courtship parades consist of series of innate and stereotyped behaviours that become hardwired-in during the development of the nervous system. As such, insect courtship behaviour provides an excellent model for probing the principles of neuronal assembly, which underlie patterns of behaviour. Here, we present the main advances of recent studies - in species all the way from flies to planthoppers - and we envisage how these could lead to further propitious findings.
Collapse
Affiliation(s)
- Eleanor Gz McKelvey
- University of Cambridge, Department of Zoology, Downing Street, Cambridge CB2 3EJ, United Kingdom
| | - Caroline Cg Fabre
- University of Cambridge, Department of Zoology, Downing Street, Cambridge CB2 3EJ, United Kingdom.
| |
Collapse
|
23
|
Sex-biased gene expression is repeatedly masculinized in asexual females. Nat Commun 2019; 10:4638. [PMID: 31604947 PMCID: PMC6789136 DOI: 10.1038/s41467-019-12659-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022] Open
Abstract
Males and females feature strikingly different phenotypes, despite sharing most of their genome. A resolution of this apparent paradox is through differential gene expression, whereby genes are expressed at different levels in each sex. This resolution, however, is likely to be incomplete, leading to conflict between males and females over the optimal expression of genes. Here we test the hypothesis that gene expression in females is constrained from evolving to its optimum level due to sexually antagonistic selection on males, by examining changes in sex-biased gene expression in five obligate asexual species of stick insect, which do not produce males. We predicted that the transcriptome of asexual females would be feminized as asexual females do not experience any sexual conflict. Contrary to our prediction we find that asexual females feature masculinized gene expression, and hypothesise that this is due to shifts in female optimal gene expression levels following the suppression of sex.
Collapse
|
24
|
Li XY, Holman L. Evolution of female choice under intralocus sexual conflict and genotype-by-environment interactions. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0425. [PMID: 30150223 DOI: 10.1098/rstb.2017.0425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2018] [Indexed: 12/15/2022] Open
Abstract
In many species, females are hypothesized to obtain 'good genes' for their offspring by mating with males in good condition. However, female preferences might deplete genetic variance and make choice redundant. Additionally, high-condition males sometimes produce low-fitness offspring, for example because of environmental turnover and gene-by-environment interactions (GEIs) for fitness, or because fit males carry sexually antagonistic alleles causing them to produce unfit daughters. Here, we extend previous theory by investigating the evolution of female mate choice in a spatially explicit evolutionary simulation implementing both GEIs and intralocus sexual conflict (IASC), under sex-specific hard or soft selection. We show that IASC can weaken female preferences for high-condition males or even cause a preference for males in low condition, depending on the relative benefits of producing well-adapted sons versus daughters, which in turn depends on the relative hardness of selection on males and females. We discuss the relevance of our results to conservation genetics and empirical evolutionary biology.This article is part of the theme issue 'Linking local adaptation with the evolution of sex differences'.
Collapse
Affiliation(s)
- Xiang-Yi Li
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Luke Holman
- School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
25
|
Karr TL, Southern H, Rosenow MA, Gossmann TI, Snook RR. The Old and the New: Discovery Proteomics Identifies Putative Novel Seminal Fluid Proteins in Drosophila. Mol Cell Proteomics 2019; 18:S23-S33. [PMID: 30760537 PMCID: PMC6427231 DOI: 10.1074/mcp.ra118.001098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
Seminal fluid proteins (SFPs), the nonsperm component of male ejaculates produced by male accessory glands, are viewed as central mediators of reproductive fitness. SFPs effect both male and female post-mating functions and show molecular signatures of rapid adaptive evolution. Although Drosophila melanogaster, is the dominant insect model for understanding SFP evolution, understanding of SFP evolutionary causes and consequences require additional comparative analyses of close and distantly related taxa. Although SFP identification was historically challenging, advances in label-free quantitative proteomics expands the scope of studying other systems to further advance the field. Focused studies of SFPs has so far overlooked the proteomes of male reproductive glands and their inherent complex protein networks for which there is little information on the overall signals of molecular evolution. Here we applied label-free quantitative proteomics to identify the accessory gland proteome and secretome in Drosophila pseudoobscura,, a close relative of D. melanogaster,, and use the dataset to identify both known and putative novel SFPs. Using this approach, we identified 163 putative SFPs, 32% of which overlapped with previously identified D. melanogaster, SFPs and show that SFPs with known extracellular annotation evolve more rapidly than other proteins produced by or contained within the accessory gland. Our results will further the understanding of the evolution of SFPs and the underlying male accessory gland proteins that mediate reproductive fitness of the sexes.
Collapse
Affiliation(s)
- Timothy L Karr
- From the ‡Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona;.
| | - Helen Southern
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | | | - Toni I Gossmann
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
26
|
Whittle CA, Extavour CG. Selection shapes turnover and magnitude of sex-biased expression in Drosophila gonads. BMC Evol Biol 2019; 19:60. [PMID: 30786879 PMCID: PMC6383255 DOI: 10.1186/s12862-019-1377-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/23/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Sex-biased gene expression is thought to drive the phenotypic differences in males and females in metazoans. Drosophila has served as a primary model for studying male-female differences in gene expression, and its effects on protein sequence divergence. However, the forces shaping evolution of sex-biased expression remain largely unresolved, including the roles of selection and pleiotropy. Research on sex organs in Drosophila, employing original approaches and multiple-species contrasts, provides a means to gain insights into factors shaping the turnover and magnitude (fold-bias) of sex-biased expression. RESULTS Here, using recent RNA-seq data, we studied sex-biased gonadal expression in 10,740 protein coding sequences in four species of Drosophila, D. melanogaster, D. simulans, D. yakuba and D. ananassae (5 to 44 My divergence). Using an approach wherein we identified genes with lineage-specific transitions (LSTs) in sex-biased status (amongst testis-biased, ovary-biased and unbiased; thus, six transition types) standardized to the number of genes with the ancestral state (S-LSTs), and those with clade-wide expression bias status, we reveal several key findings. First, the six categorical types of S-LSTs in sex-bias showed disparate rates of turnover, consistent with differential selection pressures. Second, the turnover in sex-biased status was largely unrelated to cross-tissue expression breadth, suggesting pleiotropy does not restrict evolution of sex-biased expression. Third, the fold-sex-biased expression, for both testis-biased and ovary-biased genes, evolved directionally over time toward higher values, a crucial finding that could be interpreted as a selective advantage of greater sex-bias, and sexual antagonism. Fourth, in terms of protein divergence, genes with LSTs to testis-biased expression exhibited weak signals of elevated rates of evolution (than ovary-biased) in as little as 5 My, which strengthened over time. Moreover, genes with clade-wide testis-specific expression (44 My), a status not observed for any ovary-biased genes, exhibited striking acceleration of protein divergence, which was linked to low pleiotropy. CONCLUSIONS By studying LSTs and clade-wide sex-biased gonadal expression in a multi-species clade of Drosophila, we describe evidence that interspecies turnover and magnitude of sex-biased expression have been influenced by selection. Further, whilst pleiotropy was not connected to turnover in sex-biased gonadal expression, it likely explains protein sequence divergence.
Collapse
Affiliation(s)
- Carrie A Whittle
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA.
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA.
| |
Collapse
|
27
|
Flintham EO, Yoshida T, Smith S, Pavlou HJ, Goodwin SF, Carazo P, Wigby S. Interactions between the sexual identity of the nervous system and the social environment mediate lifespan in Drosophila melanogaster. Proc Biol Sci 2018; 285:rspb.2018.1450. [PMID: 30487307 PMCID: PMC6283938 DOI: 10.1098/rspb.2018.1450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/06/2018] [Indexed: 02/06/2023] Open
Abstract
Sex differences in lifespan are ubiquitous, but the underlying causal factors remain poorly understood. Inter- and intrasexual social interactions are well known to influence lifespan in many taxa, but it has proved challenging to separate the role of sex-specific behaviours from wider physiological differences between the sexes. To address this problem, we genetically manipulated the sexual identity of the nervous system-and hence sexual behaviour-in Drosophila melanogaster, and measured lifespan under varying social conditions. Consistent with previous studies, masculinization of the nervous system in females induced male-specific courtship behaviour and aggression, while nervous system feminization in males induced male-male courtship and reduced aggression. Control females outlived males, but masculinized female groups displayed male-like lifespans and male-like costs of group living. By varying the mixture of control and masculinized females within social groups, we show that male-specific behaviours are costly to recipients, even when received from females. However, consistent with recent findings, our data suggest courtship expression to be surprisingly low cost. Overall, our study indicates that nervous system-mediated expression of sex-specific behaviour per se-independent of wider physiological differences between the sexes, or the receipt of aggression or courtship-plays a limited role in mediating sex differences in lifespan.
Collapse
Affiliation(s)
- Ewan O. Flintham
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford OX1 5PS, UK,Department of Life Sciences, Imperial College London, Ascot, SL5 7PY, UK,e-mail:
| | - Tomoyo Yoshida
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford OX1 5PS, UK
| | - Sophie Smith
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford OX1 5PS, UK
| | - Hania J. Pavlou
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | - Stephen F. Goodwin
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | - Pau Carazo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Stuart Wigby
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford OX1 5PS, UK
| |
Collapse
|
28
|
Müller T, Lachenicht L, Müller C. Inbreeding Alters the Chemical Phenotype and Mating Behavior of a Beetle. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
29
|
Garlovsky MD, Snook RR. Persistent postmating, prezygotic reproductive isolation between populations. Ecol Evol 2018; 8:9062-9073. [PMID: 30271566 PMCID: PMC6157668 DOI: 10.1002/ece3.4441] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/23/2018] [Accepted: 07/09/2018] [Indexed: 12/23/2022] Open
Abstract
Studying reproductive barriers between populations of the same species is critical to understand how speciation may proceed. Growing evidence suggests postmating, prezygotic (PMPZ) reproductive barriers play an important role in the evolution of early taxonomic divergence. However, the contribution of PMPZ isolation to speciation is typically studied between species in which barriers that maintain isolation may not be those that contributed to reduced gene flow between populations. Moreover, in internally fertilizing animals, PMPZ isolation is related to male ejaculate-female reproductive tract incompatibilities but few studies have examined how mating history of the sexes can affect the strength of PMPZ isolation and the extent to which PMPZ isolation is repeatable or restricted to particular interacting genotypes. We addressed these outstanding questions using multiple populations of Drosophila montana. We show a recurrent pattern of PMPZ isolation, with flies from one population exhibiting reproductive incompatibility in crosses with all three other populations, while those three populations were fully fertile with each other. Reproductive incompatibility is due to lack of fertilization and is asymmetrical, affecting female fitness more than males. There was no effect of male or female mating history on reproductive incompatibility, indicating that PMPZ isolation persists between populations. We found no evidence of variability in fertilization outcomes attributable to different female × male genotype interactions, and in combination with our other results, suggests that PMPZ isolation is not driven by idiosyncratic genotype × genotype interactions. Our results show PMPZ isolation as a strong, consistent barrier to gene flow early during speciation and suggest several targets of selection known to affect ejaculate-female reproductive tract interactions within species that may cause this PMPZ isolation.
Collapse
Affiliation(s)
| | - Rhonda R. Snook
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
- Department of ZoologyStockholm UniversityStockholmSweden
| |
Collapse
|
30
|
Bailey NW, Moore AJ. Evolutionary Consequences of Social Isolation. Trends Ecol Evol 2018; 33:595-607. [DOI: 10.1016/j.tree.2018.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 01/09/2023]
|
31
|
Immonen E, Hämäläinen A, Schuett W, Tarka M. Evolution of sex-specific pace-of-life syndromes: genetic architecture and physiological mechanisms. Behav Ecol Sociobiol 2018; 72:60. [PMID: 29576676 PMCID: PMC5856903 DOI: 10.1007/s00265-018-2462-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 11/13/2017] [Accepted: 02/07/2018] [Indexed: 11/16/2022]
Abstract
Sex differences in life history, physiology, and behavior are nearly ubiquitous across taxa, owing to sex-specific selection that arises from different reproductive strategies of the sexes. The pace-of-life syndrome (POLS) hypothesis predicts that most variation in such traits among individuals, populations, and species falls along a slow-fast pace-of-life continuum. As a result of their different reproductive roles and environment, the sexes also commonly differ in pace-of-life, with important consequences for the evolution of POLS. Here, we outline mechanisms for how males and females can evolve differences in POLS traits and in how such traits can covary differently despite constraints resulting from a shared genome. We review the current knowledge of the genetic basis of POLS traits and suggest candidate genes and pathways for future studies. Pleiotropic effects may govern many of the genetic correlations, but little is still known about the mechanisms involved in trade-offs between current and future reproduction and their integration with behavioral variation. We highlight the importance of metabolic and hormonal pathways in mediating sex differences in POLS traits; however, there is still a shortage of studies that test for sex specificity in molecular effects and their evolutionary causes. Considering whether and how sexual dimorphism evolves in POLS traits provides a more holistic framework to understand how behavioral variation is integrated with life histories and physiology, and we call for studies that focus on examining the sex-specific genetic architecture of this integration.
Collapse
Affiliation(s)
- Elina Immonen
- Department of Ecology and Genetics, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18 D, SE-75 236 Uppsala, Sweden
| | - Anni Hämäläinen
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2E9 Canada
| | - Wiebke Schuett
- Zoological Institute, University of Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| | - Maja Tarka
- Center for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| |
Collapse
|