1
|
Shen Y, Sun A, Guo Y, Chang WC. Discovery of Noncanonical Iron and 2-Oxoglutarate Dependent Enzymes Involved in C-C and C-N Bond Formation in Biosynthetic Pathways. ACS BIO & MED CHEM AU 2025; 5:238-261. [PMID: 40255287 PMCID: PMC12006828 DOI: 10.1021/acsbiomedchemau.5c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 04/22/2025]
Abstract
Iron and 2-oxoglutarate dependent (Fe/2OG) enzymes utilize an FeIV=O species to catalyze the functionalization of otherwise chemically inert C-H bonds. In addition to the more familiar canonical reactions of hydroxylation and chlorination, they also catalyze several other types of reactions that contribute to the diversity and complexity of natural products. In the past decade, several new Fe/2OG enzymes that catalyze C-C and C-N bond formation have been reported in the biosynthesis of structurally complex natural products. Compared with hydroxylation and chlorination, the catalytic cycles of these Fe/2OG enzymes involve distinct mechanistic features to enable noncanonical reaction outcomes. This Review summarizes recent discoveries of Fe/2OG enzymes involved in C-C and C-N bond formation with a focus on reaction mechanisms and their roles in natural product biosynthesis.
Collapse
Affiliation(s)
- Yaoyao Shen
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Anyi Sun
- School
of Life Science and Biotechnology, Shanghai
Jiao Tong University, Shanghai 200240, China
| | - Yisong Guo
- Department
of Chemistry, The Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Wei-chen Chang
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
2
|
Awakawa T. Biosynthesis of unique natural product scaffolds by Fe(II)/αKG-dependent oxygenases. J Nat Med 2025; 79:303-313. [PMID: 39915427 PMCID: PMC11880133 DOI: 10.1007/s11418-025-01880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 01/21/2025] [Indexed: 03/06/2025]
Abstract
Fe(II)/αKG-dependent oxygenases are multifunctional oxidases responsible for the formation of unique natural product skeletons. Studies of these enzymes are important because the knowledge of their catalytic functions, enzyme structures, and reaction mechanisms can be used to create non-natural enzymes through mutation and synthesize non-natural compounds. In this review, I will introduce the research we have conducted on two fungal Fe(II)/αKG-dependent oxygenases, TlxI-J and TqaL. TlxI-J is the first Fe(II)/αKG-dependent oxygenase type enzyme heterodimer that catalyzes consecutive oxidation reactions, hydroxylation followed by retro-aldol or ketal formation, to form the complex skeletons of meroterpenoids. TqaL is the first naturally occurring aziridine synthase, and I will discuss the mechanism of its unique C-N bond formation in nonproteinogenic amino acid biosynthesis. This review will advance research on the discovery of new enzymes and the analysis of their functions by reviewing the structures and functions of these extraordinary Fe(II)/αKG-dependent oxygenases, and promote their use in the synthesis of new natural medicines.
Collapse
Affiliation(s)
- Takayoshi Awakawa
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
3
|
An C, Jeon H, Lee Y, Park G, Ahn HS, Hong S. Amphoteric reactivity of iron(III)-hydroperoxo complex generated from proton- and salicylate-assisted dioxygen activation. Chem Commun (Camb) 2025; 61:1637-1640. [PMID: 39745417 DOI: 10.1039/d4cc05738d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
We report the synthesis and characterization of an iron(III)-hydroperoxo complex generated from salicylate-assisted dioxygen activation by a cation-liganded iron(II) complex. Spectroscopic and theoretical data revealed stabilization of the end-on hydroperoxo ligand, and mechanistic insights, including a "V-shaped" Hammett plot, were confirmed by conducting oxygen atom transfer and proton-coupled electron transfer reactions.
Collapse
Affiliation(s)
- Chaewon An
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul 03760, Korea
| | - Hyeri Jeon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yool Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Geonwoo Park
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyun S Ahn
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seungwoo Hong
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
4
|
Wang X, Yang L, Wang S, Wang J, Li K, Naowarojna N, Ju Y, Ye K, Han Y, Yan W, Liu X, Zhang L, Liu P. Characterizing Y224 conformational flexibility in FtmOx1-catalysis using 19F NMR spectroscopy. Catal Sci Technol 2025; 15:386-395. [PMID: 39669701 PMCID: PMC11629144 DOI: 10.1039/d4cy01077a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/30/2024] [Indexed: 12/14/2024]
Abstract
α-Ketoglutarate-dependent non-haem iron (αKG-NHFe) enzymes play a crucial role in natural product biosynthesis, and in some cases exhibiting multifunctional catalysis capability. This study focuses on αKG-NHFe enzyme FtmOx1, which catalyzes endoperoxidation, dealkylation, and alcohol oxidation reactions in verruculogen biosynthesis. We explore the hypothesis that the conformational dynamics of the active site Y224 confer the multifunctional activities of FtmOx1-catalysis. Utilizing Y224-to-3,5-difluorotyrosine-substituted FtmOx1, produced via the amber codon suppression method, we conducted 19F NMR characterization to investigate FtmOx1's structural flexibility. Subsequent biochemical and X-ray crystallographic analyses provided insights into how specific conformations of FtmOx1-substrate complexes influence their catalytic activities. These findings underscore the utility of 19F NMR as a powerful tool for elucidating the complex mechanisms of multifunctional enzymes, offering potential avenues for developing biocatalytic processes to produce novel therapeutic agents harnessing their unique catalytic properties.
Collapse
Affiliation(s)
- Xinye Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Lingyun Yang
- iHuman Institute, Shanghaitech University Shanghai 201210 China
| | - Shenlin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Jun Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Kelin Li
- Department of Chemistry, Boston University Boston Massachusetts 02215 USA
| | - Nathchar Naowarojna
- Program of Chemistry, Faculty of Science and Technology, Sakon Nakhon Rajabhat University Sakon Nakhon 47000 Thailand
| | - Yi Ju
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Ke Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Yuchen Han
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Wupeng Yan
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Pinghua Liu
- Department of Chemistry, Boston University Boston Massachusetts 02215 USA
| |
Collapse
|
5
|
Tao H, Abe I. Functional analysis of an α-ketoglutarate-dependent non-heme iron oxygenase in fungal meroterpenoid biosynthesis. Methods Enzymol 2024; 704:173-198. [PMID: 39300647 DOI: 10.1016/bs.mie.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
α-Ketoglutarate-dependent non-heme iron (α-KG NHI) oxygenases compose one of the largest superfamilies of tailoring enzymes that play key roles in structural and functional diversifications. During the biosynthesis of meroterpenoids, α-KG NHI oxygenases catalyze diverse types of chemical reactions, including hydroxylation, desaturation, epoxidation, endoperoxidation, ring-cleavage, and skeletal rearrangements. Due to their catalytic versatility, keen attention has been focused on functional analyses of α-KG NHI oxygenases. This chapter provides detailed methodologies for the functional analysis of the fungal α-KG NHI oxygenase SptF, which plays an important role in the structural diversification of andiconin-derived meroterpenoids. The procedures included describe how to prepare the meroterpenoid substrate using a heterologous fungal host, measure the in vitro enzymatic activity of SptF, and how to perform structural and mutagenesis studies on SptF. These protocols are also applicable to functional analyses of other α-KG NHI oxygenases.
Collapse
Affiliation(s)
- Hui Tao
- Department of Otolaryngology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P.R. China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University, Wuhan, Hubei, P.R. China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, P.R. China.
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
6
|
Pham MT, Yang FL, Liu IC, Liang PH, Lin HC. Non-Heme Iron Enzymes Catalyze Heterobicyclic and Spirocyclic Isoquinolone Core Formation in Piperazine Alkaloid Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202401324. [PMID: 38499463 DOI: 10.1002/anie.202401324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
We report the discovery and biosynthesis of new piperazine alkaloids-arizonamides, and their derived compounds-arizolidines, featuring heterobicyclic and spirocyclic isoquinolone skeletons, respectively. Their biosynthetic pathway involves two crucial non-heme iron enzymes, ParF and ParG, for core skeleton construction. ParF has a dual function facilitating 2,3-alkene formation of helvamide, as a substrate for ParG, and oxidative cleavage of piperazine. Notably, ParG exhibits catalytic versatility in multiple oxidative reactions, including cyclization and ring reconstruction. A key amino acid residue Phe67 was characterized to control the formation of the constrained arizonamide B backbone by ParG.
Collapse
Affiliation(s)
- Mai-Truc Pham
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan R.O.C
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan R.O.C
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300, Taiwan R.O.C
| | - Feng-Ling Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan R.O.C
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan R.O.C
| | - I-Chen Liu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan R.O.C
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan R.O.C
| | - Po-Huang Liang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan R.O.C
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan R.O.C
| | - Hsiao-Ching Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan R.O.C
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan R.O.C
| |
Collapse
|
7
|
Xie CL, Wu TZ, Wang Y, Capon RJ, Xu R, Yang XW. Genome Mining of a Deep-Sea-Derived Penicillium allii-sativi Revealed Polyketide-Terpenoid Hybrids with Antiosteoporosis Activity. Org Lett 2024; 26:3889-3895. [PMID: 38668739 DOI: 10.1021/acs.orglett.4c01065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Two novel meroterpenoids, alliisativins A and B (1, 2) were discovered through a genome-based exploration of the biosynthetic gene clusters of the deep-sea-derived fungus Penicillium allii-sativi MCCC entry 3A00580. Extensive spectroscopic analysis, quantum calculations, chemical derivatization, and biogenetic considerations were utilized to establish their structures. Alliisativins A and B (1, 2) possess a unique carbon skeleton featuring a drimane sesquiterpene with a highly oxidized polyketide. Noteworthily, alliisativin A (1) showed dual activity in promoting osteogenesis and inhibiting osteoclast, indicating an antiosteoporosis potential.
Collapse
Affiliation(s)
- Chun-Lan Xie
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Hainan Academy of Medical Sciences, No. 3 Xueyuan Road, Haikou 571199, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, South Xiangan Road, Xiamen 361102, China
| | - Tai-Zong Wu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Yuan Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Robert J Capon
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, South Xiangan Road, Xiamen 361102, China
| | - Xian-Wen Yang
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Hainan Academy of Medical Sciences, No. 3 Xueyuan Road, Haikou 571199, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| |
Collapse
|
8
|
Ye D, Shao YZ, Li WR, Cui ZJ, Gong T, Yang JL, Wang HQ, Dai JG, Feng KP, Ma M, Ma SG, Liu YB, Zhu P, Yu SS. Characterization and Engineering of Two Highly Paralogous Sesquiterpene Synthases Reveal a Regioselective Reprotonation Switch. Angew Chem Int Ed Engl 2024; 63:e202315674. [PMID: 38327006 DOI: 10.1002/anie.202315674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
Sesquiterpene synthases (STPSs) catalyze carbocation-driven cyclization reactions that can generate structurally diverse hydrocarbons. The deprotonation-reprotonation process is widely used in STPSs to promote structural diversity, largely attributable to the distinct regio/stereoselective reprotonations. However, the molecular basis for reprotonation regioselectivity remains largely understudied. Herein, we analyzed two highly paralogous STPSs, Artabotrys hexapetalus (-)-cyperene synthase (AhCS) and ishwarane synthase (AhIS), which catalyze reactions that are distinct from the regioselective protonation of germacrene A (GA), resulting in distinct skeletons of 5/5/6 tricyclic (-)-cyperene and 6/6/5/3 tetracyclic ishwarane, respectively. Isotopic labeling experiments demonstrated that these protonations occur at C3 and C6 of GA in AhCS and AhIS, respectively. The cryo-electron microscopy-derived AhCS complex structure provided the structural basis for identifying different key active site residues that may govern their functional disparity. The structure-guided mutagenesis of these residues resulted in successful functional interconversion between AhCS and AhIS, thus targeting the three active site residues [L311-S419-C458]/[M311-V419-A458] that may act as a C3/C6 reprotonation switch for GA. These findings facilitate the rational design or directed evolution of STPSs with structurally diverse skeletons.
Collapse
Affiliation(s)
- Dan Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Yi-Zhen Shao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Wen-Rui Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Zhen-Jia Cui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Ting Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Jin-Ling Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Hai-Qiang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Jun-Gui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Ke-Ping Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Ming Ma
- Department State Key Laboratory of Natural and Biomimetic Drugs, Institution School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Shuang-Gang Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Yun-Bao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China
- NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China
| |
Collapse
|
9
|
Quan Z, Awakawa T. Recent developments in the engineered biosynthesis of fungal meroterpenoids. Beilstein J Org Chem 2024; 20:578-588. [PMID: 38505236 PMCID: PMC10949012 DOI: 10.3762/bjoc.20.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
Meroterpenoids are hybrid compounds that are partially derived from terpenoids. This group of natural products displays large structural diversity, and many members exhibit beneficial biological activities. This mini-review highlights recent advances in the engineered biosynthesis of meroterpenoid compounds with C15 and C20 terpenoid moieties, with the reconstruction of fungal meroterpenoid biosynthetic pathways in heterologous expression hosts and the mutagenesis of key enzymes, including terpene cyclases and α-ketoglutarate (αKG)-dependent dioxygenases, that contribute to the structural diversity. Notable progress in genome sequencing has led to the discovery of many novel genes encoding these enzymes, while continued efforts in X-ray crystallographic analyses of these enzymes and the invention of AlphaFold2 have facilitated access to their structures. Structure-based mutagenesis combined with applications of unnatural substrates has further diversified the catalytic repertoire of these enzymes. The information in this review provides useful knowledge for the design of biosynthetic machineries to produce a variety of bioactive meroterpenoids.
Collapse
Affiliation(s)
- Zhiyang Quan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Takayoshi Awakawa
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| |
Collapse
|
10
|
Cox RJ. Engineered and total biosynthesis of fungal specialized metabolites. Nat Rev Chem 2024; 8:61-78. [PMID: 38172201 DOI: 10.1038/s41570-023-00564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 01/05/2024]
Abstract
Filamentous fungi produce a very wide range of complex and often bioactive metabolites, demonstrating their inherent ability as hosts of complex biosynthetic pathways. Recent advances in molecular sciences related to fungi have afforded the development of new tools that allow the rational total biosynthesis of highly complex specialized metabolites in a single process. Increasingly, these pathways can also be engineered to produce new metabolites. Engineering can be at the level of gene deletion, gene addition, formation of mixed pathways, engineering of scaffold synthases and engineering of tailoring enzymes. Combination of these approaches with hosts that can metabolize low-value waste streams opens the prospect of one-step syntheses from garbage.
Collapse
Affiliation(s)
- Russell J Cox
- Institute for Organic Chemistry and BMWZ, Leibniz University of Hannover, Hannover, Germany.
| |
Collapse
|
11
|
Chen Z, Wu T, Yu S, Li M, Fan X, Huo YX. Self-assembly systems to troubleshoot metabolic engineering challenges. Trends Biotechnol 2024; 42:43-60. [PMID: 37451946 DOI: 10.1016/j.tibtech.2023.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
Enzyme self-assembly is a technology in which enzyme units can aggregate into ordered macromolecules, assisted by scaffolds. In metabolic engineering, self-assembly strategies have been explored for aggregating multiple enzymes in the same pathway to improve sequential catalytic efficiency, which in turn enables high-level production. The performance of the scaffolds is critical to the formation of an efficient and stable assembly system. This review comprehensively analyzes these scaffolds by exploring how they assemble, and it illustrates how to apply self-assembly strategies for different modules in metabolic engineering. Functional modifications to scaffolds will further promote efficient strategies for production.
Collapse
Affiliation(s)
- Zhenya Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Tong Wu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Shengzhu Yu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Min Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Xuanhe Fan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China.
| |
Collapse
|
12
|
Multifunctional Enzymes in Microbial Secondary Metabolic Processes. Catalysts 2023. [DOI: 10.3390/catal13030581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
Microorganisms possess a strong capacity for secondary metabolite synthesis, which is represented by tightly controlled networks. The absence of any enzymes leads to a change in the original metabolic pathway, with a decrease in or even elimination of a synthetic product, which is not permissible under conditions of normal life activities of microorganisms. In order to improve the efficiency of secondary metabolism, organisms have evolved multifunctional enzymes (MFEs) that can catalyze two or more kinds of reactions via multiple active sites. However, instead of interfering, the multifunctional catalytic properties of MFEs facilitate the biosynthetic process. Among the numerous MFEs considered of vital importance in the life activities of living organisms are the synthases involved in assembling the backbone of compounds using different substrates and modifying enzymes that confer the final activity of compounds. In this paper, we review MFEs in terms of both synthetic and post-modifying enzymes involved in secondary metabolic biosynthesis, focusing on polyketides, non-ribosomal peptides, terpenoids, and a wide range of cytochrome P450s(CYP450s), and provide an overview and describe the recent progress in the research on MFEs.
Collapse
|
13
|
Tao H, Abe I. Oxidative modification of free-standing amino acids by Fe(II)/αKG-dependent oxygenases. ENGINEERING MICROBIOLOGY 2023; 3:100062. [PMID: 39628521 PMCID: PMC11611013 DOI: 10.1016/j.engmic.2022.100062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/06/2024]
Abstract
Fe(II)/α-ketoglutarate (αKG)-dependent oxygenases catalyze the oxidative modification of various molecules, from DNA, RNA, and proteins to primary and secondary metabolites. They also catalyze a variety of biochemical reactions, including hydroxylation, halogenation, desaturation, epoxidation, cyclization, peroxidation, epimerization, and rearrangement. Given the versatile catalytic capability of such oxygenases, numerous studies have been conducted to characterize their functions and elucidate their structure-function relationships over the past few decades. Amino acids, particularly nonproteinogenic amino acids, are considered as important building blocks for chemical synthesis and components for natural product biosynthesis. In addition, the Fe(II)/αKG-dependent oxygenase superfamily includes important enzymes for generating amino acid derivatives, as they efficiently modify various free-standing amino acids. The recent discovery of new Fe(II)/αKG-dependent oxygenases and the repurposing of known enzymes in this superfamily have promoted the generation of useful amino acid derivatives. Therefore, this study will focus on the recent progress achieved from 2019 to 2022 to provide a clear view of the mechanism by which these enzymes have expanded the repertoire of free amino acid oxidative modifications.
Collapse
Affiliation(s)
- Hui Tao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Awakawa T, Mori T, Ushimaru R, Abe I. Structure-based engineering of α-ketoglutarate dependent oxygenases in fungal meroterpenoid biosynthesis. Nat Prod Rep 2023; 40:46-61. [PMID: 35642933 DOI: 10.1039/d2np00014h] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Non-heme iron- and α-ketoglutarate-dependent oxygenases (αKG OXs) are key enzymes that play a major role in diversifying the structure of fungal meroterpenoids. They activate a specific C-H bond of the substrate to first generate radical species, which is usually followed by oxygen rebound to produce cannonical hydroxylated products. However, in some cases remarkable chemistry induces dramatic structural changes in the molecular scaffolds, depending on the stereoelectronic characters of the substrate/intermediates and the resulting conformational changes/movements of the active site of the enzyme. Their molecular bases have been extensively investigated by crystallographic structural analyses and structure-based mutagenesis, which revealed intimate structural details of the enzyme reactions. This information facilitates the manipulation of the enzyme reactions to create unnatural, novel molecules for drug discovery. This review summarizes recent progress in the structure-based engineering of αKG OX enzymes, involved in the biosynthesis of polyketide-derived fungal meroterpenoids. The literature published from 2016 through February 2022 is reviewed.
Collapse
Affiliation(s)
- Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan. .,Collaborative Research Institute for Innovative Microbiology, the University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan. .,Collaborative Research Institute for Innovative Microbiology, the University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan. .,Collaborative Research Institute for Innovative Microbiology, the University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.,ACT-X, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan. .,Collaborative Research Institute for Innovative Microbiology, the University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
15
|
Papadopoulou A, Meyer F, Buller RM. Engineering Fe(II)/α-Ketoglutarate-Dependent Halogenases and Desaturases. Biochemistry 2023; 62:229-240. [PMID: 35446547 DOI: 10.1021/acs.biochem.2c00115] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fe(II)/α-ketoglutarate-dependent dioxygenases (α-KGDs) are widespread enzymes in aerobic biology and serve a remarkable array of biological functions, including roles in collagen biosynthesis, plant and animal development, transcriptional regulation, nucleic acid modification, and secondary metabolite biosynthesis. This functional diversity is reflected in the enzymes' catalytic flexibility as α-KGDs can catalyze an intriguing set of synthetically valuable reactions, such as hydroxylations, halogenations, and desaturations, capturing the interest of scientists across disciplines. Mechanistically, all α-KGDs are understood to follow a similar activation pathway to generate a substrate radical, yet how individual members of the enzyme family direct this key intermediate toward the different reaction outcomes remains elusive, triggering structural, computational, spectroscopic, kinetic, and enzyme engineering studies. In this Perspective, we will highlight how first enzyme and substrate engineering examples suggest that the chemical reaction pathway within α-KGDs can be intentionally tailored using rational design principles. We will delineate the structural and mechanistic investigations of the reprogrammed enzymes and how they begin to inform about the enzymes' structure-function relationships that determine chemoselectivity. Application of this knowledge in future enzyme and substrate engineering campaigns will lead to the development of powerful C-H activation catalysts for chemical synthesis.
Collapse
Affiliation(s)
- Athena Papadopoulou
- Competence Center for Biocatalysis, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Fabian Meyer
- Competence Center for Biocatalysis, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Rebecca M Buller
- Competence Center for Biocatalysis, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| |
Collapse
|
16
|
Zhang T, Gu G, Liu G, Su J, Zhan Z, Zhao J, Qian J, Cai G, Cen S, Zhang D, Yu L. Late-stage cascade of oxidation reactions during the biosynthesis of oxalicine B in Penicillium oxalicum. Acta Pharm Sin B 2023; 13:256-270. [PMID: 36815048 PMCID: PMC9939320 DOI: 10.1016/j.apsb.2022.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/01/2022] Open
Abstract
Oxalicine B (1) is an α-pyrone meroterpenoid with a unique bispirocyclic ring system derived from Penicillium oxalicum. The biosynthetic pathway of 15-deoxyoxalicine B (4) was preliminarily reported in Penicillium canescens, however, the genetic base and biochemical characterization of tailoring reactions for oxalicine B (1) has remained enigmatic. In this study, we characterized three oxygenases from the metabolic pathway of oxalicine B (1), including a cytochrome P450 hydroxylase OxaL, a hydroxylating Fe(II)/α-KG-dependent dioxygenase OxaK, and a multifunctional cytochrome P450 OxaB. Intriguingly, OxaK can catalyze various multicyclic intermediates or shunt products of oxalicines with impressive substrate promiscuity. OxaB was further proven via biochemical assays to have the ability to convert 15-hydroxdecaturin A (3) to 1 with a spiro-lactone core skeleton through oxidative rearrangement. We also solved the mystery of OxaL that controls C-15 hydroxylation. Chemical investigation of the wild-type strain and deletants enabled us to identify 10 metabolites including three new compounds, and the isolated compounds displayed potent anti-influenza A virus bioactivities exhibiting IC50 values in the range of 4.0-19.9 μmol/L. Our studies have allowed us to propose a late-stage biosynthetic pathway for oxalicine B (1) and create downstream derivatizations of oxalicines by employing enzymatic strategies.
Collapse
Affiliation(s)
- Tao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guowei Gu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Jinhua Su
- The Third Medical Center, The General Hospital of People's Liberation Army, Beijing 100039, China
| | - Zhilai Zhan
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jinxiu Qian
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guowei Cai
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dewu Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China,Corresponding authors. Tel./fax: +86 10 63187118.
| | - Liyan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China,Corresponding authors. Tel./fax: +86 10 63187118.
| |
Collapse
|
17
|
Yan D, Matsuda Y. Biosynthetic Elucidation and Structural Revision of Brevione E: Characterization of the Key Dioxygenase for Pathway Branching from Setosusin Biosynthesis. Angew Chem Int Ed Engl 2022; 61:e202210938. [DOI: 10.1002/anie.202210938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Dexiu Yan
- Department of Chemistry City University of Hong Kong Tat Chee Avenue Kowloon, Hong Kong SAR China
| | - Yudai Matsuda
- Department of Chemistry City University of Hong Kong Tat Chee Avenue Kowloon, Hong Kong SAR China
| |
Collapse
|
18
|
Hsiao YH, Huang SJ, Lin EC, Hsiao PY, Toh SI, Chen IH, Xu Z, Lin YP, Liu HJ, Chang CY. Crystal structure of the α-ketoglutarate-dependent non-heme iron oxygenase CmnC in capreomycin biosynthesis and its engineering to catalyze hydroxylation of the substrate enantiomer. Front Chem 2022; 10:1001311. [PMID: 36176888 PMCID: PMC9513391 DOI: 10.3389/fchem.2022.1001311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
CmnC is an α-ketoglutarate (α-KG)-dependent non-heme iron oxygenase involved in the formation of the l-capreomycidine (l-Cap) moiety in capreomycin (CMN) biosynthesis. CmnC and its homologues, VioC in viomycin (VIO) biosynthesis and OrfP in streptothricin (STT) biosynthesis, catalyze hydroxylation of l-Arg to form β-hydroxy l-Arg (CmnC and VioC) or β,γ-dihydroxy l-Arg (OrfP). In this study, a combination of biochemical characterization and structural determination was performed to understand the substrate binding environment and substrate specificity of CmnC. Interestingly, despite having a high conservation of the substrate binding environment among CmnC, VioC, and OrfP, only OrfP can hydroxylate the substrate enantiomer d-Arg. Superposition of the structures of CmnC, VioC, and OrfP revealed a similar folds and overall structures. The active site residues of CmnC, VioC, and OrfP are almost conserved; however Leu136, Ser138, and Asp249 around the substrate binding pocket in CmnC are replaced by Gln, Gly, and Tyr in OrfP, respectively. These residues may play important roles for the substrate binding. The mutagenesis analysis revealed that the triple mutant CmnCL136Q,S138G,D249Y switches the substrate stereoselectivity from l-Arg to d-Arg with ∼6% relative activity. The crystal structure of CmnCL136Q,S138G,D249Y in complex with d-Arg revealed that the substrate loses partial interactions and adopts a different orientation in the binding site. This study provides insights into the enzyme engineering to α-KG non-heme iron oxygenases for adjustment to the substrate stereoselectivity and development of biocatalysts.
Collapse
Affiliation(s)
- Yu-Hsuan Hsiao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Szu-Jo Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - En-Chi Lin
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Po-Yun Hsiao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Shu-Ing Toh
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - I-Hsuan Chen
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Zhengren Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Yu-Pei Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hsueh-Ju Liu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chin-Yuan Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- *Correspondence: Chin-Yuan Chang,
| |
Collapse
|
19
|
Li L, Lai S, Lin H, Zhao X, Li X, Chen X, Liu J, Yang G, Zhan C. QM/MM study on the O2 activation reaction of 4-hydroxylphenyl pyruvate dioxygenase reveals a common mechanism for α-ketoglutarate dependent dioxygenase. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Auman D, Ecker F, Mader SL, Dorst KM, Bräuer A, Widmalm G, Groll M, Kaila VRI. Peroxy Intermediate Drives Carbon Bond Activation in the Dioxygenase AsqJ. J Am Chem Soc 2022; 144:15622-15632. [PMID: 35980821 DOI: 10.1021/jacs.2c05650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dioxygenases catalyze stereoselective oxygen atom transfer in metabolic pathways of biological, industrial, and pharmaceutical importance, but their precise chemical principles remain controversial. The α-ketoglutarate (αKG)-dependent dioxygenase AsqJ synthesizes biomedically active quinolone alkaloids via desaturation and subsequent epoxidation of a carbon-carbon bond in the cyclopeptin substrate. Here, we combine high-resolution X-ray crystallography with enzyme engineering, quantum-classical (QM/MM) simulations, and biochemical assays to describe a peroxidic intermediate that bridges the substrate and active site metal ion in AsqJ. Homolytic cleavage of this moiety during substrate epoxidation generates an activated high-valent ferryl (FeIV = O) species that mediates the next catalytic cycle, possibly without the consumption of the metabolically valuable αKG cosubstrate. Our combined findings provide an important understanding of chemical bond activation principles in complex enzymatic reaction networks and molecular mechanisms of dioxygenases.
Collapse
Affiliation(s)
- Dirk Auman
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Felix Ecker
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany
| | - Sophie L Mader
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Kevin M Dorst
- Department of Organic Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Alois Bräuer
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany
| | - Göran Widmalm
- Department of Organic Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Michael Groll
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
21
|
Tao H, Abe I. Harnessing Fe(II)/α-ketoglutarate-dependent oxygenases for structural diversification of fungal meroterpenoids. Curr Opin Biotechnol 2022; 77:102763. [PMID: 35878474 DOI: 10.1016/j.copbio.2022.102763] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022]
Abstract
Fungal meroterpenoids are structurally diverse natural products with important biological activities. During their biosynthesis, α-ketoglutarate-dependent oxygenases (αKG-DOs) catalyze a wide range of chemically challenging transformation reactions, including desaturation, epoxidation, oxidative rearrangement, and endoperoxide formation, by selective C-H bond activation, to produce molecules with more complex and divergent structures. Investigations on the structure-function relationships of αKG-DO enzymes have revealed the intimate molecular bases of their catalytic versatility and reaction mechanisms. Notably, the catalytic repertoire of αKG-DOs is further expanded by only subtle changes in their active site and lid-like loop-region architectures. Owing to their remarkable biocatalytic potential, αKG-DOs are ideal candidates for future chemoenzymatic synthesis and enzyme engineering for the generation of terpenoids with diverse structures and biological activities.
Collapse
Affiliation(s)
- Hui Tao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
22
|
Nandy A, Adamji H, Kastner DW, Vennelakanti V, Nazemi A, Liu M, Kulik HJ. Using Computational Chemistry To Reveal Nature’s Blueprints for Single-Site Catalysis of C–H Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Husain Adamji
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David W. Kastner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Azadeh Nazemi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mingjie Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
23
|
Mori T, Nakashima Y, Chen H, Hoshino S, Mitsuhashi T, Abe I. Structure-based redesign of Fe(II)/2-oxoglutarate-dependent oxygenase AndA to catalyze spiro-ring formation. Chem Commun (Camb) 2022; 58:5510-5513. [PMID: 35420093 DOI: 10.1039/d2cc00736c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Structure- and mechanism-based redesign of the Fe(II)/2-oxoglutarate-dependent oxygenase AndA was performed. The function of AndA was expanded to catalyze a spiro-ring formation reaction from an isomerization reaction. The redesigned AndA variants produced two unnatural novel spiro-ring containing compounds through two and three consecutive oxidation reactions.
Collapse
Affiliation(s)
- Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan. .,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Yu Nakashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Heping Chen
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Shotaro Hoshino
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Takaaki Mitsuhashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan. .,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
24
|
Qi BW, Li N, Zhang BB, Zhang ZK, Wang WJ, Liu X, Wang J, Awakawa T, Tu PF, Abe I, Shi SP, Li J. A Multifunctional Cytochrome P450 and a Meroterpenoid Cyclase in the Biosynthesis of Fungal Meroterpenoid Atlantinone B. Org Lett 2022; 24:2526-2530. [PMID: 35343710 DOI: 10.1021/acs.orglett.2c00684] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The biosynthetic gene cluster of atlantinone B (10) was discovered in Penicillium chrysogenum MT-40. A multifunctional cytochrome P450 (AtlD) encoded by the cluster is responsible for the formation of the unique lactone-bridged ring and the 16β-hydroxyl of atlantinone B, and a new terpene cyclase (AtlC) can unprecedentedly accept the demethylated substrate epoxyfarnesyl-DMOA (4a) to generate three bicyclic meroterpenoids (5a-5c). This study paves the way for combinatorial synthesis of structurally diverse meroterpenoids for drug discovery.
Collapse
Affiliation(s)
- Bo-Wen Qi
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Na Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Bei-Bei Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Ze-Kun Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Wen-Jing Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Xiao Liu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Juan Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033, Japan
| | - Peng-Fei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033, Japan
| | - She-Po Shi
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| |
Collapse
|
25
|
Wojdyla Z, Borowski T. Properties of the Reactants and Their Interactions within and with the Enzyme Binding Cavity Determine Reaction Selectivities. The Case of Fe(II)/2-Oxoglutarate Dependent Enzymes. Chemistry 2022; 28:e202104106. [PMID: 34986268 DOI: 10.1002/chem.202104106] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 12/12/2022]
Abstract
Fe(II)/2-oxoglutarate dependent dioxygenases (ODDs) share a double stranded beta helix (DSBH) fold and utilise a common reactive intermediate, ferryl species, to catalyse oxidative transformations of substrates. Despite the structural similarities, ODDs accept a variety of substrates and facilitate a wide range of reactions, that is hydroxylations, desaturations, (oxa)cyclisations and ring rearrangements. In this review we present and discuss the factors contributing to the observed (regio)selectivities of ODDs. They span from inherent properties of the reactants, that is, substrate molecule and iron cofactor, to the interactions between the substrate and the enzyme's binding cavity; the latter can counterbalance the effect of the former. Based on results of both experimental and computational studies dedicated to ODDs, we also line out the properties of the reactants which promote reaction outcomes other than the "default" hydroxylation. It turns out that the reaction selectivity depends on a delicate balance of interactions between the components of the investigated system.
Collapse
Affiliation(s)
- Zuzanna Wojdyla
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Kraków, Niezapominajek 8, 30239 Krakow, Poland
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Kraków, Niezapominajek 8, 30239 Krakow, Poland
| |
Collapse
|
26
|
Wei X, Wang WG, Matsuda Y. Branching and converging pathways in fungal natural product biosynthesis. Fungal Biol Biotechnol 2022; 9:6. [PMID: 35255990 PMCID: PMC8902786 DOI: 10.1186/s40694-022-00135-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/19/2022] [Indexed: 12/15/2022] Open
Abstract
AbstractIn nature, organic molecules with great structural diversity and complexity are synthesized by utilizing a relatively small number of starting materials. A synthetic strategy adopted by nature is pathway branching, in which a common biosynthetic intermediate is transformed into different end products. A natural product can also be synthesized by the fusion of two or more precursors generated from separate metabolic pathways. This review article summarizes several representative branching and converging pathways in fungal natural product biosynthesis to illuminate how fungi are capable of synthesizing a diverse array of natural products.
Collapse
|
27
|
Mori T, Yu Z, Tao H, Abe I. Rational Engineering of the Nonheme Iron- and 2-Oxoglutarate-Dependent Oxygenase SptF. Org Lett 2022; 24:1737-1741. [PMID: 35194997 DOI: 10.1021/acs.orglett.2c00409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Fe- and 2-oxoglutarate-dependent oxygenase SptF is a promising powerful biocatalys with unusual catalytic versatility and promiscuity. The site-specific random substitution of N150, I63, and N65, which are involved in substrate interactions, generated three compounds that were not produced by the SptF wild type. The substrate binding mode was dramatically altered by the introduction of only one or two substitutions. These results provide insights into the engineering of Fe- and 2-oxoglutarate-dependent oxygenases for chemoenzymatic syntheses of bioactive compounds.
Collapse
Affiliation(s)
- Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Ziheng Yu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hui Tao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
28
|
Williams K, de Mattos-Shipley KMJ, Willis CL, Bailey AM. In silico analyses of maleidride biosynthetic gene clusters. Fungal Biol Biotechnol 2022; 9:2. [PMID: 35177129 PMCID: PMC8851701 DOI: 10.1186/s40694-022-00132-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/23/2022] [Indexed: 01/09/2023] Open
Abstract
Maleidrides are a family of structurally related fungal natural products, many of which possess diverse, potent bioactivities. Previous identification of several maleidride biosynthetic gene clusters, and subsequent experimental work, has determined the 'core' set of genes required to construct the characteristic medium-sized alicyclic ring with maleic anhydride moieties. Through genome mining, this work has used these core genes to discover ten entirely novel putative maleidride biosynthetic gene clusters, amongst both publicly available genomes, and encoded within the genome of the previously un-sequenced epiheveadride producer Wicklowia aquatica CBS 125634. We have undertaken phylogenetic analyses and comparative bioinformatics on all known and putative maleidride biosynthetic gene clusters to gain further insights regarding these unique biosynthetic pathways.
Collapse
Affiliation(s)
- Katherine Williams
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK.
| | - Kate M J de Mattos-Shipley
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK
| | - Christine L Willis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Andrew M Bailey
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK
| |
Collapse
|
29
|
Wu YZ, Xia GY, Xia H, Wang LY, Wang YN, Li L, Shang HC, Lin S. Seco and Nor- seco Isodhilarane-Type Meroterpenoids from Penicillium purpurogenum and the Configuration Revisions of Related Compounds. JOURNAL OF NATURAL PRODUCTS 2022; 85:248-255. [PMID: 34978193 DOI: 10.1021/acs.jnatprod.1c01025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Seco and nor-seco isodhilarane-type meroterpenoids (SIMs and NSIMs) are mainly found in Penicillium fungi and have been characterized by highly congested polycyclic skeletons and a broad range of bioactivities. However, the literature reports inconsistent configuration assignments for some SIMs and NSIMs, due to their complex polycyclic systems and multichiral centers. Herein, we described eight SIMs and NSIMs isolated from the EtOAc extract of Penicillium purpurogenum, which led to the configuration revisions of purpurogenolide C (1a), berkeleyacetal B (2a), chrysogenolide F (3a), and berkeleyacetal C (4a) as compounds 1-4, respectively. Furthermore, extensive re-evaluation of the experimental and computational 13C NMR chemical shifts of the reported 39 SIMs and NSIMs provided an empirical approach for determining the C-9 relative configuration, according to the 13C NMR chemical shifts of C-9, which contributed to the configuration revisions of another three SIMs (5a and 6a) and NSIMs (7a), denoted as compounds 5-7, respectively. Biological assays indicated that compound 3 exhibited cytotoxic activity against HepG2 and A549 cell lines with IC50 values of 5.58 and 6.80 μM, respectively. Compounds 2-4, 8, 9, and 32 showed moderate hepatoprotective activity at 10 μM in the APAP-induced HepG2 cell injury model.
Collapse
Affiliation(s)
- Yu-Zhuo Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Gui-Yang Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Huan Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Ling-Yan Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Ya-Nan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hong-Cai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|
30
|
Tao H, Mori T, Chen H, Lyu S, Nonoyama A, Lee S, Abe I. Molecular insights into the unusually promiscuous and catalytically versatile Fe(II)/α-ketoglutarate-dependent oxygenase SptF. Nat Commun 2022; 13:95. [PMID: 35013177 PMCID: PMC8748661 DOI: 10.1038/s41467-021-27636-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022] Open
Abstract
Non-heme iron and α-ketoglutarate-dependent (Fe/αKG) oxygenases catalyze various oxidative biotransformations. Due to their catalytic flexibility and high efficiency, Fe/αKG oxygenases have attracted keen attention for their application as biocatalysts. Here, we report the biochemical and structural characterizations of the unusually promiscuous and catalytically versatile Fe/αKG oxygenase SptF, involved in the biosynthesis of fungal meroterpenoid emervaridones. The in vitro analysis revealed that SptF catalyzes several continuous oxidation reactions, including hydroxylation, desaturation, epoxidation, and skeletal rearrangement. SptF exhibits extremely broad substrate specificity toward various meroterpenoids, and efficiently produced unique cyclopropane-ring-fused 5/3/5/5/6/6 and 5/3/6/6/6 scaffolds from terretonins. Moreover, SptF also hydroxylates steroids, including androsterone, testosterone, and progesterone, with different regiospecificities. Crystallographic and structure-based mutagenesis studies of SptF revealed the molecular basis of the enzyme reactions, and suggested that the malleability of the loop region contributes to the remarkable substrate promiscuity. SptF exhibits great potential as a promising biocatalyst for oxidation reactions.
Collapse
Affiliation(s)
- Hui Tao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
- PRESTO, Japan Science and Technology Agency, Saitama, Japan.
| | - Heping Chen
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shuang Lyu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Shoukou Lee
- Sumitomo Dainippon Pharma Co., Ltd, Osaka, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
31
|
Harken L, Liu J, Kreuz O, Berger R, Li SM. Biosynthesis of Guatrypmethine C Implies Two Different Oxidases for exo Double Bond Installation at the Diketopiperazine Ring. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lauritz Harken
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Jing Liu
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Oliver Kreuz
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Robert Berger
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| |
Collapse
|
32
|
Li X, Awakawa T, Mori T, Ling M, Hu D, Wu B, Abe I. Heterodimeric Non-heme Iron Enzymes in Fungal Meroterpenoid Biosynthesis. J Am Chem Soc 2021; 143:21425-21432. [PMID: 34881885 DOI: 10.1021/jacs.1c11548] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Talaromyolides (1-6) are a group of unusual 6/6/6/6/6/6 hexacyclic meroterpenoids with (3R)-6-hydroxymellein and 4,5-seco-drimane substructures, isolated from the marine fungus Talaromyces purpureogenus. We have identified the biosynthetic gene cluster tlxA-J by heterologous expression in Aspergillus, in vitro enzyme assays, and CRISPR-Cas9-based gene inactivation. Remarkably, the heterodimer of non-heme iron (NHI) enzymes, TlxJ-TlxI, catalyzes three steps of oxidation including a key reaction, hydroxylation at C-5 and C-9 of 12, the intermediate with 3-ketohydroxydrimane scaffold, to facilitate a retro-aldol reaction, leading to the construction of the 4,5-secodrimane skeleton and characteristic ketal scaffold of 1-6. The products of TlxJ-TlxI, 1 and 4, were further hydroxylated at C-4'β by another NHI heterodimer, TlxA-TlxC, and acetylated by TlxB to yield the final products, 3 and 6. The X-ray structural analysis coupled with site-directed mutagenesis provided insights into the heterodimer TlxJ-TlxI formation and its catalysis. This is the first report to show that two NHI proteins form a heterodimer for catalysis and utilizes a novel methodology to create functional oxygenase structures in secondary metabolite biosynthesis.
Collapse
Affiliation(s)
- Xinyang Li
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Meiqi Ling
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Dan Hu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Bin Wu
- Ocean College, Zhejiang University, Hangzhou 310058, China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
33
|
Niu X, Zhang J, Xue X, Wang D, Wang L, Gao Q. Deacetoxycephalosporin C synthase (expandase): Research progress and application potential. Synth Syst Biotechnol 2021; 6:396-401. [PMID: 34901478 PMCID: PMC8626558 DOI: 10.1016/j.synbio.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/02/2022] Open
Abstract
Cephalosporins play an indispensable role against bacterial infections. Deacetyloxycephalosporin C synthase (DAOCS), also called expandase, is a key enzyme in cephalosporin biosynthesis that epoxides penicillin to form the hexavalent thiazide ring of cephalosporin. DAOCS in fungus Acremonium chrysogenum was identified as a bifunctional enzyme with both ring expansion and hydroxylation, whereas two separate enzymes in bacteria catalyze these two reactions. In this review, we briefly summarize its source and function, improvement of the conversion rate of penicillin to deacetyloxycephalosporin C through enzyme modification, crystallography features, the prediction of the active site, and application perspective.
Collapse
Affiliation(s)
- Xiaofan Niu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jian Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,Tianjin Microbial Metabolism and Fermentation Process Control Technology Engineering Center, Tianjin, 300457, China
| | - Xianli Xue
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,Tianjin Microbial Metabolism and Fermentation Process Control Technology Engineering Center, Tianjin, 300457, China
| | - Depei Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,National Demonstration Center for Experimental Bioengineering Education (Tianjin University of Science and Technology), Tianjin, 300457, China.,Tianjin Microbial Metabolism and Fermentation Process Control Technology Engineering Center, Tianjin, 300457, China
| | - Lin Wang
- College of Artificial Intelligence, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Qiang Gao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,National Demonstration Center for Experimental Bioengineering Education (Tianjin University of Science and Technology), Tianjin, 300457, China.,Tianjin Microbial Metabolism and Fermentation Process Control Technology Engineering Center, Tianjin, 300457, China
| |
Collapse
|
34
|
Lin HY, Chen X, Dong J, Yang JF, Xiao H, Ye Y, Li LH, Zhan CG, Yang WC, Yang GF. Rational Redesign of Enzyme via the Combination of Quantum Mechanics/Molecular Mechanics, Molecular Dynamics, and Structural Biology Study. J Am Chem Soc 2021; 143:15674-15687. [PMID: 34542283 DOI: 10.1021/jacs.1c06227] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Increasing demands for efficient and versatile chemical reactions have prompted innovations in enzyme engineering. A major challenge in engineering α-ketoglutarate-dependent oxygenases is to develop a rational strategy which can be widely used for directly evolving the desired mutant to generate new products. Herein, we report a strategy for rational redesign of a model enzyme, 4-hydroxyphenylpyruvate dioxygenase (HPPD), based on quantum mechanics/molecular mechanics (QM/MM) calculation and molecular dynamic simulations. This strategy enriched our understanding of the HPPD catalytic reaction pathway and led to the discovery of a series of HPPD mutants producing hydroxyphenylacetate (HPA) as the alternative product other than the native product homogentisate. The predicted HPPD-Fe(IV)═O-HPA intermediate was further confirmed by the crystal structure of Arabidopsis thaliana HPPD/S267W complexed with HPA. These findings not only provide a good understanding of the structure-function relationship of HPPD but also demonstrate a generally applicable platform for the development of biocatalysts.
Collapse
Affiliation(s)
- Hong-Yan Lin
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Xi Chen
- College of Chemistry and Material Science, South-Central University for Nationalities, Wuhan 430074, P.R. China
| | - Jin Dong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Han Xiao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Ying Ye
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Lin-Hui Li
- College of Chemistry and Material Science, South-Central University for Nationalities, Wuhan 430074, P.R. China
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
35
|
Mori T, Zhai R, Ushimaru R, Matsuda Y, Abe I. Molecular insights into the endoperoxide formation by Fe(II)/α-KG-dependent oxygenase NvfI. Nat Commun 2021; 12:4417. [PMID: 34285212 PMCID: PMC8292354 DOI: 10.1038/s41467-021-24685-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/30/2021] [Indexed: 11/08/2022] Open
Abstract
Endoperoxide-containing natural products are a group of compounds with structurally unique cyclized peroxide moieties. Although numerous endoperoxide-containing compounds have been isolated, the biosynthesis of the endoperoxides remains unclear. NvfI from Aspergillus novofumigatus IBT 16806 is an endoperoxidase that catalyzes the formation of fumigatonoid A in the biosynthesis of novofumigatonin. Here, we describe our structural and functional analyses of NvfI. The structural elucidation and mutagenesis studies indicate that NvfI does not utilize a tyrosyl radical in the reaction, in contrast to other characterized endoperoxidases. Further, the crystallographic analysis reveals significant conformational changes of two loops upon substrate binding, which suggests a dynamic movement of active site during the catalytic cycle. As a result, NvfI installs three oxygen atoms onto a substrate in a single enzyme turnover. Based on these results, we propose a mechanism for the NvfI-catalyzed, unique endoperoxide formation reaction to produce fumigatonoid A.
Collapse
Affiliation(s)
- Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| | - Rui Zhai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- ACT-X, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
36
|
Affiliation(s)
- Judith Münch
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
| | - Pascal Püllmann
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, 32 West seventh Avenue, Tianjin 300308, China
| | - Martin J. Weissenborn
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
- Institute of Chemistry, MartinLuther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120, Halle, Saale, Germany
| |
Collapse
|
37
|
Meyer F, Frey R, Ligibel M, Sager E, Schroer K, Snajdrova R, Buller R. Modulating Chemoselectivity in a Fe(II)/α-Ketoglutarate-Dependent Dioxygenase for the Oxidative Modification of a Nonproteinogenic Amino Acid. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fabian Meyer
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Raphael Frey
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Mathieu Ligibel
- Novartis Institutes for BioMedical Research, Global Discovery Chemistry, 4056 Basel, Switzerland
| | - Emine Sager
- Novartis Institutes for BioMedical Research, Global Discovery Chemistry, 4056 Basel, Switzerland
| | - Kirsten Schroer
- Novartis Institutes for BioMedical Research, Global Discovery Chemistry, 4056 Basel, Switzerland
| | - Radka Snajdrova
- Novartis Institutes for BioMedical Research, Global Discovery Chemistry, 4056 Basel, Switzerland
| | - Rebecca Buller
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| |
Collapse
|
38
|
Wegeberg C, Skavenborg ML, Liberato A, McPherson JN, Browne WR, Hedegård ED, McKenzie CJ. Engineering the Oxidative Potency of Non-Heme Iron(IV) Oxo Complexes in Water for C-H Oxidation by a cis Donor and Variation of the Second Coordination Sphere. Inorg Chem 2021; 60:1975-1984. [PMID: 33470794 DOI: 10.1021/acs.inorgchem.0c03441] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A series of iron(IV) oxo complexes, which differ in the donor (CH2py or CH2COO-) cis to the oxo group, three with hemilabile pendant donor/second coordination sphere base/acid arms (pyH/py or ROH), have been prepared in water at pH 2 and 7. The νFe═O values of 832 ± 2 cm-1 indicate similar FeIV═O bond strengths; however, different reactivities toward C-H substrates in water are observed. HAT occurs at rates that differ by 1 order of magnitude with nonclassical KIEs (kH/kD = 30-66) consistent with hydrogen atom tunneling. Higher KIEs correlate with faster reaction rates as well as a greater thermodynamic stability of the iron(III) resting states. A doubling in rate from pH 7 to pH 2 for substrate C-H oxidation by the most potent complex, that with a cis-carboxylate donor, [FeIVO(Htpena)]2+, is observed. Supramolecular assistance by the first and second coordination spheres in activating the substrate is proposed. The lifetime of this complex in the absence of a C-H substrate is the shortest (at pH 2, 3 h vs up to 1.3 days for the most stable complex), implying that slow water oxidation is a competing background reaction. The iron(IV)═O complex bearing an alcohol moiety in the second coordination sphere displays significantly shorter lifetimes due to a competing selective intramolecular oxidation of the ligand.
Collapse
Affiliation(s)
- Christina Wegeberg
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.,Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Mathias L Skavenborg
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.,Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrea Liberato
- Universidad de Cádiz, Facultad de Ciencias, Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Puerto Real, Cádiz 11510, Spain
| | - James N McPherson
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Wesley R Browne
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Erik D Hedegård
- Division of Theoretical Chemistry, Lund University, Naturvetarvägen 14, 221 00 Lund, Sweden
| | - Christine J McKenzie
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
39
|
Wei Q, Zeng HC, Zou Y. Divergent Biosynthesis of Fungal Dioxafenestrane Sesquiterpenes by the Cooperation of Distinctive Baeyer–Villiger Monooxygenases and α-Ketoglutarate-Dependent Dioxygenases. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Qian Wei
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, People’s Republic of China
| | - Hai-Chun Zeng
- College of Chemical and Engineering, Chongqing University of Science & Technology, Chongqing 401331, People’s Republic of China
| | - Yi Zou
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
40
|
Kato R, Hiraki M, Yamada Y, Tanabe M, Senda T. A fully automated crystallization apparatus for small protein quantities. Acta Crystallogr F Struct Biol Commun 2021; 77:29-36. [PMID: 33439153 PMCID: PMC7805554 DOI: 10.1107/s2053230x20015514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/23/2020] [Indexed: 12/05/2022] Open
Abstract
In 2003, a fully automated protein crystallization and monitoring system (PXS) was developed to support the structural genomics projects that were initiated in the early 2000s. In PXS, crystallization plates were automatically set up using the vapor-diffusion method, transferred to incubators and automatically observed according to a pre-set schedule. The captured images of each crystallization drop could be monitored through the internet using a web browser. While the screening throughput of PXS was very high, the demands of users have gradually changed over the ensuing years. To study difficult proteins, it has become important to screen crystallization conditions using small amounts of proteins. Moreover, membrane proteins have become one of the main targets for X-ray crystallography. Therefore, to meet the evolving demands of users, PXS was upgraded to PXS2. In PXS2, the minimum volume of the dispenser is reduced to 0.1 µl to minimize the amount of sample, and the resolution of the captured images is increased to five million pixels in order to observe small crystallization drops in detail. In addition to the 20°C incubators, a 4°C incubator was installed in PXS2 because crystallization results may vary with temperature. To support membrane-protein crystallization, PXS2 includes a procedure for the bicelle method. In addition, the system supports a lipidic cubic phase (LCP) method that uses a film sandwich plate and that was specifically designed for PXS2. These improvements expand the applicability of PXS2, reducing the bottleneck of X-ray protein crystallography.
Collapse
Affiliation(s)
- Ryuichi Kato
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan
| | - Masahiko Hiraki
- Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan
| | - Yusuke Yamada
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan
| | - Mikio Tanabe
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
41
|
Wojdyla Z, Borowski T. Enzyme Multifunctionality by Control of Substrate Positioning Within the Catalytic Cycle—A QM/MM Study of Clavaminic Acid Synthase. Chemistry 2020; 27:2196-2211. [DOI: 10.1002/chem.202004426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Zuzanna Wojdyla
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences Niezapominajek 8 30239 Krakow Poland
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences Niezapominajek 8 30239 Krakow Poland
| |
Collapse
|
42
|
Mitsuhashi T, Barra L, Powers Z, Kojasoy V, Cheng A, Yang F, Taniguchi Y, Kikuchi T, Fujita M, Tantillo DJ, Porco JA, Abe I. Exploiting the Potential of Meroterpenoid Cyclases to Expand the Chemical Space of Fungal Meroterpenoids. Angew Chem Int Ed Engl 2020; 59:23772-23781. [PMID: 32931152 PMCID: PMC8957209 DOI: 10.1002/anie.202011171] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Indexed: 12/20/2022]
Abstract
Fungal meroterpenoids are a diverse group of hybrid natural products with impressive structural complexity and high potential as drug candidates. In this work, we evaluate the promiscuity of the early structure diversity-generating step in fungal meroterpenoid biosynthetic pathways: the multibond-forming polyene cyclizations catalyzed by the yet poorly understood family of fungal meroterpenoid cyclases. In total, 12 unnatural meroterpenoids were accessed chemoenzymatically using synthetic substrates. Their complex structures were determined by 2D NMR studies as well as crystalline-sponge-based X-ray diffraction analyses. The results obtained revealed a high degree of enzyme promiscuity and experimental results which together with quantum chemical calculations provided a deeper insight into the catalytic activity of this new family of non-canonical, terpene cyclases. The knowledge obtained paves the way to design and engineer artificial pathways towards second generation meroterpenoids with valuable bioactivities based on combinatorial biosynthetic strategies.
Collapse
Affiliation(s)
- Takaaki Mitsuhashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)
- Division of Advanced Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787 (Japan)
| | - Lena Barra
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)
| | - Zachary Powers
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts, 02215 (USA)
| | - Volga Kojasoy
- Department of Chemistry, University of California Davis 1 Shields Avenue, Davis, California 95616 (USA)
| | - Andrea Cheng
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts, 02215 (USA)
| | - Feng Yang
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts, 02215 (USA)
| | - Yoshimasa Taniguchi
- Central Laboratories for Key Technologies, Kirin Holdings Co. Ltd. 1-13-5, Fukuura Kana-zawa-ku, Yokohama-shi, Kanagawa, 236-0004 (Japan)
| | - Takashi Kikuchi
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo 196-8666 (Japan)
| | - Makoto Fujita
- Division of Advanced Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787 (Japan)
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)
| | - Dean J. Tantillo
- Department of Chemistry, University of California Davis 1 Shields Avenue, Davis, California 95616 (USA)
| | - John A. Porco
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts, 02215 (USA)
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657 (Japan)
| |
Collapse
|
43
|
Mitsuhashi T, Barra L, Powers Z, Kojasoy V, Cheng A, Yang F, Taniguchi Y, Kikuchi T, Fujita M, Tantillo DJ, Porco JA, Abe I. Exploiting the Potential of Meroterpenoid Cyclases to Expand the Chemical Space of Fungal Meroterpenoids. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Takaaki Mitsuhashi
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Division of Advanced Molecular Science Institute for Molecular Science National Institutes of Natural Sciences 5-1 Higashiyama, Myodaiji Okazaki 444-8787 Japan
| | - Lena Barra
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Zachary Powers
- Department of Chemistry and Center for Molecular Discovery (BU-CMD) Boston University Boston Massachusetts 02215 USA
| | - Volga Kojasoy
- Department of Chemistry University of California Davis 1 Shields Avenue Davis California 95616 USA
| | - Andrea Cheng
- Department of Chemistry and Center for Molecular Discovery (BU-CMD) Boston University Boston Massachusetts 02215 USA
| | - Feng Yang
- Department of Chemistry and Center for Molecular Discovery (BU-CMD) Boston University Boston Massachusetts 02215 USA
| | - Yoshimasa Taniguchi
- Central Laboratories for Key Technologies Kirin Holdings Co. Ltd. 1-13-5, Fukuura Kana-zawa-ku, Yokohama-shi Kanagawa 236-0004 Japan
| | - Takashi Kikuchi
- Rigaku Corporation 3-9-12 Matsubara-cho, Akishima-shi Tokyo 196-8666 Japan
| | - Makoto Fujita
- Division of Advanced Molecular Science Institute for Molecular Science National Institutes of Natural Sciences 5-1 Higashiyama, Myodaiji Okazaki 444-8787 Japan
- Department of Applied Chemistry Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Dean J. Tantillo
- Department of Chemistry University of California Davis 1 Shields Avenue Davis California 95616 USA
| | - John A. Porco
- Department of Chemistry and Center for Molecular Discovery (BU-CMD) Boston University Boston Massachusetts 02215 USA
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo Yayoi 1-1-1, Bunkyo-ku Tokyo 113-8657 Japan
| |
Collapse
|
44
|
Sikandar A, Lopatniuk M, Luzhetskyy A, Koehnke J. Non-Heme Monooxygenase ThoJ Catalyzes Thioholgamide β-Hydroxylation. ACS Chem Biol 2020; 15:2815-2819. [PMID: 32965102 DOI: 10.1021/acschembio.0c00637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Thioviridamide-like compounds, including thioholgamides, are ribosomally synthesized and post-translationally modified peptide natural products with potent anticancer cell activity and an unprecedented structure. Very little is known about their biosynthesis, and we were intrigued by the β-hydroxy-N1, N3-dimethylhistidinium moiety found in these compounds. Here we report the construction of a heterologous host capable of producing thioholgamide with a 15-fold increased yield compared to the wild-type strain. A knockout of thoJ, encoding a predicted nonheme monooxygenase, shows that ThoJ is essential for thioholgamide β-hydroxylation. The crystal structure of ThoJ exhibits a typical mono/dioxygenase fold with conserved key active-site residues. Yet, ThoJ possesses a very large substrate binding pocket that appears suitable to receive a cyclic thioholgamide intermediate for hydroxylation. The improved production of the heterologous host will enable the dissection of the individual biosynthetic steps involved in biosynthesis of this exciting RiPP family.
Collapse
Affiliation(s)
- Asfandyar Sikandar
- Workgroup Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus Geb. E8.1, 66123 Saarbrücken, Germany
| | - Maria Lopatniuk
- Department Microbial Natural Products, Actinobacteria Metabolic Engineering Group, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, CampusC2.3, 66123 Saarbrücken, Germany
| | - Andriy Luzhetskyy
- Department Microbial Natural Products, Actinobacteria Metabolic Engineering Group, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, CampusC2.3, 66123 Saarbrücken, Germany
| | - Jesko Koehnke
- Workgroup Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus Geb. E8.1, 66123 Saarbrücken, Germany
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
45
|
Abe I. Nonheme Iron- and 2-Oxoglutarate-Dependent Dioxygenases in Fungal Meroterpenoid Biosynthesis. Chem Pharm Bull (Tokyo) 2020; 68:823-831. [PMID: 32879222 DOI: 10.1248/cpb.c20-00360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review summarizes the recent progress in research on the non-heme Fe(II)- and 2-oxoglutarate-dependent dioxygenases, which are involved in the biosynthesis of pharmaceutically important fungal meroterpenoids. This enzyme class activates a selective C-H bond of the substrate and catalyzes a wide range of chemical reactions, from simple hydroxylation to dynamic carbon skeletal rearrangements, thereby significantly contributing to the structural diversification and complexification of the molecules. Structure-function studies of these enzymes provide an excellent platform for the development of useful biocatalysts for synthetic biology to create novel molecules for future drug discovery.
Collapse
Affiliation(s)
- Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| |
Collapse
|
46
|
Vila MA, Steck V, Rodriguez Giordano S, Carrera I, Fasan R. C-H Amination via Nitrene Transfer Catalyzed by Mononuclear Non-Heme Iron-Dependent Enzymes. Chembiochem 2020; 21:1981-1987. [PMID: 32189465 DOI: 10.1002/cbic.201900783] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/12/2020] [Indexed: 12/18/2022]
Abstract
Expanding the reaction scope of natural metalloenzymes can provide new opportunities for biocatalysis. Mononuclear non-heme iron-dependent enzymes represent a large class of biological catalysts involved in the biosynthesis of natural products and catabolism of xenobiotics, among other processes. Here, we report that several members of this enzyme family, including Rieske dioxygenases as well as α-ketoglutarate-dependent dioxygenases and halogenases, are able to catalyze the intramolecular C-H amination of a sulfonyl azide substrate, thereby exhibiting a promiscuous nitrene transfer reactivity. One of these enzymes, naphthalene dioxygenase (NDO), was further engineered resulting in several active site variants that function as C-H aminases. Furthermore, this enzyme could be applied to execute this non-native transformation on a gram scale in a bioreactor, thus demonstrating its potential for synthetic applications. These studies highlight the functional versatility of non-heme iron-dependent enzymes and pave the way to their further investigation and development as promising biocatalysts for non-native metal-catalyzed transformations.
Collapse
Affiliation(s)
- Maria Agustina Vila
- Laboratorio de Biocatálisis y Biotransformaciones, Departamento de Química Orgánica y Departamento de Biociencias. Facultad de Química, Universidad de la República, Av General Flores 2124, CP 11800, Montevideo, Uruguay
| | - Viktoria Steck
- Department of Chemistry, University of Rochester, RC Box 270216, Rochester, NY 14627, USA
| | - Sonia Rodriguez Giordano
- Laboratorio de Biocatálisis y Biotransformaciones, Departamento de Química Orgánica y Departamento de Biociencias. Facultad de Química, Universidad de la República, Av General Flores 2124, CP 11800, Montevideo, Uruguay
| | - Ignacio Carrera
- Laboratorio de Biocatálisis y Biotransformaciones, Departamento de Química Orgánica y Departamento de Biociencias. Facultad de Química, Universidad de la República, Av General Flores 2124, CP 11800, Montevideo, Uruguay
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, RC Box 270216, Rochester, NY 14627, USA
| |
Collapse
|
47
|
Directed evolution of carbon–hydrogen bond activating enzymes. Curr Opin Biotechnol 2019; 60:29-38. [DOI: 10.1016/j.copbio.2018.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/19/2018] [Accepted: 12/03/2018] [Indexed: 12/26/2022]
|
48
|
Engineering Metalloprotein Functions in Designed and Native Scaffolds. Trends Biochem Sci 2019; 44:1022-1040. [DOI: 10.1016/j.tibs.2019.06.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 12/15/2022]
|
49
|
Fewer DP, Metsä‐Ketelä M. A pharmaceutical model for the molecular evolution of microbial natural products. FEBS J 2019; 287:1429-1449. [DOI: 10.1111/febs.15129] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/11/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022]
Affiliation(s)
- David P. Fewer
- Department of Microbiology University of Helsinki Finland
| | | |
Collapse
|
50
|
Drummond MJ, Ford CL, Gray DL, Popescu CV, Fout AR. Radical Rebound Hydroxylation Versus H-Atom Transfer in Non-Heme Iron(III)-Hydroxo Complexes: Reactivity and Structural Differentiation. J Am Chem Soc 2019; 141:6639-6650. [PMID: 30969766 DOI: 10.1021/jacs.9b01516] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The characterization of high-valent iron centers in enzymes has been aided by synthetic model systems that mimic their reactivity or structural and spectral features. For example, the cleavage of dioxygen often produces an iron(IV)-oxo that has been characterized in a number of enzymatic and synthetic systems. In non-heme 2-oxogluterate dependent (iron-2OG) enzymes, the ferryl species abstracts an H-atom from bound substrate to produce the proposed iron(III)-hydroxo and caged substrate radical. Most iron-2OG enzymes perform a radical rebound hydroxylation at the site of the H-atom abstraction (HAA); however, recent reports have shown that certain substrates can be desaturated through the loss of a second H atom at a site adjacent to a heteroatom (N or O) for most native desaturase substrates. One proposed mechanism for the removal of the second H-atom involves a polar-cleavage mechanism (electron transfer-proton transfer) by the iron(III)-hydroxo, as opposed to a second HAA. Herein we report the synthesis and characterization of a series of iron complexes with hydrogen bonding interactions between bound aquo or hydroxo ligands and the secondary coordination sphere in ferrous and ferric complexes. Interconversion among the iron species is accomplished by stepwise proton or electron addition or subtraction, as well as H-atom transfer (HAT). The calculated bond dissociation free energies (BDFEs) of two ferric hydroxo complexes, differentiated by their noncovalent interactions and reactivity, suggest that neither complex is capable of activating even weak C-H bonds, lending further support to the proposed mechanism for desaturation in iron-2OG desaturase enzymes. Additionally, the ferric hydroxo species are differentiated by their reactivity toward performing a radical rebound hydroxylation of triphenylmethylradical. Our findings should encourage further study of the desaturase systems that may contain unique H-bonding motifs proximal to the active site that help bias substrate desaturation over hydroxylation.
Collapse
Affiliation(s)
- Michael J Drummond
- School of Chemical Sciences , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Courtney L Ford
- School of Chemical Sciences , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Danielle L Gray
- School of Chemical Sciences , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Codrina V Popescu
- Department of Chemistry , University of Saint Thomas , 2115 Summit Avenue , Saint Paul , Minnesota 55105 , United States
| | - Alison R Fout
- School of Chemical Sciences , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| |
Collapse
|