1
|
Teslenko A, Fierz B. Single-molecule analysis reveals the mechanism of chromatin ubiquitylation by variant PRC1 complexes. SCIENCE ADVANCES 2025; 11:eadt7013. [PMID: 40397729 PMCID: PMC12094234 DOI: 10.1126/sciadv.adt7013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 04/08/2025] [Indexed: 05/23/2025]
Abstract
Chromatin regulation relies on "writer" enzymes that add posttranslational modifications to histone proteins. Variant polycomb repressive complex 1 (PRC1) exists as several subtypes, which are "writers" of ubiquitylation on histone H2A K118 and K119, crucial for transcriptional repression during development and cell identity determination. The mechanism by which dynamic chromatin exploration by variant PRC1 complexes couples to ubiquitin writing is unknown. Here, we developed a single-molecule approach to directly observe chromatin interactions and ubiquitylation by PRC1. We find that variant PRC1 transiently samples chromatin until it reaches a catalytically competent nucleosome-bound state, resulting in E2 recruitment and ubiquitin transfer. Variant PRC1 is weakly processive in ubiquitylating neighboring nucleosomes. Moreover, activity differences between PRC1 subtypes, containing either a PCGF1 or PCGF4 subunit, result from distinct probabilities of achieving a catalytically competent state. Our results thus demonstrate that the dynamic formation of an active complex between variant PRC1, E2, and chromatin is the critical determinant of subtype-specific variant PRC1 activity.
Collapse
Affiliation(s)
- Alexandra Teslenko
- SB ISIC LCBM, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015 Lausanne, Switzerland
| | - Beat Fierz
- SB ISIC LCBM, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Yang Z, Xiao Y, Shi Y, Liu L. Advances in the chemical synthesis of human proteoforms. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2860-5. [PMID: 40210795 DOI: 10.1007/s11427-024-2860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/03/2025] [Indexed: 04/12/2025]
Abstract
Access to structurally-defined human proteoforms is essential to the biochemical studies on human health and medicine. Chemical protein synthesis provides a bottom-up and atomic-resolution approach for the preparation of homogeneous proteoforms bearing any number of post-translational modifications of any structure, at any position, and in any combination. In this review, we summarize the development of chemical protein synthesis, focusing on the recent advances in synthetic methods, product characterizations, and biomedical applications. By analyzing the chemical protein synthesis studies on human proteoforms reported to date, this review demonstrates the significant methodological improvements that have taken place in the field of human proteoform synthesis, especially in the last decade. Our analysis shows that although further method development is needed, all the human proteoforms could be within reach in a cost-effective manner through a divide-and-conquer chemical protein synthesis strategy. The synthetic proteoforms have been increasingly used to support biomedical research, including spatial-temporal studies and interaction network analysis, activity quantification and mechanism elucidation, and the development and evaluation of diagnostics and therapeutics.
Collapse
Affiliation(s)
- Ziyi Yang
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yudi Xiao
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yang Shi
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Le TT, Gao X, Ha Park S, Lee J, Inman JT, Wang MD. Protocol for effective surface passivation for single-molecule studies of chromatin and topoisomerase II. STAR Protoc 2025; 6:103500. [PMID: 39693223 PMCID: PMC11719840 DOI: 10.1016/j.xpro.2024.103500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/29/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
For single-molecule studies requiring surface anchoring of biomolecules, poorly passivated surfaces can result in alterations of biomolecule structure and function that lead to artifacts. Here, we present a surface passivation assay for single-molecule studies of chromatin and topoisomerase II. We detail steps for preparing a nucleosome array and hydrophobic nitrocellulose-coated flow cell. We then describe procedures for chromatin stretching with an angular optical trap (AOT) and performing a chromatin-topoisomerase experiment. This method is cost effective and potentially applicable to other biomolecules. For complete details on the use and execution of this protocol, please refer to Le et al. 1.
Collapse
Affiliation(s)
- Tung T Le
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Xiang Gao
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Seong Ha Park
- Biophysics Program, Cornell University, Ithaca, NY 14853, USA
| | - Jaeyoon Lee
- Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - James T Inman
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Michelle D Wang
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
4
|
Li Z, Portillo-Ledesma S, Janani M, Schlick T. Incorporating multiscale methylation effects into nucleosome-resolution chromatin models for simulating mesoscale fibers. J Chem Phys 2025; 162:094107. [PMID: 40047512 PMCID: PMC11888786 DOI: 10.1063/5.0242199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/04/2025] [Indexed: 03/09/2025] Open
Abstract
Histone modifications play a crucial role in regulating chromatin architecture and gene expression. Here we develop a multiscale model for incorporating methylation in our nucleosome-resolution physics-based chromatin model to investigate the mechanisms by which H3K9 and H3K27 trimethylation (H3K9me3 and H3K27me3) influence chromatin structure and gene regulation. We apply three types of energy terms for this purpose: short-range potentials are derived from all-atom molecular dynamics simulations of wildtype and methylated chromatosomes, which revealed subtle local changes; medium-range potentials are derived by incorporating contacts between HP1 and nucleosomes modified by H3K9me3, to incorporate experimental results of enhanced contacts for short chromatin fibers (12 nucleosomes); for long-range interactions we identify H3K9me3- and H3K27me3-associated contacts based on Hi-C maps with a machine learning approach. These combined multiscale effects can model methylation as a first approximation in our mesoscale chromatin model, and applications to gene systems offer new insights into the epigenetic regulation of genomes mediated by H3K9me3 and H3K27me3.
Collapse
Affiliation(s)
| | | | - Moshe Janani
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, New York 10003, USA
| | | |
Collapse
|
5
|
Ernst J, Sane A, van Noort J. Disentangling Timescales of Molecular Kinetics with spFRET using ALEX-FCS. J Fluoresc 2025:10.1007/s10895-025-04187-0. [PMID: 39960521 DOI: 10.1007/s10895-025-04187-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/03/2025] [Indexed: 05/23/2025]
Abstract
Single-pair Förster resonance energy transfer (spFRET) probes the dynamics of molecular structures with (sub-)nanometer accuracy. When combined with fluorescence correlation spectroscopy (FCS), diffusion times and conformation lifetimes can be obtained. Alternating excitation (ALEX) further complements spFRET measurements on freely diffusing molecules, allowing for burst analysis, which can be used to reduce background signal without significant changes to the experimental setup. ALEX is particularly useful for extracting conformational dynamics, but extracting small differences in FRET levels and/or diffusion times can still be difficult for multi-species samples with fast or slow transition rates. Though the combination of spFRET, FCS and ALEX can help to constrain the fits of correlation curves, a rigorous analysis of the range of lifetimes that can be probed with a combination of these methods is lacking. Here, we simulated spFRET-ALEX-FCS experiments of molecules with two conformations that differ both in FRET levels and in diffusion coefficients, representative of fully wrapped and partially unwrapped nucleosomes. We show that we can distinguish small changes in the diffusion coefficient and that burst selection yields accurate lifetimes ranging from 100 us to 100 ms. The simulations provide a framework that can be expanded for more complex systems having a larger number of conformational states, variable stoichiometries from binding interactions and/or other excitation schemes.
Collapse
Affiliation(s)
- Jeremy Ernst
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, The Netherlands
| | - Aditya Sane
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, The Netherlands
| | - John van Noort
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, The Netherlands.
| |
Collapse
|
6
|
Stubhan S, Baptist AV, Körösy C, Narducci A, Moya Muñoz GG, Wendler N, Lak A, Sztucki M, Cordes T, Lipfert J. Determination of absolute intramolecular distances in proteins using anomalous X-ray scattering interferometry. NANOSCALE 2025; 17:3322-3330. [PMID: 39691975 PMCID: PMC11653172 DOI: 10.1039/d4nr03375b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/01/2024] [Indexed: 12/19/2024]
Abstract
Biomolecular structures are typically determined using frozen or crystalline samples. Measurement of intramolecular distances in solution can provide additional insights into conformational heterogeneity and dynamics of biological macromolecules and their complexes. The established molecular ruler techniques used for this (NMR, FRET, and EPR) are, however, limited in their dynamic range and require model assumptions to determine absolute distance or distance distributions. Here, we introduce anomalous X-ray scattering interferometry (AXSI) for intramolecular distance measurements in proteins, which are labeled at two sites with small gold nanoparticles of 0.7 nm radius. We apply AXSI to two different cysteine-variants of maltose binding protein in the presence and absence of its ligand maltose and find distances in quantitative agreement with single-molecule FRET experiments. Our study shows that AXSI enables determination of intramolecular distance distributions under virtually arbitrary solution conditions and we anticipate its broad use to characterize protein conformational ensembles and dynamics.
Collapse
Affiliation(s)
- Samuel Stubhan
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands.
| | - Anna V Baptist
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Caroline Körösy
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands.
| | - Alessandra Narducci
- Physical and Synthetic Biology, Faculty of Biology, LMU Munich, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany.
| | - Gustavo Gabriel Moya Muñoz
- Physical and Synthetic Biology, Faculty of Biology, LMU Munich, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany.
| | - Nicolas Wendler
- Physical and Synthetic Biology, Faculty of Biology, LMU Munich, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany.
| | - Aidin Lak
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany
| | | | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, LMU Munich, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany.
- Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Jan Lipfert
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands.
- Institute for Physics, Augsburg University, Universitätsstrasse 1, 86159 Augsburg, Germany
| |
Collapse
|
7
|
Choi I, Baek I. Single-molecule imaging for investigating the transcriptional control. Mol Cells 2025; 48:100179. [PMID: 39814141 PMCID: PMC11847471 DOI: 10.1016/j.mocell.2025.100179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/28/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
Transcription is an essential biological process involving numerous factors, including transcription factors (TFs), which play a central role in this process by binding to their cognate DNA motifs. Although cells must tightly regulate the kinetics of factor association and dissociation during transcription, factor dynamics during transcription remain poorly characterized, primarily because of the reliance on ensemble experiments that average out molecular heterogeneity. Recent advances in single-molecule fluorescence imaging techniques have enabled the exploration of TF dynamics at unprecedented resolution. Findings on the temporal dynamics of individual TFs have challenged classical models and provided new insights into transcriptional regulation. Single-molecule imaging has also elucidated the assembly kinetics of transcription complexes. In this review, we describe the single-molecule fluorescence imaging methods widely used to determine factor dynamics during transcription. We highlight new findings on TF binding to chromatin, TF target search, and the assembly order of transcription complexes. Additionally, we discuss the remaining challenges in achieving a comprehensive understanding of the temporal regulation of transcription.
Collapse
Affiliation(s)
- Insung Choi
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Inwha Baek
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; Institute of Regulatory Innovation through Science (IRIS), Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
8
|
Dias JK, D'Arcy S. Beyond the mono-nucleosome. Biochem Soc Trans 2025; 53:BCJ20240452. [PMID: 39887339 DOI: 10.1042/bst20230721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 02/01/2025]
Abstract
Nucleosomes, the building block of chromatin, are responsible for regulating access to the DNA sequence. This control is critical for essential cellular processes, including transcription and DNA replication and repair. Studying chromatin can be challenging both in vitro and in vivo, leading many to use a mono-nucleosome system to answer fundamental questions relating to chromatin regulators and binding partners. However, the mono-nucleosome fails to capture essential features of the chromatin structure, such as higher-order chromatin folding, local nucleosome-nucleosome interactions, and linker DNA trajectory and flexibility. We briefly review significant discoveries enabled by the mono-nucleosome and emphasize the need to go beyond this model system in vitro. Di-, tri-, and tetra-nucleosome arrays can answer important questions about chromatin folding, function, and dynamics. These multi-nucleosome arrays have highlighted the effects of varying linker DNA lengths, binding partners, and histone post-translational modifications in a more chromatin-like environment. We identify various chromatin regulatory mechanisms yet to be explored with multi-nucleosome arrays. Combined with in-solution biophysical techniques, studies of minimal multi-nucleosome chromatin models are feasible.
Collapse
Affiliation(s)
- Juliana Kikumoto Dias
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas, 75080, USA
| | - Sheena D'Arcy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas, 75080, USA
| |
Collapse
|
9
|
Nho S, Kim H. Dynamics of nucleosomes and chromatin fibers revealed by single-molecule measurements. BMB Rep 2025; 58:24-32. [PMID: 39757199 PMCID: PMC11788527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025] Open
Abstract
The nucleosome is the fundamental structural unit of chromosome fibers. DNA wraps around a histone octamer to form a nucleosome while neighboring nucleosomes interact to form higher-order structures and fit gigabase-long DNAs into a small volume of the nucleus. Nucleosomes interrupt the access of transcription factors to a genomic region and provide regulatory controls of gene expression. Biochemical and physical cues stimulate wrapping-unwrapping and condensation-decondensation dynamics of nucleosomes and nucleosome arrays. Nucleosome dynamics and chromatin fiber organization are influenced by changes in the ionic background within the nucleus, post-translational modifications of histone proteins, and DNA sequence characteristics, such as histone-binding motifs and nucleosome spacing. Biochemical and biophysical measurements, along with in silico simulations, have been extensively used to study the regulatory effects on chromatin dynamics. In particular, single-molecule measurements have revealed novel mechanistic details of nucleosome and chromatin dynamics. This minireview elucidates recent findings on chromatin dynamics from these approaches. [BMB Reports 2025; 58(1): 24-32].
Collapse
Affiliation(s)
- Sihyeong Nho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Hajin Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| |
Collapse
|
10
|
Lou J, Deng Q, Zhang X, Bell C, Das A, Bediaga N, Zlatic C, Johanson T, Allan R, Griffin MW, Paradkar P, Harvey K, Dawson M, Hinde E. Heterochromatin protein 1 alpha (HP1α) undergoes a monomer to dimer transition that opens and compacts live cell genome architecture. Nucleic Acids Res 2024; 52:10918-10933. [PMID: 39193905 PMCID: PMC11472067 DOI: 10.1093/nar/gkae720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Our understanding of heterochromatin nanostructure and its capacity to mediate gene silencing in a living cell has been prevented by the diffraction limit of optical microscopy. Thus, here to overcome this technical hurdle, and directly measure the nucleosome arrangement that underpins this dense chromatin state, we coupled fluorescence lifetime imaging microscopy (FLIM) of Förster resonance energy transfer (FRET) between histones core to the nucleosome, with molecular editing of heterochromatin protein 1 alpha (HP1α). Intriguingly, this super-resolved readout of nanoscale chromatin structure, alongside fluorescence fluctuation spectroscopy (FFS) and FLIM-FRET analysis of HP1α protein-protein interaction, revealed nucleosome arrangement to be differentially regulated by HP1α oligomeric state. Specifically, we found HP1α monomers to impart a previously undescribed global nucleosome spacing throughout genome architecture that is mediated by trimethylation on lysine 9 of histone H3 (H3K9me3) and locally reduced upon HP1α dimerisation. Collectively, these results demonstrate HP1α to impart a dual action on chromatin that increases the dynamic range of nucleosome proximity. We anticipate that this finding will have important implications for our understanding of how live cell heterochromatin structure regulates genome function.
Collapse
Affiliation(s)
- Jieqiong Lou
- School of Physics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Qiji Deng
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Xiaomeng Zhang
- School of Physics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Charles C Bell
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Andrew B Das
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Naiara G Bediaga
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Courtney O Zlatic
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Timothy M Johanson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Rhys S Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - PrasadN Paradkar
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong3220, Australia
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Anatomy and Developmental Biology and Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Elizabeth Hinde
- School of Physics, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
11
|
Le TT, Gao X, Park SH, Lee J, Inman JT, Wang MD. An Effective Surface Passivation Assay for Single-Molecule Studies of Chromatin and Topoisomerase II. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614989. [PMID: 39386467 PMCID: PMC11463425 DOI: 10.1101/2024.09.25.614989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
For complete details on the use and execution of this protocol, please refer to Le et al. (2019)1. SUMMARY A.For single-molecule studies requiring surface anchoring of biomolecules, a poorly passivated surface can result in alterations of biomolecule structure and function that can result in artifacts. This protocol describes surface passivation and sample chamber preparation for mechanical manipulation of chromatin fibers and characterization of topoisomerase II activity in physiological buffer conditions. The method employs enhanced surface hydrophobicity and purified blocking proteins to reduce non-specific surface adsorption. This method is accessible, cost-effective, and potentially widely applicable to other biomolecules.For a complete list of publications that employ this protocol, see the paper references.
Collapse
Affiliation(s)
- Tung T. Le
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Xiang Gao
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Seong Ha Park
- Biophysics Program, Cornell University, Ithaca, NY 14853, USA
| | - Jaeyoon Lee
- Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - James T. Inman
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Michelle D. Wang
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
- Technical Contact
- Lead Contact
| |
Collapse
|
12
|
Rudnizky S, Murray PJ, Wolfe CH, Ha T. Single-Macromolecule Studies of Eukaryotic Genomic Maintenance. Annu Rev Phys Chem 2024; 75:209-230. [PMID: 38382570 DOI: 10.1146/annurev-physchem-090722-010601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Genomes are self-organized and self-maintained as long, complex macromolecules of chromatin. The inherent heterogeneity, stochasticity, phase separation, and chromatin dynamics of genome operation make it challenging to study genomes using ensemble methods. Various single-molecule force-, fluorescent-, and sequencing-based techniques rooted in different disciplines have been developed to fill critical gaps in the capabilities of bulk measurements, each providing unique, otherwise inaccessible, insights into the structure and maintenance of the genome. Capable of capturing molecular-level details about the organization, conformational changes, and packaging of genetic material, as well as processive and stochastic movements of maintenance factors, a single-molecule toolbox provides an excellent opportunity for collaborative research to understand how genetic material functions in health and malfunctions in disease. In this review, we discuss novel insights brought to genomic sciences by single-molecule techniques and their potential to continue to revolutionize the field-one molecule at a time.
Collapse
Affiliation(s)
- Sergei Rudnizky
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter J Murray
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA;
| | - Clara H Wolfe
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Phan TM, Kim YC, Debelouchina GT, Mittal J. Interplay between charge distribution and DNA in shaping HP1 paralog phase separation and localization. eLife 2024; 12:RP90820. [PMID: 38592759 PMCID: PMC11003746 DOI: 10.7554/elife.90820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
The heterochromatin protein 1 (HP1) family is a crucial component of heterochromatin with diverse functions in gene regulation, cell cycle control, and cell differentiation. In humans, there are three paralogs, HP1α, HP1β, and HP1γ, which exhibit remarkable similarities in their domain architecture and sequence properties. Nevertheless, these paralogs display distinct behaviors in liquid-liquid phase separation (LLPS), a process linked to heterochromatin formation. Here, we employ a coarse-grained simulation framework to uncover the sequence features responsible for the observed differences in LLPS. We highlight the significance of the net charge and charge patterning along the sequence in governing paralog LLPS propensities. We also show that both highly conserved folded and less-conserved disordered domains contribute to the observed differences. Furthermore, we explore the potential co-localization of different HP1 paralogs in multicomponent assemblies and the impact of DNA on this process. Importantly, our study reveals that DNA can significantly reshape the stability of a minimal condensate formed by HP1 paralogs due to competitive interactions of HP1α with HP1β and HP1γ versus DNA. In conclusion, our work highlights the physicochemical nature of interactions that govern the distinct phase-separation behaviors of HP1 paralogs and provides a molecular framework for understanding their role in chromatin organization.
Collapse
Affiliation(s)
- Tien M Phan
- Artie McFerrin Department of Chemical Engineering, Texas A&M UniversityCollege StationUnited States
| | - Young C Kim
- Center for Materials Physics and Technology, Naval Research LaboratoryWashingtonUnited States
| | - Galia T Debelouchina
- Department of Chemistry and Biochemistry, University of California, San DiegoLa JollaUnited States
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M UniversityCollege StationUnited States
- Department of Chemistry, Texas A&M UniversityCollege StationUnited States
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M UniversityCollege StationUnited States
| |
Collapse
|
14
|
Franz P, Fierz B. Decoding Chromatin Ubiquitylation: A Chemical Biology Perspective. J Mol Biol 2024; 436:168442. [PMID: 38211893 DOI: 10.1016/j.jmb.2024.168442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Since Strahl and Allis proposed the "language of covalent histone modifications", a host of experimental studies have shed light on the different facets of chromatin regulation by epigenetic mechanisms. Initially proposed as a concept for controlling gene transcription, the regulation of deposition and removal of histone post-translational modifications (PTMs), such as acetylation, methylation, and phosphorylation, have been implicated in many chromatin regulation pathways. However, large PTMs such as ubiquitylation challenge research on many levels due to their chemical complexity. In recent years, chemical tools have been developed to generate chromatin in defined ubiquitylation states in vitro. Chemical biology approaches are now used to link specific histone ubiquitylation marks with downstream chromatin regulation events on the molecular level. Here, we want to highlight how chemical biology approaches have empowered the mechanistic study of chromatin ubiquitylation in the context of gene regulation and DNA repair with attention to future challenges.
Collapse
Affiliation(s)
- Pauline Franz
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Beat Fierz
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
15
|
Moreno-Yruela C, Fierz B. Revealing chromatin-specific functions of histone deacylases. Biochem Soc Trans 2024; 52:353-365. [PMID: 38189424 DOI: 10.1042/bst20230693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024]
Abstract
Histone deacylases are erasers of Nε-acyl-lysine post-translational modifications and have been targeted for decades for the treatment of cancer, neurodegeneration and other disorders. Due to their relatively promiscuous activity on peptide substrates in vitro, it has been challenging to determine the individual targets and substrate identification mechanisms of each isozyme, and they have been considered redundant regulators. In recent years, biochemical and biophysical studies have incorporated the use of reconstituted nucleosomes, which has revealed a diverse and complex arsenal of recognition mechanisms by which histone deacylases may differentiate themselves in vivo. In this review, we first present the peptide-based tools that have helped characterize histone deacylases in vitro to date, and we discuss the new insights that nucleosome tools are providing into their recognition of histone substrates within chromatin. Then, we summarize the powerful semi-synthetic approaches that are moving forward the study of chromatin-associated factors, both in vitro by detailed single-molecule mechanistic studies, and in cells by live chromatin modification. We finally offer our perspective on how these new techniques would advance the study of histone deacylases. We envision that such studies will help elucidate the role of individual isozymes in disease and provide a platform for the development of the next generation of therapeutics.
Collapse
Affiliation(s)
- Carlos Moreno-Yruela
- Laboratory of Biophysical Chemistry of Macromolecules (LCBM), Institute of Chemical Sciences and Engineering (ISIC), School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department of Drug Design and Pharmacology (ILF), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Beat Fierz
- Laboratory of Biophysical Chemistry of Macromolecules (LCBM), Institute of Chemical Sciences and Engineering (ISIC), School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Chappidi N, Quail T, Doll S, Vogel LT, Aleksandrov R, Felekyan S, Kühnemuth R, Stoynov S, Seidel CAM, Brugués J, Jahnel M, Franzmann TM, Alberti S. PARP1-DNA co-condensation drives DNA repair site assembly to prevent disjunction of broken DNA ends. Cell 2024; 187:945-961.e18. [PMID: 38320550 DOI: 10.1016/j.cell.2024.01.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/27/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
DNA double-strand breaks (DSBs) are repaired at DSB sites. How DSB sites assemble and how broken DNA is prevented from separating is not understood. Here we uncover that the synapsis of broken DNA is mediated by the DSB sensor protein poly(ADP-ribose) (PAR) polymerase 1 (PARP1). Using bottom-up biochemistry, we reconstitute functional DSB sites and show that DSB sites form through co-condensation of PARP1 multimers with DNA. The co-condensates exert mechanical forces to keep DNA ends together and become enzymatically active for PAR synthesis. PARylation promotes release of PARP1 from DNA ends and the recruitment of effectors, such as Fused in Sarcoma, which stabilizes broken DNA ends against separation, revealing a finely orchestrated order of events that primes broken DNA for repair. We provide a comprehensive model for the hierarchical assembly of DSB condensates to explain DNA end synapsis and the recruitment of effector proteins for DNA damage repair.
Collapse
Affiliation(s)
- Nagaraja Chappidi
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Thomas Quail
- Max Planck Institute of Cell Biology and Genetics (MPI-CBG), Pfotenhauerstr. 108, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Arnoldstraße 18, 01307 Dresden, Germany; Max Planck Institute for the Physics of Complex Systems (MPI-PKS), Nöthnitzer Str. 38, 01187 Dresden, Germany; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Simon Doll
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Arnoldstraße 18, 01307 Dresden, Germany
| | - Laura T Vogel
- Department of Molecular Physical Chemistry, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Radoslav Aleksandrov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str, bl.21, 1113 Sofia, Bulgaria
| | - Suren Felekyan
- Department of Molecular Physical Chemistry, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Ralf Kühnemuth
- Department of Molecular Physical Chemistry, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Stoyno Stoynov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str, bl.21, 1113 Sofia, Bulgaria
| | - Claus A M Seidel
- Department of Molecular Physical Chemistry, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Jan Brugués
- Max Planck Institute of Cell Biology and Genetics (MPI-CBG), Pfotenhauerstr. 108, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Arnoldstraße 18, 01307 Dresden, Germany; Max Planck Institute for the Physics of Complex Systems (MPI-PKS), Nöthnitzer Str. 38, 01187 Dresden, Germany
| | - Marcus Jahnel
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Arnoldstraße 18, 01307 Dresden, Germany
| | - Titus M Franzmann
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Simon Alberti
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany.
| |
Collapse
|
17
|
Madariaga-Marcos J, Aldag P, Kauert DJ, Seidel R. Correlated Single-Molecule Magnetic Tweezers and Fluorescence Measurements of DNA-Enzyme Interactions. Methods Mol Biol 2024; 2694:421-449. [PMID: 37824016 DOI: 10.1007/978-1-0716-3377-9_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Combining force spectroscopy and fluorescence microscopy provides a substantial improvement to the single-molecule toolbox by allowing simultaneous manipulation and orthogonal characterizations of the conformations, interactions, and activity of biomolecular complexes. Here, we describe a combined magnetic tweezers and total internal reflection fluorescence microscopy setup to carry out correlated single-molecule fluorescence spectroscopy and force/twisting experiments. We apply the setup to reveal the DNA interactions of the CRISPR-Cas surveillance complex Cascade. Single-molecule fluorescence of a labeled Cascade allows to follow the DNA association and dissociation of the protein. Simultaneously, the magnetic tweezers probe the DNA unwinding during R-loop formation by the bound Cascade complexes. Furthermore, the setup supports observation of 1D diffusion of protein complexes on stretched DNA molecules. This technique can be applied to study a vast range of protein-DNA interactions.
Collapse
Affiliation(s)
- Julene Madariaga-Marcos
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
| | - Pierre Aldag
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
| | - Dominik J Kauert
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
| | - Ralf Seidel
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany.
| |
Collapse
|
18
|
Nagpal H, Ali-Ahmad A, Hirano Y, Cai W, Halic M, Fukagawa T, Sekulić N, Fierz B. CENP-A and CENP-B collaborate to create an open centromeric chromatin state. Nat Commun 2023; 14:8227. [PMID: 38086807 PMCID: PMC10716449 DOI: 10.1038/s41467-023-43739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Centromeres are epigenetically defined via the presence of the histone H3 variant CENP-A. Contacting CENP-A nucleosomes, the constitutive centromere associated network (CCAN) and the kinetochore assemble, connecting the centromere to spindle microtubules during cell division. The DNA-binding centromeric protein CENP-B is involved in maintaining centromere stability and, together with CENP-A, shapes the centromeric chromatin state. The nanoscale organization of centromeric chromatin is not well understood. Here, we use single-molecule fluorescence and cryoelectron microscopy (cryoEM) to show that CENP-A incorporation establishes a dynamic and open chromatin state. The increased dynamics of CENP-A chromatin create an opening for CENP-B DNA access. In turn, bound CENP-B further opens the chromatin fiber structure and induces nucleosomal DNA unwrapping. Finally, removal of CENP-A increases CENP-B mobility in cells. Together, our studies show that the two centromere-specific proteins collaborate to reshape chromatin structure, enabling the binding of centromeric factors and establishing a centromeric chromatin state.
Collapse
Affiliation(s)
- Harsh Nagpal
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, CH-1015, Lausanne, Switzerland
| | - Ahmad Ali-Ahmad
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Yasuhiro Hirano
- Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871, Japan
| | - Wei Cai
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, CH-1015, Lausanne, Switzerland
| | - Mario Halic
- Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105-3678, USA
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871, Japan
| | - Nikolina Sekulić
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway.
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315, Norway.
| | - Beat Fierz
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
19
|
Elathram N, Ackermann BE, Clark ET, Dunn SR, Debelouchina GT. Phosphorylated HP1α-Nucleosome Interactions in Phase Separated Environments. J Am Chem Soc 2023; 145:23994-24004. [PMID: 37870432 PMCID: PMC10636758 DOI: 10.1021/jacs.3c06481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
In the nucleus, transcriptionally silent genes are sequestered into heterochromatin compartments comprising nucleosomes decorated with histone H3 Lys9 trimethylation and a protein called HP1α. This protein can form liquid-liquid droplets in vitro and potentially organize heterochromatin through a phase separation mechanism that is promoted by phosphorylation. Elucidating the molecular interactions that drive HP1α phase separation and its consequences on nucleosome structure and dynamics has been challenging due to the viscous and heterogeneous nature of such assemblies. Here, we tackle this problem by a combination of solution and solid-state NMR spectroscopy, which allows us to dissect the interactions of phosphorylated HP1α with nucleosomes in the context of phase separation. Our experiments indicate that phosphorylated human HP1α does not cause any major rearrangements to the nucleosome core, in contrast to the yeast homologue Swi6. Instead, HP1α interacts specifically with the methylated H3 tails and slows the dynamics of the H4 tails. Our results shed light on how phosphorylated HP1α proteins may regulate the heterochromatin landscape, while our approach provides an atomic resolution view of a heterogeneous and dynamic biological system regulated by a complex network of interactions and post-translational modifications.
Collapse
Affiliation(s)
- Nesreen Elathram
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Bryce E. Ackermann
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Evan T. Clark
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Shelby R. Dunn
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
20
|
Kar M, Vogel LT, Chauhan G, Ausserwöger H, Welsh TJ, Kamath AR, Knowles TPJ, Hyman AA, Seidel CAM, Pappu RV. Glutamate helps unmask the differences in driving forces for phase separation versus clustering of FET family proteins in sub-saturated solutions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.552963. [PMID: 37609232 PMCID: PMC10441405 DOI: 10.1101/2023.08.11.552963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Multivalent proteins undergo coupled segregative and associative phase transitions. Phase separation, a segregative transition, is driven by macromolecular solubility, and this leads to coexisting phases above system-specific saturation concentrations. Percolation is a continuous transition that is driven by multivalent associations among cohesive motifs. Contributions from percolation are highlighted by the formation of heterogeneous distributions of clusters in sub-saturated solutions, as was recently reported for Fused in sarcoma (FUS) and FET family proteins. Here, we show that clustering and phase separation are defined by a separation of length- and energy-scales. This is unmasked when glutamate is the primary solution anion. Glutamate is preferentially excluded from protein sites, and this enhances molecular associations. Differences between glutamate and chloride are manifest at ultra-low protein concentrations. These differences are amplified as concentrations increase, and they saturate as the micron-scale is approached. Therefore, condensate formation in supersaturated solutions and clustering in sub-saturated are governed by distinct energy and length scales. Glutamate, unlike chloride, is the dominant intracellular anion, and the separation of scales, which is masked in chloride, is unmasked in glutamate. Our work highlights how components of cellular milieus and sequence-encoded interactions contribute to amplifying distinct contributions from associative versus segregative phase transitions.
Collapse
|
21
|
Joron K, Viegas JO, Haas-Neill L, Bier S, Drori P, Dvir S, Lim PSL, Rauscher S, Meshorer E, Lerner E. Fluorescent protein lifetimes report densities and phases of nuclear condensates during embryonic stem-cell differentiation. Nat Commun 2023; 14:4885. [PMID: 37573411 PMCID: PMC10423231 DOI: 10.1038/s41467-023-40647-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023] Open
Abstract
Fluorescent proteins (FP) are frequently used for studying proteins inside cells. In advanced fluorescence microscopy, FPs can report on additional intracellular variables. One variable is the local density near FPs, which can be useful in studying densities within cellular bio-condensates. Here, we show that a reduction in fluorescence lifetimes of common monomeric FPs reports increased levels of local densities. We demonstrate the use of this fluorescence-based variable to report the distribution of local densities within heterochromatin protein 1α (HP1α) in mouse embryonic stem cells (ESCs), before and after early differentiation. We find that local densities within HP1α condensates in pluripotent ESCs are heterogeneous and cannot be explained by a single liquid phase. Early differentiation, however, induces a change towards a more homogeneous distribution of local densities, which can be explained as a liquid-like phase. In conclusion, we provide a fluorescence-based method to report increased local densities and apply it to distinguish between homogeneous and heterogeneous local densities within bio-condensates.
Collapse
Affiliation(s)
- Khalil Joron
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Juliane Oliveira Viegas
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Liam Haas-Neill
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Physics, University of Toronto, Toronto, ON, M5S 1A7, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Sariel Bier
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Paz Drori
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Shani Dvir
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Patrick Siang Lin Lim
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Sarah Rauscher
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Physics, University of Toronto, Toronto, ON, M5S 1A7, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel.
- Edmond and Lily Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|
22
|
Arar S, Haque MA, Kayed R. Protein aggregation and neurodegenerative disease: Structural outlook for the novel therapeutics. Proteins 2023:10.1002/prot.26561. [PMID: 37530227 PMCID: PMC10834863 DOI: 10.1002/prot.26561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
Before the controversial approval of humanized monoclonal antibody lecanemab, which binds to the soluble amyloid-β protofibrils, all the treatments available earlier, for Alzheimer's disease (AD) were symptomatic. The researchers are still struggling to find a breakthrough in AD therapeutic medicine, which is partially attributable to lack in understanding of the structural information associated with the intrinsically disordered proteins and amyloids. One of the major challenges in this area of research is to understand the structural diversity of intrinsically disordered proteins under in vitro conditions. Therefore, in this review, we have summarized the in vitro applications of biophysical methods, which are aimed to shed some light on the heterogeneity, pathogenicity, structures and mechanisms of the intrinsically disordered protein aggregates associated with proteinopathies including AD. This review will also rationalize some of the strategies in modulating disease-relevant pathogenic protein entities by small molecules using structural biology approaches and biophysical characterization. We have also highlighted tools and techniques to simulate the in vivo conditions for native and cytotoxic tau/amyloids assemblies, urge new chemical approaches to replicate tau/amyloids assemblies similar to those in vivo conditions, in addition to designing novel potential drugs.
Collapse
Affiliation(s)
- Sharif Arar
- Mitchell Center for Neurodegenerative Diseases
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan
| | - Md Anzarul Haque
- Mitchell Center for Neurodegenerative Diseases
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| |
Collapse
|
23
|
Das SK, Huynh MT, Lee TH. Spontaneous histone exchange between nucleosomes. J Biol Chem 2023; 299:105037. [PMID: 37442235 PMCID: PMC10406861 DOI: 10.1016/j.jbc.2023.105037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023] Open
Abstract
The nucleosome is the fundamental gene-packing unit in eukaryotes. Nucleosomes comprise ∼147 bp DNA wrapped around an octameric histone protein core composed of two H2A-H2B dimers and one (H3-H4)2 tetramer. The strong yet flexible DNA-histone interactions are the physical basis of the dynamic regulation of genes packaged in chromatin. The dynamic nature of DNA-histone interactions also implies that nucleosomes dissociate DNA-histone contacts both transiently and repeatedly. This kinetic instability may lead to spontaneous nucleosome disassembly or histone exchange between nucleosomes. At high nucleosome concentrations, nucleosome-nucleosome collisions and subsequent histone exchange would be a more likely event, where nucleosomes could act as their own histone chaperone. This spontaneous histone exchange could serve as a mechanism for maintaining overall chromatin stability, although it has never been reported. Here we employed three-color single-molecule FRET (smFRET) to demonstrate that histone H2A-H2B dimers are exchanged spontaneously between nucleosomes on a time scale of a few tens of seconds at a physiological nucleosome concentration. We show that the rate of histone exchange increases at a higher monovalent salt concentration, with histone-acetylated nucleosomes, and in the presence of histone chaperone Nap1, while it remains unchanged at a higher temperature, and decreases upon DNA methylation. These results support the notion of histone exchange via transient and repetitive partial disassembly of the nucleosome and corroborate spontaneous histone diffusion in a compact chromatin context, modulating the local concentrations of histone modifications and variants.
Collapse
Affiliation(s)
- Subhra Kanti Das
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Mai Thao Huynh
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Tae-Hee Lee
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
24
|
Saurabh A, Fazel M, Safar M, Sgouralis I, Pressé S. Single-photon smFRET. I: Theory and conceptual basis. BIOPHYSICAL REPORTS 2023; 3:100089. [PMID: 36582655 PMCID: PMC9793182 DOI: 10.1016/j.bpr.2022.100089] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
We present a unified conceptual framework and the associated software package for single-molecule Förster resonance energy transfer (smFRET) analysis from single-photon arrivals leveraging Bayesian nonparametrics, BNP-FRET. This unified framework addresses the following key physical complexities of a single-photon smFRET experiment, including: 1) fluorophore photophysics; 2) continuous time kinetics of the labeled system with large timescale separations between photophysical phenomena such as excited photophysical state lifetimes and events such as transition between system states; 3) unavoidable detector artefacts; 4) background emissions; 5) unknown number of system states; and 6) both continuous and pulsed illumination. These physical features necessarily demand a novel framework that extends beyond existing tools. In particular, the theory naturally brings us to a hidden Markov model with a second-order structure and Bayesian nonparametrics on account of items 1, 2, and 5 on the list. In the second and third companion articles, we discuss the direct effects of these key complexities on the inference of parameters for continuous and pulsed illumination, respectively.
Collapse
Affiliation(s)
- Ayush Saurabh
- Center for Biological Physics, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Mohamadreza Fazel
- Center for Biological Physics, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Matthew Safar
- Center for Biological Physics, Arizona State University, Tempe, Arizona
- Department of Mathematics and Statistical Science, Arizona State University, Tempe, Arizona
| | - Ioannis Sgouralis
- Department of Mathematics, University of Tennessee Knoxville, Knoxville, Tennesse
| | - Steve Pressé
- Center for Biological Physics, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
| |
Collapse
|
25
|
Schuhmacher M, Hoogendoorn S. Out With a Bang: Celebrating Global Chemical Biology. ACS Chem Biol 2023; 18:218-222. [PMID: 36648442 DOI: 10.1021/acschembio.2c00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
On November 8-10, 2022, 163 participants from all over the world gathered at the Campus Biotech in Geneva, Switzerland to share in the latest research in chemical biology. The fourth international symposium of the Swiss National Centres of Competence in Research (NCCR) Chemical Biology coincided with the end of this successful research consortium, and as such this event marked a celebration of the past 12 years of chemical biology research in Switzerland. The inspiring talks delivered by the 15 well-known scientists, balanced in gender, expertise, and geographic location, as well as the numerous poster presentations by junior scientists showcased the breadth of global chemical biology and the bright future ahead.
Collapse
Affiliation(s)
- Milena Schuhmacher
- Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Sascha Hoogendoorn
- Department of Organic Chemistry, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
26
|
Contribution of smFRET to Chromatin Research. BIOPHYSICA 2023. [DOI: 10.3390/biophysica3010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Chromatins are structural components of chromosomes and consist of DNA and histone proteins. The structure, dynamics, and function of chromatins are important in regulating genetic processes. Several different experimental and theoretical tools have been employed to understand chromatins better. In this review, we will focus on the literatures engrossed in understanding of chromatins using single-molecule Förster resonance energy transfer (smFRET). smFRET is a single-molecule fluorescence microscopic technique that can furnish information regarding the distance between two points in space. This has been utilized to efficiently unveil the structural details of chromatins.
Collapse
|
27
|
Mansisidor AR, Risca VI. Chromatin accessibility: methods, mechanisms, and biological insights. Nucleus 2022; 13:236-276. [PMID: 36404679 PMCID: PMC9683059 DOI: 10.1080/19491034.2022.2143106] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 11/22/2022] Open
Abstract
Access to DNA is a prerequisite to the execution of essential cellular processes that include transcription, replication, chromosomal segregation, and DNA repair. How the proteins that regulate these processes function in the context of chromatin and its dynamic architectures is an intensive field of study. Over the past decade, genome-wide assays and new imaging approaches have enabled a greater understanding of how access to the genome is regulated by nucleosomes and associated proteins. Additional mechanisms that may control DNA accessibility in vivo include chromatin compaction and phase separation - processes that are beginning to be understood. Here, we review the ongoing development of accessibility measurements, we summarize the different molecular and structural mechanisms that shape the accessibility landscape, and we detail the many important biological functions that are linked to chromatin accessibility.
Collapse
Affiliation(s)
- Andrés R. Mansisidor
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY
| | - Viviana I. Risca
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY
| |
Collapse
|
28
|
Mota A, Berezicki S, Wernersson E, Harbers L, Li-Wang X, Gradin K, Peuckert C, Crosetto N, Bienko M. FRET-FISH probes chromatin compaction at individual genomic loci in single cells. Nat Commun 2022; 13:6680. [PMID: 36335096 PMCID: PMC9637210 DOI: 10.1038/s41467-022-34183-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Chromatin compaction is a key biophysical property that influences multiple DNA transactions. Lack of chromatin accessibility is frequently used as proxy for chromatin compaction. However, we currently lack tools for directly probing chromatin compaction at individual genomic loci. To fill this gap, here we present FRET-FISH, a method combining fluorescence resonance energy transfer (FRET) with DNA fluorescence in situ hybridization (FISH) to probe chromatin compaction at select loci in single cells. We first validate FRET-FISH by comparing it with ATAC-seq, demonstrating that local compaction and accessibility are strongly correlated. FRET-FISH also detects expected differences in compaction upon treatment with drugs perturbing global chromatin condensation. We then leverage FRET-FISH to study local chromatin compaction on the active and inactive X chromosome, along the nuclear radius, in different cell cycle phases, and during increasing passage number. FRET-FISH is a robust tool for probing local chromatin compaction in single cells.
Collapse
Affiliation(s)
- Ana Mota
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, Solna, SE-17165, Sweden
| | - Szymon Berezicki
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, Solna, SE-17165, Sweden
| | - Erik Wernersson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, Solna, SE-17165, Sweden
| | - Luuk Harbers
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, Solna, SE-17165, Sweden
| | - Xiaoze Li-Wang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, Solna, SE-17165, Sweden
| | - Katarina Gradin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, Solna, SE-17165, Sweden
| | - Christiane Peuckert
- Stockholm University, The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm, Sweden
| | - Nicola Crosetto
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, Solna, SE-17165, Sweden
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Magda Bienko
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden.
- Science for Life Laboratory, Tomtebodavägen 23A, Solna, SE-17165, Sweden.
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy.
| |
Collapse
|
29
|
Parmentier R, Racine L, Moussy A, Chantalat S, Sudharshan R, Papili Gao N, Stockholm D, Corre G, Fourel G, Deleuze JF, Gunawan R, Paldi A. Global genome decompaction leads to stochastic activation of gene expression as a first step toward fate commitment in human hematopoietic cells. PLoS Biol 2022; 20:e3001849. [PMID: 36288293 PMCID: PMC9604949 DOI: 10.1371/journal.pbio.3001849] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
When human cord blood-derived CD34+ cells are induced to differentiate, they undergo rapid and dynamic morphological and molecular transformations that are critical for fate commitment. In particular, the cells pass through a transitory phase known as "multilineage-primed" state. These cells are characterized by a mixed gene expression profile, different in each cell, with the coexpression of many genes characteristic for concurrent cell lineages. The aim of our study is to understand the mechanisms of the establishment and the exit from this transitory state. We investigated this issue using single-cell RNA sequencing and ATAC-seq. Two phases were detected. The first phase is a rapid and global chromatin decompaction that makes most of the gene promoters in the genome accessible for transcription. It results 24 h later in enhanced and pervasive transcription of the genome leading to the concomitant increase in the cell-to-cell variability of transcriptional profiles. The second phase is the exit from the multilineage-primed phase marked by a slow chromatin closure and a subsequent overall down-regulation of gene transcription. This process is selective and results in the emergence of coherent expression profiles corresponding to distinct cell subpopulations. The typical time scale of these events spans 48 to 72 h. These observations suggest that the nonspecificity of genome decompaction is the condition for the generation of a highly variable multilineage expression profile. The nonspecific phase is followed by specific regulatory actions that stabilize and maintain the activity of key genes, while the rest of the genome becomes repressed again by the chromatin recompaction. Thus, the initiation of differentiation is reminiscent of a constrained optimization process that associates the spontaneous generation of gene expression diversity to subsequent regulatory actions that maintain the activity of some genes, while the rest of the genome sinks back to the repressive closed chromatin state.
Collapse
Affiliation(s)
- Romuald Parmentier
- École Pratique des Hautes Études, PSL Research University, St-Antoine Research Center, Inserm U938, AP-HP, SIRIC CURAMUS, Paris, France
| | - Laëtitia Racine
- École Pratique des Hautes Études, PSL Research University, St-Antoine Research Center, Inserm U938, AP-HP, SIRIC CURAMUS, Paris, France
| | - Alice Moussy
- École Pratique des Hautes Études, PSL Research University, St-Antoine Research Center, Inserm U938, AP-HP, SIRIC CURAMUS, Paris, France
| | | | - Ravi Sudharshan
- Department of Chemical and Biological Engineering, University, Buffalo, New York, United States of America
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Nan Papili Gao
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Daniel Stockholm
- École Pratique des Hautes Études, PSL Research University, St-Antoine Research Center, Inserm U938, AP-HP, SIRIC CURAMUS, Paris, France
| | | | - Geneviève Fourel
- Laboratory of Biology and Modelling of the Cell, University of Lyon, ENS de Lyon, University of Claude Bernard, CNRS UMR 5239, Inserm U1210, Lyon, France
- Centre Blaise Pascal, ENS de Lyon, Lyon, France
| | | | - Rudiyanto Gunawan
- Department of Chemical and Biological Engineering, University, Buffalo, New York, United States of America
| | - Andras Paldi
- École Pratique des Hautes Études, PSL Research University, St-Antoine Research Center, Inserm U938, AP-HP, SIRIC CURAMUS, Paris, France
- * E-mail:
| |
Collapse
|
30
|
Pramanik U, Nandy A, Khamari L, Mukherjee S. Structure and Transition Dynamics of Intrinsically Disordered Proteins Probed by Single-Molecule Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12764-12772. [PMID: 36217309 DOI: 10.1021/acs.langmuir.2c02409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Intrinsically disordered proteins (IDPs) are a class of proteins that do not follow the unanimated perspective of the structure-function paradigm. IDPs enunciate the dynamics of motions which are often difficult to characterize by a particular experimental or theoretical approach. The chameleon nature of the IDPs is a result of an alteration or transition in their conformation upon binding with ligands. Experimental investigations via ensemble-average approaches to probe this randomness are often difficult to synchronize. Thus, to sense the substates of different conformational ensembles of IDPs, researchers have often targeted approaches based on single-molecule measurements. In this Perspective, we will discuss various single-molecule approaches to explore the conformational transitions of IDPs in different scenarios, the outcome, challenges, and future prospects.
Collapse
Affiliation(s)
- Ushasi Pramanik
- Department of ChemistryIISER Bhopal, Bhopal Bypass Road, Bhauri, Bhopal462 066, Madhya Pradesh, India
| | - Atanu Nandy
- Department of ChemistryIISER Bhopal, Bhopal Bypass Road, Bhauri, Bhopal462 066, Madhya Pradesh, India
| | - Laxmikanta Khamari
- Department of ChemistryIISER Bhopal, Bhopal Bypass Road, Bhauri, Bhopal462 066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of ChemistryIISER Bhopal, Bhopal Bypass Road, Bhauri, Bhopal462 066, Madhya Pradesh, India
| |
Collapse
|
31
|
HP1a-mediated heterochromatin formation promotes antimicrobial responses against Pseudomonas aeruginosa infection. BMC Biol 2022; 20:234. [PMID: 36266682 PMCID: PMC9583553 DOI: 10.1186/s12915-022-01435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background Pseudomonas aeruginosa is a Gram-negative bacterium that causes severe infectious disease in diverse host organisms, including humans. Effective therapeutic options for P. aeruginosa infection are limited due to increasing multidrug resistance and it is therefore critical to understand the regulation of host innate immune responses to guide development of effective therapeutic options. The epigenetic mechanisms by which hosts regulate their antimicrobial responses against P. aeruginosa infection remain unclear. Here, we used Drosophila melanogaster to investigate the role of heterochromatin protein 1a (HP1a), a key epigenetic regulator, and its mediation of heterochromatin formation in antimicrobial responses against PA14, a highly virulent P. aeruginosa strain. Results Animals with decreased heterochromatin levels showed less resistance to P. aeruginosa infection. In contrast, flies with increased heterochromatin formation, either in the whole organism or specifically in the fat body—an organ important in humoral immune response—showed greater resistance to P. aeruginosa infection, as demonstrated by increased host survival and reduced bacterial load. Increased heterochromatin formation in the fat body promoted the antimicrobial responses via upregulation of fat body immune deficiency (imd) pathway-mediated antimicrobial peptides (AMPs) before and in the middle stage of P. aeruginosa infection. The fat body AMPs were required to elicit HP1a-mediated antimicrobial responses against P. aeruginosa infection. Moreover, the levels of heterochromatin in the fat body were downregulated in the early stage, but upregulated in the middle stage, of P. aeruginosa infection. Conclusions These data indicate that HP1a-mediated heterochromatin formation in the fat body promotes antimicrobial responses by epigenetically upregulating AMPs of the imd pathway. Our study provides novel molecular, cellular, and organismal insights into new epigenetic strategies targeting heterochromatin that have the potential to combat P. aeruginosa infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01435-8.
Collapse
|
32
|
Bonnet J, Boichenko I, Kalb R, Le Jeune M, Maltseva S, Pieropan M, Finkl K, Fierz B, Müller J. PR-DUB preserves Polycomb repression by preventing excessive accumulation of H2Aub1, an antagonist of chromatin compaction. Genes Dev 2022; 36:1046-1061. [PMID: 36357125 PMCID: PMC9744231 DOI: 10.1101/gad.350014.122] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/18/2022] [Indexed: 11/12/2022]
Abstract
The Polycomb repressive complexes PRC1, PRC2, and PR-DUB repress target genes by modifying their chromatin. In Drosophila, PRC1 compacts chromatin and monoubiquitinates histone H2A at lysine 118 (H2Aub1), whereas PR-DUB is a major H2Aub1 deubiquitinase, but how H2Aub1 levels must be balanced for Polycomb repression remains unclear. We show that in early embryos, H2Aub1 is enriched at Polycomb target genes, where it facilitates H3K27me3 deposition by PRC2 to mark genes for repression. During subsequent stages of development, H2Aub1 becomes depleted from these genes and is no longer enriched when Polycomb maintains them repressed. Accordingly, Polycomb targets remain repressed in H2Aub1-deficient animals. In PR-DUB catalytic mutants, high levels of H2Aub1 accumulate at Polycomb target genes, and Polycomb repression breaks down. These high H2Aub1 levels do not diminish Polycomb protein complex binding or H3K27 trimethylation but increase DNA accessibility. We show that H2Aub1 interferes with nucleosome stacking and chromatin fiber folding in vitro. Consistent with this, Polycomb repression defects in PR-DUB mutants are exacerbated by reducing PRC1 chromatin compaction activity, but Polycomb repression is restored if PRC1 E3 ligase activity is removed. PR-DUB therefore acts as a rheostat that removes excessive H2Aub1 that, although deposited by PRC1, antagonizes PRC1-mediated chromatin compaction.
Collapse
Affiliation(s)
- Jacques Bonnet
- Laboratory of Chromatin Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Iulia Boichenko
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Reinhard Kalb
- Laboratory of Chromatin Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Mathilde Le Jeune
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Svetlana Maltseva
- Laboratory of Chromatin Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Mattia Pieropan
- Laboratory of Chromatin Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Katja Finkl
- Laboratory of Chromatin Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Beat Fierz
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Jürg Müller
- Laboratory of Chromatin Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
33
|
Götz M, Barth A, Bohr SSR, Börner R, Chen J, Cordes T, Erie DA, Gebhardt C, Hadzic MCAS, Hamilton GL, Hatzakis NS, Hugel T, Kisley L, Lamb DC, de Lannoy C, Mahn C, Dunukara D, de Ridder D, Sanabria H, Schimpf J, Seidel CAM, Sigel RKO, Sletfjerding MB, Thomsen J, Vollmar L, Wanninger S, Weninger KR, Xu P, Schmid S. A blind benchmark of analysis tools to infer kinetic rate constants from single-molecule FRET trajectories. Nat Commun 2022. [PMID: 36104339 DOI: 10.1101/2021.11.23.469671v2.article-info] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
Single-molecule FRET (smFRET) is a versatile technique to study the dynamics and function of biomolecules since it makes nanoscale movements detectable as fluorescence signals. The powerful ability to infer quantitative kinetic information from smFRET data is, however, complicated by experimental limitations. Diverse analysis tools have been developed to overcome these hurdles but a systematic comparison is lacking. Here, we report the results of a blind benchmark study assessing eleven analysis tools used to infer kinetic rate constants from smFRET trajectories. We test them against simulated and experimental data containing the most prominent difficulties encountered in analyzing smFRET experiments: different noise levels, varied model complexity, non-equilibrium dynamics, and kinetic heterogeneity. Our results highlight the current strengths and limitations in inferring kinetic information from smFRET trajectories. In addition, we formulate concrete recommendations and identify key targets for future developments, aimed to advance our understanding of biomolecular dynamics through quantitative experiment-derived models.
Collapse
Affiliation(s)
- Markus Götz
- Centre de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Univ Montpellier, 60 rue de Navacelles, 34090, Montpellier, France.
- PicoQuant GmbH, Rudower Chaussee 29, 12489, Berlin, Germany.
| | - Anders Barth
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Universitätsstr. 1, 40225, Düsseldorf, Germany
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, The Netherlands
| | - Søren S-R Bohr
- Department of Chemistry & Nano-science Center, University of Copenhagen, 2100, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Richard Börner
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
- Laserinstitut Hochschule Mittweida, University of Applied Sciences Mittweida, 09648, Mittweida, Germany
| | - Jixin Chen
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, USA
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Dorothy A Erie
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Christian Gebhardt
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | | | - George L Hamilton
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Nikos S Hatzakis
- Department of Chemistry & Nano-science Center, University of Copenhagen, 2100, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Lydia Kisley
- Department of Physics, Case Western Reserve University, Cleveland, OH, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Don C Lamb
- Department of Chemistry and Center for Nano Science (CeNS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377, München, Germany
| | - Carlos de Lannoy
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Chelsea Mahn
- Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Dushani Dunukara
- Department of Physics, Case Western Reserve University, Cleveland, OH, USA
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Julia Schimpf
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Claus A M Seidel
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Roland K O Sigel
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Magnus Berg Sletfjerding
- Department of Chemistry & Nano-science Center, University of Copenhagen, 2100, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Johannes Thomsen
- Department of Chemistry & Nano-science Center, University of Copenhagen, 2100, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Leonie Vollmar
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Simon Wanninger
- Department of Chemistry and Center for Nano Science (CeNS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377, München, Germany
| | - Keith R Weninger
- Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Pengning Xu
- Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sonja Schmid
- NanoDynamicsLab, Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands.
| |
Collapse
|
34
|
Götz M, Barth A, Bohr SSR, Börner R, Chen J, Cordes T, Erie DA, Gebhardt C, Hadzic MCAS, Hamilton GL, Hatzakis NS, Hugel T, Kisley L, Lamb DC, de Lannoy C, Mahn C, Dunukara D, de Ridder D, Sanabria H, Schimpf J, Seidel CAM, Sigel RKO, Sletfjerding MB, Thomsen J, Vollmar L, Wanninger S, Weninger KR, Xu P, Schmid S. A blind benchmark of analysis tools to infer kinetic rate constants from single-molecule FRET trajectories. Nat Commun 2022; 13:5402. [PMID: 36104339 PMCID: PMC9474500 DOI: 10.1038/s41467-022-33023-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/30/2022] [Indexed: 01/04/2023] Open
Abstract
Single-molecule FRET (smFRET) is a versatile technique to study the dynamics and function of biomolecules since it makes nanoscale movements detectable as fluorescence signals. The powerful ability to infer quantitative kinetic information from smFRET data is, however, complicated by experimental limitations. Diverse analysis tools have been developed to overcome these hurdles but a systematic comparison is lacking. Here, we report the results of a blind benchmark study assessing eleven analysis tools used to infer kinetic rate constants from smFRET trajectories. We test them against simulated and experimental data containing the most prominent difficulties encountered in analyzing smFRET experiments: different noise levels, varied model complexity, non-equilibrium dynamics, and kinetic heterogeneity. Our results highlight the current strengths and limitations in inferring kinetic information from smFRET trajectories. In addition, we formulate concrete recommendations and identify key targets for future developments, aimed to advance our understanding of biomolecular dynamics through quantitative experiment-derived models.
Collapse
Affiliation(s)
- Markus Götz
- Centre de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Univ Montpellier, 60 rue de Navacelles, 34090, Montpellier, France.
- PicoQuant GmbH, Rudower Chaussee 29, 12489, Berlin, Germany.
| | - Anders Barth
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Universitätsstr. 1, 40225, Düsseldorf, Germany
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, The Netherlands
| | - Søren S-R Bohr
- Department of Chemistry & Nano-science Center, University of Copenhagen, 2100, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Richard Börner
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
- Laserinstitut Hochschule Mittweida, University of Applied Sciences Mittweida, 09648, Mittweida, Germany
| | - Jixin Chen
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, USA
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Dorothy A Erie
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Christian Gebhardt
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | | | - George L Hamilton
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Nikos S Hatzakis
- Department of Chemistry & Nano-science Center, University of Copenhagen, 2100, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Lydia Kisley
- Department of Physics, Case Western Reserve University, Cleveland, OH, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Don C Lamb
- Department of Chemistry and Center for Nano Science (CeNS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377, München, Germany
| | - Carlos de Lannoy
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Chelsea Mahn
- Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Dushani Dunukara
- Department of Physics, Case Western Reserve University, Cleveland, OH, USA
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Julia Schimpf
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Claus A M Seidel
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Roland K O Sigel
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Magnus Berg Sletfjerding
- Department of Chemistry & Nano-science Center, University of Copenhagen, 2100, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Johannes Thomsen
- Department of Chemistry & Nano-science Center, University of Copenhagen, 2100, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Leonie Vollmar
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Simon Wanninger
- Department of Chemistry and Center for Nano Science (CeNS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377, München, Germany
| | - Keith R Weninger
- Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Pengning Xu
- Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sonja Schmid
- NanoDynamicsLab, Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands.
| |
Collapse
|
35
|
Liu S, Lin X, Zhang B. Chromatin fiber breaks into clutches under tension and crowding. Nucleic Acids Res 2022; 50:9738-9747. [PMID: 36029149 PMCID: PMC9508854 DOI: 10.1093/nar/gkac725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
The arrangement of nucleosomes inside chromatin is of extensive interest. While in vitro experiments have revealed the formation of 30 nm fibers, most in vivo studies have failed to confirm their presence in cell nuclei. To reconcile the diverging experimental findings, we characterized chromatin organization using a residue-level coarse-grained model. The computed force–extension curve matches well with measurements from single-molecule experiments. Notably, we found that a dodeca-nucleosome in the two-helix zigzag conformation breaks into structures with nucleosome clutches and a mix of trimers and tetramers under tension. Such unfolded configurations can also be stabilized through trans interactions with other chromatin chains. Our study suggests that unfolding from chromatin fibers could contribute to the irregularity of in vivo chromatin configurations. We further revealed that chromatin segments with fibril or clutch structures engaged in distinct binding modes and discussed the implications of these inter-chain interactions for a potential sol–gel phase transition.
Collapse
Affiliation(s)
- Shuming Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
36
|
Williams MR, Xiaokang Y, Hathaway NA, Kireev D. A simulation model of heterochromatin formation at submolecular detail. iScience 2022; 25:104590. [PMID: 35800764 PMCID: PMC9254115 DOI: 10.1016/j.isci.2022.104590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/16/2021] [Accepted: 06/08/2022] [Indexed: 11/15/2022] Open
Abstract
Heterochromatin is a physical state of the chromatin fiber that maintains gene repression during cell development. Although evidence exists on molecular mechanisms involved in heterochromatin formation, a detailed structural mechanism of heterochromatin formation needs a better understanding. We made use of a simple Monte Carlo simulation model with explicit representation of key molecular events to observe molecular self-organization leading to heterochromatin formation. Our simulations provide a structural interpretation of several important traits of the heterochromatinization process. In particular, this study provides a depiction of how small amounts of HP1 are able to induce a highly condensed chromatin state through HP1 dimerization and bridging of sequence-remote nucleosomes. It also elucidates structural roots of a yet poorly understood phenomenon of a nondeterministic nature of heterochromatin formation and subsequent gene repression. Experimental chromatin in vivo assay provides an unbiased estimate of time scale of repressive response to a heterochromatin-triggering event.
Collapse
Affiliation(s)
- Michael R. Williams
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, NC 27513, USA
| | - Yan Xiaokang
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, NC 27513, USA
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Nathaniel A. Hathaway
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, NC 27513, USA
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Dmitri Kireev
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, NC 27513, USA
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
37
|
Dwiranti A, Mualifah M, Kartapradja RHDH, Abinawanto A, Salamah A, Fukui K. Insight into magnesium ions effect on chromosome banding and ultrastructure. Microsc Res Tech 2022; 85:3356-3364. [PMID: 35765224 DOI: 10.1002/jemt.24190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/04/2022] [Accepted: 06/20/2022] [Indexed: 11/08/2022]
Abstract
Magnesium ion (Mg2+ ) plays a fundamental role in chromosome condensation which is important for genetic material segregation. Studies about the effects of Mg2+ on the overall chromosome structure have been reported. Nevertheless, its effects on the distribution of heterochromatin and euchromatin region have yet to be investigated. The aim of this study was to evaluate the effects of Mg2+ on the banding pattern and ultrastructure of the chromosome. Chromosome analysis was performed using the synchronized HeLa cells. The effect of Mg2+ was evaluated by subjecting the chromosomes to three different solutions, namely XBE5 (containing 5 mM Mg2+ ) as a control, XBE (0 mM Mg2+ ), and 1 mM EDTA as cations-chelator. Chromosome banding was carried out using the GTL-banding technique. The ultrastructure of the chromosomes treated with and without Mg2+ was further obtained using SEM. The results showed a condensed chromosome structure with a clear banding pattern when the chromosomes were treated with a buffer containing 5 mM Mg2+ . In contrast, chromosomes treated with a buffer containing no Mg2+ and those treated with a cations-chelator showed an expanded and fibrous structure with the lower intensity of the banding pattern. Elongation of the chromosome caused by decondensation resulted in the band splitting. The different ultrastructure of the chromosomes treated with and without Mg2+ was obvious under SEM. The results of this study further emphasized the role of Mg2+ on chromosome structure and gave insights into Mg2+ effects on the banding distribution and ultrastructure of the chromosome.
Collapse
Affiliation(s)
- Astari Dwiranti
- Cellular and Molecular Mechanisms in Biological System Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia
| | - Mualifah Mualifah
- Cellular and Molecular Mechanisms in Biological System Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia
| | | | - Abinawanto Abinawanto
- Cellular and Molecular Mechanisms in Biological System Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia
| | - Andi Salamah
- Cellular and Molecular Mechanisms in Biological System Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia
| | - Kiichi Fukui
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| |
Collapse
|
38
|
Opanasyuk O, Barth A, Peulen TO, Felekyan S, Kalinin S, Sanabria H, Seidel CA. Unraveling multi-state molecular dynamics in single-molecule FRET experiments. II. Quantitative analysis of multi-state kinetic networks. J Chem Phys 2022; 157:031501. [DOI: 10.1063/5.0095754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Single-molecule Förster Resonance Energy Transfer (smFRET) experiments are ideally suited to resolve the structural dynamics of biomolecules. A significant challenge to date is capturing and quantifying the exchange between multiple conformational states, mainly when these dynamics occur on the sub-millisecond timescale. Many methods for quantitative analysis are challenged if more than two states are involved, and the appropriate choice of the number of states in the kinetic network is difficult. An additional complication arises if dynamically active molecules coexist with pseudo-static molecules in similar conformational states with undistinguishable FRET efficiencies. To address these problems, we developed a quantitative integrative analysis framework that combines the information from FRET-lines that relate average fluorescence lifetimes and intensities in two-dimensional burst frequency histograms, fluorescence decays obtained by time-correlated single photon counting, photon distribution analysis of the intensities and fluorescence correlation spectroscopy. Individually, these methodologies provide ambiguous results for the characterization of dynamics in complex kinetic networks. However, the global analysis approach enables accurate determination of the number of states, their kinetic connectivity, the transition rate constants, and species fractions. To challenge the potential of smFRET experiments studying multi-state kinetic networks, we apply our integrative framework using a set of synthetic data for three-state systems with different kinetic connectivity and exchange rates. Our methodology paves the way towards an integrated analysis of multiparameter smFRET experiments that spans all dimensions of the experimental data. Finally, we propose a workflow for the analysis and show examples that demonstrate the usefulness of this toolkit for dynamic structural biology.
Collapse
Affiliation(s)
| | | | | | - Suren Felekyan
- PC-II, Heinrich Heine University Düsseldorf Department of Chemistry, Germany
| | - Stanislav Kalinin
- Institut für Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | - Claus A.M. Seidel
- Institut fuer Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, Germany
| |
Collapse
|
39
|
Generation of dynamic three-dimensional genome structure through phase separation of chromatin. Proc Natl Acad Sci U S A 2022; 119:e2109838119. [PMID: 35617433 PMCID: PMC9295772 DOI: 10.1073/pnas.2109838119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Significance DNA functions in living cells are crucially affected by the three-dimensional genome structure and dynamics. We analyze the whole genome of human cells by developing a polymer model of interphase nuclei. The model reveals the essential importance of the unfolding process of chromosomes from the condensed mitotic state for describing the interphase nuclei; through the unfolding process, heterogeneous repulsive interactions among chromatin chains induce phase separation of chromatin, which quantitatively explains the experimentally observed various genomic data. We can use this model structure as a platform to analyze the relationship among genome structure, dynamics, and functions.
Collapse
|
40
|
Vermeer B, Schmid S. Can DyeCycling break the photobleaching limit in single-molecule FRET? NANO RESEARCH 2022; 15:9818-9830. [PMID: 35582137 PMCID: PMC9101981 DOI: 10.1007/s12274-022-4420-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 05/03/2023]
Abstract
Biomolecular systems, such as proteins, crucially rely on dynamic processes at the nanoscale. Detecting biomolecular nanodynamics is therefore key to obtaining a mechanistic understanding of the energies and molecular driving forces that control biomolecular systems. Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful technique to observe in real-time how a single biomolecule proceeds through its functional cycle involving a sequence of distinct structural states. Currently, this technique is fundamentally limited by irreversible photobleaching, causing the untimely end of the experiment and thus, a narrow temporal bandwidth of ≤ 3 orders of magnitude. Here, we introduce "DyeCycling", a measurement scheme with which we aim to break the photobleaching limit in smFRET. We introduce the concept of spontaneous dye replacement by simulations, and as an experimental proof-of-concept, we demonstrate the intermittent observation of a single biomolecule for one hour with a time resolution of milliseconds. Theoretically, DyeCycling can provide > 100-fold more information per single molecule than conventional smFRET. We discuss the experimental implementation of DyeCycling, its current and fundamental limitations, and specific biological use cases. Given its general simplicity and versatility, DyeCycling has the potential to revolutionize the field of time-resolved smFRET, where it may serve to unravel a wealth of biomolecular dynamics by bridging from milliseconds to the hour range. Electronic Supplementary Material Supplementary material is available for this article at 10.1007/s12274-022-4420-5 and is accessible for authorized users.
Collapse
Affiliation(s)
- Benjamin Vermeer
- NanoDynamicsLab, Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Sonja Schmid
- NanoDynamicsLab, Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| |
Collapse
|
41
|
Shi X, Zhai Z, Chen Y, Li J, Nordenskiöld L. Recent Advances in Investigating Functional Dynamics of Chromatin. Front Genet 2022; 13:870640. [PMID: 35450211 PMCID: PMC9017861 DOI: 10.3389/fgene.2022.870640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022] Open
Abstract
Dynamics spanning the picosecond-minute time domain and the atomic-subcellular spatial window have been observed for chromatin in vitro and in vivo. The condensed organization of chromatin in eukaryotic cells prevents regulatory factors from accessing genomic DNA, which requires dynamic stabilization and destabilization of structure to initiate downstream DNA activities. Those processes are achieved through altering conformational and dynamic properties of nucleosomes and nucleosome–protein complexes, of which delineating the atomistic pictures is essential to understand the mechanisms of chromatin regulation. In this review, we summarize recent progress in determining chromatin dynamics and their modulations by a number of factors including post-translational modifications (PTMs), incorporation of histone variants, and binding of effector proteins. We focus on experimental observations obtained using high-resolution techniques, primarily including nuclear magnetic resonance (NMR) spectroscopy, Förster (or fluorescence) resonance energy transfer (FRET) microscopy, and molecular dynamics (MD) simulations, and discuss the elucidated dynamics in the context of functional response and relevance.
Collapse
Affiliation(s)
- Xiangyan Shi
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Ziwei Zhai
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Yinglu Chen
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Jindi Li
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
42
|
Guidotti N, Eördögh Á, Mivelaz M, Rivera-Fuentes P, Fierz B. Multivalent Peptide Ligands To Probe the Chromocenter Microenvironment in Living Cells. ACS Chem Biol 2022; 18:1066-1075. [PMID: 35447032 DOI: 10.1021/acschembio.2c00203] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chromatin is spatially organized into functional states that are defined by both the presence of specific histone post-translational modifications (PTMs) and a defined set of chromatin-associated "reader" proteins. Different models for the underlying mechanism of such compartmentalization have been proposed, including liquid-liquid phase separation (LLPS) of chromatin-associated proteins to drive spatial organization. Heterochromatin, characterized by lysine 9 methylation on histone H3 (H3K9me3) and the presence of heterochromatin protein 1 (HP1) as a multivalent reader, represents a prime example of a spatially defined chromatin state. Heterochromatin foci exhibit features of protein condensates driven by LLPS; however, the exact nature of the physicochemical environment within heterochromatin in different cell types is not completely understood. Here we present tools to interrogate the environment of chromatin subcompartments in the form of modular, cell-permeable, multivalent, and fluorescent peptide probes. These probes can be tuned to target specific chromatin states by providing binding sites to reader proteins and can thereby integrate into the PTM-reader interaction network. Here we generate probes specific to HP1, directing them to heterochromatin at chromocenters in mouse fibroblasts. Moreover, we use a polarity-sensing photoactivatable probe that photoconverts to a fluorescent state in phase-separated protein droplets and thereby reports on the local microenvironment. Equipped with this dye, our probes indeed turn fluorescent in murine chromocenters. Image analysis and single-molecule tracking experiments reveal that the compartments are less dense and more dynamic than HP1 condensates obtained in vitro. Our results thus demonstrate that the local organization of heterochromatin in chromocenters is internally more complex than an HP1 condensate.
Collapse
Affiliation(s)
- Nora Guidotti
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, CH-1015 Lausanne, Switzerland
| | - Ádám Eördögh
- EPFL, SB ISIC LOCBP, Station 6, CH-1015 Lausanne, Switzerland
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Maxime Mivelaz
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, CH-1015 Lausanne, Switzerland
| | | | - Beat Fierz
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
43
|
Lee BHJ, Arya G. Assembly mechanism of surface-functionalized nanocubes. NANOSCALE 2022; 14:3917-3928. [PMID: 35225318 DOI: 10.1039/d1nr07995f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Faceted nanoparticles can be used as building blocks to assemble nanomaterials with exceptional optical and catalytic properties. Recent studies have shown that surface functionalization of such nanoparticles with organic molecules, polymer chains, or DNA can be used to control the separation distance and orientation of particles within their assemblies. In this study, we computationally investigate the mechanism of assembly of nanocubes grafted with short-chain molecules. Our approach involves computing the interaction free energy landscape of a pair of such nanocubes via Monte Carlo simulations and using the Dijkstra algorithm to determine the minimum free energy pathway connecting key states in the landscape. We find that the assembly pathway of nanocubes is very rugged involving multiple energy barriers and metastable states. Analysis of nanocube configurations along the pathway reveals that the assembly mechanism is dominated by sliding motion of nanocubes relative to each other punctuated by their local dissociation at grafting points involving lineal separation and rolling motions. The height of energy barriers between metastable states depends on factors such as the interaction strength and surface roughness of the nanocubes and the steric repulsion from the grafts. These results imply that the observed assembly configuration of nanocubes depends not only on their globally stable minimum free energy state but also on the assembly pathway leading to this state. The free energy landscapes and assembly pathways presented in this study along with the proposed guidelines for engineering such pathways should be useful to researchers aiming to achieve uniform nanostructures from self-assembly of faceted nanoparticles.
Collapse
Affiliation(s)
- Brian Hyun-Jong Lee
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA.
| | - Gaurav Arya
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
44
|
Hsiao YT, Tsai CN, Chen TH, Hsieh CL. Label-Free Dynamic Imaging of Chromatin in Live Cell Nuclei by High-Speed Scattering-Based Interference Microscopy. ACS NANO 2022; 16:2774-2788. [PMID: 34967599 DOI: 10.1021/acsnano.1c09748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chromatin is a DNA-protein complex that is densely packed in the cell nucleus. The nanoscale chromatin compaction plays critical roles in the modulation of cell nuclear processes. However, little is known about the spatiotemporal dynamics of chromatin compaction states because it remains difficult to quantitatively measure the chromatin compaction level in live cells. Here, we demonstrate a strategy, referenced as DYNAMICS imaging, for mapping chromatin organization in live cell nuclei by analyzing the dynamic scattering signal of molecular fluctuations. Highly sensitive optical interference microscopy, coherent brightfield (COBRI) microscopy, is implemented to detect the linear scattering of unlabeled chromatin at a high speed. A theoretical model is established to determine the local chromatin density from the statistical fluctuation of the measured scattering signal. DYNAMICS imaging allows us to reconstruct a speckle-free nucleus map that is highly correlated to the fluorescence chromatin image. Moreover, together with calibration based on nanoparticle colloids, we show that the DYNAMICS signal is sensitive to the chromatin compaction level at the nanoscale. We confirm the effectiveness of DYNAMICS imaging in detecting the condensation and decondensation of chromatin induced by chemical drug treatments. Importantly, the stable scattering signal supports a continuous observation of the chromatin condensation and decondensation processes for more than 1 h. Using this technique, we detect transient and nanoscopic chromatin condensation events occurring on a time scale of a few seconds. Label-free DYNAMICS imaging offers the opportunity to investigate chromatin conformational dynamics and to explore their significance in various gene activities.
Collapse
Affiliation(s)
- Yi-Teng Hsiao
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, 1 Roosevelt Road Section 4, Taipei 10617, Taiwan
| | - Chia-Ni Tsai
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, 1 Roosevelt Road Section 4, Taipei 10617, Taiwan
| | - Te-Hsin Chen
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, 1 Roosevelt Road Section 4, Taipei 10617, Taiwan
| | - Chia-Lung Hsieh
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, 1 Roosevelt Road Section 4, Taipei 10617, Taiwan
| |
Collapse
|
45
|
Zhang H, Romero H, Schmidt A, Gagova K, Qin W, Bertulat B, Lehmkuhl A, Milden M, Eck M, Meckel T, Leonhardt H, Cardoso MC. MeCP2-induced heterochromatin organization is driven by oligomerization-based liquid–liquid phase separation and restricted by DNA methylation. Nucleus 2022; 13:1-34. [PMID: 35156529 PMCID: PMC8855868 DOI: 10.1080/19491034.2021.2024691] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Hui Zhang
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Hector Romero
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Annika Schmidt
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Katalina Gagova
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Weihua Qin
- Faculty of Biology, Ludwig Maximilians University Munich, Munich, Germany
| | - Bianca Bertulat
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Anne Lehmkuhl
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Manuela Milden
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Malte Eck
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Tobias Meckel
- Department of Chemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Heinrich Leonhardt
- Faculty of Biology, Ludwig Maximilians University Munich, Munich, Germany
| | - M. Cristina Cardoso
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
46
|
Sołtys K, Ożyhar A. Transcription Regulators and Membraneless Organelles Challenges to Investigate Them. Int J Mol Sci 2021; 22:12758. [PMID: 34884563 PMCID: PMC8657783 DOI: 10.3390/ijms222312758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
Eukaryotic cells are composed of different bio-macromolecules that are divided into compartments called organelles providing optimal microenvironments for many cellular processes. A specific type of organelles is membraneless organelles. They are formed via a process called liquid-liquid phase separation that is driven by weak multivalent interactions between particular bio-macromolecules. In this review, we gather crucial information regarding different classes of transcription regulators with the propensity to undergo liquid-liquid phase separation and stress the role of intrinsically disordered regions in this phenomenon. We also discuss recently developed experimental systems for studying formation and properties of membraneless organelles.
Collapse
Affiliation(s)
- Katarzyna Sołtys
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland;
| | | |
Collapse
|
47
|
Abstract
This paper provides a perspective on potential applications of a new single-molecule technique, viz., the nanopore electro-osmotic trap (NEOtrap). This solid-state nanopore-based method uses locally induced electro-osmosis to form a hydrodynamic trap for single molecules. Ionic current recordings allow one to study an unlabeled protein or nanoparticle of arbitrary charge that can be held in the nanopore's most sensitive region for very long times. After motivating the need for improved single-molecule technologies, we sketch various possible technical extensions and combinations of the NEOtrap. We lay out diverse applications in biosensing, enzymology, protein folding, protein dynamics, fingerprinting of proteins, detecting post-translational modifications, and all that at the level of single proteins - illustrating the unique versatility and potential of the NEOtrap.
Collapse
Affiliation(s)
- Sonja Schmid
- Nanodynamics Lab, Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708WE Wageningen, the Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| |
Collapse
|
48
|
Makasheva K, Bryan LC, Anders C, Panikulam S, Jinek M, Fierz B. Multiplexed Single-Molecule Experiments Reveal Nucleosome Invasion Dynamics of the Cas9 Genome Editor. J Am Chem Soc 2021; 143:16313-16319. [PMID: 34597515 PMCID: PMC8517959 DOI: 10.1021/jacs.1c06195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Indexed: 12/29/2022]
Abstract
Single-molecule measurements provide detailed mechanistic insights into molecular processes, for example in genome regulation where DNA access is controlled by nucleosomes and the chromatin machinery. However, real-time single-molecule observations of nuclear factors acting on defined chromatin substrates are challenging to perform quantitatively and reproducibly. Here we present XSCAN (multiplexed single-molecule detection of chromatin association), a method to parallelize single-molecule experiments by simultaneous imaging of a nucleosome library, where each nucleosome type carries an identifiable DNA sequence within its nucleosomal DNA. Parallel experiments are subsequently spatially decoded, via the detection of specific binding of dye-labeled DNA probes. We use this method to reveal how the Cas9 nuclease overcomes the nucleosome barrier when invading chromatinized DNA as a function of PAM position.
Collapse
Affiliation(s)
- Kristina Makasheva
- Laboratory
of Biophysical Chemistry of Macromolecules, Institute of Chemical
Sciences and Engineering (ISIC), École
Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Louise C. Bryan
- Laboratory
of Biophysical Chemistry of Macromolecules, Institute of Chemical
Sciences and Engineering (ISIC), École
Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Carolin Anders
- Department
of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Sherin Panikulam
- Department
of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Martin Jinek
- Department
of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Beat Fierz
- Laboratory
of Biophysical Chemistry of Macromolecules, Institute of Chemical
Sciences and Engineering (ISIC), École
Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| |
Collapse
|
49
|
Ackermann BE, Debelouchina GT. Emerging Contributions of Solid-State NMR Spectroscopy to Chromatin Structural Biology. Front Mol Biosci 2021; 8:741581. [PMID: 34708075 PMCID: PMC8544521 DOI: 10.3389/fmolb.2021.741581] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
The eukaryotic genome is packaged into chromatin, a polymer of DNA and histone proteins that regulates gene expression and the spatial organization of nuclear content. The repetitive character of chromatin is diversified into rich layers of complexity that encompass DNA sequence, histone variants and post-translational modifications. Subtle molecular changes in these variables can often lead to global chromatin rearrangements that dictate entire gene programs with far reaching implications for development and disease. Decades of structural biology advances have revealed the complex relationship between chromatin structure, dynamics, interactions, and gene expression. Here, we focus on the emerging contributions of magic-angle spinning solid-state nuclear magnetic resonance spectroscopy (MAS NMR), a relative newcomer on the chromatin structural biology stage. Unique among structural biology techniques, MAS NMR is ideally suited to provide atomic level information regarding both the rigid and dynamic components of this complex and heterogenous biological polymer. In this review, we highlight the advantages MAS NMR can offer to chromatin structural biologists, discuss sample preparation strategies for structural analysis, summarize recent MAS NMR studies of chromatin structure and dynamics, and close by discussing how MAS NMR can be combined with state-of-the-art chemical biology tools to reconstitute and dissect complex chromatin environments.
Collapse
Affiliation(s)
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
50
|
Mauney AW, Muthurajan UM, Luger K, Pollack L. Solution structure(s) of trinucleosomes from contrast variation SAXS. Nucleic Acids Res 2021; 49:5028-5037. [PMID: 34009316 PMCID: PMC8136820 DOI: 10.1093/nar/gkab290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 04/02/2021] [Accepted: 04/11/2021] [Indexed: 11/13/2022] Open
Abstract
Nucleosomes in all eukaryotic cells are organized into higher order structures that facilitate genome compaction. Visualizing these organized structures is an important step in understanding how genomic DNA is efficiently stored yet remains accessible to information-processing machinery. Arrays of linked nucleosomes serve as useful models for understanding how the properties of both DNA and protein partners affect their arrangement. A number of important questions are also associated with understanding how the spacings between nucleosomes are affected by the histone proteins, chromatin remodelers, or other chromatin-associated protein partners. Contrast variation small angle X-ray scattering (CVSAXS) reports the DNA conformation within protein-DNA complexes and here is applied to measure the conformation(s) of trinucleosomes in solution, with specific sensitivity to the distance between and relative orientation of linked nucleosomes. These data are interpreted in conjunction with DNA models that account for its sequence dependent mechanical properties, and Monte-Carlo techniques that generate realistic structures for comparison with measured scattering profiles. In solution, trinucleosomes segregate into two dominant populations, with the flanking nucleosomes stacked or nearly equilaterally separated, e.g. with roughly equal distance between all pairs of nucleosomes. These populations are consistent with previously observed magnesium-dependent structures of trinucleosomes with shorter linkers.
Collapse
Affiliation(s)
- Alexander W Mauney
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Uma M Muthurajan
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|