1
|
Lecomte JTJ, Johnson EA. The globins of cyanobacteria and green algae: An update. Adv Microb Physiol 2024; 85:97-144. [PMID: 39059824 DOI: 10.1016/bs.ampbs.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The globin superfamily of proteins is ancient and diverse. Regular assessments based on the increasing number of available genome sequences have elaborated on a complex evolutionary history. In this review, we present a summary of a decade of advances in characterising the globins of cyanobacteria and green algae. The focus is on haem-containing globins with an emphasis on recent experimental developments, which reinforce links to nitrogen metabolism and nitrosative stress response in addition to dioxygen management. Mention is made of globins that do not bind haem to provide an encompassing view of the superfamily and perspective on the field. It is reiterated that an effort toward phenotypical and in-vivo characterisation is needed to elucidate the many roles that these versatile proteins fulfil in oxygenic photosynthetic microbes. It is also proposed that globins from oxygenic organisms are promising proteins for applications in the biotechnology arena.
Collapse
Affiliation(s)
- Juliette T J Lecomte
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States.
| | - Eric A Johnson
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
2
|
Hsu TW, Fang JM. Advances and prospects of analytic methods for bacterial transglycosylation and inhibitor discovery. Analyst 2024; 149:2204-2222. [PMID: 38517346 DOI: 10.1039/d3an01968c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The cell wall is essential for bacteria to maintain structural rigidity and withstand external osmotic pressure. In bacteria, the cell wall is composed of peptidoglycan. Lipid II is the basic unit for constructing highly cross-linked peptidoglycan scaffolds. Transglycosylase (TGase) is the initiating enzyme in peptidoglycan synthesis that catalyzes the ligation of lipid II moieties into repeating GlcNAc-MurNAc polysaccharides, followed by transpeptidation to generate cross-linked structures. In addition to the transglycosylases in the class-A penicillin-binding proteins (aPBPs), SEDS (shape, elongation, division and sporulation) proteins are also present in most bacteria and play vital roles in cell wall renewal, elongation, and division. In this review, we focus on the latest analytical methods including the use of radioactive labeling, gel electrophoresis, mass spectrometry, fluorescence labeling, probing undecaprenyl pyrophosphate, fluorescence anisotropy, ligand-binding-induced tryptophan fluorescence quenching, and surface plasmon resonance to evaluate TGase activity in cell wall formation. This review also covers the discovery of TGase inhibitors as potential antibacterial agents. We hope that this review will give readers a better understanding of the chemistry and basic research for the development of novel antibiotics.
Collapse
Affiliation(s)
- Tse-Wei Hsu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| | - Jim-Min Fang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
3
|
Oluwole A, Hernández-Rocamora VM, Cao Y, Li X, Vollmer W, Robinson CV, Bolla JR. Real-Time Biosynthetic Reaction Monitoring Informs the Mechanism of Action of Antibiotics. J Am Chem Soc 2024; 146:7007-7017. [PMID: 38428018 PMCID: PMC10941186 DOI: 10.1021/jacs.4c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
The rapid spread of drug-resistant pathogens and the declining discovery of new antibiotics have created a global health crisis and heightened interest in the search for novel antibiotics. Beyond their discovery, elucidating mechanisms of action has necessitated new approaches, especially for antibiotics that interact with lipidic substrates and membrane proteins. Here, we develop a methodology for real-time reaction monitoring of the activities of two bacterial membrane phosphatases, UppP and PgpB. We then show how we can inhibit their activities using existing and newly discovered antibiotics such as bacitracin and teixobactin. Additionally, we found that the UppP dimer is stabilized by phosphatidylethanolamine, which, unexpectedly, enhanced the speed of substrate processing. Overall, our results demonstrate the potential of native mass spectrometry for real-time biosynthetic reaction monitoring of membrane enzymes, as well as their in situ inhibition and cofactor binding, to inform the mode of action of emerging antibiotics.
Collapse
Affiliation(s)
- Abraham
O. Oluwole
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Víctor M. Hernández-Rocamora
- Centre
for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, U.K.
| | - Yihui Cao
- Department
of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Xuechen Li
- Department
of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Waldemar Vollmer
- Centre
for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, U.K.
- Institute
for Molecular Bioscience, University of
Queensland, Carmody Road, Brisbane, Queensland 4072, Australia
| | - Carol V. Robinson
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Jani R. Bolla
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
- Department
of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K.
| |
Collapse
|
4
|
Kay EJ, Dooda MK, Bryant JC, Reid AJ, Wren BW, Troutman JM, Jorgenson MA. Engineering Escherichia coli for increased Und-P availability leads to material improvements in glycan expression technology. Microb Cell Fact 2024; 23:72. [PMID: 38429691 PMCID: PMC10908060 DOI: 10.1186/s12934-024-02339-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/16/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Bacterial surface glycans are assembled by glycosyltransferases (GTs) that transfer sugar monomers to long-chained lipid carriers. Most bacteria employ the 55-carbon chain undecaprenyl phosphate (Und-P) to scaffold glycan assembly. The amount of Und-P available for glycan synthesis is thought to be limited by the rate of Und-P synthesis and by competition for Und-P between phosphoglycosyl transferases (PGTs) and GTs that prime glycan assembly (which we collectively refer to as PGT/GTs). While decreasing Und-P availability disrupts glycan synthesis and promotes cell death, less is known about the effects of increased Und-P availability. RESULTS To determine if cells can maintain higher Und-P levels, we first reduced intracellular competition for Und-P by deleting all known non-essential PGT/GTs in the Gram-negative bacterium Escherichia coli (hereafter called ΔPGT/GT cells). We then increased the rate of Und-P synthesis in ΔPGT/GT cells by overexpressing the Und-P(P) synthase uppS from a plasmid (puppS). Und-P quantitation revealed that ΔPGT/GT/puppS cells can be induced to maintain 3-fold more Und-P than wild type cells. Next, we determined how increasing Und-P availability affects glycan expression. Interestingly, increasing Und-P availability increased endogenous and recombinant glycan expression. In particular, ΔPGT/GT/puppS cells could be induced to express 7-fold more capsule from Streptococcus pneumoniae serotype 4 than traditional E. coli cells used to express recombinant glycans. CONCLUSIONS We demonstrate that the biotechnology standard bacterium E. coli can be engineered to maintain higher levels of Und-P. The results also strongly suggest that Und-P pathways can be engineered to increase the expression of potentially any Und-P-dependent polymer. Given that many bacterial glycans are central to the production of vaccines, diagnostics, and therapeutics, increasing Und-P availability should be a foremost consideration when designing bacterial glycan expression systems.
Collapse
Affiliation(s)
- Emily J Kay
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Manoj K Dooda
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Joseph C Bryant
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 West Markham St. / Biomed I, Room 511 / Little Rock, Little Rock, AR, 72205, USA
| | - Amanda J Reid
- Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Brendan W Wren
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Jerry M Troutman
- Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Matthew A Jorgenson
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 West Markham St. / Biomed I, Room 511 / Little Rock, Little Rock, AR, 72205, USA.
| |
Collapse
|
5
|
Gupta R, Singh M, Pathania R. Chemical genetic approaches for the discovery of bacterial cell wall inhibitors. RSC Med Chem 2023; 14:2125-2154. [PMID: 37974958 PMCID: PMC10650376 DOI: 10.1039/d3md00143a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/10/2023] [Indexed: 11/19/2023] Open
Abstract
Antimicrobial resistance (AMR) in bacterial pathogens is a worldwide health issue. The innovation gap in discovering new antibiotics has remained a significant hurdle in combating the AMR problem. Currently, antibiotics target various vital components of the bacterial cell envelope, nucleic acid and protein biosynthesis machinery and metabolic pathways essential for bacterial survival. The critical role of the bacterial cell envelope in cell morphogenesis and integrity makes it an attractive drug target. While a significant number of in-clinic antibiotics target peptidoglycan biosynthesis, several components of the bacterial cell envelope have been overlooked. This review focuses on various antibacterial targets in the bacterial cell wall and the strategies employed to find their novel inhibitors. This review will further elaborate on combining forward and reverse chemical genetic approaches to discover antibacterials that target the bacterial cell envelope.
Collapse
Affiliation(s)
- Rinki Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| | - Mangal Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| |
Collapse
|
6
|
Wu S, Ji J, Carole NVD, Yang J, Yang Y, Sun J, Ye Y, Zhang Y, Sun X. Combined metabolomics and transcriptomics analysis reveals the mechanism of antibiotic resistance of Salmonella enterica serovar Typhimurium after acidic stress. Food Microbiol 2023; 115:104328. [PMID: 37567621 DOI: 10.1016/j.fm.2023.104328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 08/13/2023]
Abstract
Drug-resistant Salmonella is widely distributed in the meat production chain, endangering food safety and public health. Acidification of meat products during processing can induce acid stress, which may alter antibiotic resistance. Our study investigated the effects of acid stress on the antibiotic resistance and metabolic profile of Salmonella Typhimurium, and explored the underlying mechanisms using metabolomic and transcriptomic analysis. We found that acid-stressed 14028s was more sensitive to small molecule hydrophobic antibiotics (SMHA) while more resistant to meropenem (MERO). Metabolomic analysis revealed that enhanced sensitivity to SMHA was correlated with increased purine metabolism and tricarboxylic acid cycle. Transcriptomic analysis revealed the downregulation of chemotaxis-related genes, which are also associated with SMHA sensitivity. We also found a significant downregulation of the ompF gene, which encodes a major outer membrane protein OmpF of Salmonella. The decreased expression of OmpF porin hindered the influx of MERO, leading to enhanced resistance of the bacteria to the drug. Our findings contribute to greatly improve the understanding of the relationship between Salmonella metabolism, gene expression, and changes in drug resistance after acid stress, while providing a structural framework for exploring the relationship between bacterial stress responses and antibiotic resistance.
Collapse
Affiliation(s)
- Shang Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Nanfack V D Carole
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jia Yang
- Yangzhou Center for Food and Drug Control, Yangzhou, 225000, China
| | - Yang Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
7
|
Malwal SR, Mazurek B, Ko J, Xie P, Barnes C, Varvitsiotis C, Zimmerman MD, Olatunji S, Lee J, Xie M, Sarathy J, Caffrey M, Strynadka NCJ, Dartois V, Dick T, Rin Lee BN, Russell DG, Oldfield E. Investigation into the Mechanism of Action of the Tuberculosis Drug Candidate SQ109 and Its Metabolites and Analogues in Mycobacteria. J Med Chem 2023; 66:7553-7569. [PMID: 37235809 PMCID: PMC10330530 DOI: 10.1021/acs.jmedchem.3c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We tested a series of SQ109 analogues against Mycobacterium tuberculosis and M. smegmatis, in addition to determining their uncoupling activity. We then investigated potential protein targets, involved in quinone and cell wall biosynthesis, using "rescue" experiments. There was little effect of menaquinone on growth inhibition by SQ109, but there were large increases in the IC50 of SQ109 and its analogues (up to 20×) on addition of undecaprenyl phosphate (Up), a homologue of the mycobacterial decaprenyl (C50) diphosphate. Inhibition of an undecaprenyl diphosphate phosphatase, an ortholog of the mycobacterial phosphatase, correlated with cell growth inhibition, and we found that M. smegmatis cell growth inhibition could be well predicted by using uncoupler and Up-rescue results. We also investigated whether SQ109 was metabolized inside Mycobacterium tuberculosis, finding only a single metabolite, previously shown to be inactive. The results are of general interest since they help explain the mechanism of SQ109 in mycobacteria.
Collapse
Affiliation(s)
- Satish R. Malwal
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ben Mazurek
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jihee Ko
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Pujun Xie
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chikako Barnes
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Christine Varvitsiotis
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Matthew D. Zimmerman
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, New Jersey 07110, United States
| | - Samir Olatunji
- Schools of Medicine and Biochemistry & Immunology, Trinity College Dublin, D02 R590, Ireland
| | - Jaeyong Lee
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Min Xie
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, New Jersey 07110, United States
| | - Jansy Sarathy
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, New Jersey 07110, United States
| | - Martin Caffrey
- Schools of Medicine and Biochemistry & Immunology, Trinity College Dublin, D02 R590, Ireland
| | - Natalie C. J. Strynadka
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Véronique Dartois
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, New Jersey 07110, United States
- Hackensack Meridian School of Medicine, Department of Medical Sciences, Nutley, NJ 07110, United States
| | - Thomas Dick
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, New Jersey 07110, United States
- Hackensack Meridian School of Medicine, Department of Medical Sciences, Nutley, NJ 07110, United States
- Department of Microbiology and Immunology, Georgetown University, Washington, DC 20007, USA
| | - Bom Nae Rin Lee
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853 USA
| | - David G. Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853 USA
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Roney IJ, Rudner DZ. Two broadly conserved families of polyprenyl-phosphate transporters. Nature 2023; 613:729-734. [PMID: 36450357 PMCID: PMC10184681 DOI: 10.1038/s41586-022-05587-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
Peptidoglycan and almost all surface glycopolymers in bacteria are built in the cytoplasm on the lipid carrier undecaprenyl phosphate (UndP)1-4. These UndP-linked precursors are transported across the membrane and polymerized or directly transferred to surface polymers, lipids or proteins. UndP is then flipped to regenerate the pool of cytoplasmic-facing UndP. The identity of the flippase that catalyses transport has remained unknown. Here, using the antibiotic amphomycin that targets UndP5-7, we identified two broadly conserved protein families that affect UndP recycling. One (UptA) is a member of the DedA superfamily8; the other (PopT) contains the domain DUF368. Genetic, cytological and syntenic analyses indicate that these proteins are UndP transporters. Notably, homologues from Gram-positive and Gram-negative bacteria promote UndP transport in Bacillus subtilis, indicating that recycling activity is broadly conserved among family members. Inhibitors of these flippases could potentiate the activity of antibiotics targeting the cell envelope.
Collapse
Affiliation(s)
- Ian J Roney
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Sit B, Srisuknimit V, Bueno E, Zingl FG, Hullahalli K, Cava F, Waldor MK. Undecaprenyl phosphate translocases confer conditional microbial fitness. Nature 2023; 613:721-728. [PMID: 36450355 PMCID: PMC9876793 DOI: 10.1038/s41586-022-05569-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
The microbial cell wall is essential for maintenance of cell shape and resistance to external stressors1. The primary structural component of the cell wall is peptidoglycan, a glycopolymer with peptide crosslinks located outside of the cell membrane1. Peptidoglycan biosynthesis and structure are responsive to shifting environmental conditions such as pH and salinity2-6, but the mechanisms underlying such adaptations are incompletely understood. Precursors of peptidoglycan and other cell surface glycopolymers are synthesized in the cytoplasm and then delivered across the cell membrane bound to the recyclable lipid carrier undecaprenyl phosphate7 (C55-P, also known as UndP). Here we identify the DUF368-containing and DedA transmembrane protein families as candidate C55-P translocases, filling a critical gap in knowledge of the proteins required for the biogenesis of microbial cell surface polymers. Gram-negative and Gram-positive bacteria lacking their cognate DUF368-containing protein exhibited alkaline-dependent cell wall and viability defects, along with increased cell surface C55-P levels. pH-dependent synthetic genetic interactions between DUF368-containing proteins and DedA family members suggest that C55-P transporter usage is dynamic and modulated by environmental inputs. C55-P transporter activity was required by the cholera pathogen for growth and cell shape maintenance in the intestine. We propose that conditional transporter reliance provides resilience in lipid carrier recycling, bolstering microbial fitness both inside and outside the host.
Collapse
Affiliation(s)
- Brandon Sit
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Veerasak Srisuknimit
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA.,Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Emilio Bueno
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Franz G Zingl
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Karthik Hullahalli
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA. .,Department of Microbiology, Harvard Medical School, Boston, MA, USA. .,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. .,Howard Hughes Medical Institute, Bethesda, MD, USA.
| |
Collapse
|
10
|
Wang Z, Koirala B, Hernandez Y, Zimmerman M, Brady SF. Bioinformatic prospecting and synthesis of a bifunctional lipopeptide antibiotic that evades resistance. Science 2022; 376:991-996. [PMID: 35617397 PMCID: PMC10904332 DOI: 10.1126/science.abn4213] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Emerging resistance to currently used antibiotics is a global public health crisis. Because most of the biosynthetic capacity within the bacterial kingdom has remained silent in previous antibiotic discovery efforts, uncharacterized biosynthetic gene clusters found in bacterial genome-sequencing studies remain an appealing source of antibiotics with distinctive modes of action. Here, we report the discovery of a naturally inspired lipopeptide antibiotic called cilagicin, which we chemically synthesized on the basis of a detailed bioinformatic analysis of the cil biosynthetic gene cluster. Cilagicin's ability to sequester two distinct, indispensable undecaprenyl phosphates used in cell wall biosynthesis, together with the absence of detectable resistance in laboratory tests and among multidrug-resistant clinical isolates, makes it an appealing candidate for combating antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Zongqiang Wang
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY 10065, USA
| | - Bimal Koirala
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY 10065, USA
| | - Yozen Hernandez
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY 10065, USA
| | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Sean F Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
11
|
Jukič M, Auger R, Folcher V, Proj M, Barreteau H, Gobec S, Touzé T. Towards discovery of inhibitors of the undecaprenyl-pyrophosphate phosphatase BacA by virtual high-throughput screening. Comput Struct Biotechnol J 2022; 20:2360-2371. [PMID: 35664230 PMCID: PMC9127117 DOI: 10.1016/j.csbj.2022.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/01/2022] Open
Abstract
BacA is an important conserved bacterial protein and a promising drug target. We identified the first small molecule inhibitors of BacA via ensemble docking. Novel inhibitors possess 5-sulfamoyl-2-thenoic acid scaffold. Hit compounds display IC50s from 42 to 374 μM and antibacterial activity on E. coli. Reported compounds are a valuable starting point for new antibacterial drug design.
Increasing resistance to common antibiotics is becoming a major challenge that requires the development of new antibacterial agents. Peptidoglycan is an essential heteropolymer of the bacterial envelope that ensures the integrity and shape of all bacteria and is also an important target for antibiotics. The biosynthesis of peptidoglycan depends on a lipid carrier, undecaprenyl phosphate. As a byproduct of peptidoglycan polymerization, the lipid carrier is released as undecaprenyl pyrophosphate, which must be recycled to allow new polymerization cycles. To this end, it undergoes a dephosphorylation process catalyzed by the membrane phosphatase BacA, which is specific and highly conserved in bacteria. In the present study, we identified small molecules displaying inhibitory potency towards BacA. We began by preparing a commercial compound library, followed by high-throughput virtual screening by ensemble docking using the 3D structure of BacA and molecular dynamics snapshots to account for the flexibility of the protein. Of 83 compounds computationally selected and tested in a biochemical assay, one sulfamoylthiophene molecule showed significant inhibition of the undecaprenyl pyrophosphate dephosphorylation activity catalyzed by BacA. Subsequently, an additional 33 scaffold analogs were selected and acquired, of which 6 compounds exhibited BacA inhibition. The IC50 values of these compounds ranged from 42 to 366 μM. In addition, significant antibacterial activity against Escherichia coli was observed in TolC/PAP2-depleted strains. We believe that the overall strategy followed in this study and the identified class of inhibitors provide a solid foundation for the further development of potent BacA-targeted inhibitors and the discovery of novel antibacterial compounds.
Collapse
|
12
|
Kepa MW, Tomizaki T, Sato Y, Ozerov D, Sekiguchi H, Yasuda N, Aoyama K, Skopintsev P, Standfuss J, Cheng R, Hennig M, Tsujino S. Acoustic levitation and rotation of thin films and their application for room temperature protein crystallography. Sci Rep 2022; 12:5349. [PMID: 35354848 PMCID: PMC8967846 DOI: 10.1038/s41598-022-09167-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/18/2022] [Indexed: 11/18/2022] Open
Abstract
Acoustic levitation has attracted attention in terms of chemical and biochemical analysis in combination with various analytical methods because of its unique container-less environment for samples that is not reliant on specific material characteristics. However, loading samples with very high viscosity is difficult. To expand the scope, we propose the use of polymer thin films as sample holders, whereby the sample is dispensed on a film that is subsequently loaded onto an acoustic levitator. When applied for protein crystallography experiments, rotation controllability and positional stability are important prerequisites. We therefore study the acoustic levitation and rotation of thin films with an aspect ratio (the diameter-to-thickness ratio) of 80-240, which is an order of magnitude larger than those reported previously. For films with empirically optimized shapes, we find that it is possible to control the rotation speed in the range of 1-4 rotations per second while maintaining a positional stability of 12 ± 5 µm. The acoustic radiation force acting on the films is found to be a factor of 26-30 higher than that for same-volume water droplets. We propose use cases of the developed films for protein crystallography experiments and demonstrate data collections for large single crystal samples at room temperature.
Collapse
Affiliation(s)
- Michal W Kepa
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
| | - Takashi Tomizaki
- Photon Science Division, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland.
| | - Yohei Sato
- Nuclear Energy and Safety Research Division, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
| | - Dmitry Ozerov
- Photon Science Division, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
| | - Hiroshi Sekiguchi
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Nobuhiro Yasuda
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Koki Aoyama
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Petr Skopintsev
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
| | - Jörg Standfuss
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
| | - Robert Cheng
- leadXpro AG, PARK InnovAARE, 5234, Villigen-PSI, Switzerland
| | - Michael Hennig
- leadXpro AG, PARK InnovAARE, 5234, Villigen-PSI, Switzerland
| | - Soichiro Tsujino
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland.
| |
Collapse
|
13
|
Kumar S, Mollo A, Kahne D, Ruiz N. The Bacterial Cell Wall: From Lipid II Flipping to Polymerization. Chem Rev 2022; 122:8884-8910. [PMID: 35274942 PMCID: PMC9098691 DOI: 10.1021/acs.chemrev.1c00773] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The peptidoglycan (PG) cell wall is an extra-cytoplasmic glycopeptide polymeric structure that protects bacteria from osmotic lysis and determines cellular shape. Since the cell wall surrounds the cytoplasmic membrane, bacteria must add new material to the PG matrix during cell elongation and division. The lipid-linked precursor for PG biogenesis, Lipid II, is synthesized in the inner leaflet of the cytoplasmic membrane and is subsequently translocated across the bilayer so that the PG building block can be polymerized and cross-linked by complex multiprotein machines. This review focuses on major discoveries that have significantly changed our understanding of PG biogenesis in the past decade. In particular, we highlight progress made toward understanding the translocation of Lipid II across the cytoplasmic membrane by the MurJ flippase, as well as the recent discovery of a novel class of PG polymerases, the SEDS (shape, elongation, division, and sporulation) glycosyltransferases RodA and FtsW. Since PG biogenesis is an effective target of antibiotics, these recent developments may lead to the discovery of much-needed new classes of antibiotics to fight bacterial resistance.
Collapse
Affiliation(s)
- Sujeet Kumar
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Aurelio Mollo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Natividad Ruiz
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
14
|
Wood TM, Zeronian MR, Buijs N, Bertheussen K, Abedian HK, Johnson AV, Pearce NM, Lutz M, Kemmink J, Seirsma T, Hamoen LW, Janssen BJC, Martin NI. Mechanistic insights into the C 55-P targeting lipopeptide antibiotics revealed by structure-activity studies and high-resolution crystal structures. Chem Sci 2022; 13:2985-2991. [PMID: 35382464 PMCID: PMC8905900 DOI: 10.1039/d1sc07190d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/18/2022] [Indexed: 12/27/2022] Open
Abstract
The continued rise of antibiotic resistance is a global concern that threatens to undermine many aspects of modern medical practice. Key to addressing this threat is the discovery and development of new antibiotics that operate by unexploited modes of action. The so-called calcium-dependent lipopeptide antibiotics (CDAs) are an important emerging class of natural products that provides a source of new antibiotic agents rich in structural and mechanistic diversity. Notable in this regard is the subset of CDAs comprising the laspartomycins and amphomycins/friulimicins that specifically target the bacterial cell wall precursor undecaprenyl phosphate (C55-P). In this study we describe the design and synthesis of new C55-P-targeting CDAs with structural features drawn from both the laspartomycin and amphomycin/friulimicin classes. Assessment of these lipopeptides revealed previously unknown and surprisingly subtle structural features that are required for antibacterial activity. High-resolution crystal structures further indicate that the amphomycin/friulimicin-like lipopeptides adopt a unique crystal packing that governs their interaction with C55-P and provides an explanation for their antibacterial effect. In addition, live-cell microscopy studies provide further insights into the biological activity of the C55-P targeting CDAs highlighting their unique mechanism of action relative to the clinically used CDA daptomycin. Structural and mechanistic studies give new insights into calcium-dependent lipopeptide antibiotics that target C55-P.![]()
Collapse
Affiliation(s)
- Thomas M Wood
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University Sylviusweg 72 2333 BE Leiden The Netherlands .,Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Matthieu R Zeronian
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Ned Buijs
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University Sylviusweg 72 2333 BE Leiden The Netherlands
| | - Kristine Bertheussen
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University Sylviusweg 72 2333 BE Leiden The Netherlands
| | - Hanieh K Abedian
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University Sylviusweg 72 2333 BE Leiden The Netherlands
| | - Aidan V Johnson
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University Sylviusweg 72 2333 BE Leiden The Netherlands
| | - Nicholas M Pearce
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Martin Lutz
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Johan Kemmink
- Faculty of Science and Engineering, University of Groningen 9747 AG Groningen The Netherlands
| | - Tjalling Seirsma
- Bacterial Cell Biology and Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Leendert W Hamoen
- Bacterial Cell Biology and Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Bert J C Janssen
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University Sylviusweg 72 2333 BE Leiden The Netherlands
| |
Collapse
|
15
|
Abstract
Biosynthesis of many important polysaccharides (including peptidoglycan, lipopolysaccharide, and N-linked glycans) necessitates the transport of lipid-linked oligosaccharides (LLO) across membranes from their cytosolic site of synthesis to their sites of utilization. Much of our current understanding of LLO transport comes from genetic, biochemical, and structural studies of the multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) superfamily protein MurJ, which flips the peptidoglycan precursor lipid II. MurJ plays a pivotal role in bacterial cell wall synthesis and is an emerging antibiotic target. Here, we review the mechanism of LLO flipping by MurJ, including the structural basis for lipid II flipping and ion coupling. We then discuss inhibition of MurJ by antibacterials, including humimycins and the phage M lysis protein, as well as how studies on MurJ could provide insight into other flippases, both within and beyond the MOP superfamily. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Alvin C Y Kuk
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA; .,Current affiliation: Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| | - Aili Hao
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA;
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA;
| |
Collapse
|
16
|
Hama Y, Morishita H, Mizushima N. Regulation of ER-derived membrane dynamics by the DedA domain-containing proteins VMP1 and TMEM41B. EMBO Rep 2022; 23:e53894. [PMID: 35044051 PMCID: PMC8811646 DOI: 10.15252/embr.202153894] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 02/05/2023] Open
Abstract
The endoplasmic reticulum (ER) is a central hub for the biogenesis of various organelles and lipid-containing structures. Recent studies suggest that vacuole membrane protein 1 (VMP1) and transmembrane protein 41B (TMEM41B), multispanning ER membrane proteins, regulate the formation of many of these ER-derived structures, including autophagosomes, lipid droplets, lipoproteins, and double-membrane structures for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication. VMP1 and TMEM41B possess a DedA domain that is widely distributed not only in eukaryotes but also in prokaryotes and predicted to adopt a characteristic structure containing two reentrant loops. Furthermore, recent studies show that both proteins have lipid scrambling activity. Based on these findings, the potential roles of VMP1 and TMEM41B in the dynamic remodeling of ER membranes and the biogenesis of ER-derived structures are discussed.
Collapse
Affiliation(s)
- Yutaro Hama
- Department of Biochemistry and Molecular BiologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Hideaki Morishita
- Department of Biochemistry and Molecular BiologyGraduate School of MedicineThe University of TokyoTokyoJapan
- Department of PhysiologyGraduate School of MedicineJuntendo UniversityTokyoJapan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular BiologyGraduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
17
|
Mechanism of Staphylococcus aureus peptidoglycan O-acetyltransferase A as an O-acyltransferase. Proc Natl Acad Sci U S A 2021; 118:2103602118. [PMID: 34480000 DOI: 10.1073/pnas.2103602118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 07/23/2021] [Indexed: 01/05/2023] Open
Abstract
The O-acetylation of exopolysaccharides, including the essential bacterial cell wall polymer peptidoglycan, confers resistance to their lysis by exogenous hydrolases. Like the enzymes catalyzing the O-acetylation of exopolysaccharides in the Golgi of animals and fungi, peptidoglycan O-acetyltransferase A (OatA) is predicted to be an integral membrane protein comprised of a membrane-spanning acyltransferase-3 (AT-3) domain and an extracytoplasmic domain; for OatA, these domains are located in the N- and C-terminal regions of the enzyme, respectively. The recombinant C-terminal domain (OatAC) has been characterized as an SGNH acetyltransferase, but nothing was known about the function of the N-terminal AT-3 domain (OatAN) or its homologs associated with other acyltransferases. We report herein the experimental determination of the topology of Staphylococcus aureus OatAN, which differs markedly from that predicted in silico. We present the biochemical characterization of OatAN as part of recombinant OatA and demonstrate that acetyl-CoA serves as the substrate for OatAN Using in situ and in vitro assays, we characterized 35 engineered OatA variants which identified a catalytic triad of Tyr-His-Glu residues. We trapped an acetyl group from acetyl-CoA on the catalytic Tyr residue that is located on an extracytoplasmic loop of OatAN Further enzymatic characterization revealed that O-acetyl-Tyr represents the substrate for OatAC We propose a model for OatA action involving the translocation of acetyl groups from acetyl-CoA across the cytoplasmic membrane by OatAN and their subsequent intramolecular transfer to OatAC for the O-acetylation of peptidoglycan via the concerted action of catalytic Tyr and Ser residues.
Collapse
|
18
|
Okawa F, Hama Y, Zhang S, Morishita H, Yamamoto H, Levine TP, Mizushima N. Evolution and insights into the structure and function of the DedA superfamily containing TMEM41B and VMP1. J Cell Sci 2021; 134:237813. [PMID: 33771928 DOI: 10.1242/jcs.255877] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
TMEM41B and VMP1 are endoplasmic reticulum (ER)-localizing multi-spanning membrane proteins required for ER-related cellular processes such as autophagosome formation, lipid droplet homeostasis and lipoprotein secretion in eukaryotes. Both proteins have a VTT domain, which is similar to the DedA domain found in bacterial DedA family proteins. However, the molecular function and structure of the DedA and VTT domains (collectively referred to as DedA domains) and the evolutionary relationships among the DedA domain-containing proteins are largely unknown. Here, we conduct a remote homology search and identify a new clade consisting mainly of bacterial proteins of unknown function that are members of the Pfam family PF06695. Phylogenetic analysis reveals that the TMEM41, VMP1, DedA and PF06695 families form a superfamily with a common origin, which we term the DedA superfamily. Coevolution-based structural prediction suggests that the DedA domain contains two reentrant loops facing each other in the membrane. This topology is biochemically verified by the substituted cysteine accessibility method. The predicted structure is topologically similar to that of the substrate-binding region of Na+-coupled glutamate transporter solute carrier 1 (SLC1) proteins. A potential ion-coupled transport function of the DedA superfamily proteins is discussed. This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Fumiya Okawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yutaro Hama
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Sidi Zhang
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hideaki Morishita
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hayashi Yamamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tim P Levine
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
19
|
Mesdaghi S, Murphy DL, Sánchez Rodríguez F, Burgos-Mármol JJ, Rigden DJ. In silico prediction of structure and function for a large family of transmembrane proteins that includes human Tmem41b. F1000Res 2021; 9:1395. [PMID: 33520197 PMCID: PMC7818093 DOI: 10.12688/f1000research.27676.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2021] [Indexed: 01/07/2023] Open
Abstract
Background: Recent strides in computational structural biology have opened up an opportunity to understand previously uncharacterised proteins. The under-representation of transmembrane proteins in the Protein Data Bank highlights the need to apply new and advanced bioinformatics methods to shed light on their structure and function. This study focuses on a family of transmembrane proteins containing the Pfam domain PF09335 ('SNARE_ASSOC'/ 'VTT '/'Tvp38'/'DedA'). One prominent member, Tmem41b, has been shown to be involved in early stages of autophagosome formation and is vital in mouse embryonic development as well as being identified as a viral host factor of SARS-CoV-2. Methods: We used evolutionary covariance-derived information to construct and validate ab initio models, make domain boundary predictions and infer local structural features. Results: The results from the structural bioinformatics analysis of Tmem41b and its homologues showed that they contain a tandem repeat that is clearly visible in evolutionary covariance data but much less so by sequence analysis. Furthermore, cross-referencing of other prediction data with covariance analysis showed that the internal repeat features two-fold rotational symmetry. Ab initio modelling of Tmem41b and homologues reinforces these structural predictions. Local structural features predicted to be present in Tmem41b were also present in Cl -/H + antiporters. Conclusions: The results of this study strongly point to Tmem41b and its homologues being transporters for an as-yet uncharacterised substrate and possibly using H + antiporter activity as its mechanism for transport.
Collapse
Affiliation(s)
- Shahram Mesdaghi
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - David L. Murphy
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Filomeno Sánchez Rodríguez
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - J. Javier Burgos-Mármol
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Daniel J. Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK,
| |
Collapse
|
20
|
Mesdaghi S, Murphy DL, Sánchez Rodríguez F, Burgos-Mármol JJ, Rigden DJ. In silico prediction of structure and function for a large family of transmembrane proteins that includes human Tmem41b. F1000Res 2021; 9:1395. [PMID: 33520197 PMCID: PMC7818093 DOI: 10.12688/f1000research.27676.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 01/07/2023] Open
Abstract
Background: Recent strides in computational structural biology have opened up an opportunity to understand previously uncharacterised proteins. The under-representation of transmembrane proteins in the Protein Data Bank highlights the need to apply new and advanced bioinformatics methods to shed light on their structure and function. This study focuses on a family of transmembrane proteins containing the Pfam domain PF09335 ('SNARE_ASSOC'/ 'VTT '/'Tvp38'). One prominent member, Tmem41b, has been shown to be involved in early stages of autophagosome formation and is vital in mouse embryonic development as well as being identified as a viral host factor of SARS-CoV-2. Methods: We used evolutionary covariance-derived information to construct and validate ab initio models, make domain boundary predictions and infer local structural features. Results: The results from the structural bioinformatics analysis of Tmem41b and its homologues showed that they contain a tandem repeat that is clearly visible in evolutionary covariance data but much less so by sequence analysis. Furthermore, cross-referencing of other prediction data with covariance analysis showed that the internal repeat features two-fold rotational symmetry. Ab initio modelling of Tmem41b and homologues reinforces these structural predictions. Local structural features predicted to be present in Tmem41b were also present in Cl -/H + antiporters. Conclusions: The results of this study strongly point to Tmem41b and its homologues being transporters for an as-yet uncharacterised substrate and possibly using H + antiporter activity as its mechanism for transport.
Collapse
Affiliation(s)
- Shahram Mesdaghi
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - David L. Murphy
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Filomeno Sánchez Rodríguez
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - J. Javier Burgos-Mármol
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Daniel J. Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK,
| |
Collapse
|
21
|
Panta PR, Doerrler WT. A Burkholderia thailandensis DedA Family Membrane Protein Is Required for Proton Motive Force Dependent Lipid A Modification. Front Microbiol 2021; 11:618389. [PMID: 33510730 PMCID: PMC7835334 DOI: 10.3389/fmicb.2020.618389] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
The DedA family is a conserved membrane protein family found in most organisms. A Burkholderia thailandensis DedA family protein, named DbcA, is required for high-level colistin (polymyxin E) resistance, but the mechanism awaits elucidation. Modification of lipopolysaccharide lipid A with the cationic sugar aminoarabinose (Ara4N) is required for colistin resistance and is dependent upon protonmotive force (PMF) dependent transporters. B. thailandensis ΔdbcA lipid A contains only small amounts of Ara4N, likely leading to colistin sensitivity. Two B. thailandensis operons are required for lipid A modification with Ara4N, one needed for biosynthesis of undecaprenyl-P-Ara4N and one for transport of the lipid linked sugar and subsequent lipid A modification. Here, we directed overexpression of each arn operon by genomic insertion of inducible promoters. We found that overexpression of arn operons in ΔdbcA can partially, but not completely, restore Ara4N modification of lipid A and colistin resistance. Artificially increasing the PMF by lowering the pH of the growth media also increased membrane potential, amounts of Ara4N, and colistin resistance of ΔdbcA. In addition, the products of arn operons are essential for acid tolerance, suggesting a physiological function of Ara4N modification. Finally, we show that ΔdbcA is sensitive to bacitracin and expression of a B. thailandensis UppP/BacA homolog (BTH_I1512) can partially restore resistance to bacitracin. Expression of a different UppP/BacA homolog (BTH_I2750) can partially restore colistin resistance, without changing the lipid A profile. This work suggests that maintaining optimal membrane potential at slightly alkaline pH media by DbcA is responsible for proper modification of lipid A by Ara4N and provides evidence of lipid A modification-dependent and -independent mechanisms of colistin resistance in B. thailandensis.
Collapse
Affiliation(s)
- Pradip R Panta
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - William T Doerrler
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
22
|
Baker BR, Ives CM, Bray A, Caffrey M, Cochrane SA. Undecaprenol kinase: Function, mechanism and substrate specificity of a potential antibiotic target. Eur J Med Chem 2020; 210:113062. [PMID: 33310291 DOI: 10.1016/j.ejmech.2020.113062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
The bifunctional undecaprenol kinase/phosphatase (UdpK) is a small, prokaryotic, integral membrane kinase, homologous with Escherichia coli diacylglycerol kinase and expressed by the dgkA gene. In Gram-positive bacteria, UdpK is involved in the homeostasis of the bacterial undecaprenoid pool, where it converts undecaprenol to undecaprenyl phosphate (C55P) and also catalyses the reverse process. C55P is the universal lipid carrier and critical to numerous glycopolymer and glycoprotein biosynthetic pathways in bacteria. DgkA gene expression has been linked to facilitating bacterial growth and survival in response to environmental stressors, as well being implicated as a resistance mechanism to the topical antibiotic bacitracin, by providing an additional route to C55P. Therefore, identification of UdpK inhibitors could lead to novel antibiotic treatments. A combination of homology modelling and mutagenesis experiments on UdpK have been used to identify residues that may be involved in kinase/phosphatase activity. In this review, we will summarise recent work on the mechanism and substrate specificity of UdpK.
Collapse
Affiliation(s)
- Brad R Baker
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| | - Callum M Ives
- School of Medicine and School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, D02 R590, Ireland; Division of Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Ashley Bray
- School of Medicine and School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, D02 R590, Ireland
| | - Martin Caffrey
- School of Medicine and School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, D02 R590, Ireland.
| | - Stephen A Cochrane
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK.
| |
Collapse
|
23
|
Chang HY, Cheng TH, Wang AHJ. Structure, catalysis, and inhibition mechanism of prenyltransferase. IUBMB Life 2020; 73:40-63. [PMID: 33246356 PMCID: PMC7839719 DOI: 10.1002/iub.2418] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/02/2020] [Accepted: 11/14/2020] [Indexed: 12/31/2022]
Abstract
Isoprenoids, also known as terpenes or terpenoids, represent a large family of natural products composed of five‐carbon isopentenyl diphosphate or its isomer dimethylallyl diphosphate as the building blocks. Isoprenoids are structurally and functionally diverse and include dolichols, steroid hormones, carotenoids, retinoids, aromatic metabolites, the isoprenoid side‐chain of ubiquinone, and isoprenoid attached signaling proteins. Productions of isoprenoids are catalyzed by a group of enzymes known as prenyltransferases, such as farnesyltransferases, geranylgeranyltransferases, terpenoid cyclase, squalene synthase, aromatic prenyltransferase, and cis‐ and trans‐prenyltransferases. Because these enzymes are key in cellular processes and metabolic pathways, they are expected to be potential targets in new drug discovery. In this review, six distinct subsets of characterized prenyltransferases are structurally and mechanistically classified, including (1) head‐to‐tail prenyl synthase, (2) head‐to‐head prenyl synthase, (3) head‐to‐middle prenyl synthase, (4) terpenoid cyclase, (5) aromatic prenyltransferase, and (6) protein prenylation. Inhibitors of those enzymes for potential therapies against several diseases are discussed. Lastly, recent results on the structures of integral membrane enzyme, undecaprenyl pyrophosphate phosphatase, are also discussed.
Collapse
Affiliation(s)
- Hsin-Yang Chang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Tien-Hsing Cheng
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Andrew H-J Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
24
|
CbrA Mediates Colicin M Resistance in Escherichia coli through Modification of Undecaprenyl-Phosphate-Linked Peptidoglycan Precursors. J Bacteriol 2020; 202:JB.00436-20. [PMID: 32958631 DOI: 10.1128/jb.00436-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Colicin M is an enzymatic bacteriocin produced by some Escherichia coli strains which provokes cell lysis of competitor strains by hydrolysis of the cell wall peptidoglycan undecaprenyl-PP-MurNAc(-pentapeptide)-GlcNAc (lipid II) precursor. The overexpression of a gene, cbrA (formerly yidS), was shown to protect E. coli cells from the deleterious effects of this colicin, but the underlying resistance mechanism was not established. We report here that a major structural modification of the undecaprenyl-phosphate carrier lipid and of its derivatives occurred in membranes of CbrA-overexpressing cells, which explains the acquisition of resistance toward this bacteriocin. Indeed, a main fraction of these lipids, including the lipid II peptidoglycan precursor, now displayed a saturated isoprene unit at the α-position, i.e., the unit closest to the colicin M cleavage site. Only unsaturated forms of these lipids were normally detectable in wild-type cells. In vitro and in vivo assays showed that colicin M did not hydrolyze α-saturated lipid II, clearly identifying this substrate modification as the resistance mechanism. These saturated forms of undecaprenyl-phosphate and lipid II remained substrates of the different enzymes participating in peptidoglycan biosynthesis and carrier lipid recycling, allowing this colicin M-resistance mechanism to occur without affecting this essential pathway.IMPORTANCE Overexpression of the chromosomal cbrA gene allows E. coli to resist colicin M (ColM), a bacteriocin specifically hydrolyzing the undecaprenyl-PP-MurNAc(-pentapeptide)-GlcNAc (lipid II) peptidoglycan precursor of targeted cells. This resistance results from a CbrA-dependent modification of the precursor structure, i.e., reduction of the α-isoprenyl bond of C55-carrier lipid moiety that is proximal to ColM cleavage site. This modification, observed here for the first time in eubacteria, annihilates the ColM activity without affecting peptidoglycan biogenesis. These data, which further increase our knowledge of the substrate specificity of this colicin, highlight the capability of E. coli to generate reduced forms of C55-carrier lipid and its derivatives. Whether the function of this modification is only relevant with respect to ColM resistance is now questioned.
Collapse
|
25
|
Zhu L, Bu G, Jing L, Shi D, Lee MY, Gonen T, Liu W, Nannenga BL. Structure Determination from Lipidic Cubic Phase Embedded Microcrystals by MicroED. Structure 2020; 28:1149-1159.e4. [PMID: 32735770 PMCID: PMC7544639 DOI: 10.1016/j.str.2020.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/02/2020] [Accepted: 07/13/2020] [Indexed: 01/22/2023]
Abstract
The lipidic cubic phase (LCP) technique has proved to facilitate the growth of high-quality crystals that are otherwise difficult to grow by other methods. However, the crystal size optimization process could be time and resource consuming, if it ever happens. Therefore, improved techniques for structure determination using these small crystals is an important strategy in diffraction technology development. Microcrystal electron diffraction (MicroED) is a technique that uses a cryo-transmission electron microscopy to collect electron diffraction data and determine high-resolution structures from very thin micro- and nanocrystals. In this work, we have used modified LCP and MicroED protocols to analyze crystals embedded in LCP converted by 2-methyl-2,4-pentanediol or lipase, including Proteinase K crystals grown in solution, cholesterol crystals, and human adenosine A2A receptor crystals grown in LCP. These results set the stage for the use of MicroED to analyze microcrystalline samples grown in LCP, especially for those highly challenging membrane protein targets.
Collapse
Affiliation(s)
- Lan Zhu
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, 551 East University Drive, Tempe, AZ 85287, USA
| | - Guanhong Bu
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Liang Jing
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, 551 East University Drive, Tempe, AZ 85287, USA
| | - Dan Shi
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Ming-Yue Lee
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, 551 East University Drive, Tempe, AZ 85287, USA
| | - Tamir Gonen
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Departments of Biological Chemistry and Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wei Liu
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, 551 East University Drive, Tempe, AZ 85287, USA.
| | - Brent L Nannenga
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
26
|
Chiang CY, Chou CC, Chang HY, Hsu MF, Pao PJ, Chiang MH, Wang AHJ. Biochemical and molecular dynamics studies of archaeal polyisoprenyl pyrophosphate phosphatase from Saccharolobus solfataricus. Enzyme Microb Technol 2020; 139:109585. [DOI: 10.1016/j.enzmictec.2020.109585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/29/2022]
|
27
|
Tian X, Auger R, Manat G, Kerff F, Mengin-Lecreulx D, Touzé T. Insight into the dual function of lipid phosphate phosphatase PgpB involved in two essential cell-envelope metabolic pathways in Escherichia coli. Sci Rep 2020; 10:13209. [PMID: 32764655 PMCID: PMC7413402 DOI: 10.1038/s41598-020-70047-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/16/2020] [Indexed: 11/09/2022] Open
Abstract
Ubiquitous PAP2 lipid phosphatases are involved in a wide array of central physiological functions. PgpB from Escherichia coli constitutes the archetype of this subfamily of membrane proteins. It displays a dual function by catalyzing the biosynthesis of two essential lipids, the phosphatidylglycerol (PG) and the undecaprenyl phosphate (C55-P). C55-P constitutes a lipid carrier allowing the translocation of peptidoglycan subunits across the plasma membrane. PG and C55-P are synthesized in a redundant manner by PgpB and other PAP2 and/or unrelated membrane phosphatases. Here, we show that PgpB is the sole, among these multiple phosphatases, displaying this dual activity. The inactivation of PgpB does not confer any apparent growth defect, but its inactivation together with another PAP2 alters the cell envelope integrity increasing the susceptibility to small hydrophobic compounds. Evidence is also provided of an interplay between PAP2s and the peptidoglycan polymerase PBP1A. In contrast to PGP hydrolysis, which relies on a His/Asp/His catalytic triad of PgpB, the mechanism of C55-PP hydrolysis appeared as only requiring the His/Asp diad, which led us to hypothesize distinct processes. Moreover, thermal stability analyses highlighted a substantial structural change upon phosphate binding by PgpB, supporting an induced-fit model of action.
Collapse
Affiliation(s)
- Xudong Tian
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Rodolphe Auger
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Guillaume Manat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Frédéric Kerff
- Centre d'Ingénierie des Protéines, InBioS, Université de Liège, Liège, Belgium
| | - Dominique Mengin-Lecreulx
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Thierry Touzé
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
28
|
Li W, Li L, Zhang C, Cai Y, Gao Q, Wang F, Cao Y, Lin J, Li J, Shang Z, Lin W. Investigations into the Antibacterial Mechanism of Action of Viridicatumtoxins. ACS Infect Dis 2020; 6:1759-1769. [PMID: 32437130 DOI: 10.1021/acsinfecdis.0c00031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Viridicatumtoxins are a rare class of tetracycline-like antibiotics that strongly inhibit drug-resistant Gram-positive bacteria. Although reported to exhibit in vitro inhibition activity to undecaprenyl pyrophosphate synthase (UPPS), an essential enzyme in bacterial cell wall synthesis, the biological targets and mechanism of action of viridicatumtoxins, especially the drug-target interactions, remain largely unknown. In this study, the structure of Enterococcus faecalis UPPS (EfaUPPS) was first determined, uncovering that EfaUPPS can form not only a typical functional dimer but also an unexpected atypical dimer. We then observed that viridicatumtoxins A (VirA) and B (VirB) are able to bind to UPPSs of E. faecalis, S. aureus, and E. coli in a direct and high-affinity manner as evidenced by in vitro enzyme inhibition assay, surface plasmon resonance (SPR) binding analysis, and in vivo growth inhibition assay, demonstrating that viridicatumtoxins exert antibacterial effects through UPPS binding. The key amino acid residues involved in the interactions with VirA and VirB in EfaUPPS binding pocket were revealed by molecular docking studies, and further validated by site-directed mutagenesis. A single mutation of EfaUPPS at D29A, N31A, and R42A can obviously increase their affinities to VirA, while a single mutation at W228A conferred significant resistance to VirA. Moreover, translation inhibition assay showed that VirA and VirB can weakly inhibit E. coli 70S ribosome. The weak inhibition of ribosome was proposed to be attributed to steric hindrance between viridicatumtoxin ring F and 70S ribosome helix 34 by molecular docking study. Our structural, biochemical, and computational investigations on the interactions of viridicatumtoxins with UPPS and 70S ribosome not only disclosed the potential biological targets of viridicatumtoxins, but also provided a theoretical basis for structural optimization to make new viridicatumtoxin derivatives with improved antimicrobial activities.
Collapse
Affiliation(s)
- Weijia Li
- Department of Microbiology and Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Li Li
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Chao Zhang
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yuanheng Cai
- Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, New York 11794, United States
| | - Qiyu Gao
- Department of Microbiology and Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Fulin Wang
- Department of Microbiology and Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yu Cao
- Department of Microbiology and Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Jinzhong Lin
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jie Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Zhuo Shang
- Department of Microbiology and Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Wei Lin
- Department of Microbiology and Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| |
Collapse
|
29
|
Assmann GM, Wang M, Diederichs K. Making a difference in multi-data-set crystallography: simple and deterministic data-scaling/selection methods. Acta Crystallogr D Struct Biol 2020; 76:636-652. [PMID: 32627737 PMCID: PMC7336379 DOI: 10.1107/s2059798320006348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022] Open
Abstract
Phasing by single-wavelength anomalous diffraction (SAD) from multiple crystallographic data sets can be particularly demanding because of the weak anomalous signal and possible non-isomorphism. The identification and exclusion of non-isomorphous data sets by suitable indicators is therefore indispensable. Here, simple and robust data-selection methods are described. A multi-dimensional scaling procedure is first used to identify data sets with large non-isomorphism relative to clusters of other data sets. Within each cluster that it identifies, further selection is based on the weighted ΔCC1/2, a quantity representing the influence of a set of reflections on the overall CC1/2 of the merged data. The anomalous signal is further improved by optimizing the scaling protocol. The success of iterating the selection and scaling steps was verified by substructure determination and subsequent structure solution. Three serial synchrotron crystallography (SSX) SAD test cases with hundreds of partial data sets and one test case with 62 complete data sets were analyzed. Structure solution was dramatically simplified with this procedure, and enabled solution of the structures after a few selection/scaling iterations. To explore the limits, the procedure was tested with much fewer data than originally required and could still solve the structure in several cases. In addition, an SSX data challenge, minimizing the number of (simulated) data sets necessary to solve the structure, was significantly underbid.
Collapse
Affiliation(s)
- Greta M. Assmann
- Department of Biology, University of Konstanz, Box 647, D-78457 Konstanz, Germany
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Kay Diederichs
- Department of Biology, University of Konstanz, Box 647, D-78457 Konstanz, Germany
| |
Collapse
|
30
|
Caffalette CA, Kuklewicz J, Spellmon N, Zimmer J. Biosynthesis and Export of Bacterial Glycolipids. Annu Rev Biochem 2020; 89:741-768. [DOI: 10.1146/annurev-biochem-011520-104707] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Complex carbohydrates are essential for many biological processes, from protein quality control to cell recognition, energy storage, and cell wall formation. Many of these processes are performed in topologically extracellular compartments or on the cell surface; hence, diverse secretion systems evolved to transport the hydrophilic molecules to their sites of action. Polyprenyl lipids serve as ubiquitous anchors and facilitators of these transport processes. Here, we summarize and compare bacterial biosynthesis pathways relying on the recognition and transport of lipid-linked complex carbohydrates. In particular, we compare transporters implicated in O antigen and capsular polysaccharide biosyntheses with those facilitating teichoic acid and N-linked glycan transport. Further, we discuss recent insights into the generation, recognition, and recycling of polyprenyl lipids.
Collapse
Affiliation(s)
- Christopher A. Caffalette
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Jeremi Kuklewicz
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Nicholas Spellmon
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Jochen Zimmer
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
31
|
Huang CY, Meier N, Caffrey M, Wang M, Olieric V. 3D-printed holders for in meso in situ fixed-target serial X-ray crystallography. J Appl Crystallogr 2020; 53:854-859. [PMID: 32684901 PMCID: PMC7312129 DOI: 10.1107/s1600576720002897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/01/2020] [Indexed: 11/10/2022] Open
Abstract
The in meso in situ serial X-ray crystallography method was developed to ease the handling of small fragile crystals of membrane proteins and for rapid data collection on hundreds of microcrystals directly in the growth medium without the need for crystal harvesting. To facilitate mounting of these in situ samples on a goniometer at cryogenic or at room temperatures, two new 3D-printed holders have been developed. They provide for cubic and sponge phase sample stability in the X-ray beam and are compatible with sample-changing robots. The holders can accommodate a variety of window material types, as well as bespoke samples for diffraction screening and data collection at conventional macromolecular crystallography beamlines. They can be used for convenient post-crystallization treatments such as ligand and heavy-atom soaking. The design, assembly and application of the holders for in situ serial crystallography are described. Files for making the holders using a 3D printer are included as supporting information.
Collapse
Affiliation(s)
- Chia-Ying Huang
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland
| | - Nathalie Meier
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland
| | - Martin Caffrey
- Membrane Structural and Functional Biology Group, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, D02 R590, Ireland
| | - Meitian Wang
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland
| | - Vincent Olieric
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland
| |
Collapse
|
32
|
Workman SD, Strynadka NCJ. A Slippery Scaffold: Synthesis and Recycling of the Bacterial Cell Wall Carrier Lipid. J Mol Biol 2020; 432:4964-4982. [PMID: 32234311 DOI: 10.1016/j.jmb.2020.03.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 01/20/2023]
Abstract
The biosynthesis of bacterial cell envelope polysaccharides such as peptidoglycan relies on the use of a dedicated carrier lipid both for the assembly of precursors at the cytoplasmic face of the plasma membrane and for the translocation of lipid linked oligosaccharides across the plasma membrane into the periplasmic space. This dedicated carrier lipid, undecaprenyl phosphate, results from the dephosphorylation of undecaprenyl pyrophosphate, which is generated de novo in the cytoplasm by undecaprenyl pyrophosphate synthase and released as a by-product when newly synthesized glycans are incorporated into the existing cell envelope. The de novo synthesis of undecaprenyl pyrophosphate has been thoroughly characterized from a structural and mechanistic standpoint; however, its dephosphorylation to the active carrier lipid form, both in the course of de novo synthesis and recycling, has only been begun to be studied in depth in recent years. This review provides an overview of bacterial carrier lipid synthesis and presents the current state of knowledge regarding bacterial carrier lipid recycling.
Collapse
Affiliation(s)
- Sean D Workman
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3.
| |
Collapse
|
33
|
Structure and Functional Characterization of Membrane Integral Proteins in the Lipid Cubic Phase. J Mol Biol 2020; 432:5104-5123. [PMID: 32113953 DOI: 10.1016/j.jmb.2020.02.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022]
Abstract
The lipid cubic phase (LCP) has been used extensively as a medium for crystallizing membrane proteins. It is an attractive environment in which to perform such studies because it incorporates a lipid bilayer. It is therefore considered a useful and a faithful biomembrane mimetic. Here, we bring together evidence that supports this view. Biophysical characterizations are described demonstrating that the cubic phase is a porous medium into and out of which water-soluble molecules can diffuse for binding to and reaction with reconstituted proteins. The proteins themselves are shown to be functionally reconstituted into and to have full mobility in the bilayered membrane, a prerequisite for LCP crystallogenesis. Spectroscopic methods have been used to characterize the conformation and disposition of proteins in the mesophase. Procedures for performing activity assays on enzymes directly in the cubic phase have been reported. Specific examples described here include a kinase and two transferases, where quantitative kinetics and mechanism-defining measurements were performed directly or via a coupled assay system. Finally, ligand-binding assays are described, where binding to proteins in the mesophase membrane was monitored directly by eye and indirectly by fluorescence quenching, enabling binding constant determinations for targets with affinity values in the micromolar and nanomolar range. These results make a convincing case that the lipid bilayer of the cubic mesophase is an excellent membrane mimetic and a suitable medium in which to perform not only crystallogenesis but also biochemical and biophysical characterizations of membrane proteins.
Collapse
|
34
|
Huang CY, Olieric V, Caffrey M, Wang M. In Meso In Situ Serial X-Ray Crystallography (IMISX): A Protocol for Membrane Protein Structure Determination at the Swiss Light Source. Methods Mol Biol 2020; 2127:293-319. [PMID: 32112330 DOI: 10.1007/978-1-0716-0373-4_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The lipid cubic phases (LCP) have enabled the determination of many important high-resolution structures of membrane proteins such as G-protein-coupled receptors, photosensitive proteins, enzymes, channels, and transporters. However, harvesting the crystals from the glass or plastic plates in which crystals grow is challenging. The in meso in situ serial X-ray crystallography (IMISX) method uses thin plastic windowed plates that minimize LCP crystal manipulation. The method, which is compatible with high-throughput in situ measurements, allows systematic diffraction screening and rapid data collection from hundreds of microcrystals in in meso crystallization wells without direct crystal harvesting. In this chapter, we describe an IMISX protocol for in situ serial X-ray data collection of LCP-grown crystals at both cryogenic and room temperatures which includes the crystallization setup, sample delivery, automated serial diffraction data collection, and experimental phasing. We also detail how the IMISX method was applied successfully for the structure determination of two novel targets-the undecaprenyl-pyrophosphate phosphatase BacA and the chemokine G-protein-coupled receptor CCR2A.
Collapse
Affiliation(s)
- Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland.
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland
| | - Martin Caffrey
- Membrane Structural and Functional Biology (MS&FB) Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland
| |
Collapse
|
35
|
Cheng R, Huang C, Hennig M, Nar H, Schnapp G. In situ
crystallography as an emerging method for structure solution of membrane proteins: the case of CCR2A. FEBS J 2019; 287:866-873. [DOI: 10.1111/febs.15098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/10/2019] [Accepted: 10/15/2019] [Indexed: 12/27/2022]
Affiliation(s)
| | - Chia‐Ying Huang
- Swiss Light Source Paul Scherrer Institute Villigen Switzerland
| | | | - Herbert Nar
- Boehringer Ingelheim Pharma GmbH & Co. KG Biberach Germany
| | - Gisela Schnapp
- Boehringer Ingelheim Pharma GmbH & Co. KG Biberach Germany
| |
Collapse
|
36
|
Panta PR, Kumar S, Stafford CF, Billiot CE, Douglass MV, Herrera CM, Trent MS, Doerrler WT. A DedA Family Membrane Protein Is Required for Burkholderia thailandensis Colistin Resistance. Front Microbiol 2019; 10:2532. [PMID: 31827463 PMCID: PMC6849406 DOI: 10.3389/fmicb.2019.02532] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022] Open
Abstract
Colistin is a “last resort” antibiotic for treatment of infections caused by some multidrug resistant Gram-negative bacterial pathogens. Resistance to colistin varies between bacterial species. Some Gram-negative bacteria such as Burkholderia spp. are intrinsically resistant to very high levels of colistin with minimal inhibitory concentrations (MIC) often above 0.5 mg/ml. We have previously shown DedA family proteins YqjA and YghB are conserved membrane transporters required for alkaline tolerance and resistance to several classes of dyes and antibiotics in Escherichia coli. Here, we show that a DedA family protein in Burkholderia thailandensis (DbcA; DedA of Burkholderia required for colistin resistance) is a membrane transporter required for resistance to colistin. Mutation of dbcA results in >100-fold greater sensitivity to colistin. Colistin resistance is often conferred via covalent modification of lipopolysaccharide (LPS) lipid A. Mass spectrometry of lipid A of ΔdbcA showed a sharp reduction of aminoarabinose in lipid A compared to wild type. Complementation of colistin sensitivity of B. thailandensis ΔdbcA was observed by expression of dbcA, E. coli yghB or E. coli yqjA. Many proton-dependent transporters possess charged amino acids in transmembrane domains that take part in the transport mechanism and are essential for function. Site directed mutagenesis of conserved and predicted membrane embedded charged amino acids suggest that DbcA functions as a proton-dependent transporter. Direct measurement of membrane potential shows that B. thailandensis ΔdbcA is partially depolarized suggesting that loss of protonmotive force can lead to alterations in LPS structure and severe colistin sensitivity in this species.
Collapse
Affiliation(s)
- Pradip R Panta
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Sujeet Kumar
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Caroline F Stafford
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Caitlin E Billiot
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Martin V Douglass
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, United States.,Center for Vaccines and Immunology, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| | - Carmen M Herrera
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, United States.,Center for Vaccines and Immunology, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| | - M Stephen Trent
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, United States.,Center for Vaccines and Immunology, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| | - William T Doerrler
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
37
|
HupA, the main undecaprenyl pyrophosphate and phosphatidylglycerol phosphate phosphatase in Helicobacter pylori is essential for colonization of the stomach. PLoS Pathog 2019; 15:e1007972. [PMID: 31487328 PMCID: PMC6748449 DOI: 10.1371/journal.ppat.1007972] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/17/2019] [Accepted: 07/09/2019] [Indexed: 12/24/2022] Open
Abstract
The biogenesis of bacterial cell-envelope polysaccharides requires the translocation, across the plasma membrane, of sugar sub-units that are produced inside the cytoplasm. To this end, the hydrophilic sugars are anchored to a lipid phosphate carrier (undecaprenyl phosphate (C55-P)), yielding membrane intermediates which are translocated to the outer face of the membrane. Finally, the glycan moiety is transferred to a nascent acceptor polymer, releasing the carrier in the “inactive” undecaprenyl pyrophosphate (C55-PP) form. Thus, C55-P is generated through the dephosphorylation of C55-PP, itself arising from either de novo synthesis or recycling. Two types of integral membrane C55-PP phosphatases were described: BacA enzymes and a sub-group of PAP2 enzymes (type 2 phosphatidic acid phosphatases). The human pathogen Helicobacter pylori does not contain BacA homologue but has four membrane PAP2 proteins: LpxE, LpxF, HP0350 and HP0851. Here, we report the physiological role of HP0851, renamed HupA, via multiple and complementary approaches ranging from a detailed biochemical characterization to the assessment of its effect on cell envelope metabolism and microbe-host interactions. HupA displays a dual function as being the main C55-PP pyrophosphatase (UppP) and phosphatidylglycerol phosphate phosphatase (PGPase). Although not essential in vitro, HupA was essential in vivo for stomach colonization. In vitro, the remaining UppP activity was carried out by LpxE in addition to its lipid A 1-phosphate phosphatase activity. Both HupA and LpxE have crucial roles in the biosynthesis of several cell wall polysaccharides and thus constitute potential targets for new therapeutic strategies. Helicobacter pylori colonizes the human’s gastric mucosa and infects around 50% of the world’s population. This pathogen is responsible for chronic gastritis, peptic ulcers and in worst cases leads to gastric cancer. It has been classified as a class I carcinogen by the World Health Organization in 1994. Here, we show that HP0851, renamed HupA, is the major undecaprenyl pyrophosphate (C55-PP) phosphatase (UppP) and the major phosphatidylglycerol phosphate phosphatase (PGPase). This enzyme is also involved in cationic antimicrobial peptide (CAMP) resistance to which H. pylori hupA mutant shows an increased sensitivity (4 fold). This mutant was unable to colonize the stomach in mouse model of infection showing that even if hupA was not essential in vitro, this gene was essential in vivo. Both HupA and LpxE have crucial roles in the biosynthesis of several cell wall polysaccharides and thus constitute potential targets for new therapeutic strategies.
Collapse
|
38
|
Caffalette CA, Corey RA, Sansom MSP, Stansfeld PJ, Zimmer J. A lipid gating mechanism for the channel-forming O antigen ABC transporter. Nat Commun 2019; 10:824. [PMID: 30778065 PMCID: PMC6379404 DOI: 10.1038/s41467-019-08646-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/23/2019] [Indexed: 12/15/2022] Open
Abstract
Extracellular glycan biosynthesis is a widespread microbial protection mechanism. In Gram-negative bacteria, the O antigen polysaccharide represents the variable region of outer membrane lipopolysaccharides. Fully assembled lipid-linked O antigens are translocated across the inner membrane by the WzmWzt ABC transporter for ligation to the lipopolysaccharide core, with the transporter forming a continuous transmembrane channel in a nucleotide-free state. Here, we report its structure in an ATP-bound conformation. Large structural changes within the nucleotide-binding and transmembrane regions push conserved hydrophobic residues at the substrate entry site towards the periplasm and provide a model for polysaccharide translocation. With ATP bound, the transporter forms a large transmembrane channel with openings toward the membrane and periplasm. The channel's periplasmic exit is sealed by detergent molecules that block solvent permeation. Molecular dynamics simulation data suggest that, in a biological membrane, lipid molecules occupy this periplasmic exit and prevent water flux in the transporter's resting state.
Collapse
Affiliation(s)
- Christopher A Caffalette
- Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | | | - Jochen Zimmer
- Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
39
|
Zhao S, Gai P, Yu W, Li H, Li F. High-performance non-enzymatic biofuel cells based on an organic copper complex cathode and a nanoporous gold nanoparticle anode. Chem Commun (Camb) 2019; 55:1887-1890. [DOI: 10.1039/c8cc09333d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We developed non-enzymatic biofuel cells based on organic copper complex and nanoporous gold nanoparticle electrocatalysts in a neutral medium.
Collapse
Affiliation(s)
- Shifan Zhao
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| | - Panpan Gai
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| | - Wen Yu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| | - Haiyin Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| |
Collapse
|
40
|
Abstract
The peptidoglycan sacculus is a net-like polymer that surrounds the cytoplasmic membrane in most bacteria. It is essential to maintain the bacterial cell shape and protect from turgor. The peptidoglycan has a basic composition, common to all bacteria, with species-specific variations that can modify its biophysical properties or the pathogenicity of the bacteria. The synthesis of peptidoglycan starts in the cytoplasm and the precursor lipid II is flipped across the cytoplasmic membrane. The new peptidoglycan strands are synthesised and incorporated into the pre-existing sacculus by the coordinated activities of peptidoglycan synthases and hydrolases. In the model organism Escherichia coli there are two complexes required for the elongation and division. Each of them is regulated by different proteins from both the cytoplasmic and periplasmic sides that ensure the well-coordinated synthesis of new peptidoglycan.
Collapse
|
41
|
Ko TP, Huang CH, Lai SJ, Chen Y. Structure of undecaprenyl pyrophosphate synthase from Acinetobacter baumannii. Acta Crystallogr F Struct Biol Commun 2018; 74:765-769. [PMID: 30511669 PMCID: PMC6277960 DOI: 10.1107/s2053230x18012931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/13/2018] [Indexed: 04/06/2024] Open
Abstract
Undecaprenyl pyrophosphate (UPP) is an important carrier of the oligosaccharide component in peptidoglycan synthesis. Inhibition of UPP synthase (UPPS) may be an effective strategy in combating the pathogen Acinetobacter baumannii, which has evolved to be multidrug-resistant. Here, A. baumannii UPPS (AbUPPS) was cloned, expressed, purified and crystallized, and its structure was determined by X-ray diffraction. Each chain of the dimeric protein folds into a central β-sheet with several surrounding α-helices, including one at the C-terminus. In the active site, two molecules of citrate interact with the side chains of the catalytic aspartate and serine. These observations may provide a structural basis for inhibitor design against AbUPPS.
Collapse
Affiliation(s)
- Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chi-Hung Huang
- Department of Biotechnology, HungKuang University, Taichung, Taiwan
| | - Shu-Jung Lai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yeh Chen
- Department of Biotechnology, HungKuang University, Taichung, Taiwan
| |
Collapse
|
42
|
Boland C, Olatunji S, Bailey J, Howe N, Weichert D, Fetics SK, Yu X, Merino-Gracia J, Delsaut C, Caffrey M. Membrane (and Soluble) Protein Stability and Binding Measurements in the Lipid Cubic Phase Using Label-Free Differential Scanning Fluorimetry. Anal Chem 2018; 90:12152-12160. [DOI: 10.1021/acs.analchem.8b03176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Coilín Boland
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin DO2 R590, Ireland
| | - Samir Olatunji
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin DO2 R590, Ireland
| | - Jonathan Bailey
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin DO2 R590, Ireland
| | - Nicole Howe
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin DO2 R590, Ireland
| | - Dietmar Weichert
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin DO2 R590, Ireland
| | - Susan Kathleen Fetics
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin DO2 R590, Ireland
| | - Xiaoxiao Yu
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin DO2 R590, Ireland
| | - Javier Merino-Gracia
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin DO2 R590, Ireland
| | - Clement Delsaut
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin DO2 R590, Ireland
| | - Martin Caffrey
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin DO2 R590, Ireland
| |
Collapse
|
43
|
Caveney NA, Li FK, Strynadka NC. Enzyme structures of the bacterial peptidoglycan and wall teichoic acid biogenesis pathways. Curr Opin Struct Biol 2018; 53:45-58. [PMID: 29885610 DOI: 10.1016/j.sbi.2018.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/08/2018] [Accepted: 05/16/2018] [Indexed: 01/08/2023]
Abstract
The bacterial cell wall is a complex polymeric structure with essential roles in defence, survival and pathogenesis. Common to both Gram-positive and Gram-negative bacteria is the mesh-like peptidoglycan sacculus that surrounds the outer leaflet of the cytoplasmic membrane. Recent crystallographic studies of enzymes that comprise the peptidoglycan biosynthetic pathway have led to significant new understanding of all stages. These include initial multi-step cytosolic formation of sugar-pentapeptide precursors, transfer of the precursors to activated polyprenyl lipids at the membrane inner leaflet and flippase mediated relocalization of the resulting lipid II precursors to the outer leaflet where glycopolymerization and subsequent peptide crosslinking are finalized. Additional, species-specific enzymes allow customized peptidoglycan modifications and biosynthetic regulation that are important to bacterial virulence and survival. These studies have reinforced the unique and specific catalytic mechanisms at play in cell wall biogenesis and expanded the atomic foundation to develop novel, structure guided, antibacterial agents.
Collapse
Affiliation(s)
- Nathanael A Caveney
- University of British Columbia, Biochemistry and Molecular Biology and the Center for Blood Research, Rm 4350 Life Sciences Center, 2350 Health Sciences Mall, Vancouver V6T 1Z3 Canada
| | - Franco Kk Li
- University of British Columbia, Biochemistry and Molecular Biology and the Center for Blood Research, Rm 4350 Life Sciences Center, 2350 Health Sciences Mall, Vancouver V6T 1Z3 Canada
| | - Natalie Cj Strynadka
- University of British Columbia, Biochemistry and Molecular Biology and the Center for Blood Research, Rm 4350 Life Sciences Center, 2350 Health Sciences Mall, Vancouver V6T 1Z3 Canada.
| |
Collapse
|