1
|
Goli M, Sandilya V, Ghandour B, Hajj HE, Kobeissy F, Darwiche N, Mechref Y. Exploring the Anti-Leukemic Effect of the Synthetic Retinoid ST1926 on Malignant T Cells: A Comprehensive Proteomics Approach. Int J Mol Sci 2025; 26:4651. [PMID: 40429796 PMCID: PMC12111145 DOI: 10.3390/ijms26104651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/01/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
T-cell malignancies represent a group of complex cancers arising from T cells and include aggressive subtypes such as Adult T-cell Leukemia/Lymphoma (ATL) and T-cell Acute Lymphoblastic Leukemia (T-ALL). Patients with these aggressive subtypes still represent an unmet medical condition. The synthetic adamantyl retinoid ST1926, a potent DNA polymerase-α inhibitor, proved a promising potency in preclinical models of ATL and peripheral T-cell lymphoma. Using advanced liquid chromatography-mass spectrometry (LC-MS/MS) techniques, we explored the effects of ST1926 on global protein expression in ATL (HuT-102) and T-ALL (MOLT-4) cells. We demonstrate that ST1926 triggers differentiation and apoptosis in malignant T-cells while halting tumor progression. Evidence at the proteomics level reveals the impact of ST1926 on crucial DNA replication enzymes and cell cycle regulation, highlighting its potential to reduce leukemogenesis and promote apoptosis. Our findings underscore the potential of ST1926 as an innovative therapeutic approach to address these aggressive T-cell malignancies, providing valuable insights into developing new targeted therapies and improving the outcomes and prognosis of patients with these challenging diseases.
Collapse
Affiliation(s)
- Mona Goli
- Chemistry and Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA; (M.G.); (V.S.)
| | - Vishal Sandilya
- Chemistry and Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA; (M.G.); (V.S.)
| | - Botheina Ghandour
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (B.G.); (F.K.); (N.D.)
| | - Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (B.G.); (F.K.); (N.D.)
- Center for Neurotrauma, Multiomics & Biomarkers, Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (B.G.); (F.K.); (N.D.)
| | - Yehia Mechref
- Chemistry and Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA; (M.G.); (V.S.)
| |
Collapse
|
2
|
Gorodetska I, Lukiyanchuk V, Gawin M, Sliusar M, Linge A, Lohaus F, Hölscher T, Erdmann K, Fuessel S, Borkowetz A, Wojakowska A, Fochtman D, Reardon M, Choudhury A, Antonelli Y, Leal-Egaña A, Köseer AS, Kahya U, Püschel J, Petzold A, Klusa D, Peitzsch C, Kronstein-Wiedemann R, Tonn T, Marczak L, Thomas C, Widłak P, Pietrowska M, Krause M, Dubrovska A. Blood-based detection of MMP11 as a marker of prostate cancer progression regulated by the ALDH1A1-TGF-β1 signaling mechanism. J Exp Clin Cancer Res 2025; 44:105. [PMID: 40122809 PMCID: PMC11931756 DOI: 10.1186/s13046-025-03299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/12/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the second most common type of tumor diagnosed in men and the fifth leading cause of cancer-related death in male patients. The response of metastatic disease to standard treatment is heterogeneous. As for now, there is no curative treatment option available for metastatic PCa, and the clinical tests capable of predicting metastatic dissemination and metastatic response to the therapies are lacking. Our recent study identified aldehyde dehydrogenases ALDH1A1 and ALDH1A3 as critical regulators of PCa metastases. Still, the exact mechanisms mediating the role of these proteins in PCa metastatic dissemination remain not fully understood, and plasma-based biomarkers of these metastatic mechanisms are not available. METHODS Genetic silencing, gene overexpression, or treatment with different concentrations of the retinoic acid (RA) isomers, which are the products of ALDH catalytic activity, were used to modulate the interplay between retinoic acid receptors (RARs) and androgen receptor (AR). RNA sequencing (RNAseq), reporter gene assays, and chromatin immunoprecipitation (ChIP) analysis were employed to validate the role of RARs and AR in the regulation of the transforming growth factor-beta 1 (TGFB1) expression. Gene expression levels of ALDH1A1, ALDH1A3, and the matrix metalloproteinase 11 (MMP11) and their correlation with pathological parameters and clinical outcomes were analysed by mining several publicly available patient datasets as well as our multi-center transcriptomic dataset from patients with high-risk and locally advanced PCa. The level of MMP11 protein was analysed by enzyme-linked immunosorbent assay (ELISA) in independent cohorts of plasma samples from patients with primary or metastatic PCa and healthy donors, while plasma proteome profiles were obtained for selected subsets of PCa patients. RESULTS We could show that ALDH1A1 and ALDH1A3 genes differently regulate TGFB1 expression in a RAR- and AR-dependent manner. We further observed that the TGF-β1 pathway contributes to the regulation of the MMPs, including MMP11. We have confirmed the relevance of MMP11 as a promising clinical marker for PCa using several independent gene expression datasets. Further, we have validated plasma MMP11 level as a prognostic biomarker in patients with metastatic PCa. Finally, we proposed a hypothetical ALDH1A1/MMP11-related plasma proteome-based prognostic signature. CONCLUSIONS TGFB1/MMP11 signaling contributes to the ALDH1A1-driven PCa metastases. MMP11 is a promising blood-based biomarker of PCa progression.
Collapse
Affiliation(s)
- Ielizaveta Gorodetska
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Vasyl Lukiyanchuk
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Marta Gawin
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Myroslava Sliusar
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Annett Linge
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Fabian Lohaus
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Tobias Hölscher
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Kati Erdmann
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Susanne Fuessel
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Angelika Borkowetz
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Anna Wojakowska
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | - Daniel Fochtman
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | - Mark Reardon
- Division of Cancer Sciences, Translational Radiobiology Group, University of Manchester, Manchester Cancer Research Centre, Christie NHS Foundation Trust, Manchester, UK
| | - Ananya Choudhury
- Division of Cancer Sciences, Translational Radiobiology Group, University of Manchester, Manchester Cancer Research Centre, Christie NHS Foundation Trust, Manchester, UK
| | - Yasmin Antonelli
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg, Germany
| | - Aldo Leal-Egaña
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg, Germany
| | - Ayse Sedef Köseer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Uğur Kahya
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Jakob Püschel
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
| | - Andrea Petzold
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
| | - Daria Klusa
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Claudia Peitzsch
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Romy Kronstein-Wiedemann
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Torsten Tonn
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Lukasz Marczak
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | - Christian Thomas
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Piotr Widłak
- 2nd Department of Radiology, Medical University of Gdansk, Gdansk, Poland
| | - Monika Pietrowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Anna Dubrovska
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany.
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.
| |
Collapse
|
3
|
Du X, Qi Z, Chen S, Wu J, Xu Y, Hu S, Yu Z, Hou J, Fang Y, Xia J, Cao X. Synthetic Retinoid Sulfarotene Selectively Inhibits Tumor-Repopulating Cells of Intrahepatic Cholangiocarcinoma via Disrupting Cytoskeleton by P-Selectin/PSGL1 N-Glycosylation Blockage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407519. [PMID: 39605300 PMCID: PMC11744644 DOI: 10.1002/advs.202407519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a highly lethal malignancy that currently lacks effective clinical treatments. Eliminating stem cell-like cancer cells is an extremely promising but challenging strategy for treating ICC. A recently developed synthetic retinoid, sulfarotene, abrogates proliferation, and induces apoptosis of tumor-repopulating cells (TRCs) that exhibit stem cell-like properties, yet its effect and underlying mechanisms remain elusive in ICC. It is found that although 5-fluorouracil, cisplatin, pemigatinib, and gemcitabine all inhibit ICC-TRCs, sulfarotene demonstrates superior efficacy. Sulfarotene induces retinoic acid receptor alpha (RARɑ) translocation from the cytoplasm to the nucleus, suppressing P-selectin expression at the transcriptional level. Moreover, it directly interacts with fucosyltransferase 8 (FUT8), inhibiting the core fucosylation of P-selectin glycoprotein ligand 1 (PSGL1). These actions collectively inhibit ICC-TRCs via destroying PSGL1-regulated cytoskeleton. The findings provide a strategy of inhibiting P-selectin/PSGL1 interaction and altering PSGL1 glycosylation pattern to compromise the cytoskeletal integrity and eliminate ICC-TRCs.
Collapse
Affiliation(s)
- Xiaojing Du
- Liver Cancer InstituteZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
- Endoscopy CenterShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Zhuoran Qi
- Liver Cancer InstituteZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Sinuo Chen
- Liver Cancer InstituteZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Jinlan Wu
- Department of PediatricsJiading District Central HospitalShanghai201800China
| | - Ye Xu
- Liver Cancer InstituteZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Sunkuan Hu
- Department of GastroenterologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Zhijie Yu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
- Wenzhou Key Laboratory of HematologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Jiayun Hou
- Biomedical Research CenterZhongshan Hospital Institute of Clinical ScienceFudan UniversityShanghai200032China
| | - Yuan Fang
- Department of Liver SurgeryKey Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghai200032China
| | - Jinglin Xia
- Liver Cancer InstituteZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and TranslationFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhou325035China
| | - Xin Cao
- Institute of Clinical ScienceZhongshan HospitalFudan UniversityShanghai200032China
| |
Collapse
|
4
|
Chen R, Huang X, Hou J, Ni J, Zhao W, Li Q, Jiao H, Cao X. ZSH-2208: A novel retinoid with potent anti-tumour effects on ESCC stem cells via RARγ-TNFAIP3 axis. Clin Transl Med 2025; 15:e70148. [PMID: 39724264 DOI: 10.1002/ctm2.70148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUD Oesophageal cancer ranks among the most prevalent malignant tumours globally, primarily consisting of oesophageal squamous cell carcinoma (ESCC). Cancer stem cells (CSCs) accelerate the progression ESCC via their strong self-renewal and tumourigenic capabilities, presenting significant clinical challenges due to increased risks of recurrence and drug resistance. METHODS Our previous study has reported WYC-209, which is capable of inducing apoptosis of CSCs in melanoma and hepatoma, but is ineffective against ESCC. Additionally, clinical studies in ESCC still lack drug candidates that effectively target CSCs. Therefore, our team developed a series of novel retinoids that target retinoic acid receptors (RARs), with enhanced potency, broader efficacy and minimised toxic side effects against CSCs. Following iterative optimisation and pharmacological validation, ZSH-2208 was identified as the most promising candidate for effectively targeting ESCC tumour-repopulating cells (TRCs). Mechanistic exploration revealed that ZSH-2208 inhibits the growth of ESCC-TRCs through modulation of the RARγ-TNFAIP3 axis. The clinical significance of the key molecule TNFAIP3 in ESCC has also been demonstrated. RESULTS This study introduces ZSH-2208, a novel retinoid specifically targeting ESCC-TRCs, which holds significant potential for clinical application in ESCC. KEY POINTS The ESCC-TRCs replicates the characteristics of ESCC stem cells, which are inhibited by ZSH-2208. In vivo and in vitro experiments demonstrated that ZSH-2208, a novel RA analogue, effectively inhibits the growth of ESCC-TRCs through the RARγ-TNFAIP3 axis. Low levels of TNFIP3 protein may be associated with improved survival probability in ESCC patients.
Collapse
Affiliation(s)
- Ruoxue Chen
- Institute of Clinical Science, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Xuan Huang
- Institute of Clinical Science, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Jiayun Hou
- Institute of Clinical Science, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Junjie Ni
- Institute of Clinical Science, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Wenrui Zhao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Quanlin Li
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Heng Jiao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Xin Cao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
5
|
Qian Z, Lin W, Cai X, Wu J, Ke K, Ye Z, Wu F. WYC-209 inhibited GC malignant progression by down-regulating WNT4 through RARα. Cancer Biol Ther 2024; 25:2299288. [PMID: 38178596 PMCID: PMC10773637 DOI: 10.1080/15384047.2023.2299288] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
Gastric cancer (GC) has been a major health burden all over the world but there are fewer promising chemotherapeutic drugs due to its multidrug resistance. It has been reported that WYC-209 suppresses the growth and metastasis of tumor-repopulating cells but the effect on GC was not explored. MTT, colony formation, and transwell assays were performed to examine the effects of WYC-209 on the proliferation, colony growth, and mobility of GC cells. Western blotting and qRT-PCR were used to detect the expression of proteins and mRNA. RNA-seq and enrichment analyses were conducted for the differentially expressed genes and enriched biological processes and pathways. The rescue experiments were carried out for further validation. Besides, we constructed xenograft model to confirm the effect of WYC-209 in vivo. The dual-luciferase reporter and Chromatin immunoprecipitation were implemented to confirm the underlying mechanism. WYC-209 exerted excellent anti-cancer effects both in vitro and in vivo. Based on RNA-seq and enrichment analyses, we found that Wnt family member 4 (WNT4) was significantly down-regulated. More importantly, WNT4 overexpression breached the inhibitory effect of WYC-209 on GC progression. Mechanically, WYC-209 significantly promoted the binding between retinoic acid receptor α (RARα) and WNT4 promoter. WYC-209 exerts anti-tumor effects in GC by down-regulating the expression of WNT4 via RARα.
Collapse
Affiliation(s)
- Zhenyuan Qian
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wenfa Lin
- School of Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xufan Cai
- School of Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jianzhang Wu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Kun Ke
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zaiyuan Ye
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fang Wu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Qian Z, Lin W, Cai X, Wu J, Ke K, Ye Z, Wu F. WYC-209 suppresses gastric cancer by down-regulating FGF18 via inactivating the STAT3 signaling pathway. Eur J Pharmacol 2024; 983:176957. [PMID: 39214271 DOI: 10.1016/j.ejphar.2024.176957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/09/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Gastric cancer (GC) is regarded as a major health burden all over the world. WYC-209 inhibits the growth and metastasis of tumor-repopulating cells (TRCs). However, its effectiveness on GC was unexplored. Herein, this study aims to investigate the effect of WYC-209 on GC and elucidate its underlying mechanism. METHODS We examined the effects of WYC-209 on cell survival, migration, invasion, and colony-forming capacities of two GC cell lines (AGS and HGC-27). Subsequently, RNA-seq and enrichment analyses were performed to screen the differentially expressed genes (DEGs) and the enriched signaling pathways. To further explore the underlying mechanism, loss- and gain-function experiments, Chromatin immunoprecipitation, and luciferase reporter were conducted. Finally, xenograft models were constructed to examine the effects of WYC-209 in vivo. RESULTS WYC-209 significantly inhibited cell motility in vitro and tumor growth in vivo. RNA-seq performed in AGS cells after WYC-209 treatment revealed that the inhibition effect of WYC-209 on GCs may be associated with the down-regulation of fibroblast growth factor-18 (FGF18), and pleasantly, FGF18 overexpression abrogated the suppression effect of the drug. In addition, we found that WYC-209 attenuated the activation of the Signal Transducer and Activator of Transcription 3 (STAT3) signaling pathway, and impeded the FGF18 levels expressed in GCs. Importantly, the WYC-209 treatment circumvented the binding of STAT3 to the FGF18 promoter, suggested that WYC-209 down-regulated FGF18 expression via the STAT3 signaling pathway. CONCLUSION Together, our findings presented the promise of WYC-209 in suppressing GC by down-regulating FGF18 expression through inactivating the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Zhenyuan Qian
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wenfa Lin
- Zhejiang Chinese Medical University, China
| | - Xufan Cai
- Zhejiang Chinese Medical University, China
| | - Jianzhang Wu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Kun Ke
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zaiyuan Ye
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Fang Wu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Aswani SS, Jayan SG, Mohan MS, Aparna NS, Boban PT, Saja K. Chrysin downregulates the expression of ADAMTS-4 in foam cells. Mol Biol Rep 2024; 51:968. [PMID: 39249599 DOI: 10.1007/s11033-024-09896-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Chrysin, a polyphenolic compound, possesses antioxidant and anti-inflammatory properties. In this study, we investigated the effect of chrysin on the expression of A disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), a protease enzyme involved in degrading extracellular matrix associated with atherosclerosis. METHODS AND RESULTS We have studied the cell viability by MTT assay and foam cell formation by oil red O staining. The mRNA and protein expression of ADAMTS-4 was studied using quantitative polymerase chain reaction (qPCR) and Western blotting, respectively. Our study showed that chrysin significantly downregulates the expression of ADAMTS-4 in foam cells. CONCLUSION Chrysin's ability to downregulate the expression of ADAMTS-4, a protease involved in degrading the extracellular matrix, bestows upon it a new therapeutic potential for managing atherosclerosis.
Collapse
Affiliation(s)
- S S Aswani
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - Sreelekshmi G Jayan
- Department of Biotechnology, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - Mithra S Mohan
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - N S Aparna
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - P T Boban
- Department of Biochemistry, Government College Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - K Saja
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India.
| |
Collapse
|
8
|
Miras I, Estévez-García P, Muñoz-Galván S. Clinical and molecular features of platinum resistance in ovarian cancer. Crit Rev Oncol Hematol 2024; 201:104434. [PMID: 38960218 DOI: 10.1016/j.critrevonc.2024.104434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
Ovarian cancer is the most lethal of all the gynecological tumors despite remarkable advances in our understanding of its molecular biology. The cornerstone treatment remains cytoreductive surgery followed by platinum-based chemotherapy. Recently, the addition of targeted therapies, such as PARP inhibitors, as first-line maintenance has led to outstanding improvements, mainly in BRCA mutated and homologous recombination deficient tumors. However, a significant proportion of patients will experience recurrence, primarily due to platinum resistance, which ultimately result in fatality. Among these patients, primary platinum-resistant have a particularly dismal prognosis due to their low response to current available therapies, historical exclusion from clinical trials, and the absence of validated biomarkers. In this review, we discuss the concept of platinum resistance in ovarian cancer, the clinical and molecular characteristics of this resistance, and the current and new treatment options for these patients.
Collapse
Affiliation(s)
- Isabel Miras
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain; Medical Oncology Department. Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Purificación Estévez-García
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain; Medical Oncology Department. Hospital Universitario Virgen del Rocío, Seville, Spain; CIBER de CANCER, Institute of Health Carlos III, Madrid, Spain
| | - Sandra Muñoz-Galván
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain; CIBER de CANCER, Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
9
|
Duan C, He B, Wang Y, Liu W, Bao W, Yu L, Xin J, Gui H, Lei J, Yang Z, Liu J, Tao W, Qin J, Luo J, Dong Z. Stanniocalcin-1 promotes temozolomide resistance of glioblastoma through regulation of MGMT. Sci Rep 2024; 14:20199. [PMID: 39215105 PMCID: PMC11364827 DOI: 10.1038/s41598-024-68902-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Temozolomide (TMZ) resistance is a major challenge in the treatment of glioblastoma (GBM). Tumour reproductive cells (TRCs) have been implicated in the development of chemotherapy resistance. By culturing DBTRG cells in three-dimensional soft fibrin gels to enrich GBM TRCs and performing RNA-seq analysis, the expression of stanniocalcin-1 (STC), a gene encoding a secreted glycoprotein, was found to be upregulated in TRCs. Meanwhile, the viability of TMZ-treated TRC cells was significantly higher than that of TMZ-treated 2D cells. Analysis of clinical data from CGGA (Chinese Glioma Genome Atlas) database showed that high expression of STC1 was closely associated with poor prognosis, glioma grade and resistance to TMZ treatment, suggesting that STC1 may be involved in TMZ drug resistance. The expression of STC1 in tissues and cells was examined, as well as the effect of STC1 on GBM cell proliferation and TMZ-induced DNA damage. The results showed that overexpression of STC1 promoted and knockdown of STC1 inhibited TMZ-induced DNA damage. These results were validated in an intracranial tumour model. These data revealed that STC1 exerts regulatory functions on MGMT expression in GBM, and provides a rationale for targeting STC1 to overcome TMZ resistance.
Collapse
Affiliation(s)
- Chao Duan
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Bincan He
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yiqi Wang
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wanying Liu
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wendai Bao
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Li Yu
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China
| | - Jinxin Xin
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China
| | - Hui Gui
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China
| | - Junrong Lei
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China
| | - Zehao Yang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China
| | - Jun Liu
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China
| | - Weiwei Tao
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jun Qin
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China.
| | - Jie Luo
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China.
| | - Zhiqiang Dong
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China.
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Central Laboratory, Hubei Cancer Hospital, Wuhan, 430070, Hubei, China.
| |
Collapse
|
10
|
Stumpf FM, Müller S, Marx A. Identification of small molecules that are synthetically lethal upon knockout of the RNA ligase Rlig1 in human cells. RSC Chem Biol 2024; 5:833-840. [PMID: 39211475 PMCID: PMC11353076 DOI: 10.1039/d4cb00125g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Rlig1 is the first RNA ligase identified in humans utilising a classical 5'-3' ligation mechanism. It is a conserved enzyme in all vertebrates and is mutated in various cancers. During our initial research on Rlig1, we observed that Rlig1-knockout (KO) HEK293 cells are more sensitive to the stress induced by menadione than their WT counterpart, representing a type of chemical synthetic lethality. To gain further insight into the biological pathways in which Rlig1 may be involved, we aimed at identifying new synthetically lethal small molecules. To this end, we conducted a high-throughput screening with a compound library comprising over 13 000 bioactive small molecules. This approach led to the identification of compounds that exhibited synthetic lethality in combination with Rlig1-KO. In addition to the aforementioned novel compounds that diverge structurally from menadione, we also tested multiple small molecules containing a naphthoquinone scaffold.
Collapse
Affiliation(s)
- Florian M Stumpf
- Department of Chemistry, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
- Konstanz Research School Chemical Biology, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
| | - Silke Müller
- Department of Biology, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
- Screening Center, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
| | - Andreas Marx
- Department of Chemistry, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
- Konstanz Research School Chemical Biology, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
| |
Collapse
|
11
|
Guo S, Zheng S, Liu M, Wang G. Novel Anti-Cancer Stem Cell Compounds: A Comprehensive Review. Pharmaceutics 2024; 16:1024. [PMID: 39204369 PMCID: PMC11360402 DOI: 10.3390/pharmaceutics16081024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer stem cells (CSCs) possess a significant ability to renew themselves, which gives them a strong capacity to form tumors and expand to encompass additional body areas. In addition, they possess inherent resistance to chemotherapy and radiation therapies used to treat many forms of cancer. Scientists have focused on investigating the signaling pathways that are highly linked to the ability of CSCs to renew themselves and maintain their stem cell properties. The pathways encompassed are Notch, Wnt/β-catenin, hedgehog, STAT3, NF-κB, PI-3K/Akt/mTOR, sirtuin, ALDH, MDM2, and ROS. Recent studies indicate that directing efforts towards CSC cells is essential in eradicating the overall cancer cell population and reducing the likelihood of tumor metastasis. As our comprehension of the mechanisms that stimulate CSC activity, growth, and resistance to chemotherapy advances, the discovery of therapeutic drugs specifically targeting CSCs, such as small-molecule compounds, holds the potential to revolutionize cancer therapy. This review article examines and analyzes the novel anti-CSC compounds that have demonstrated effective and selective targeting of pathways associated with the renewal and stemness of CSCs. We also discussed their special drug metabolism and absorption mechanisms. CSCs have been the subject of much study in cancer biology. As a possible treatment for malignancies, small-molecule drugs that target CSCs are gaining more and more attention. This article provides a comprehensive review of the current state of key small-molecule compounds, summarizes their recent developments, and anticipates the future discovery of even more potent and targeted compounds, opening up new avenues for cancer treatment.
Collapse
Affiliation(s)
- Shanchun Guo
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | - Shilong Zheng
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | - Mingli Liu
- Department of Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Guangdi Wang
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| |
Collapse
|
12
|
Cortés-Malagón EM, Gariglio P, Sierra-Martínez M, Bonilla-Delgado J. Retinoids: Molecular Aspects and Treatment in Premalignant Lesions and Cervical Cancer. Cancer Control 2024; 31:10732748241279514. [PMID: 39163121 PMCID: PMC11337187 DOI: 10.1177/10732748241279514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
Persistent infection with high-risk human papillomavirus remains the primary factor associated with the progression of cervical squamous intraepithelial lesions and the development of cervical cancer. Nevertheless, a combination of factors, including genetic predisposition, immune response, hormonal influences, and nutritional status, contribute synergistically to the development of cervical cancer. Among the various factors involved in the pathogenesis and therapy of cervical cancer, retinoids have gained considerable attention due to their multifaceted roles in different cellular processes. This review investigates defects within the vitamin A metabolism pathway and their correlation with cervical cancer. Additionally, it integrates epidemiological and experimental findings to discuss the potential utility of retinoid-based therapies, either alone or combined with other therapies, as agents against premalignant lesions and cervical cancer.
Collapse
Affiliation(s)
- Enoc Mariano Cortés-Malagón
- Research Division, Hospital Juárez de México, Mexico City, Mexico
- Genetic Laboratory, Hospital Nacional Homeopático, Mexico City, Mexico
| | - Patricio Gariglio
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados, Ciudad de Mexico, Mexico
| | - Mónica Sierra-Martínez
- Research Unit, Hospital Regional de Alta Especialidad de Ixtapaluca, IMSS-BINESTAR, Ixtapaluca, Mexico
| | - José Bonilla-Delgado
- Research Unit, Hospital Regional de Alta Especialidad de Ixtapaluca, IMSS-BINESTAR, Ixtapaluca, Mexico
| |
Collapse
|
13
|
Huang P, Li H, Ren L, Xie H, Chen L, Liang Y, Hu Y, Selistre-de-Araujo HS, Boussios S, Jhawar SR, Cui R, Zuo Q, Chen Q. Astragaloside IV enhances the sensitivity of breast cancer stem cells to paclitaxel by inhibiting stemness. Transl Cancer Res 2023; 12:3703-3717. [PMID: 38193000 PMCID: PMC10774038 DOI: 10.21037/tcr-23-1885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/22/2023] [Indexed: 01/10/2024]
Abstract
Background Chemotherapy is one of the common treatments for breast cancer. The induction of cancer stem cells (CSCs) is an important reason for chemotherapy failure and breast cancer recurrence. Astragaloside IV (ASIV) is one of the effective components of the traditional Chinese medicine (TCM) Astragalus membranaceus, which can improve the sensitivity of various tumors to chemotherapy drugs. Here, we explored the sensitization effect of ASIV to chemotherapy drug paclitaxel (PTX) in breast cancer from the perspective of CSCs. Methods The study included both in vitro and in vivo experiments. CSCs from the breast cancer cell line MCF7 with stem cell characteristics were successfully induced in vitro. Cell viability and proliferation were detected using the Cell Counting Kit-8 (CCK-8) and colony formation assays, and flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) methods were performed to detect cell apoptosis. Stemness-related protein expression was determined by western blotting (WB) and immunohistochemistry (IHC). Body weight, histopathology, and visceral organ damage of mice were used to monitor drug toxicity. Results The expression of stemness markers including Sox2, Nanog, and ALDHA1 was stronger in MCF7-CSCs than in MCF7. PTX treatment inhibited the proliferation of tumor cells by promoting cell apoptosis, whereas the stemness of breast cancer stem cells (BCSCs) resisted the effects of PTX. ASIV decreased the stemness of BCSCs, increased the sensitivity of BCSCs to PTX, and synergistically promoted PTX-induced apoptosis of breast cancer cells. Our results showed that the total cell apoptosis rate increased by about 25% after adding ASIV compared with BCSCs treated with PTX alone. The in vivo experiments demonstrated that ASIV enhanced the ability of PTX to inhibit the growth of breast cancer. WB and IHC showed that ASIV reduced the stemness of CSCs. Conclusions In this study, the resistance of breast cancer to PTX was attributed to the existence of CSCs; ASIV weakened the resistance of MCF7-CSCs to PTX by significantly attenuating the hallmarks of breast cancer stemness and improved the efficacy of PTX.
Collapse
Affiliation(s)
- Ping Huang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Huachao Li
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Liping Ren
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Haimei Xie
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Liushan Chen
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Academy of Chinese Medicine, Guangzhou, China
| | - Yuqi Liang
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yuyu Hu
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Academy of Chinese Medicine, Guangzhou, China
| | - Heloisa Sobreiro Selistre-de-Araujo
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Kent, UK
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London, UK
- Kent Medway Medical School, University of Kent, Kent, UK
- AELIA Organization, Thessaloniki, Greece
| | - Sachin R. Jhawar
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Rutao Cui
- Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Zuo
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qianjun Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Academy of Chinese Medicine, Guangzhou, China
| |
Collapse
|
14
|
Zhang Y, Chen J, Mi D, Ling J, Li H, He P, Liu N, Chen Q, Chen Y, Huang L. Discovery of YH677 as a cancer stemness inhibitor that suppresses triple-negative breast cancer growth and metastasis by regulating the TGFβ signaling pathway. Cancer Lett 2023; 560:216142. [PMID: 36965539 DOI: 10.1016/j.canlet.2023.216142] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Triple-negative breast cancer (TNBC) has a poor prognosis due to the lack of specific and highly effective therapeutic agents. Cancer stem cells (CSCs) are one of the main factors contributing to TNBC relapse and metastasis. Therefore, targeting CSCs selectively with small molecules is a novel strategy for drug development. In this study, the natural product harmine (HM) was identified as a hit compound from 2632 natural product monomers based on phenotypic screening of a 2D assay and patient-derived organoid (PDO) model that was established from a patient who had multiple drug resistance and various visceral and contralateral breast metastases. Next, harmine was further modified and optimized to obtain a lead compound (YH677) with a tetrahydro-β-carboline scaffold. YH677 showed potent antiproliferative and antimigratory activities against several TNBC cell lines in vitro. In addition, YH677 inhibited epithelial mesenchymal transition (EMT) and stem cell marker expression in a dose-dependent manner. More importantly, YH677 suppressed breast cancer growth and metastasis in orthotopic, metastatic xenograft and patient-derived xenograft (PDX) models in vivo. Mechanistic studies showed that YH677 inhibits the expansion of CSCs by regulating the TGFβ/Smad signaling pathway. These preclinical data provide a basis for the development of YH677 as a lead compound for TNBC treatment.
Collapse
Affiliation(s)
- Yuzhu Zhang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Breast Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Jing Chen
- School of Basic Medical Sciences, Ningxia Medical University, Ningxia, 750004, China; Key Laboratory of Fertility Maintenance Ministry of Education, Ningxia Medical University, Ningxia, 750004, China
| | - Dazhao Mi
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jun Ling
- School of Basic Medical Sciences, Ningxia Medical University, Ningxia, 750004, China; Key Laboratory of Fertility Maintenance Ministry of Education, Ningxia Medical University, Ningxia, 750004, China
| | - Huachao Li
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Peng He
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ning Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qianjun Chen
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| | - Yihua Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
15
|
Steinhoff M, Alam M, Ahmad A, Uddin S, Buddenkotte J. Targeting oncogenic transcription factors in skin malignancies: An update on cancer stemness and therapeutic outcomes. Semin Cancer Biol 2022; 87:98-116. [PMID: 36372325 DOI: 10.1016/j.semcancer.2022.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
The skin is the largest organ of the human body and prone to various diseases, including cancer; thus, provides the first line of defense against exogenous biological and non-biological agents. Skin cancer, a complex and heterogenic process, with steep incidence rate often metastasizes due to poor understanding of the underlying mechanisms of pathogenesis and clinical challenges. Indeed, accumulating evidence indicates that deregulation of transcription factors (TFs) due to genetic, epigenetic and signaling distortions plays essential role in the development of cutaneous malignancies and therapeutic challenges including cancer stemness features and reprogramming. This review highlights the recent developments exploring underlying mechanisms how deregulated TFs (e.g., NF-κB, AP-1, STAT etc.,) orchestrates cutaneous onco-pathogenesis, reprogramming, stemness and poor clinical outcomes. Along this line, bioactive drugs, and their derivatives from natural and or synthetic origin has gained attention due to their multitargeting potential, potentially safer and effective therapeutic outcome for human malignancies. We also discussed therapeutic importance of targeting aberrantly expressed TFs in skin cancers with bioactive natural products and or synthetic agents.
Collapse
Affiliation(s)
- Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar.
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Aamir Ahmad
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Center, Qatar University, Doha, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
16
|
Zhang Y, Dong Q, An Q, Zhang C, Mohagheghian E, Niu B, Qi F, Wei F, Chen S, Chen X, Wang A, Cao X, Wang N, Chen J. Synthetic Retinoid Kills Drug-Resistant Cancer Stem Cells via Inducing RARγ-Translocation-Mediated Tension Reduction and Chromatin Decondensation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203173. [PMID: 36031407 PMCID: PMC9631059 DOI: 10.1002/advs.202203173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/16/2022] [Indexed: 05/11/2023]
Abstract
A recently developed synthetic retinoid abrogates proliferation and induces apoptosis of drug-resistant malignant-cancer-stem-cell-like cells. However, the underlying mechanisms of how the synthetic retinoid induces cancer-stem-cell-like cell tumor-repopulating cell (TRC) apoptosis are elusive. Here, it is shown that although the retinoid and conventional anticancer drugs cisplatin, all-trans retinoic acid, and tazarotene all inhibit cytoskeletal tension and decondense chromatin prior to inducing TRC apoptosis, half-maximal inhibitory concentration of the retinoid is 20-fold lower than those anticancer drugs. The synthetic retinoid induces retinoic acid receptor gamma (RARγ) translocation from the nucleus to the cytoplasm, leading to reduced RARγ binding to Cdc42 promoter and Cdc42 downregulation, which decreases filamentous-actin (F-actin) and inhibits cytoskeletal tension. Elevating F-actin or upregulating histone 3 lysine 9 trimethylation decreases retinoid-induced DNA damage and apoptosis of TRCs. The combinatorial treatment with a chromatin decondensation molecule and the retinoid inhibits tumor metastasis in mice more effectively than the synthetic retinoid alone. These findings suggest a strategy of lowering cell tension and decondensing chromatin to enhance DNA damage to abrogate metastasis of cancer-stem-cell-like cells with high efficacy.
Collapse
Affiliation(s)
- Yao Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of EducationLaboratory for Cellular Biomechanics and Regenerative MedicineDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Qi Dong
- Key Laboratory of Molecular Biophysics of the Ministry of EducationLaboratory for Cellular Biomechanics and Regenerative MedicineDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Quanlin An
- Institute of Clinical ScienceZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Chumei Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of EducationLaboratory for Cellular Biomechanics and Regenerative MedicineDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Erfan Mohagheghian
- Department of Mechanical Science and EngineeringThe Grainger College of EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Bing Niu
- School of Life SciencesShanghai University99 Shangda RoadShanghai200444China
| | - Feng Qi
- Institute of Clinical ScienceZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Fuxiang Wei
- Key Laboratory of Molecular Biophysics of the Ministry of EducationLaboratory for Cellular Biomechanics and Regenerative MedicineDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Sihan Chen
- Key Laboratory of Molecular Biophysics of the Ministry of EducationLaboratory for Cellular Biomechanics and Regenerative MedicineDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Xinman Chen
- Key Laboratory of Molecular Biophysics of the Ministry of EducationLaboratory for Cellular Biomechanics and Regenerative MedicineDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Anqi Wang
- Key Laboratory of Molecular Biophysics of the Ministry of EducationLaboratory for Cellular Biomechanics and Regenerative MedicineDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Xin Cao
- Institute of Clinical ScienceZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Ning Wang
- Department of Mechanical Science and EngineeringThe Grainger College of EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Junwei Chen
- Key Laboratory of Molecular Biophysics of the Ministry of EducationLaboratory for Cellular Biomechanics and Regenerative MedicineDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
| |
Collapse
|
17
|
Li Y, Wong IY, Guo M. Reciprocity of Cell Mechanics with Extracellular Stimuli: Emerging Opportunities for Translational Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107305. [PMID: 35319155 PMCID: PMC9463119 DOI: 10.1002/smll.202107305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Human cells encounter dynamic mechanical cues in healthy and diseased tissues, which regulate their molecular and biophysical phenotype, including intracellular mechanics as well as force generation. Recent developments in bio/nanomaterials and microfluidics permit exquisitely sensitive measurements of cell mechanics, as well as spatiotemporal control over external mechanical stimuli to regulate cell behavior. In this review, the mechanobiology of cells interacting bidirectionally with their surrounding microenvironment, and the potential relevance for translational medicine are considered. Key fundamental concepts underlying the mechanics of living cells as well as the extracelluar matrix are first introduced. Then the authors consider case studies based on 1) microfluidic measurements of nonadherent cell deformability, 2) cell migration on micro/nano-topographies, 3) traction measurements of cells in three-dimensional (3D) matrix, 4) mechanical programming of organoid morphogenesis, as well as 5) active mechanical stimuli for potential therapeutics. These examples highlight the promise of disease diagnosis using mechanical measurements, a systems-level understanding linking molecular with biophysical phenotype, as well as therapies based on mechanical perturbations. This review concludes with a critical discussion of these emerging technologies and future directions at the interface of engineering, biology, and medicine.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering, Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
18
|
Du X, Qi Z, Xu J, Guo M, Zhang X, Yu Z, Cao X, Xia J. Loss of
GABARAPL1
confers ferroptosis resistance to cancer stem‐like cells in hepatocellular carcinoma. Mol Oncol 2022; 16:3703-3719. [DOI: 10.1002/1878-0261.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Xiaojing Du
- Department of Gastroenterology, Minhang Hospital Fudan University 170 Xinsong Road, Shanghai 201199 China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang Province The First Affiliated Hospital of Wenzhou Medical University 325000 Wenzhou China
| | - Zhuoran Qi
- Liver Cancer Institute, Zhongshan Hospital Fudan University 200032 Shanghai China
| | - Jinzhi Xu
- Liver Cancer Institute, Zhongshan Hospital Fudan University 200032 Shanghai China
| | - Mengzhou Guo
- Liver Cancer Institute, Zhongshan Hospital Fudan University 200032 Shanghai China
| | - Xingxing Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang Province The First Affiliated Hospital of Wenzhou Medical University 325000 Wenzhou China
- Department of Gastroenterology Anhui University of Science and Technology Affiliated Fengxian Hospital Shanghai Fengxian District Central Hospital, 6600 Nanfeng Road, Shanghai, 201499 China
| | - Zhijie Yu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang Province The First Affiliated Hospital of Wenzhou Medical University 325000 Wenzhou China
- Wenzhou Key Laboratory of Hematology The First Affiliated Hospital of Wenzhou Medical University 325000 Wenzhou China
| | - Xin Cao
- Institute of Clinical Science, Zhongshan Hospital Fudan University 200032 Shanghai China
| | - Jinglin Xia
- Department of Gastroenterology, Minhang Hospital Fudan University 170 Xinsong Road, Shanghai 201199 China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang Province The First Affiliated Hospital of Wenzhou Medical University 325000 Wenzhou China
- Liver Cancer Institute, Zhongshan Hospital Fudan University 200032 Shanghai China
| |
Collapse
|
19
|
Bi G, Liang J, Bian Y, Shan G, Besskaya V, Wang Q, Zhan C. The immunomodulatory role of all-trans retinoic acid in tumor microenvironment. Clin Exp Med 2022:10.1007/s10238-022-00860-x. [PMID: 35829844 DOI: 10.1007/s10238-022-00860-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/28/2022] [Indexed: 12/19/2022]
Abstract
Retinoids are essential nutrients for human beings. Among them, all-trans retinoic acid (ATRA), considered one of the most active metabolites, plays important roles in multiple biological processes. ATRA regulates the transcription of target genes by interacting with nuclear receptors bonded to retinoic acid response elements (RAREs). Besides its differentiation-inducing effect in the treatment of acute promyelocytic leukemia and some solid tumor types, its immunoregulatory role in tumor microenvironment (TME) has attracted considerable attention. ATRA not only substantially abrogates the immunosuppressive effect of tumor-infiltrating myeloid-derived suppressor cells but also activates the anti-tumor effect of CD8 + T cells. Notably, the combination of ATRA with other therapeutic approaches, including immune checkpoint inhibitors (ICIs), tumor vaccines, and chemotherapy, has been extensively investigated in a variety of tumor models and clinical trials. In this review, we summarize the current understanding of the role of ATRA in cancer immunology and immunotherapy, dissect the underlying mechanisms of ATRA-mediated activation or differentiation of different types of immune cells, and explore the potential clinical significance of ATRA-based cancer therapy.
Collapse
Affiliation(s)
- Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Guangyao Shan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Valeria Besskaya
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
20
|
Neurospora crassa is a potential source of anti-cancer agents against breast cancer. Breast Cancer 2022; 29:1032-1041. [PMID: 35881300 DOI: 10.1007/s12282-022-01383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/23/2022] [Indexed: 11/02/2022]
Abstract
Fungi are an excellent source of pharmaceuticals including anti-tumor agents. Neurospora crassa generates metabolites with diverse structural classes, however, its potential as an anti-tumor agent source has not been explored. The purpose of this study aimed to investigate the potential of Neurospora crassa mixture against breast cancer. The in vitro T-47D and MDA-MB-231 experiments showed that N. crassa mixture at the concentrations of both 1.7 and 0.85 µg/ml significantly inhibited tumor cell proliferation, migration and invasion, and 3D spheroid formation. However, the inhibition rates of MCF-10A ranged 10-20% at concentrations of 0.85 and 1.7 µg/ml. The mixture at the concentration of 0.85 µg/ml could significantly downregulate the expressions of transcription factors of E2F1 and E2F3, cancer stem cell-related genes of LIN28, HIWI, and CD133, and onco-lncRNA HOTAIR, and increase CASP3 activity in either T-47D or MDA-MD-231 breast cancer cell lines. In vivo breast cancer C3H mouse model results showed that N. crassa mixture significantly inhibited tumor growth. These findings suggest that N. crassa contains an antitumor component(s) against breast cancer invasiveness, which may inhibit the self-renewal and differentiation of breast cancer stem cells possibly by downregulating cancer stem cell-associated and/or transcription factor genes and oncogenes, and promoting apoptosis.
Collapse
|
21
|
Chowdhury F, Huang B, Wang N. Forces in stem cells and cancer stem cells. Cells Dev 2022; 170:203776. [DOI: 10.1016/j.cdev.2022.203776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/26/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
|
22
|
Jin Y, Teh SS, Lau HLN, Xiao J, Mah SH. Retinoids as anti-cancer agents and their mechanisms of action. Am J Cancer Res 2022; 12:938-960. [PMID: 35411232 PMCID: PMC8984900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023] Open
Abstract
Retinoids (vitamin A) have been reported extensively for anti-cancer properties due to their high receptor-binding affinities and gene regulation abilities. However, the anti-cancer potential of retinoids has not been reviewed in recent years. Thus, this review focused on the anti-cancer effects of retinoids and their synergistic effects with other drugs, together with their mechanisms of action in different types of cancers reported in the past five years. The retinoids were well studied in breast cancer, melanoma, and colorectal cancer. Synthetic retinoids have shown higher selectivity, stronger effectiveness, and lower toxicity than endogenous retinoids. Interestingly, the combination treatment of endogenous retinoids with chemotherapy drugs showed enhanced anti-cancer effects. The mechanisms of action reported for retinoids mainly involved the RAR/RXR signaling pathway. However, limited clinical studies were conducted in recent years. Thus, retinoids which are highly potential anti-cancer agents are worth further study in clinical, especially as a combination therapy with chemotherapy drugs.
Collapse
Affiliation(s)
- Ying Jin
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University (Lakeside Campus)Subang Jaya, Selangor, Malaysia
| | - Soek Sin Teh
- Energy and Environment Unit, Engineering and Processing Division, Malaysian Palm Oil BoardKajang, Selangor, Malaysia
| | - Harrison Lik Nang Lau
- Energy and Environment Unit, Engineering and Processing Division, Malaysian Palm Oil BoardKajang, Selangor, Malaysia
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense CampusOurense, Spain
| | - Siau Hui Mah
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University (Lakeside Campus)Subang Jaya, Selangor, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University (Lakeside Campus)Subang Jaya, Selangor, Malaysia
| |
Collapse
|
23
|
Yang L, Xie HJ, Li YY, Wang X, Liu XX, Mai J. Molecular mechanisms of platinum‑based chemotherapy resistance in ovarian cancer (Review). Oncol Rep 2022; 47:82. [PMID: 35211759 PMCID: PMC8908330 DOI: 10.3892/or.2022.8293] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cisplatin is one of the most effective chemotherapy drugs for ovarian cancer, but resistance is common. The initial response to platinum‑based chemotherapy is as high as 80%, but in most advanced patients, final relapse and death are caused by acquired drug resistance. The development of resistance to therapy in ovarian cancer is a significant hindrance to therapeutic efficacy. The resistance of ovarian cancer cells to chemotherapeutic mechanisms is rather complex and includes multidrug resistance, DNA damage repair, cell metabolism, oxidative stress, cell cycle regulation, cancer stem cells, immunity, apoptotic pathways, autophagy and abnormal signaling pathways. The present review provided an update of recent developments in our understanding of the mechanisms of ovarian cancer platinum‑based chemotherapy resistance, discussed current and emerging approaches for targeting these patients and presented challenges associated with these approaches, with a focus on development and overcoming resistance.
Collapse
Affiliation(s)
- Ling Yang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Hong-Jian Xie
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Ying-Ying Li
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Xia Wang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Xing-Xin Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Jia Mai
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
24
|
Hu QP, Liu YT, Liu YZ, Pan F. Photoinduced remote regioselective radical alkynylation of unactivated C-H bonds. Chem Commun (Camb) 2022; 58:2295-2298. [PMID: 35075463 DOI: 10.1039/d1cc06885g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method for the remote regioselective alkynylation of unactivated C(sp3)-H bonds in diverse aliphatic amides by photogenerated amidyl radicals has been developed. The site-selectivity is dominated via a 1,5-hydrogen atom transfer (HAT) process of the amide. Mild reaction conditions and high regioselectivity are demonstrated in this methodology.
Collapse
Affiliation(s)
- Qu-Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, 5 Jingan Road, Chengdu 610068, P. R. China.
| | - Yu-Tao Liu
- College of Chemistry and Materials Science, Sichuan Normal University, 5 Jingan Road, Chengdu 610068, P. R. China.
| | - Yong-Ze Liu
- College of Chemistry and Materials Science, Sichuan Normal University, 5 Jingan Road, Chengdu 610068, P. R. China.
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, 5 Jingan Road, Chengdu 610068, P. R. China.
| |
Collapse
|
25
|
Gong Z, Zhou B, Liu X, Cao J, Hong Z, Wang J, Sun X, Yuan X, Tan H, Ji H, Bai J. Enzyme-Induced Transformable Peptide Nanocarriers with Enhanced Drug Permeability and Retention to Improve Tumor Nanotherapy Efficacy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55913-55927. [PMID: 34784165 DOI: 10.1021/acsami.1c17917] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Temporal persistence is as important for nanocarriers as spatial accuracy. However, because of the insufficient aggreagtion and short retention time of chemotherapy drugs in tumors, their clinical application is greatly limited. A drug delivery approach dependent on the sensitivity to an enzyme present in the microenvironment of the tumor is designed to exhibit different sizes in different sites, achieving enhanced drug permeability and retention to improve tumor nanotherapy efficacy. In this work, we report a small-molecule peptide drug delivery system containing both tumor-targeting groups and enzyme response sites. This system enables the targeted delivery of peptide nanocarriers to tumor cells and a unique response to alkaline phosphatase (ALP) in the tumor microenvironment to activate morphological transformation and drug release. The amphiphilic peptide AYR self-aggregated into a spherical nanoparticle structure after encapsulating the lipid-soluble model drug doxorubicin (DOX) and rapidly converted to nanofibers via the induction of ALP. This morphological transformation toward a high aspect ratio allowed rapid, as well as effective drug release to tumor location while enhancing specific toxicity to tumor cells. Interestingly, this "transformer"-like drug delivery strategy can enhance local drug accumulation and effectively inhibit drug efflux. In vitro along with in vivo experiments further proved that the permeability and retention of antitumor drugs in tumor cells and tissues were significantly enhanced to reduce toxic side effects, and the therapeutic effect was remarkably improved compared with that of nondeformable drug-loaded peptide nanocarriers. The developed AYR nanoparticles with the ability to undergo morphological transformation in situ can improve local drug aggregation and retention time at the tumor site. Our findings provide a new and simple method for nanocarrier morphology transformation in novel cancer treatments.
Collapse
Affiliation(s)
- Zhongying Gong
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Baolong Zhou
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xiaoying Liu
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Juanjuan Cao
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Zexin Hong
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Jingye Wang
- Department of Pathology, Weifang Maternal and Child Health Hospital, Weifang 261000, China
| | - Xirui Sun
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Xiaomeng Yuan
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Jinan 250012, China
| | - Hongjie Ji
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
26
|
Zhang K, Song W, Wei M, Sun Y, Wang N, Ma L, Yu X, Gao R, Wang R, Zhang Y, Zheng N, Li N, Mu L, Tang Z, Li X, Yang C, Yang G. A Novel Anticancer Stem Cell Compound Derived from Pleuromutilin Induced Necroptosis of Melanoma Cells. J Med Chem 2021; 64:15825-15845. [PMID: 34704758 DOI: 10.1021/acs.jmedchem.1c01123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Necroptosis has been recently confirmed as a non-apoptotic form of programmed cell death. Discovery of novel chemical entities, capable of inducing necroptosis of cancer cells, is likely to act as an alternative strategy for dealing with drug resistance clinically. In this study, the identification of a novel Pleuromutilin derivative (compound 38) is presented, capable of significantly increasing the cellular level of ROS and inducing melanoma cancer cell death via necroptosis. Furthermore, compound 38 noticeably ablated various cancer stem cells and inhibited the growth of melanoma cancer cells both in vitro and in vivo. Moreover, 38 exhibited low toxicity in animal models and excellent PK properties, which is currently being verified as a potential anticancer drug candidate.
Collapse
Affiliation(s)
- Kun Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Wei Song
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Mingming Wei
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Yue Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Ning Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Lan Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Xuan Yu
- Tianjin Institute for Drug Control, Tianjin 300021, P. R. China
| | - Ruolin Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Ruonan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Yan Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Nan Zheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Ning Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Linrong Mu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Zhiwen Tang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Xuechun Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Guang Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
27
|
Wan J, Zhou J, Fu L, Li Y, Zeng H, Xu X, Lv C, Jin H. Ascorbic Acid Inhibits Liver Cancer Growth and Metastasis in vitro and in vivo, Independent of Stemness Gene Regulation. Front Pharmacol 2021; 12:726015. [PMID: 34504430 PMCID: PMC8422961 DOI: 10.3389/fphar.2021.726015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/12/2021] [Indexed: 12/20/2022] Open
Abstract
Experimental and clinical evidence has indicated that the natural product ascorbic acid (AA) is effective in preventing and treating various types of cancers. However, the effect of AA on liver cancer metastasis has not yet been reported. Cancer stem cells (CSCs) play pivotal roles in cancer metastasis. Here, we demonstrated that AA selectively inhibited the viability of both liver cancer cells and CSCs, reduced the formation of cancer cell colonies and CSC spheres, and inhibited tumor growth in vivo. Additionally, AA prevented liver cancer metastasis in a xenotransplantation model without suppressing stemness gene expression in liver CSCs. Further study indicated that AA increased the concentration of H2O2 and induced apoptosis in liver CSCs. Catalase attenuated the inhibitory effects of AA on liver CSC viability. In conclusion, AA inhibited the viability of liver CSCs and the growth and metastasis of liver cancer cells in vitro and in vivo by increasing the production of H2O2 and inducing apoptosis. Our findings provide evidence that AA exerts its anti-liver cancer efficacy in vitro and in vivo, in a manner that is independent of stemness gene regulation.
Collapse
Affiliation(s)
- Jingjing Wan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Zhou
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Lu Fu
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yubin Li
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Huawu Zeng
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xike Xu
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Chao Lv
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huizi Jin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Qi F, Qin W, Zhang Y, Luo Y, Niu B, An Q, Yang B, Shi K, Yu Z, Chen J, Cao X, Xia J. Sulfarotene, a synthetic retinoid, overcomes stemness and sorafenib resistance of hepatocellular carcinoma via suppressing SOS2-RAS pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:280. [PMID: 34479623 PMCID: PMC8418008 DOI: 10.1186/s13046-021-02085-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Recurrent hepatocellular carcinoma (HCC) shows strong resistance to sorafenib, and the tumor-repopulating cells (TRCs) with cancer stem cell-like properties are considered a driver for its high recurrent rate and drug resistance. METHODS Suppression of TRCs may thus be an effective therapeutic strategy for treating this fatal disease. We evaluated the pharmacology and mechanism of sulfarotene, a new type of synthetic retinoid, on the cancer stem cell-like properties of HCC TRCs, and assessed its preclinical efficacy in models of HCC patient-derived xenografts (PDXs). RESULTS Sulfarotene selectively inhibited the growth of HCC TRCs in vitro and significantly deterred TRC-mediated tumor formation and lung metastasis in vivo without apparent toxicity, with an IC50 superior to that of acyclic retinoid and sorafenib, to which the recurrent HCC exhibits significant resistance at advanced stage. Sulfarotene promoted the expression and activation of RARα, which down-regulated SOS2, a key signal mediator associated with RAS activation and signal transduction involved in multiple downstream pathways. Moreover, sulfarotene selectively inhibited tumorigenesis of HCC PDXs with high expression for SOS2. CONCLUSIONS Our study identified sulfarotene as a selective inhibitor for the TRCs of HCC, which targets a novel RARα-SOS2-RAS signal nexus, shedding light on a new, promising strategy of target therapy for advanced liver cancer.
Collapse
Affiliation(s)
- Feng Qi
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
| | - Wenxing Qin
- Department of Oncology, Second Affiliated Hospital of Naval Medical University, 200003, Shanghai, China
| | - Yao Zhang
- Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, 430074, Wuhan, Hubei, China
| | - Yongde Luo
- The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Bing Niu
- School of Life Sciences, Shanghai University, 200444, Shanghai, China
| | - Quanlin An
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
| | - Biwei Yang
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
| | - Keqing Shi
- The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Zhijie Yu
- The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Junwei Chen
- Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, 430074, Wuhan, Hubei, China.
| | - Xin Cao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China.
| | - Jinglin Xia
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China. .,Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China. .,The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China.
| |
Collapse
|
29
|
Zhou Q, Chen W, Fan Z, Chen Z, Liang J, Zeng G, Liu L, Liu W, Yang T, Cao X, Yu B, Xu M, Chen YG, Chen L. Targeting hyperactive TGFBR2 for treating MYOCD deficient lung cancer. Theranostics 2021; 11:6592-6606. [PMID: 33995678 PMCID: PMC8120205 DOI: 10.7150/thno.59816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/23/2021] [Indexed: 01/16/2023] Open
Abstract
Purpose: Clinical success of cancer therapy is severely limited by drug resistance, attributed in large part to the loss of function of tumor suppressor genes (TSGs). Developing effective strategies to treat those tumors is challenging, but urgently needed in clinic. Experimental Design: MYOCD is a clinically relevant TSG in lung cancer patients. Our in vitro and in vivo data confirm its tumor suppressive function. Further analysis reveals that MYOCD potently inhibits stemness of lung cancer stem cells. Mechanistically, MYOCD localizes to TGFBR2 promoter region and thereby recruits PRMT5/MEP50 complex to epigenetically silence its transcription. Conclusions: NSCLC cells deficient of MYOCD are particularly sensitive to TGFBR kinase inhibitor (TGFBRi). TGFBRi and stemness inhibitor synergize with existing drugs to treat MYOCD deficient lung cancers. Our current work shows that loss of function of MYOCD creates Achilles' heels in lung cancer cells, which might be exploited in clinic.
Collapse
|
30
|
Tratnjek L, Jeruc J, Romih R, Zupančič D. Vitamin A and Retinoids in Bladder Cancer Chemoprevention and Treatment: A Narrative Review of Current Evidence, Challenges and Future Prospects. Int J Mol Sci 2021; 22:3510. [PMID: 33805295 PMCID: PMC8036787 DOI: 10.3390/ijms22073510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Bladder cancer (BC) is the tenth most common cancer worldwide with a high recurrence rate, morbidity and mortality. Therefore, chemoprevention and improved treatment of BC are of paramount importance. Epidemiological studies suggest that adequate vitamin A intake may be associated with reduced BC risk. In addition, retinoids, natural and synthetic derivatives of vitamin A, are intensively studied in cancer research due to their antioxidant properties and their ability to regulate cell growth, differentiation, and apoptosis. Findings from in vivo and in vitro models of BC show great potential for the use of retinoids in the chemoprevention and treatment of BC. However, translation to the clinical practice is limited. In this narrative review we discuss: (i) vitamin A and retinoid metabolism and retinoic acid signalling, (ii) the pathobiology of BC and the need for chemoprevention, (iii) the epidemiological evidence for the role of dietary vitamin A in BC, (iv) mechanistic insights obtained from in vivo and in vitro models, (v) clinical trials of retinoids and the limitations of retinoid use, (vi) novel systems of retinoid delivery, and (vii) components of retinoid signalling pathways as potential novel therapeutic targets.
Collapse
Affiliation(s)
- Larisa Tratnjek
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (L.T.); (R.R.)
| | - Jera Jeruc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Rok Romih
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (L.T.); (R.R.)
| | - Daša Zupančič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (L.T.); (R.R.)
| |
Collapse
|
31
|
Zolghadr F, Bakhshinejad B, Davuchbabny S, Sarrafpour B, Seyedasli N. Critical regulatory levels in tumor differentiation: Signaling pathways, epigenetics and non-coding transcripts. Bioessays 2021; 43:e2000190. [PMID: 33644880 DOI: 10.1002/bies.202000190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 11/07/2022]
Abstract
Approaches to induce tumor differentiation often result in manageable and therapy-naïve cellular states in cancer cells. This transformation is achieved by activating pathways that drive tumor cells away from plasticity, a state that commonly correlates with enhanced aggression, metastasis and resistance to therapy. Here, we discuss signaling pathways, epigenetics and non-coding RNAs as three main regulatory levels with the potential to drive tumor differentiation and hence as potential targets in differentiation therapy approaches. The success of an effective therapeutic regimen in one cancer, however, does not necessarily sustain across cancer types; a phenomenon largely resulting from heterogeneity in the genetic and physiological landscapes of tumor types necessitating an approach designed for each cancer's unique genetic and phenotypic build-up.
Collapse
Affiliation(s)
- Fatemeh Zolghadr
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | - Babak Bakhshinejad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sapir Davuchbabny
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | - Babak Sarrafpour
- School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | - Naisana Seyedasli
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia.,The Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| |
Collapse
|
32
|
Cao Z, Li J, Sun Y, Zhang H, Mo X, Cao X, Zhang G. Photo-induced copper-catalyzed alkynylation and amination of remote unactivated C(sp 3)-H bonds. Chem Sci 2021; 12:4836-4840. [PMID: 34163735 PMCID: PMC8179574 DOI: 10.1039/d0sc05883a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/14/2021] [Indexed: 01/18/2023] Open
Abstract
A method for remote radical C-H alkynylation and amination of diverse aliphatic alcohols has been developed. The reaction features a copper nucleophile complex formed in situ as a photocatalyst, which reduces the silicon-tethered aliphatic iodide to an alkyl radical to initiate 1,n-hydrogen atom transfer. Unactivated secondary and tertiary C-H bonds at β, γ, and δ positions can be functionalized in a predictable manner.
Collapse
Affiliation(s)
- Zhusong Cao
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Jianye Li
- College of Chemistry, Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 P. R. China
| | - Youwen Sun
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Hanwen Zhang
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Xueling Mo
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Xin Cao
- Zhongshan Hospital, Fudan University 180 Fenglin Road Shanghai 200032 P. R. China
| | - Guozhu Zhang
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
- College of Chemistry, Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 P. R. China
| |
Collapse
|
33
|
Maucort C, Di Giorgio A, Azoulay S, Duca M. Differentiation of Cancer Stem Cells by Using Synthetic Small Molecules: Toward New Therapeutic Strategies against Therapy Resistance. ChemMedChem 2020; 16:14-29. [PMID: 32803855 DOI: 10.1002/cmdc.202000251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/19/2020] [Indexed: 12/12/2022]
Abstract
Despite the existing arsenal of anti-cancer drugs, 10 million people die each year worldwide due to cancers; this highlights the need to discover new therapies based on innovative modes of action against these pathologies. Current chemotherapies are based on the use of cytotoxic agents, targeted drugs, monoclonal antibodies or immunotherapies that are able to reduce or stop the proliferation of cancer cells. However, tumor eradication is often hampered by the presence of resistant cells called cancer stem-like cells or cancer stem cells (CSCs). Several strategies have been proposed to specifically target CSCs such as the use of CSC-specific antibodies, small molecules able to target CSC signaling pathways or drugs able to induce CSC differentiation rendering them sensitive to classical chemotherapy. These latter compounds are the focus of the present review, which aims to report recent advances in anticancer-differentiation strategies. This therapeutic approach was shown to be particularly promising for eradicating tumors in which CSCs are the main reason for therapeutic failure. This general view of the chemistry and mechanism of action of compounds inducing the differentiation of CSCs could be particularly useful for a broad range of researchers working in the field of anticancer therapies as the combination of compounds that induce differentiation with classical chemotherapy could represent a successful approach for future therapeutic applications.
Collapse
Affiliation(s)
- Chloé Maucort
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 28 avenue Valrose, 06108, Nice, France
| | - Audrey Di Giorgio
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 28 avenue Valrose, 06108, Nice, France
| | - Stéphane Azoulay
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 28 avenue Valrose, 06108, Nice, France
| | - Maria Duca
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 28 avenue Valrose, 06108, Nice, France
| |
Collapse
|
34
|
Yu Y, Yang X, Reghu S, Kaul SC, Wadhwa R, Miyako E. Photothermogenetic inhibition of cancer stemness by near-infrared-light-activatable nanocomplexes. Nat Commun 2020; 11:4117. [PMID: 32807785 PMCID: PMC7431860 DOI: 10.1038/s41467-020-17768-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
Strategies for eradicating cancer stem cells (CSCs) are urgently required because CSCs are resistant to anticancer drugs and cause treatment failure, relapse and metastasis. Here, we show that photoactive functional nanocarbon complexes exhibit unique characteristics, such as homogeneous particle morphology, high water dispersibility, powerful photothermal conversion, rapid photoresponsivity and excellent photothermal stability. In addition, the present biologically permeable second near-infrared (NIR-II) light-induced nanocomplexes photo-thermally trigger calcium influx into target cells overexpressing the transient receptor potential vanilloid family type 2 (TRPV2). This combination of nanomaterial design and genetic engineering effectively eliminates cancer cells and suppresses stemness of cancer cells in vitro and in vivo. Finally, in molecular analyses of mechanisms, we show that inhibition of cancer stemness involves calcium-mediated dysregulation of the Wnt/β-catenin signalling pathway. The present technological concept may lead to innovative therapies to address the global issue of refractory cancers. Cancer stem cells (CSCs) are known to induce chemotherapy resistance, and cause tumour relapse and metastasis. Here, the authors develop photoactive nanocarbon complexes with second near-infrared photothermal ability to target cancer cells overexpressing the receptor TRPV2 and show it to suppress CSCs through dysregulation of the Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Yue Yu
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science & Technology (AIST), Ikeda, 563-8577, Japan
| | - Xi Yang
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Sheethal Reghu
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Sunil C Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Cellular and Molecular Biotechnology Research Institute, AIST, Tsukuba, 305-8565, Japan
| | - Renu Wadhwa
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Cellular and Molecular Biotechnology Research Institute, AIST, Tsukuba, 305-8565, Japan
| | - Eijiro Miyako
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan.
| |
Collapse
|
35
|
Vidovic D, Giacomantonio C. Insights into the Molecular Mechanisms Behind Intralesional Immunotherapies for Advanced Melanoma. Cancers (Basel) 2020; 12:cancers12051321. [PMID: 32455916 PMCID: PMC7281646 DOI: 10.3390/cancers12051321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
The incidence of cutaneous melanoma, a highly malignant skin cancer, is increasing yearly. While surgical removal of the tumor is the mainstay of treatment for patients with locally confined disease, those with metastases face uncertainty when it comes to their treatment. As melanoma is a relatively immunogenic cancer, current guidelines suggest using immunotherapies that can rewire the host immune response to target melanoma tumor cells. Intralesional therapy, where immunomodulatory agents are injected directly into the tumor, are an emerging aspect of treatment for in-transit melanoma because of their ability to mitigate severe off-target immune-related adverse events. However, their immunomodulatory mechanisms are poorly understood. In this review, we will summarize and discuss the different intralesional therapies for metastatic melanoma with respect to their clinical outcomes and immune molecular mechanisms.
Collapse
|
36
|
Yao W, Wang L, Huang H, Li X, Wang P, Mi K, Cheng J, Liu H, Gu C, Huang L, Huang J. All-trans retinoic acid reduces cancer stem cell-like cell-mediated resistance to gefitinib in NSCLC adenocarcinoma cells. BMC Cancer 2020; 20:315. [PMID: 32293355 PMCID: PMC7161137 DOI: 10.1186/s12885-020-06818-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/02/2020] [Indexed: 02/08/2023] Open
Abstract
Background The enrichment of cancer stem cell-like cells (CSCs) has been considered to be responsible for tumor progression after an initial response to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs) in patients with non-small cell lung adenocarcinoma (NSCLC/ADC). CSCs with ALDH1A1bright /CD44high expression contribute to the TKIs resistance in NSCLC/ADC cells. All-trans retinoic acid (ATRA) has been shown to be a potential targeted therapy against CSCs due to its ability to inhibit ALDH1A1 activity. We therefore investigated whether ATRA could circumvent the resistance to improve the response to gefitinib in NSCLC/ADC cells. Methods Treatment of NSCLC/ADC A549 and H1650 cells with gefitinib enriched the gefitinib surviving cells (GSCs). The expression of ALDH1A1 and CD44 and the IC50 values for gefitinib were determined by flow cytometry (FCM) and crystal violet assay in GSCs and ATRA-treated GSCs, respectively. Using DEAB as the positive control, direct inhibitory effect of ATRA on ALDH1A1 activity was determined by ALDEFLUOR assay, Results GSCs showed higher expression of ALDH1A1 and CD44 and IC50 values for gefitinib than their respective parental cells, suggesting that gefitinib can lead to propagation of CSC-enriched gefitinib-resistant cells. Treatment with ATRA was found to significantly reduce the increased expression of ALDH1A1 and CD44 and the IC50 values for gefitinib in A549GSC and H1650GSC cells, and ATRA could directly inhibit active ALDH1A1 as compared to DEAB. Conclusion Our findings suggest that combination treatment with ATRA prevents gefitinib-induced enrichment of ALDH1A1bright/CD44high CSCs and enhances gefitinib-induced growth inhibition of NSCLC/ADC cells.
Collapse
Affiliation(s)
- Wenxiu Yao
- Department of Medical oncology, Sichuan Cancer Hospital, Medical School of University of Electronic Science and Technology of China, Chengdu, 610041, People's Republic of China
| | - Liyang Wang
- Department of Medical oncology, Sichuan Cancer Hospital, Medical School of University of Electronic Science and Technology of China, Chengdu, 610041, People's Republic of China
| | - Huan Huang
- Department of Medical oncology, Wuming Hospital Affiliated to Guangxi Medical University, Nanning, 530000, China
| | - Xin Li
- Department of Medical oncology, Sichuan Cancer Hospital, Medical School of University of Electronic Science and Technology of China, Chengdu, 610041, People's Republic of China
| | - Pinjia Wang
- Department of Medical oncology, Sichuan Cancer Hospital, Medical School of University of Electronic Science and Technology of China, Chengdu, 610041, People's Republic of China
| | - Kun Mi
- Department of Biochemistry & Molecular Biology, Sichuan Cancer Insititute, No.55, Section 4, South Renmin Road, Chengdu, 610041, People's Republic of China
| | - Jia Cheng
- Department of Biochemistry & Molecular Biology, Sichuan Cancer Insititute, No.55, Section 4, South Renmin Road, Chengdu, 610041, People's Republic of China
| | - Huifen Liu
- Department of Biochemistry & Molecular Biology, Sichuan Cancer Insititute, No.55, Section 4, South Renmin Road, Chengdu, 610041, People's Republic of China
| | - Cuirong Gu
- Department of Biochemistry & Molecular Biology, Sichuan Cancer Insititute, No.55, Section 4, South Renmin Road, Chengdu, 610041, People's Republic of China
| | - Lingxiao Huang
- Department of Biochemistry & Molecular Biology, Sichuan Cancer Insititute, No.55, Section 4, South Renmin Road, Chengdu, 610041, People's Republic of China
| | - Jianming Huang
- Department of Biochemistry & Molecular Biology, Sichuan Cancer Insititute, No.55, Section 4, South Renmin Road, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
37
|
Synthetic biology based construction of biological activity-related library of fungal decalin-containing diterpenoid pyrones. Nat Commun 2020; 11:1830. [PMID: 32286350 PMCID: PMC7156458 DOI: 10.1038/s41467-020-15664-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
A synthetic biology method based on heterologous biosynthesis coupled with genome mining is a promising approach for increasing the opportunities to rationally access natural product with novel structures and biological activities through total biosynthesis and combinatorial biosynthesis. Here, we demonstrate the advantage of the synthetic biology method to explore biological activity-related chemical space through the comprehensive heterologous biosynthesis of fungal decalin-containing diterpenoid pyrones (DDPs). Genome mining reveals putative DDP biosynthetic gene clusters distributed in five fungal genera. In addition, we design extended DDP pathways by combinatorial biosynthesis. In total, ten DDP pathways, including five native pathways, four extended pathways and one shunt pathway, are heterologously reconstituted in a genetically tractable heterologous host, Aspergillus oryzae, resulting in the production of 22 DDPs, including 15 new analogues. We also demonstrate the advantage of expanding the diversity of DDPs to probe various bioactive molecules through a wide range of biological evaluations. Combining genome mining and heterologous expression in a genetically tractable host can lead to bioactive natural products discovery and production. Here, the authors employ this strategy for new decalin-containing diterpenoid pyrenes production by expressing native, extended, and shunt pathways in Aspergillus oryzae.
Collapse
|
38
|
Hou J, Cao X, Cheng Y, Wang X. Roles of TP53 gene in the development of resistance to PI3K inhibitor resistances in CRISPR-Cas9-edited lung adenocarcinoma cells. Cell Biol Toxicol 2020; 36:481-492. [PMID: 32239370 DOI: 10.1007/s10565-020-09523-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022]
Abstract
The mutation rates of tumor suppressor protein p53 gene (TP53) are high in lung adenocarcinoma and promote the development of acquired drug resistance. The present study evaluated the p53-dependent role in lung cancer cell sensitivity to PI3K-specific inhibitors, PI3K-associated inhibitors, PI3K-non-related inhibitors, and protein-based stimuli using designed p53 mutation. We found that the deletion of p53 key regions from amino acid 96 to 393 with the CRISPR-Cas9 altered multi-dimensional structure and sequencing of p53, probably leading the secondary changes in chemical structures and properties of PI3K subunit proteins or in interactions between p53 and PI3K isoform genes. The p53-dependent cell sensitivity varied among target specificities, drug chemical properties, mechanism-specific signal pathways, and drug efficacies, independently upon the size of molecules. The effects of the designed p53 mutation highly depend upon p53-involved molecular mechanisms in the cell. Our results indicate that lung cancer cell resistance to drug can develop with dynamic formations of p53 mutations changing the cell sensitivity. This may explain the real-time occurrence of cancer cell resistance to drug treatment, during which drugs may induce the new mutations of p53. Thus, it is important to dynamically monitor the formation of new mutations during the therapy and discover new drug resistance-specific targets.
Collapse
Affiliation(s)
- Jiayun Hou
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical School, Shanghai, China
| | - Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical School, Shanghai, China.
| | - Yunfeng Cheng
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical School, Shanghai, China. .,Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University Shanghai Medical School, Shanghai, China. .,Shanghai Engineering Research Center of AI-Technology for Cardiopulmonary Diseases, Shanghai, China. .,Shanghai Institute of Clinical Bioinformatics, Shanghai, China.
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical School, Shanghai, China. .,Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University Shanghai Medical School, Shanghai, China. .,Shanghai Engineering Research Center of AI-Technology for Cardiopulmonary Diseases, Shanghai, China. .,Shanghai Institute of Clinical Bioinformatics, Shanghai, China.
| |
Collapse
|
39
|
Mithramycin A Inhibits Colorectal Cancer Growth by Targeting Cancer Stem Cells. Sci Rep 2019; 9:15202. [PMID: 31645574 PMCID: PMC6811578 DOI: 10.1038/s41598-019-50917-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/16/2019] [Indexed: 01/20/2023] Open
Abstract
The pivotal role of cancer initiating stem cells (CSCs) in tumor initiation, growth, metastasis and drug resistance has led to the postulation of a 'total cancer therapy' paradigm, which involves targeting both cancer cells and CSCs for effective therapy. However, the progress in identifying drugs for total cancer therapy has been limited. Herein, we show for the first time that mithramycin A (Mit-A) can successfully inhibit CSC proliferation, in addition to inhibiting bulk cancer cells in a model of colorectal cancer (CRC), the second leading cause of death among men and women in the United States. To this end, a polymeric nanofiber scaffold culture system was established to develop 3D tumor organoids (tumoroids) from CRC cell lines such as HT29, HCT116, KM12, CT26 and MC38 as well as ex vivo mouse tumors. These tumoroids possessed increased expression of CSC markers and transcription factors, expanded the number of CSCs in culture and increased CSC functional properties measured by aldehyde dehydrogenase activity. Screening of an NCI library of FDA approved drugs led to the identification of Mit-A as a potential total cancer therapy drug. In both sphere and tumoroid culture, Mit-A inhibits cancer growth by reducing the expression of cancer stemness markers. In addition, Mit-A inhibits the expression of SP1, a previously known target in CRCs. Moreover, Mit-A significantly reduces growth of tumoroids in ex vivo cultures and CRC tumor growth in vivo. Finally, a dose-dependent treatment on CRC cells indicate that Mit-A significantly induces the cell death and PARP-cleavage of both CSC and non-CSC cells. Taken together the results of these in vitro, ex vivo and in vivo studies lead to the inference that Mit-A is a promising drug candidate for total cancer therapy of CRCs.
Collapse
|
40
|
Song H, Rogers NJ, Allison SJ, Brabec V, Bridgewater H, Kostrhunova H, Markova L, Phillips RM, Pinder EC, Shepherd SL, Young LS, Zajac J, Scott P. Discovery of selective, antimetastatic and anti-cancer stem cell metallohelices via post-assembly modification. Chem Sci 2019; 10:8547-8557. [PMID: 31803429 PMCID: PMC6839601 DOI: 10.1039/c9sc02651g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
Helicates and related metallofoldamers, synthesised by dynamic self-assembly, represent an area of chemical space inaccessible by traditional organic synthesis, and yet with potential for discovery of new classes of drug. Here we report that water-soluble, optically pure Fe(ii)- and even Zn(ii)-based triplex metallohelices are an excellent platform for post-assembly click reactions. By these means, the in vitro anticancer activity and most importantly the selectivity of a triplex metallohelix Fe(ii) system are dramatically improved. For one compound, a remarkable array of mechanistic and pharmacological behaviours is discovered: inhibition of Na+/K+ ATPase with potency comparable to the drug ouabain, antimetastatic properties (including inhibition of cell migration, re-adhesion and invasion), cancer stem cell targeting, and finally colonosphere inhibition competitive with the drug salinomycin.
Collapse
Affiliation(s)
- Hualong Song
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Nicola J Rogers
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Simon J Allison
- School of Applied Sciences , University of Huddersfield , Huddersfield , HD1 3DH , UK
| | - Viktor Brabec
- The Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | | | - Hana Kostrhunova
- The Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Lenka Markova
- The Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Roger M Phillips
- School of Applied Sciences , University of Huddersfield , Huddersfield , HD1 3DH , UK
| | - Emma C Pinder
- School of Applied Sciences , University of Huddersfield , Huddersfield , HD1 3DH , UK
| | - Samantha L Shepherd
- School of Applied Sciences , University of Huddersfield , Huddersfield , HD1 3DH , UK
| | - Lawrence S Young
- Warwick Medical School , University of Warwick , Coventry CV4 7AL , UK
| | - Juraj Zajac
- The Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Peter Scott
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| |
Collapse
|
41
|
Huang W, Hu H, Zhang Q, Wu X, Wei F, Yang F, Gan L, Wang N, Yang X, Guo AY. Regulatory networks in mechanotransduction reveal key genes in promoting cancer cell stemness and proliferation. Oncogene 2019; 38:6818-6834. [PMID: 31406247 PMCID: PMC6988105 DOI: 10.1038/s41388-019-0925-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/21/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022]
Abstract
Tumor-repopulating cells (TRCs) are cancer stem cell (CSC)-like cells with highly tumorigenic and self-renewing abilities, which were selected from tumor cells in soft three-dimensional (3D) fibrin gels with unidentified mechanisms. Here we evaluated the transcriptome alteration during TRCs generation in 3D culture and revealed that a variety of molecules related with integrin/membrane and stemness were continuously altered by mechanical environment. Some key regulators such as MYC/STAT3/hsa-miR-199a-5p, were changed in the TRCs generation. They regulated membrane genes and the downstream mechanotransduction pathways such as Hippo/WNT/TGF-β/PI3K-AKT pathways, thus further affecting the expression of downstream cancer-related genes. By integrating networks for membrane proteins, the WNT pathway and cancer-related genes, we identified key molecules in the selection of TRCs, such as ATF4, SLC3A2, CCT3, and hsa-miR-199a-5p. Silencing ATF4 or CCT3 inhibited the selection and growth of TRCs whereas reduction of SLC3A2 or hsa-miR-199a-5p promoted TRCs growth. Further studies showed that CCT3 promoted cell proliferation and stemness in vitro, while its suppression inhibited TRCs-induced tumor formation. We also contemplated CCT3 as a stemness-related gene. Our findings provide insights in the mechanism of TRCs selection through transcriptome analysis.
Collapse
Affiliation(s)
- Wei Huang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Hui Hu
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Qiong Zhang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Xian Wu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Fuxiang Wei
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Fang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Ning Wang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
- Department of Mechanical Science and Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China.
| | - An-Yuan Guo
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China.
| |
Collapse
|
42
|
Williams AP, Garner EF, Stafman LL, Aye JM, Quinn CH, Marayati R, Stewart JE, Atigadda VR, Mroczek-Musulman E, Moore BP, Beierle EA, Friedman GK. UAB30, A Novel Rexinoid Agonist, Decreases Stemness In Group 3 Medulloblastoma Human Cell Line Xenografts. Transl Oncol 2019; 12:1364-1374. [PMID: 31362265 PMCID: PMC6664160 DOI: 10.1016/j.tranon.2019.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/29/2019] [Accepted: 07/08/2019] [Indexed: 12/29/2022] Open
Abstract
PURPOSE: In spite of advances in therapy for some subtypes, group 3 medulloblastoma continues to portend a poor prognosis. A subpopulation of medulloblastoma cells expressing the cell surface marker CD133 have been posited as possible stem cell like cancer cells (SCLCC), a potential source of drug resistance and relapse. Retinoids have been shown to affect SCLCC in other brain tumors. Based on these findings, we hypothesized that the CD133-enriched cell population group 3 medulloblastoma cells would be sensitive to the novel rexinoid, UAB30. METHODS: Human medulloblastoma cell lines were studied. Cell sorting based on CD133 expression was performed. Both in vitro and in vivo extreme limiting dilution assays were completed to establish CD133 as a SCLCC marker in these cell lines. Cells were treated with either retinoic acid (RA) or UAB30 and sphere forming capacity and CD133 expression were assessed. Immunoblotting was used to assess changes in stem cell markers. Finally, mice injected with CD133-enriched or CD133-depleted cells were treated with UAB30. RESULTS: CD133-enriched cells more readily formed tumorspheres in vitro at lower cell concentrations and formed tumors in vivo at low cell numbers. Treatment with RA or UAB30 decreased CD133 expression, decreased tumorsphere formation, and decreased expression of cancer stem cell markers. In vivo studies demonstrated that tumors from both CD133-enriched and CD133-depleted cells were sensitive to treatment with UAB30. CONCLUSIONS: CD133 is a marker for medulloblastoma SCLCCs. Both CD133-enriched and CD133-depleted medulloblastoma cell populations demonstrated sensitivity to UAB30, indicating its potential as a therapeutic option for group 3 medulloblastoma.
Collapse
Affiliation(s)
- Adele P Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL
| | - Evan F Garner
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL
| | - Laura L Stafman
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL
| | - Jamie M Aye
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama, Birmingham, Birmingham, AL
| | - Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL
| | - Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL
| | | | | | - Blake P Moore
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama, Birmingham, Birmingham, AL
| | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL.
| | - Gregory K Friedman
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama, Birmingham, Birmingham, AL
| |
Collapse
|
43
|
Li H, Wang C, Li L, Bu W, Zhang M, Wei J, Tao L, Qian K, Ma P. Adapalene suppressed the proliferation of melanoma cells by S-phase arrest and subsequent apoptosis via induction of DNA damage. Eur J Pharmacol 2019; 851:174-185. [DOI: 10.1016/j.ejphar.2019.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/08/2019] [Accepted: 03/01/2019] [Indexed: 02/03/2023]
|
44
|
Barbalho SM, Goulart RDA, Batista GLDSA. Vitamin A and inflammatory bowel diseases: from cellular studies and animal models to human disease. Expert Rev Gastroenterol Hepatol 2019; 13:25-35. [PMID: 30791845 DOI: 10.1080/17474124.2019.1543588] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vitamin A (VA) and metabolites such as Retinoic Acid (RA) and all-trans-RA (at-RA) are crucial in the modulation of the immune system and may be determinative in the balance of the immune responses. Inflammatory bowel diseases (IBD) consist of chronic relapsing and heterogeneous disorders with not well-known etiology. Due to its role in inflammatory processes, VA may be helpful in the treatment of IBD. Area covered: As VA plays a significant role in the inflammatory processes, this review aims to show the potential role of this vitamin in IBD, searching for cellular studies, animal models, and studies with humans. Expert commentary: Many studies have described the importance of alternative therapeutic approaches for IBD. Due to its role in the immune system, VA may also exert an indispensable role in the IBD. Nevertheless, some authors have shown that these compounds could stimulate the release of pro-inflammatory cytokines. For these reasons, more studies should be performed to establish the precise mechanisms of VA and its metabolites in systemic and intestinal inflammation.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- a School of Medicine , University of Marília (UNIMAR) , São Paulo , Brazil.,b Department of Biochemistry and Nutrition , Faculty of Food Technology of Marília (FATEC) , São Paulo , Brazil
| | | | | |
Collapse
|
45
|
Najafi M, Farhood B, Mortezaee K. Cancer stem cells (CSCs) in cancer progression and therapy. J Cell Physiol 2018; 234:8381-8395. [DOI: 10.1002/jcp.27740] [Citation(s) in RCA: 379] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Masoud Najafi
- Radiology and Nuclear Medicine Department School of Paramedical Sciences, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology Faculty of Paramedical Sciences, Kashan University of Medical Sciences Kashan Iran
| | - Keywan Mortezaee
- Department of Anatomy School of Medicine, Kurdistan University of Medical Sciences Sanandaj Iran
| |
Collapse
|
46
|
Dobrotkova V, Chlapek P, Mazanek P, Sterba J, Veselska R. Traffic lights for retinoids in oncology: molecular markers of retinoid resistance and sensitivity and their use in the management of cancer differentiation therapy. BMC Cancer 2018; 18:1059. [PMID: 30384831 PMCID: PMC6211450 DOI: 10.1186/s12885-018-4966-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022] Open
Abstract
For decades, retinoids and their synthetic derivatives have been well established anticancer treatments due to their ability to regulate cell growth and induce cell differentiation and apoptosis. Many studies have reported the promising role of retinoids in attaining better outcomes for adult or pediatric patients suffering from several types of cancer, especially acute myeloid leukemia and neuroblastoma. However, even this promising differentiation therapy has some limitations: retinoid toxicity and intrinsic or acquired resistance have been observed in many patients. Therefore, the identification of molecular markers that predict the therapeutic response to retinoid treatment is undoubtedly important for retinoid use in clinical practice. The purpose of this review is to summarize the current knowledge on candidate markers, including both genetic alterations and protein markers, for retinoid resistance and sensitivity in human malignancies.
Collapse
Affiliation(s)
- Viera Dobrotkova
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 65691 Brno, Czech Republic
| | - Petr Chlapek
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 65691 Brno, Czech Republic
| | - Pavel Mazanek
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Cernopolni 9, 61300 Brno, Czech Republic
| | - Jaroslav Sterba
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 65691 Brno, Czech Republic
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Cernopolni 9, 61300 Brno, Czech Republic
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 65691 Brno, Czech Republic
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Cernopolni 9, 61300 Brno, Czech Republic
| |
Collapse
|
47
|
He Y, Xue C, Yu Y, Chen J, Chen X, Ren F, Ren Z, Cui G, Sun R. CD44 is overexpressed and correlated with tumor progression in gallbladder cancer. Cancer Manag Res 2018; 10:3857-3865. [PMID: 30288117 PMCID: PMC6161708 DOI: 10.2147/cmar.s175681] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gallbladder cancer (GBC) is a highly lethal disease and the most common biliary tract malignant tumor with poor prognosis. Accumulating evidence indicates that cluster of differentiation 44 (CD44) is overexpressed in several malignancies and has a crucial role in the development of cancer. However, its expression and function in GBC are unclear. The aim of this study was to explore CD44 expression and its role in GBC. MATERIALS AND METHODS The expression of CD44 was measured by immunohistochemistry. Tissue microarray analysis was used to confirm the relationship between CD44 expression and clinical outcomes of GBC patients. EDU assay, colony formation assay, cell migration and invasion assay were performed to detect the functions of CD44 in GBC-SD and NOZ transfected with si-RNA. RESULTS CD44 was overexpressed and associated with poor outcomes in GBC patients. The univariate and multivariate analyses confirmed that elevated CD44 was an independent prognostic factor for the OS of GBC patients. Silencing CD44 could suppress the GBC cell proliferation, migration and invasion in vitro, as well as attenuated cancer stem cell functions. CONCLUSION CD44 markedly correlated with aggressive tumor behaviors and contributed to the progression of GBC, which could represent a novel prognostic marker and potential therapeutic target for GBC patients.
Collapse
Affiliation(s)
- Yuting He
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Chen Xue
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Yan Yu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Jianan Chen
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Xiaolong Chen
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Fang Ren
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Zhigang Ren
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Guangying Cui
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Ranran Sun
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| |
Collapse
|