1
|
Xu Z, Zeng J, Zhou X, Liu Y, Chen F, Liu H, Peng X, Han Z, Hou F, Wang H, Chen W, Tu B, Li T, Xiong J, Zhong Z, Wang Y, Ma B, Qin P, Li S, Yuan H. Large Grain 2, an NHL Domain-Containing Protein, Interacts with FUWA and Regulates Plant Architecture and Grain Size Through the Brassinosteroid Signaling Pathway in Rice. RICE (NEW YORK, N.Y.) 2025; 18:37. [PMID: 40394363 PMCID: PMC12092888 DOI: 10.1186/s12284-025-00797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 05/10/2025] [Indexed: 05/22/2025]
Abstract
Plant architecture and grain size are critical traits for rice breeding. Brassinosteroid (BR), a class of plant hormones, regulates these traits by modulating cell elongation, division, and differentiation. Therefore, exploring BR-related genes to leverage their pleiotropic effects is crucial for crop improvement. We identify a novel gene, Large Grain 2 (LG2), which encodes a Golgi-localized protein containing an NHL domain. This gene plays a crucial role in regulating both plant architecture and grain size in rice. Mechanistically, FUWA, a paralog of LG2, directly interacts with LG2 and enhances its protein stability. Furthermore, our findings indicate that LG2 is involved in BR signaling. Collectively, these results suggest that the LG2-FUWA module synergistically regulate plant architecture and grain size through the BR pathway in rice. Our study provides new insights into the function of NHL domain-containing proteins in plants and introduces a novel BR component for crop improvement. The LG2-FUWA module regulates plant architecture and grain size through the BR pathway in rice.
Collapse
Affiliation(s)
- Zhengyan Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jierui Zeng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaorong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yang Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Feifan Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haitang Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiao Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhengqi Han
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Feihong Hou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hao Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Weilan Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bin Tu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jiawei Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhaohui Zhong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yuping Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bingtian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Peng Qin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shigui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Hua Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
2
|
Lin L, Hasan MKE, Gu X, Khan SU, Hossain A, Faruqe MO, Shahriar S, Joy MNH, Sourov MMH, Khan MI, Zhang L, Lv M, Shi Y. Human tripartite motif-containing protein 71 NCL-1/HT2A/LIN-41 domain crystal structure and its potential natural inhibitors. Int J Biol Macromol 2025; 309:142764. [PMID: 40180090 DOI: 10.1016/j.ijbiomac.2025.142764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
TRIM71 NHL Domain is a critical driver of various cellular process and is dysregulated in several medical conditions like non-small cell lung cancer, hepatocellular carcinoma and congenital hydrocephalus. However, its pathways and binding with CDKN1A has not been well studied. To investigate its interaction with CDKN1A, we expressed TRIM71 NHL domain in SF9 (Spodoptera frugiperda) insect cells using the pFastBacTM HT B plasmid, was purified by size exclusion chromatography and its crystal structure was determined successfully (PDB ID: 9JUR). Fluorescence polarization (Kd = 0.42 ± 0.04 μM) and EMSA confirmed strong and specific binding to CDKN1A mRNA, indicating its role in repressing CDKN1A expression to promote cancer cell proliferation. To further delve into its therapeutic implication, we screened a library of 2517 phytochemicals from 48 medicinal plants to identify potential natural inhibitors of the TRIM71 NHL domain. Epigallocatechin Gallate and Cyanidin 3-O-galactoside demonstrated binding affinities of -9.1 kcal/mol and -9.0 kcal/mol, respectively, while SPR confirmed their affinities with Kd values of 3.2 μM and 17.3 μM, accordingly. Molecular dynamics simulations confirmed protein-ligand complexes stability. In summary, human TRIM71 NHL domain crystal structure provides a foundation for understanding its structural features while exploring two potential inhibitors for therapeutic applications.
Collapse
Affiliation(s)
- Liqing Lin
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Hefei National Research Center for Cross-disciplinary Science, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Md Kazy Ebnul Hasan
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Hefei National Research Center for Cross-disciplinary Science, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xianfu Gu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Hefei National Research Center for Cross-disciplinary Science, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Safir Ullah Khan
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Hefei National Research Center for Cross-disciplinary Science, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Alomgir Hossain
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Omar Faruqe
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Shahad Shahriar
- Department of Computer science and Mathematics, Bangladesh Agricultural University, Mymensingh 2200, Bangladesh
| | - Md Nahid Hasan Joy
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | | | - Muhammad Imran Khan
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Hefei National Research Center for Cross-disciplinary Science, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Liang Zhang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Hefei National Research Center for Cross-disciplinary Science, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Mengqi Lv
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yunyu Shi
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Hefei National Research Center for Cross-disciplinary Science, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
3
|
Beckröge T, Jux B, Seifert H, Theobald H, De Domenico E, Paulusch S, Beyer M, Schlitzer A, Mass E, Kolanus W. Impaired primitive erythropoiesis and defective vascular development in Trim71-KO embryos. Life Sci Alliance 2025; 8:e202402956. [PMID: 39909558 PMCID: PMC11799773 DOI: 10.26508/lsa.202402956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
The transition of an embryo from gastrulation to organogenesis requires precisely coordinated changes in gene expression, but the underlying mechanisms remain unclear. The RNA-binding protein Trim71 is essential for development and serves as a potent regulator of post-transcriptional gene expression. Here, we show that global deficiency of Trim71 induces severe defects in mesoderm-derived cells at the onset of organogenesis. Murine Trim71-KO embryos displayed impaired primitive erythropoiesis, yolk sac vasculature, heart function, and circulation, explaining the embryonic lethality of these mice. Tie2 Cre Trim71 conditional knockout did not induce strong defects, showing that Trim71 expression in endothelial cells and their immediate progenitors is dispensable for embryonic survival. scRNA-seq of E7.5 global Trim71-KO embryos revealed that transcriptomic changes arise already at gastrulation, showing a strong up-regulation of the mesodermal pioneer transcription factor Eomes. We identify Eomes as a direct target of Trim71-mediated mRNA repression via the NHL domain, demonstrating a functional link between these important regulatory genes. Taken together, our data suggest that Trim71-dependent control of gene expression at gastrulation establishes a framework for proper development during organogenesis.
Collapse
Affiliation(s)
- Tobias Beckröge
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Bettina Jux
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Hannah Seifert
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Hannah Theobald
- Quantitative Systems Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Elena De Domenico
- Genomics and Immunoregulation, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
- PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn and West German Genome Center, Bonn, Germany
| | - Stefan Paulusch
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
- PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn and West German Genome Center, Bonn, Germany
| | - Marc Beyer
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
- PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn and West German Genome Center, Bonn, Germany
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
| | - Andreas Schlitzer
- Quantitative Systems Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Elvira Mass
- Developmental Biology of the Immune System, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Waldemar Kolanus
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Pilcher C, Buco PAV, Truong JQ, Ramsland PA, Smeets MF, Walkley CR, Holien JK. Characteristics of the Kelch domain containing (KLHDC) subfamily and relationships with diseases. FEBS Lett 2025; 599:1094-1112. [PMID: 39887712 PMCID: PMC12035522 DOI: 10.1002/1873-3468.15108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
The Kelch protein superfamily is an evolutionary conserved family containing 63 alternate protein coding members. The superfamily is split into three subfamilies: Kelch like (KLHL), Kelch-repeat and bric-a-bracs (BTB) domain containing (KBTBD) and Kelch domain containing protein (KLHDC). The KLHDC subfamily is one of the smallest within the Kelch superfamily, containing 10 primary members. There is little known about the structures and functions of the subfamily; however, they are thought to be involved in several cellular and molecular processes. Recently, there have been significant structural and biochemical advances for KLHDC2, which has aided our understanding of other KLHDC family members. Furthermore, small molecules directly targeting KLHDC2 have been identified, which act as tools for targeted protein degradation. This review utilises this information, in conjunction with a thorough exploration of the structural aspects and potential biological functions to summarise the relationship between KLHDCs and human disease.
Collapse
Affiliation(s)
- Courtney Pilcher
- School of Science, STEM CollegeRMIT UniversityMelbourneAustralia
- St Vincent's Institute of Medical ResearchFitzroyAustralia
| | - Paula Armina V. Buco
- St Vincent's Institute of Medical ResearchFitzroyAustralia
- Department of Medicine, Eastern Hill Academic Centre, Melbourne Medical SchoolThe University of MelbourneCarltonAustralia
| | - Jia Q. Truong
- School of Science, STEM CollegeRMIT UniversityMelbourneAustralia
| | - Paul A. Ramsland
- School of Science, STEM CollegeRMIT UniversityMelbourneAustralia
- Department of ImmunologyMonash UniversityMelbourneAustralia
- Department of Surgery, Austin HealthThe University of MelbourneMelbourneAustralia
| | | | - Carl R. Walkley
- St Vincent's Institute of Medical ResearchFitzroyAustralia
- Department of Medicine, Eastern Hill Academic Centre, Melbourne Medical SchoolThe University of MelbourneCarltonAustralia
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchMelbourneAustralia
- Department of Molecular and Translational ScienceMonash UniversityMelbourneAustralia
| | - Jessica K. Holien
- School of Science, STEM CollegeRMIT UniversityMelbourneAustralia
- St Vincent's Institute of Medical ResearchFitzroyAustralia
- Department of Medicine, Eastern Hill Academic Centre, Melbourne Medical SchoolThe University of MelbourneCarltonAustralia
| |
Collapse
|
5
|
Hennig J. Structural Biology of RNA and Protein-RNA Complexes after AlphaFold3. Chembiochem 2025; 26:e202401047. [PMID: 39936575 DOI: 10.1002/cbic.202401047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/13/2025]
Abstract
Recent breakthroughs in AI-mediated protein structure prediction have significantly accelerated research and generated valuable hypotheses within the field of structural biology and beyond. Notably, AlphaFold2 has facilitated the determination of larger protein complexes for which only limited experimental data are available. De novo predictions can now be experimentally validated with relative ease compared to the pre-AlphaFold2 era. In May 2024, AlphaFold3 was launched with high expectations, promising the capability to accurately predict RNA structures and protein-RNA complexes - features that were absent in AlphaFold2. This review evaluates the extent to which AlphaFold3 fulfills this promise through specific examples. At present, AlphaFold3 falls short in reliably predicting RNA and protein-RNA complex structures, particularly for non-canonical interactions where training data remain scarce. As a result, users should exercise caution when using AlphaFold3 predictions as hypotheses generators for RNA and protein-RNA complex structures. In the interim, integrating AI-based predictors with data-driven docking tools is recommended to address these limitations. This approach can help bridge the gap until sufficient training data are available to enable the development of more reliable predictive algorithms.
Collapse
Affiliation(s)
- Janosch Hennig
- Chair Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Universitätsstrasse 31, 95447, Bayreuth, Germany
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| |
Collapse
|
6
|
Hanelt TN, Treiber N, Treiber T, Lehmann G, Eichner N, Rothmeier T, Schmid G, Reichelt R, Zambelli F, Pavesi G, Grohmann D, Meister G. Endo-bind-n-seq: identifying RNA motifs of RNA binding proteins isolated from endogenous sources. Life Sci Alliance 2025; 8:e202402782. [PMID: 39622621 PMCID: PMC11612968 DOI: 10.26508/lsa.202402782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024] Open
Abstract
RNA binding proteins (RBPs) are crucial regulators of gene expression and critically depend on the specific recognition of their target RNAs. Accordingly, a selection of methods to analyze RBP specificities has been developed, including protein-RNA crosslinking and sequencing (CLIP) and in vitro selection methods such as SELEX, RNA compete or RNA bind-n-seq. However, limitations like the availability for purified recombinant proteins and custom microarray platforms (RNAcompete) or extensive sequencing depth and sophisticated bioinformatic data processing (CLIP) may limit a broader implementation of these methods. Here, we present an RNA bind-n-seq method that uses short random RNA pools and enables multiple rounds of selection. This results in strong motif enrichment with low positional variance thus reducing sequencing depth requirements. Furthermore, we have coupled our protocol to immunoprecipitation of tagged or endogenous RBPs from cultured cells or tissue samples, eliminating the need for recombinant proteins. Our method also allows for the identification of indirect RNA motifs of proteins that are integral parts of multiprotein RNPs and result in physically more relevant RNA motifs.
Collapse
Affiliation(s)
- Tiana Nicole Hanelt
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Nora Treiber
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Thomas Treiber
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Gerhard Lehmann
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Norbert Eichner
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Tamara Rothmeier
- Regensburg Center for Biochemistry (RCB), Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, Regensburg, Germany
| | - Georg Schmid
- Regensburg Center for Biochemistry (RCB), Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, Regensburg, Germany
| | - Robert Reichelt
- Regensburg Center for Biochemistry (RCB), Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, Regensburg, Germany
| | | | - Giulio Pavesi
- Dipartimento di Bioscienze, Università di Milano, Milan, Italy
| | - Dina Grohmann
- Regensburg Center for Biochemistry (RCB), Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
- Cluster for Nucleic Acid Therapeutics Munich (CNATM), Munich, Germany
| |
Collapse
|
7
|
Connacher R, Roden R, Huang KL, Korte A, Yeruva S, Dittbenner N, DesMarais A, Weidmann C, Randall T, Williams J, Hall TMT, Wagner E, Goldstrohm A. The TRIM-NHL RNA-binding protein Brain Tumor coordinately regulates expression of the glycolytic pathway and vacuolar ATPase complex. Nucleic Acids Res 2024; 52:12669-12688. [PMID: 39351871 PMCID: PMC11551770 DOI: 10.1093/nar/gkae810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/29/2024] [Accepted: 09/08/2024] [Indexed: 10/03/2024] Open
Abstract
The essential Drosophila RNA-binding protein Brain Tumor (Brat) represses specific genes to control embryogenesis and differentiation of stem cells. In the brain, Brat functions as a tumor suppressor that diminishes neural stem cell proliferation while promoting differentiation. Though important Brat-regulated target mRNAs have been identified in these contexts, the full impact of Brat on gene expression remains to be discovered. Here, we identify the network of Brat-regulated mRNAs by performing RNA sequencing (RNA-seq) following depletion of Brat from cultured cells. We identify 158 mRNAs, with high confidence, that are repressed by Brat. De novo motif analysis identified a functionally enriched RNA motif in the 3' untranslated regions (UTRs) of Brat-repressed mRNAs that matches the biochemically defined Brat binding site. Integrative data analysis revealed a high-confidence list of Brat-repressed and Brat-bound mRNAs containing 3'UTR Brat binding motifs. Our RNA-seq and reporter assays show that multiple 3'UTR motifs promote the strength of Brat repression, whereas motifs in the 5'UTR are not functional. Strikingly, we find that Brat regulates expression of glycolytic enzymes and the vacuolar ATPase complex, providing new insight into its role as a tumor suppressor and the coordination of metabolism and intracellular pH.
Collapse
Affiliation(s)
- Robert P Connacher
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1214A 6-155 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | - Richard T Roden
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1214A 6-155 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | - Kai-Lieh Huang
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, 575 Elmwood Avenue, Rochester, NY 14642, USA
| | - Amanda J Korte
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1214A 6-155 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | - Saathvika Yeruva
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1214A 6-155 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | - Noel Dittbenner
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1214A 6-155 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | - Anna J DesMarais
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1214A 6-155 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | - Chase A Weidmann
- Department of Biological Chemistry, Center for RNA Biomedicine, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Thomas A Randall
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jason Williams
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Traci M Tanaka Hall
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Eric J Wagner
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, 575 Elmwood Avenue, Rochester, NY 14642, USA
| | - Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1214A 6-155 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Petzold T, Gerhardt H. In preprints: keeping endothelial cell specification and vascular development in check. Development 2024; 151:dev204338. [PMID: 39287130 DOI: 10.1242/dev.204338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Affiliation(s)
- Tim Petzold
- Integrative Vascular Biology Laboratory, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), 10785 Berlin, Germany
| | - Holger Gerhardt
- Integrative Vascular Biology Laboratory, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), 10785 Berlin, Germany
- Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| |
Collapse
|
9
|
Shi F, Zhang K, Cheng Q, Che S, Zhi S, Yu Z, Liu F, Duan F, Wang Y, Yang N. Molecular mechanism governing RNA-binding property of mammalian TRIM71 protein. Sci Bull (Beijing) 2024; 69:72-81. [PMID: 38036331 DOI: 10.1016/j.scib.2023.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/21/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
TRIM71 is an RNA-binding protein with ubiquitin ligase activity. Numerous functions of mammalian TRIM71, including cell cycle regulation, embryonic stem cell (ESC) self-renewal, and reprogramming of pluripotent stem cells, are related to its RNA-binding property. We previously reported that a long noncoding RNA (lncRNA) Trincr1 interacts with mouse TRIM71 (mTRIM71) to repress FGF/ERK pathway in mouse ESCs (mESCs). Herein, we identify an RNA motif specifically recognized by mTRIM71 from Trincr1 RNA, and solve the crystal structure of the NHL domain of mTRIM71 complexed with the RNA motif. Similar to the zebrafish TRIM71, mTRIM71 binds to a stem-loop structured RNA fragment of Trincr1, and an adenosine base at the loop region is crucial for the mTRIM71 interaction. We map similar hairpin RNAs preferably bound by TRIM71 in the mRNA UTRs of the cell-cycle related genes regulated by TRIM71. Furthermore, we identify key residues of mTRIM71, conserved among mammalian TRIM71 proteins, required for the RNA-binding property. Single-site mutations of these residues significantly impair the binding of TRIM71 to hairpin RNAs in vitro and to mRNAs of Cdkn1a/p21 and Rbl2/p130 in mESCs. Furthermore, congenital hydrocephalus (CH) specific mutation of mTRIM71 impair its binding to the RNA targets as well. These results reveal molecular mechanism behind the recognition of RNA by mammalian TRIM71 and provide insights into TRIM71 related diseases.
Collapse
Affiliation(s)
- Fandi Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Kun Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Qixuan Cheng
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Shiyou Che
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China; College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Shuxin Zhi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Zhenyu Yu
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Feifei Duan
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Yangming Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China.
| | - Na Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China.
| |
Collapse
|
10
|
Kumari P, Thuestad L, Ciosk R. Post-transcriptional repression of CFP-1 expands the regulatory repertoire of LIN-41/TRIM71. Nucleic Acids Res 2023; 51:10668-10680. [PMID: 37670562 PMCID: PMC10602926 DOI: 10.1093/nar/gkad729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
The Caenorhabditis elegans LIN-41/TRIM71 is a well-studied example of a versatile regulator of mRNA fate, which plays different biological functions involving distinct post-transcriptional mechanisms. In the soma, LIN-41 determines the timing of developmental transitions between larval stages. The somatic LIN-41 recognizes specific mRNAs via LREs (LIN-41 Recognition Elements) and elicits either mRNA decay or translational repression. In the germline, LIN-41 controls the oocyte-to-embryo transition (OET), although the relevant targets and regulatory mechanisms are poorly understood. The germline LIN-41 was suggested to regulate mRNAs indirectly by associating with another RNA-binding protein. We show here that LIN-41 can also regulate germline mRNAs via the LREs. Through a computational-experimental analysis, we identified the germline mRNAs potentially controlled via LREs and validated one target, the cfp-1 mRNA, encoding a conserved chromatin modifier. Our analysis suggests that cfp-1 may be a long-sought target whose LIN-41-mediated regulation during OET facilitates the transcriptional reprogramming underlying the switch from germ- to somatic cell identity.
Collapse
Affiliation(s)
- Pooja Kumari
- Department of Biosciences, University of Oslo, Oslo 0316, Norway
| | | | - Rafal Ciosk
- Department of Biosciences, University of Oslo, Oslo 0316, Norway
| |
Collapse
|
11
|
Liu T, Chen J, Wu J, Du Q, Liu J, Tan S, Pan Y, Yao S. Role of the tripartite motif (TRIM) family in female genital neoplasms. Pathol Res Pract 2023; 250:154811. [PMID: 37713735 DOI: 10.1016/j.prp.2023.154811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
The tripartite motif proteins (TRIMs) family represents a class of highly conservative proteins which play a large regulatory role in molecular processes. Recently, increasing evidence has demonstrated a role of TRIMs in female genital neoplasms. Our review thereby aimed to provide an overview of the biological involvement of TRIMs in female genital neoplasms, to provide a better understanding of its role in the development and progression of such diseases, and emphasize its potential as targeted cancer therapy. Overall, our review highlighted that the wide-ranging roles of TRIMs, in not only target protein ubiquitination, tumor migration and/or invasion, epithelial-mesenchymal transition, stemness, cell adhesion, proliferation, cell cycle regulation, and apoptosis, but also in influencing estrogenic, and chemotherapy response.
Collapse
Affiliation(s)
- Tianyu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Jian Chen
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jinjie Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiqiao Du
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Junxiu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Silu Tan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Yuwen Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Welte T, Goulois A, Stadler MB, Hess D, Soneson C, Neagu A, Azzi C, Wisser MJ, Seebacher J, Schmidt I, Estoppey D, Nigsch F, Reece-Hoyes J, Hoepfner D, Großhans H. Convergence of multiple RNA-silencing pathways on GW182/TNRC6. Mol Cell 2023:S1097-2765(23)00423-9. [PMID: 37369201 DOI: 10.1016/j.molcel.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/02/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
The RNA-binding protein TRIM71/LIN-41 is a phylogenetically conserved developmental regulator that functions in mammalian stem cell reprogramming, brain development, and cancer. TRIM71 recognizes target mRNAs through hairpin motifs and silences them through molecular mechanisms that await identification. Here, we uncover that TRIM71 represses its targets through RNA-supported interaction with TNRC6/GW182, a core component of the miRNA-induced silencing complex (miRISC). We demonstrate that AGO2, TRIM71, and UPF1 each recruit TNRC6 to specific sets of transcripts to silence them. As cellular TNRC6 levels are limiting, competition occurs among the silencing pathways, such that the loss of AGO proteins or of AGO binding to TNRC6 enhances the activities of the other pathways. We conclude that a miRNA-like silencing activity is shared among different mRNA silencing pathways and that the use of TNRC6 as a central hub provides a means to integrate their activities.
Collapse
Affiliation(s)
- Thomas Welte
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Alison Goulois
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; SIB Swiss Institute of Bioinformatics, Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Charlotte Soneson
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Anca Neagu
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Chiara Azzi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Marlena J Wisser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Jan Seebacher
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Isabel Schmidt
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - David Estoppey
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Florian Nigsch
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - John Reece-Hoyes
- Department of Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Dominic Hoepfner
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
13
|
Ray D, Laverty KU, Jolma A, Nie K, Samson R, Pour SE, Tam CL, von Krosigk N, Nabeel-Shah S, Albu M, Zheng H, Perron G, Lee H, Najafabadi H, Blencowe B, Greenblatt J, Morris Q, Hughes TR. RNA-binding proteins that lack canonical RNA-binding domains are rarely sequence-specific. Sci Rep 2023; 13:5238. [PMID: 37002329 PMCID: PMC10066285 DOI: 10.1038/s41598-023-32245-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Thousands of RNA-binding proteins (RBPs) crosslink to cellular mRNA. Among these are numerous unconventional RBPs (ucRBPs)-proteins that associate with RNA but lack known RNA-binding domains (RBDs). The vast majority of ucRBPs have uncharacterized RNA-binding specificities. We analyzed 492 human ucRBPs for intrinsic RNA-binding in vitro and identified 23 that bind specific RNA sequences. Most (17/23), including 8 ribosomal proteins, were previously associated with RNA-related function. We identified the RBDs responsible for sequence-specific RNA-binding for several of these 23 ucRBPs and surveyed whether corresponding domains from homologous proteins also display RNA sequence specificity. CCHC-zf domains from seven human proteins recognized specific RNA motifs, indicating that this is a major class of RBD. For Nudix, HABP4, TPR, RanBP2-zf, and L7Ae domains, however, only isolated members or closely related homologs yielded motifs, consistent with RNA-binding as a derived function. The lack of sequence specificity for most ucRBPs is striking, and we suggest that many may function analogously to chromatin factors, which often crosslink efficiently to cellular DNA, presumably via indirect recruitment. Finally, we show that ucRBPs tend to be highly abundant proteins and suggest their identification in RNA interactome capture studies could also result from weak nonspecific interactions with RNA.
Collapse
Affiliation(s)
- Debashish Ray
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Kaitlin U Laverty
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Arttu Jolma
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Kate Nie
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Reuben Samson
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Sara E Pour
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Cyrus L Tam
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Niklas von Krosigk
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Syed Nabeel-Shah
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Mihai Albu
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Hong Zheng
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Gabrielle Perron
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0C7, Canada
- McGill Genome Centre, Montréal, QC, H3A 0G1, Canada
| | - Hyunmin Lee
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Hamed Najafabadi
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0C7, Canada
- McGill Genome Centre, Montréal, QC, H3A 0G1, Canada
| | - Benjamin Blencowe
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jack Greenblatt
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Quaid Morris
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Timothy R Hughes
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
14
|
Liu Q, Novak MK, Pepin RM, Maschhoff KR, Hu W. Different congenital hydrocephalus-associated mutations in Trim71 impair stem cell differentiation via distinct gain-of-function mechanisms. PLoS Biol 2023; 21:e3001947. [PMID: 36757932 PMCID: PMC9910693 DOI: 10.1371/journal.pbio.3001947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/06/2022] [Indexed: 02/10/2023] Open
Abstract
Congenital hydrocephalus (CH) is a common neurological disorder affecting many newborns. Imbalanced neurogenesis is a major cause of CH. Multiple CH-associated mutations are within the RNA-binding domain of Trim71, a conserved, stem cell-specific RNA-binding protein. How these mutations alter stem cell fate is unclear. Here, we show that the CH-associated mutations R595H and R783H in Trim71 accelerate differentiation and enhance neural lineage commitment in mouse embryonic stem cells (mESCs), and reduce binding to mRNAs targeted by wild-type Trim71, consistent with previous reports. Unexpectedly, however, each mutant binds an ectopic and distinct repertoire of target mRNAs. R595H-Trim71, but not R783H-Trim71 nor wild-type Trim71, binds the mRNA encoding β-catenin and represses its translation. Increasing β-catenin by overexpression or treatment with a Wnt agonist specifically restores differentiation of R595H-Trim71 mESCs. These results suggest that Trim71 mutations give rise to unique gain-of-function pathological mechanisms in CH. Further, our studies suggest that disruption of the Wnt/β-catenin signaling pathway can be used to stratify disease etiology and develop precision medicine approaches for CH.
Collapse
Affiliation(s)
- Qiuying Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Mariah K. Novak
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Rachel M. Pepin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Katharine R. Maschhoff
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Wenqian Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
15
|
Liu Q, Novak MK, Pepin RM, Maschhoff KR, Worner K, Chen X, Zhang S, Hu W. A congenital hydrocephalus-causing mutation in Trim71 induces stem cell defects via inhibiting Lsd1 mRNA translation. EMBO Rep 2023; 24:e55843. [PMID: 36573342 PMCID: PMC9900330 DOI: 10.15252/embr.202255843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022] Open
Abstract
Congenital hydrocephalus (CH) is a major cause of childhood morbidity. Mono-allelic mutations in Trim71, a conserved stem-cell-specific RNA-binding protein, cause CH; however, the molecular basis for pathogenesis mediated by these mutations remains unknown. Here, using mouse embryonic stem cells as a model, we reveal that the mouse R783H mutation (R796H in human) alters Trim71's mRNA substrate specificity and leads to accelerated stem-cell differentiation and neural lineage commitment. Mutant Trim71, but not wild-type Trim71, binds Lsd1 (Kdm1a) mRNA and represses its translation. Specific inhibition of this repression or a slight increase of Lsd1 in the mutant cells alleviates the defects in stem cell differentiation and neural lineage commitment. These results determine a functionally relevant target of the CH-causing Trim71 mutant that can potentially be a therapeutic target and provide molecular mechanistic insights into the pathogenesis of this disease.
Collapse
Affiliation(s)
- Qiuying Liu
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMNUSA
| | - Mariah K Novak
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMNUSA
| | - Rachel M Pepin
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMNUSA
| | | | - Kailey Worner
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMNUSA
| | - Xiaoli Chen
- Department of Computer ScienceUniversity of Central FloridaOrlandoFLUSA
| | - Shaojie Zhang
- Department of Computer ScienceUniversity of Central FloridaOrlandoFLUSA
| | - Wenqian Hu
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMNUSA
| |
Collapse
|
16
|
Esposito D, Dudley-Fraser J, Garza-Garcia A, Rittinger K. Divergent self-association properties of paralogous proteins TRIM2 and TRIM3 regulate their E3 ligase activity. Nat Commun 2022; 13:7583. [PMID: 36481767 PMCID: PMC9732051 DOI: 10.1038/s41467-022-35300-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Tripartite motif (TRIM) proteins constitute a large family of RING-type E3 ligases that share a conserved domain architecture. TRIM2 and TRIM3 are paralogous class VII TRIM members that are expressed mainly in the brain and regulate different neuronal functions. Here we present a detailed structure-function analysis of TRIM2 and TRIM3, which despite high sequence identity, exhibit markedly different self-association and activity profiles. We show that the isolated RING domain of human TRIM3 is monomeric and inactive, and that this lack of activity is due to a few placental mammal-specific amino acid changes adjacent to the core RING domain that prevent self-association but not E2 recognition. We demonstrate that the activity of human TRIM3 RING can be restored by substitution with the relevant region of human TRIM2 or by hetero-dimerization with human TRIM2, establishing that subtle amino acid changes can profoundly affect TRIM protein activity. Finally, we show that TRIM2 and TRIM3 interact in a cellular context via their filamin and coiled-coil domains, respectively.
Collapse
Affiliation(s)
- Diego Esposito
- grid.451388.30000 0004 1795 1830Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT UK
| | - Jane Dudley-Fraser
- grid.451388.30000 0004 1795 1830Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT UK
| | - Acely Garza-Garcia
- grid.451388.30000 0004 1795 1830Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT UK
| | - Katrin Rittinger
- grid.451388.30000 0004 1795 1830Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT UK
| |
Collapse
|
17
|
Chaikuad A, Zhubi R, Tredup C, Knapp S. Comparative structural analyses of the NHL domains from the human E3 ligase TRIM-NHL family. IUCRJ 2022; 9:720-727. [PMID: 36381143 PMCID: PMC9634614 DOI: 10.1107/s2052252522008582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Tripartite motif (TRIM) proteins constitute one of the largest subfamilies of the RING-type E3 ubiquitin ligases that play a role in diverse processes from homeostasis and immune response to viral restriction. While TRIM proteins typically harbor an N-terminal RING finger, a B-box and a coiled-coil domain, a high degree of diversity lies in their C termini that contain diverse protein interaction modules, most of which, both structures and their roles in intermolecular interactions, remain unknown. Here, high-resolution crystal structures of the NHL domains of three of the four human TRIM-NHL proteins, namely TRIM2, TRIM3 and TRIM71, are presented. Comparative structural analyses revealed that, despite sharing an evolutionarily conserved six-bladed β-propeller architecture, the low sequence identities resulted in distinct properties of these interaction domains at their putative binding sites for macromolecules. Interestingly, residues lining the binding cavities represent a hotspot for genetic mutations linked to several diseases. Thus, high sequence diversity within the conserved NHL domains might be essential for differentiating binding partners among TRIM-NHL proteins.
Collapse
Affiliation(s)
- Apirat Chaikuad
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, D-60438 Frankfurt am Main, Germany
| | - Rezart Zhubi
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, D-60438 Frankfurt am Main, Germany
| | - Claudia Tredup
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, D-60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, D-60438 Frankfurt am Main, Germany
- German Translational Cancer Network (DKTK), Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| |
Collapse
|
18
|
Shen Y, Chen H, Huang Q, Du H, Zhou L. Transcriptomic signature associated with RNA-binding proteins for survival stratification of laryngeal cancer. Aging (Albany NY) 2022; 14:6605-6625. [PMID: 35985767 PMCID: PMC9467394 DOI: 10.18632/aging.204234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022]
Abstract
RNA-binding proteins (RBPs) have been suggested as important prognostic indicators in different human cancers. This study was designed to search the prognostic value of RBPs of laryngeal squamous cell carcinoma (LSCC). Differentially expressed RBPs (DERBPs) were screened via The Cancer Genome Atlas (TCGA). Bioinformatics methods were used to identify prognostic DERBPs. Expression profiling of training cohort were calculated to develop a transcriptomic signature, which was validated by three independent cohorts (TCGA cohort, GSE65858 cohort and GSE27020 cohort). We identified DERBPs and a set of signatures (GTPBP3, KHDRBS3 and RBM38) were confirmed as prognosis-related hub DERBPs in LSCC, which was also tested and verified by bioinformatics method and molecular biology experiment. The role of immune cell infiltration and drug resistance between subgroups was explored. Furthermore, the risk score based on transcriptomic signature was turned out to be an independent prognostic indicator for LSCC. Finally, a nomogram for further clinical application was established. Our study demonstrated that the transcriptomic signature we constructed could serve as a novel therapeutic target and biomarker for LSCC from the perspective of RBPs.
Collapse
Affiliation(s)
- Yujie Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, Shanghai, China
| | - Huijun Chen
- Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China
| | - Qiang Huang
- Department of Otorhinolaryngology Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, Shanghai, China
| | - Huaidong Du
- Department of Otorhinolaryngology Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, Shanghai, China
| | - Liang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, Shanghai, China
| |
Collapse
|
19
|
Salerno-Kochan A, Horn A, Ghosh P, Nithin C, Kościelniak A, Meindl A, Strauss D, Krutyhołowa R, Rossbach O, Bujnicki JM, Gaik M, Medenbach J, Glatt S. Molecular insights into RNA recognition and gene regulation by the TRIM-NHL protein Mei-P26. Life Sci Alliance 2022; 5:5/8/e202201418. [PMID: 35512835 PMCID: PMC9070667 DOI: 10.26508/lsa.202201418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
The TRIM-NHL protein Meiotic P26 (Mei-P26) acts as a regulator of cell fate in Drosophila Its activity is critical for ovarian germline stem cell maintenance, differentiation of oocytes, and spermatogenesis. Mei-P26 functions as a post-transcriptional regulator of gene expression; however, the molecular details of how its NHL domain selectively recognizes and regulates its mRNA targets have remained elusive. Here, we present the crystal structure of the Mei-P26 NHL domain at 1.6 Å resolution and identify key amino acids that confer substrate specificity and distinguish Mei-P26 from closely related TRIM-NHL proteins. Furthermore, we identify mRNA targets of Mei-P26 in cultured Drosophila cells and show that Mei-P26 can act as either a repressor or activator of gene expression on different RNA targets. Our work reveals the molecular basis of RNA recognition by Mei-P26 and the fundamental functional differences between otherwise very similar TRIM-NHL proteins.
Collapse
Affiliation(s)
- Anna Salerno-Kochan
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.,Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Andreas Horn
- Biochemistry I, University of Regensburg, Regensburg, Germany
| | - Pritha Ghosh
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Chandran Nithin
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Anna Kościelniak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Andreas Meindl
- Biochemistry I, University of Regensburg, Regensburg, Germany
| | - Daniela Strauss
- Biochemistry I, University of Regensburg, Regensburg, Germany
| | | | - Oliver Rossbach
- Institute of Biochemistry, University of Giessen, Giessen, Germany
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland.,Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Monika Gaik
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Medenbach
- Biochemistry I, University of Regensburg, Regensburg, Germany
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
20
|
D'Amico F, Mukhopadhyay R, Ovaa H, Mulder MPC. Targeting TRIM Proteins: A Quest towards Drugging an Emerging Protein Class. Chembiochem 2021; 22:2011-2031. [PMID: 33482040 PMCID: PMC8251876 DOI: 10.1002/cbic.202000787] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/22/2021] [Indexed: 02/06/2023]
Abstract
The ubiquitylation machinery regulates several fundamental biological processes from protein homeostasis to a wide variety of cellular signaling pathways. As a consequence, its dysregulation is linked to diseases including cancer, neurodegeneration, and autoimmunity. With this review, we aim to highlight the therapeutic potential of targeting E3 ligases, with a special focus on an emerging class of RING ligases, named tri-partite motif (TRIM) proteins, whose role as targets for drug development is currently gaining pharmaceutical attention. TRIM proteins exert their catalytic activity as scaffolds involved in many protein-protein interactions, whose multidomains and adapter-like nature make their druggability very challenging. Herein, we give an overview of the current understanding of this class of single polypeptide RING E3 ligases and discuss potential targeting options.
Collapse
Affiliation(s)
- Francesca D'Amico
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333ZCLeidenThe Netherlands
| | - Rishov Mukhopadhyay
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333ZCLeidenThe Netherlands
| | - Huib Ovaa
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333ZCLeidenThe Netherlands
| | - Monique P. C. Mulder
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333ZCLeidenThe Netherlands
| |
Collapse
|
21
|
Torres-Fernández LA, Emich J, Port Y, Mitschka S, Wöste M, Schneider S, Fietz D, Oud MS, Di Persio S, Neuhaus N, Kliesch S, Hölzel M, Schorle H, Friedrich C, Tüttelmann F, Kolanus W. TRIM71 Deficiency Causes Germ Cell Loss During Mouse Embryogenesis and Is Associated With Human Male Infertility. Front Cell Dev Biol 2021; 9:658966. [PMID: 34055789 PMCID: PMC8155544 DOI: 10.3389/fcell.2021.658966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
Mutations affecting the germline can result in infertility or the generation of germ cell tumors (GCT), highlighting the need to identify and characterize the genes controlling germ cell development. The RNA-binding protein and E3 ubiquitin ligase TRIM71 is essential for embryogenesis, and its expression has been reported in GCT and adult mouse testes. To investigate the role of TRIM71 in mammalian germ cell embryonic development, we generated a germline-specific conditional Trim71 knockout mouse (cKO) using the early primordial germ cell (PGC) marker Nanos3 as a Cre-recombinase driver. cKO mice are infertile, with male mice displaying a Sertoli cell-only (SCO) phenotype which in humans is defined as a specific subtype of non-obstructive azoospermia characterized by the absence of germ cells in the seminiferous tubules. Infertility in male Trim71 cKO mice originates during embryogenesis, as the SCO phenotype was already apparent in neonatal mice. The in vitro differentiation of mouse embryonic stem cells (ESCs) into PGC-like cells (PGCLCs) revealed reduced numbers of PGCLCs in Trim71-deficient cells. Furthermore, TCam-2 cells, a human GCT-derived seminoma cell line which was used as an in vitro model for PGCs, showed proliferation defects upon TRIM71 knockdown. Additionally, in vitro growth competition assays, as well as proliferation assays with wild type and CRISPR/Cas9-generated TRIM71 mutant NCCIT cells showed that TRIM71 also promotes proliferation in this malignant GCT-derived non-seminoma cell line. Importantly, the PGC-specific markers BLIMP1 and NANOS3 were consistently downregulated in Trim71 KO PGCLCs, TRIM71 knockdown TCam-2 cells and TRIM71 mutant NCCIT cells. These data collectively support a role for TRIM71 in PGC development. Last, via exome sequencing analysis, we identified several TRIM71 variants in a cohort of infertile men, including a loss-of-function variant in a patient with an SCO phenotype. Altogether, our work reveals for the first time an association of TRIM71 deficiency with human male infertility, and uncovers further developmental roles for TRIM71 in the germline during mouse embryogenesis.
Collapse
Affiliation(s)
| | - Jana Emich
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Yasmine Port
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Sibylle Mitschka
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Marius Wöste
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Simon Schneider
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Gießen, Gießen, Germany
- Hessian Centre of Reproductive Medicine (HZRM), Justus Liebig University Gießen, Gießen, Germany
| | - Manon S. Oud
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sara Di Persio
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University Hospital Münster, Münster, Germany
| | - Nina Neuhaus
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University Hospital Münster, Münster, Germany
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital Münster, Münster, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Hubert Schorle
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Corinna Friedrich
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Waldemar Kolanus
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
22
|
Torres Fernández LA, Mitschka S, Ulas T, Weise S, Dahm K, Becker M, Händler K, Beyer M, Windhausen J, Schultze JL, Kolanus W. The stem cell-specific protein TRIM71 inhibits maturation and activity of the pro-differentiation miRNA let-7 via two independent molecular mechanisms. RNA (NEW YORK, N.Y.) 2021; 27:rna.078696.121. [PMID: 33975917 PMCID: PMC8208056 DOI: 10.1261/rna.078696.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/29/2021] [Indexed: 05/05/2023]
Abstract
The stem cell-specific RNA-binding protein TRIM71/LIN-41 was the first identified target of the pro-differentiation and tumor suppressor miRNA let-7. TRIM71 has essential functions in embryonic development and a proposed oncogenic role in several cancer types, such as hepatocellular carcinoma. Here, we show that TRIM71 regulates let-7 expression and activity via two independent mechanisms. On the one hand, TRIM71 enhances pre-let-7 degradation through its direct interaction with LIN28 and TUT4, thereby inhibiting let-7 maturation and indirectly promoting the stabilization of let-7 targets. On the other hand, TRIM71 represses the activity of mature let-7 via its RNA-dependent interaction with the RNA-Induced Silencing Complex (RISC) effector protein AGO2. We found that TRIM71 directly binds and stabilizes let-7 targets, suggesting that let-7 activity inhibition occurs on active RISCs. MiRNA enrichment analysis of several transcriptomic datasets from mouse embryonic stem cells and human hepatocellular carcinoma cells suggests that these let-7 regulatory mechanisms shape transcriptomic changes during developmental and oncogenic processes. Altogether, our work reveals a novel role for TRIM71 as a miRNA repressor and sheds light on a dual mechanism of let-7 regulation.
Collapse
Affiliation(s)
| | | | - Thomas Ulas
- German Center for Neurodegenerative Diseases (DZNE) & Life and Medical Sciences Institute (LIMES), University of Bonn
| | - Stefan Weise
- Life and Medical Sciences Institute (LIMES), University of Bonn
| | - Kilian Dahm
- Life and Medical Sciences Institute (LIMES), University of Bonn
| | - Matthias Becker
- German Center for Neurodegenerative Diseases (DZNE), University of Bonn
| | - Kristian Händler
- German Center for Neurodegenerative Diseases (DZNE), University of Bonn
| | - Marc Beyer
- Life and Medical Sciences Institute (LIMES)
| | | | - Joachim L Schultze
- German Center for Neurodegenerative Diseases (DZNE) & Life and Medical Sciences Institute (LIMES), University of Bonn
| | | |
Collapse
|
23
|
Connacher RP, Goldstrohm AC. Molecular and biological functions of TRIM-NHL RNA-binding proteins. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1620. [PMID: 32738036 PMCID: PMC7855385 DOI: 10.1002/wrna.1620] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 01/02/2023]
Abstract
The TRIM-NHL family of proteins shares a conserved domain architecture and play crucial roles in stem cell biology, fertility, and development. This review synthesizes new insights that have revolutionized our understanding of the molecular and biological functions of TRIM-NHL proteins. Multiple TRIM-NHLs have been shown to bind specific RNA sequences and structures. X-ray crystal structures of TRIM-NHL proteins in complex with RNA ligands reveal versatile modes of RNA recognition by the NHL domain. Functional and genetic analyses show that TRIM-NHL RNA-binding proteins negatively regulate the protein expression from the target mRNAs that they bind. This repressive activity plays a crucial role in controlling stem cell fate in the developing brain and differentiating germline. To highlight these paradigms, we focus on several of the most-extensively studied TRIM-NHL proteins, specifically Drosophila and vertebrate TRIM71, among others. Brat is essential for development and regulates key target mRNAs to control differentiation of germline and neural stem cells. TRIM71 is also required for development and promotes stem cell proliferation while antagonizing differentiation. Moreover, TRIM71 can be utilized to help reprogram fibroblasts into induced pluripotent stem cells. Recently discovered mutations in TRIM71 cause the neurodevelopmental disease congenital hydrocephalus and emphasize the importance of its RNA-binding function in brain development. Further relevance of TRIM71 to disease pathogenesis comes from evidence linking it to several types of cancer, including liver and testicular cancer. Collectively, these advances demonstrate a primary role for TRIM-NHL proteins in the post-transcriptional regulation of gene expression in crucial biological processes. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Regulation RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Robert P. Connacher
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA 55455
| | - Aaron C. Goldstrohm
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA 55455
| |
Collapse
|
24
|
Liu Q, Chen X, Novak MK, Zhang S, Hu W. Repressing Ago2 mRNA translation by Trim71 maintains pluripotency through inhibiting let-7 microRNAs. eLife 2021; 10:66288. [PMID: 33599613 PMCID: PMC7906602 DOI: 10.7554/elife.66288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/12/2021] [Indexed: 12/19/2022] Open
Abstract
The regulation of stem cell fate is poorly understood. Genetic studies in Caenorhabditis elegans lead to the hypothesis that a conserved cytoplasmic double-negative feedback loop consisting of the RNA-binding protein Trim71 and the let-7 microRNA controls the pluripotency and differentiation of stem cells. Although let-7-microRNA-mediated inhibition of Trim71 promotes differentiation, whether and how Trim71 regulates pluripotency and inhibits the let-7 microRNA are still unknown. Here, we show that Trim71 represses Ago2 mRNA translation in mouse embryonic stem cells. Blocking this repression leads to a specific post-transcriptional increase of mature let-7 microRNAs, resulting in let-7-dependent stemness defects and accelerated differentiation in the stem cells. These results not only support the Trim71-let-7-microRNA bi-stable switch model in controlling stem cell fate, but also reveal that repressing the conserved pro-differentiation let-7 microRNAs at the mature microRNA level by Ago2 availability is critical to maintaining pluripotency.
Collapse
Affiliation(s)
- Qiuying Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Xiaoli Chen
- Department of Computer Science, University of Central Florida, Orlando, United States
| | - Mariah K Novak
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Shaojie Zhang
- Department of Computer Science, University of Central Florida, Orlando, United States
| | - Wenqian Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| |
Collapse
|
25
|
Goyani S, Roy M, Singh R. TRIM-NHL as RNA Binding Ubiquitin E3 Ligase (RBUL): Implication in development and disease pathogenesis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166066. [PMID: 33418035 DOI: 10.1016/j.bbadis.2020.166066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/14/2020] [Accepted: 12/27/2020] [Indexed: 12/20/2022]
Abstract
TRIM proteins are RING domain-containing modular ubiquitin ligases, unique due to their stimuli specific expression, localization, and turnover. The TRIM family consists of more than 76 proteins, including the TRIM-NHL sub-family which possesses RNA binding ability along with the inherent E3 Ligase activity, hence can be classified as a unique class of RNA Binding Ubiquitin Ligases (RBULs). Having these two abilities, TRIM-NHL proteins can play important role in a wide variety of cellular processes and their dysregulation can lead to complex and systemic pathological conditions. Increasing evidence suggests that TRIM-NHL proteins regulate RNA at the transcriptional and post-transcriptional level having implications in differentiation, development, and many pathological conditions. This review explores the evolving role of TRIM-NHL proteins as TRIM-RBULs, their ubiquitin ligase and RNA binding ability regulating cellular processes, and their possible role in different pathophysiological conditions.
Collapse
Affiliation(s)
- Shanikumar Goyani
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390 002, Gujarat, India
| | - Milton Roy
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390 002, Gujarat, India
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390 002, Gujarat, India.
| |
Collapse
|
26
|
Andrzejewska A, Zawadzka M, Pachulska-Wieczorek K. On the Way to Understanding the Interplay between the RNA Structure and Functions in Cells: A Genome-Wide Perspective. Int J Mol Sci 2020; 21:E6770. [PMID: 32942713 PMCID: PMC7554983 DOI: 10.3390/ijms21186770] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022] Open
Abstract
RNAs adopt specific structures in order to perform their biological activities. The structure of RNA is an important layer of gene expression regulation, and can impact a plethora of cellular processes, starting with transcription, RNA processing, and translation, and ending with RNA turnover. The development of high-throughput technologies has enabled a deeper insight into the sophisticated interplay between the structure of the cellular transcriptome and the living cells environment. In this review, we present the current view on the RNA structure in vivo resulting from the most recent transcriptome-wide studies in different organisms, including mammalians, yeast, plants, and bacteria. We focus on the relationship between the mRNA structure and translation, mRNA stability and degradation, protein binding, and RNA posttranscriptional modifications.
Collapse
Affiliation(s)
| | | | - Katarzyna Pachulska-Wieczorek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Department of Structure and Function of Retrotransposons, Noskowskiego 12/14, 61-704 Poznan, Poland; (A.A.); (M.Z.)
| |
Collapse
|
27
|
Foster DJ, Chang HM, Haswell JR, Gregory RI, Slack FJ. TRIM71 binds to IMP1 and is capable of positive and negative regulation of target RNAs. Cell Cycle 2020; 19:2314-2326. [PMID: 32816599 DOI: 10.1080/15384101.2020.1804232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
TRIM71 is an important RNA-binding protein in development and disease, yet its direct targets have not been investigated globally. Here we describe a number of disease and developmentally-relevant TRIM71 RNA targets such as the MBNL family, LIN28B, MDM2, and TCF7L2. We describe a new role for TRIM71 as capable of positive or negative RNA regulation depending on the RNA target. We found that TRIM71 co-precipitated with IMP1 which could explain its multiple mechanisms of RNA regulation, as IMP1 is typically thought to stabilize RNAs. Deletion of the NHL domain of TRIM71 impacted its ability to bind to RNA and RNAs bound by congenital hydrocephalus-associated point mutations in the RNA-binding NHL domain of TRIM71 clustered closely with RNAs bound by the NHL deletion mutant. Our work expands the possible mechanisms by which TRIM71 may regulate RNAs and elucidates further potential RNA targets.
Collapse
Affiliation(s)
- Daniel J Foster
- HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA, USA
| | - Hao-Ming Chang
- Stem Cell Program, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard Stem Cell Institute , Boston, MA, USA
| | - Jeffrey R Haswell
- HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA, USA
| | - Richard I Gregory
- Stem Cell Program, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard Stem Cell Institute , Boston, MA, USA.,Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School , Boston, MA, USA
| | - Frank J Slack
- HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA, USA
| |
Collapse
|
28
|
Wang Y, Wang Y, Luo W, Song X, Huang L, Xiao J, Jin F, Ren Z, Wang Y. Roles of long non-coding RNAs and emerging RNA-binding proteins in innate antiviral responses. Am J Cancer Res 2020; 10:9407-9424. [PMID: 32802200 PMCID: PMC7415804 DOI: 10.7150/thno.48520] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
The diseases caused by viruses posed a great challenge to human health, the development of which was driven by the imbalanced host immune response. Host innate immunity is an evolutionary old defense system that is critical for the elimination of the virus. The overactive innate immune response also leads to inflammatory autoimmune diseases, which require precise control of innate antiviral response for maintaining immune homeostasis. Mounting long non-coding RNAs (lncRNAs) transcribed from the mammalian genome are key regulators of innate antiviral response, functions of which greatly depend on their protein interactors, including classical RNA-binding proteins (RBPs) and the unconventional proteins without classical RNA binding domains. In particular, several emerging RBPs, such as m6A machinery components, TRIM family members, and even the DNA binding factors recognized traditionally, function in innate antiviral response. In this review, we highlight recent progress in the regulation of type I interferon signaling-based antiviral responses by lncRNAs and emerging RBPs as well as their mechanism of actions. We then posed the future perspective toward the role of lncRNA-RBP interaction networks in innate antiviral response and discussed the promising and challenges of lncRNA-based drug development as well as the technical bottleneck in studying lncRNA-protein interactions. Our review provides a comprehensive understanding of lncRNA and emerging RBPs in the innate antiviral immune response.
Collapse
|
29
|
Torres-Fernández LA, Jux B, Bille M, Port Y, Schneider K, Geyer M, Mayer G, Kolanus W. The mRNA repressor TRIM71 cooperates with Nonsense-Mediated Decay factors to destabilize the mRNA of CDKN1A/p21. Nucleic Acids Res 2020; 47:11861-11879. [PMID: 31732746 PMCID: PMC7145526 DOI: 10.1093/nar/gkz1057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 10/22/2019] [Accepted: 11/10/2019] [Indexed: 12/30/2022] Open
Abstract
Nonsense-mediated decay (NMD) plays a fundamental role in the degradation of premature termination codon (PTC)-containing transcripts, but also regulates the expression of functional transcripts lacking PTCs, although such 'non-canonical' functions remain ill-defined and require the identification of factors targeting specific mRNAs to the NMD machinery. Our work identifies the stem cell-specific mRNA repressor protein TRIM71 as one of these factors. TRIM71 plays an essential role in embryonic development and is linked to carcinogenesis. For instance, TRIM71 has been correlated with advanced stages and poor prognosis in hepatocellular carcinoma. Our data shows that TRIM71 represses the mRNA of the cell cycle inhibitor and tumor suppressor CDKN1A/p21 and promotes the proliferation of HepG2 tumor cells. CDKN1A specific recognition involves the direct interaction of TRIM71 NHL domain with a structural RNA stem-loop motif within the CDKN1A 3'UTR. Importantly, CDKN1A repression occurs independently of miRNA-mediated silencing. Instead, the NMD factors SMG1, UPF1 and SMG7 assist TRIM71-mediated degradation of CDKN1A mRNA, among other targets. Our data sheds light on TRIM71-mediated target recognition and repression mechanisms and uncovers a role for this stem cell-specific factor and oncogene in non-canonical NMD, revealing the existence of a novel mRNA surveillance mechanism which we have termed the TRIM71/NMD axis.
Collapse
Affiliation(s)
- Lucia A Torres-Fernández
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Bettina Jux
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Maximilian Bille
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Yasmine Port
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Karin Schneider
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University Clinics Bonn, University of Bonn, 53127 Bonn, Germany
| | - Günter Mayer
- Center of Aptamer Research & Development; Chemical Biology & Chemical Genetics, Life & Medical Sciences Institute (LIMES). University of Bonn, 53121 Bonn, Germany
| | - Waldemar Kolanus
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
30
|
Williams FP, Haubrich K, Perez-Borrajero C, Hennig J. Emerging RNA-binding roles in the TRIM family of ubiquitin ligases. Biol Chem 2020; 400:1443-1464. [PMID: 31120853 DOI: 10.1515/hsz-2019-0158] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
TRIM proteins constitute a large, diverse and ancient protein family which play a key role in processes including cellular differentiation, autophagy, apoptosis, DNA repair, and tumour suppression. Mostly known and studied through the lens of their ubiquitination activity as E3 ligases, it has recently emerged that many of these proteins are involved in direct RNA binding through their NHL or PRY/SPRY domains. We summarise the current knowledge concerning the mechanism of RNA binding by TRIM proteins and its biological role. We discuss how RNA-binding relates to their previously described functions such as E3 ubiquitin ligase activity, and we will consider the potential role of enrichment in membrane-less organelles.
Collapse
Affiliation(s)
- Felix Preston Williams
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Kevin Haubrich
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Cecilia Perez-Borrajero
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany, e-mail:
| |
Collapse
|
31
|
Welte T, Tuck AC, Papasaikas P, Carl SH, Flemr M, Knuckles P, Rankova A, Bühler M, Großhans H. The RNA hairpin binder TRIM71 modulates alternative splicing by repressing MBNL1. Genes Dev 2019; 33:1221-1235. [PMID: 31371437 PMCID: PMC6719626 DOI: 10.1101/gad.328492.119] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/19/2019] [Indexed: 01/19/2023]
Abstract
In this study, Welte et al. investigated the dual roles of mammalian TRIM71, a phylogenetically conserved regulator of development, in the control of stem cell fate. They demonstrate that TRIM71 shapes the transcriptome of mESCs predominantly through its RNA-binding activity and identify a set of primary targets consistently regulated in various human and mouse cell lines, including MBNL1/Muscleblind. TRIM71/LIN-41, a phylogenetically conserved regulator of development, controls stem cell fates. Mammalian TRIM71 exhibits both RNA-binding and protein ubiquitylation activities, but the functional contribution of either activity and relevant primary targets remain poorly understood. Here, we demonstrate that TRIM71 shapes the transcriptome of mouse embryonic stem cells (mESCs) predominantly through its RNA-binding activity. We reveal that TRIM71 binds targets through 3′ untranslated region (UTR) hairpin motifs and that it acts predominantly by target degradation. TRIM71 mutations implicated in etiogenesis of human congenital hydrocephalus impair target silencing. We identify a set of primary targets consistently regulated in various human and mouse cell lines, including MBNL1 (Muscleblind-like protein 1). MBNL1 promotes cell differentiation through regulation of alternative splicing, and we demonstrate that TRIM71 promotes embryonic splicing patterns through MBNL1 repression. Hence, repression of MBNL1-dependent alternative splicing may contribute to TRIM71's function in regulating stem cell fates.
Collapse
Affiliation(s)
- Thomas Welte
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Alex C Tuck
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Panagiotis Papasaikas
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics, 4058 Basel, Switzerland.,These authors contributed equally to this work
| | - Sarah H Carl
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics, 4058 Basel, Switzerland.,These authors contributed equally to this work
| | - Matyas Flemr
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Philip Knuckles
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Aneliya Rankova
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,University of Basel, 4056 Basel, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,University of Basel, 4056 Basel, Switzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
32
|
Shein A, Zaikin A, Poptsova M. Recognition of 3'-end L1, Alu, processed pseudogenes, and mRNA stem-loops in the human genome using sequence-based and structure-based machine-learning models. Sci Rep 2019; 9:7211. [PMID: 31076573 PMCID: PMC6510757 DOI: 10.1038/s41598-019-43403-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/24/2019] [Indexed: 11/09/2022] Open
Abstract
The role of 3'-end stem-loops in retrotransposition was experimentally demonstrated for transposons of various species, where LINE-SINE retrotransposons share the same 3'-end sequences, containing a stem-loop. We have discovered that 62-68% of processed pseduogenes and mRNAs also have 3'-end stem-loops. We investigated the properties of 3'-end stem-loops of human L1s, Alus, processed pseudogenes and mRNAs that do not share the same sequences, but all have 3'-end stem-loops. We have built sequence-based and structure-based machine-learning models that are able to recognize 3'-end L1, Alu, processed pseudogene and mRNA stem-loops with high performance. The sequence-based models use only sequence information and capture compositional bias in 3'-ends. The structure-based models consider physical, chemical and geometrical properties of dinucleotides composing a stem and position-specific nucleotide content of a loop and a bulge. The most important parameters include shift, tilt, rise, and hydrophilicity. The obtained results clearly point to the existence of structural constrains for 3'-end stem-loops of L1 and Alu, which are probably important for transposition, and reveal the potential of mRNAs to be recognized by the L1 machinery. The proposed approach is applicable to a broader task of recognizing RNA (DNA) secondary structures. The constructed models are freely available at github ( https://github.com/AlexShein/transposons/ ).
Collapse
Affiliation(s)
- Alexander Shein
- Laboratory of Bioinformatics, Big Data and Information Retrieval School, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
| | - Anton Zaikin
- Laboratory of Bioinformatics, Big Data and Information Retrieval School, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
| | - Maria Poptsova
- Laboratory of Bioinformatics, Big Data and Information Retrieval School, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia.
| |
Collapse
|
33
|
Aeschimann F, Neagu A, Rausch M, Großhans H. let-7 coordinates the transition to adulthood through a single primary and four secondary targets. Life Sci Alliance 2019; 2:e201900335. [PMID: 30910805 PMCID: PMC6435043 DOI: 10.26508/lsa.201900335] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022] Open
Abstract
The juvenile-to-adult (J/A) transition, or puberty, is a period of extensive changes of animal body morphology and function. The onset of puberty is genetically controlled, and the let-7 miRNA temporally regulates J/A transition events in nematodes and mammals. Here, we uncover the targets and downstream pathways through which Caenorhabditis elegans let-7 controls male and female sexual organ morphogenesis and skin progenitor cell fates. We find that let-7 directs all three processes by silencing a single target, the post-transcriptional regulator lin-41 In turn, the RNA-binding protein LIN41/TRIM71 regulates these processes by silencing only four target mRNAs. Thus, by silencing LIN41, let-7 activates LIN-29a and MAB-10 (an early growth response-type transcription factor and its NAB1/2-orthologous cofactor, respectively) to terminate progenitor cell self-renewal and to promote vulval integrity. By contrast, let-7 promotes development of the male sexual organ by up-regulating DMD-3 and MAB-3, two Doublesex/MAB-3 domain-containing transcription factors. Our results provide mechanistic insight into how a linear chain of post-transcriptional regulators diverges in the control of a small set of transcriptional regulators to achieve a coordinated J/A transition.
Collapse
Affiliation(s)
- Florian Aeschimann
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Anca Neagu
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Magdalene Rausch
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
34
|
Spike CA, Huelgas-Morales G, Tsukamoto T, Greenstein D. Multiple Mechanisms Inactivate the LIN-41 RNA-Binding Protein To Ensure a Robust Oocyte-to-Embryo Transition in Caenorhabditis elegans. Genetics 2018; 210:1011-1037. [PMID: 30206186 PMCID: PMC6218228 DOI: 10.1534/genetics.118.301421] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/10/2018] [Indexed: 12/23/2022] Open
Abstract
In the nematode Caenorhabditis elegans, the conserved LIN-41 RNA-binding protein is a translational repressor that coordinately controls oocyte growth and meiotic maturation. LIN-41 exerts these effects, at least in part, by preventing the premature activation of the cyclin-dependent kinase CDK-1 Here we investigate the mechanism by which LIN-41 is rapidly eliminated upon the onset of meiotic maturation. Elimination of LIN-41 requires the activities of CDK-1 and multiple SCF (Skp1, Cul1, and F-box protein)-type E3 ubiquitin ligase subunits, including the conserved substrate adaptor protein SEL-10/Fbw7/Cdc4, suggesting that LIN-41 is a target of ubiquitin-mediated protein degradation. Within the LIN-41 protein, two nonoverlapping regions, Deg-A and Deg-B, are individually necessary for LIN-41 degradation; both contain several potential phosphodegron sequences, and at least one of these sequences is required for LIN-41 degradation. Finally, Deg-A and Deg-B are sufficient, in combination, to mediate SEL-10-dependent degradation when transplanted into a different oocyte protein. Although LIN-41 is a potent inhibitor of protein translation and M phase entry, the failure to eliminate LIN-41 from early embryos does not result in the continued translational repression of LIN-41 oocyte messenger RNA targets. Based on these observations, we propose a model for the elimination of LIN-41 by the SEL-10 E3 ubiquitin ligase and suggest that LIN-41 is inactivated before it is degraded. Furthermore, we provide evidence that another RNA-binding protein, the GLD-1 tumor suppressor, is regulated similarly. Redundant mechanisms to extinguish translational repression by RNA-binding proteins may both control and provide robustness to irreversible developmental transitions, including meiotic maturation and the oocyte-to-embryo transition.
Collapse
Affiliation(s)
- Caroline A Spike
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Gabriela Huelgas-Morales
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Tatsuya Tsukamoto
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - David Greenstein
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|