1
|
Ngotho P, Dantzler Press K, Peedell M, Muasya W, Omondi BR, Otoboh SE, Gomez J, Coronado L, Seydel KB, Kapulu M, Laufer M, Taylor T, Bousema T, Marti M. Reversible host cell surface remodelling limits immune recognition and maximizes survival of Plasmodium falciparum gametocytes. PLoS Pathog 2025; 21:e1013110. [PMID: 40354414 PMCID: PMC12091884 DOI: 10.1371/journal.ppat.1013110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 05/20/2025] [Accepted: 04/08/2025] [Indexed: 05/14/2025] Open
Abstract
Reducing malaria transmission has been a major pillar of control programmes and is considered crucial for achieving malaria elimination. Gametocytes, the transmissible forms of the P. falciparum parasite, arise during the blood stage of the parasite and develop through 5 morphologically distinct stages. Immature gametocytes (stage I-IV) sequester and develop in the extravascular niche of the bone marrow and possibly spleen. Only mature stage V gametocytes re-enter peripheral circulation to be taken up by mosquitoes for successful onward transmission. We have recently shown that immature, but not mature gametocytes are targets of host immune responses and identified putative target surface antigens. We hypothesize that these antigens play a role in gametocyte sequestration and contribute to acquired transmission-reducing immunity. Here we demonstrate that surface antigen expression, serum reactivity by human IgG, and opsonic phagocytosis by macrophages all show similar dynamics during gametocyte maturation, i.e., peaking in the immature stages and tapering off in mature gametocytes. Moreover, the switch in surface reactivity coincides with reversal in phosphatidylserine (PS) surface exposure, a marker for red blood cell age and clearance. PS is exposed on the surface of a proportion of immature gametocyte-infected RBCs (as well as in late asexual stages) but is removed from the surface in later gametocyte stages (IV-V). Using parasite reverse genetics and drug perturbations, we confirm that parasite protein export into the host cell and phospholipid scramblase activity are required for the observed surface modifications in asexual and sexual P. falciparum stages. Based on these findings we propose that the reversible surface remodelling allows (i) immature gametocyte sequestration in bone marrow followed by (ii) mature gametocyte release into peripheral circulation (and immune evasion due to loss of surface antigens), therefore contributing to mature gametocyte survival in vivo and onward transmission to mosquitoes. Importantly, blocking scramblase activity during gametocyte maturation results in efficient clearance of mature gametocytes, revealing a potential path for transmission blocking interventions. Our studies have important implications for our understanding of parasite biology and form a starting point for novel intervention strategies to simultaneously reduce parasite burden and transmission.
Collapse
Affiliation(s)
- Priscilla Ngotho
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Kathleen Dantzler Press
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Megan Peedell
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - William Muasya
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Brian Roy Omondi
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stanley E. Otoboh
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jahiro Gomez
- Instituto de Investigaciones Científicas y Servicios de alta Tecnología de Panamá, Panamá City, Panamá
| | - Lorena Coronado
- Instituto de Investigaciones Científicas y Servicios de alta Tecnología de Panamá, Panamá City, Panamá
| | - Karl B. Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Miriam Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine Baltimore, Maryland, United States of America
| | - Terrie Taylor
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Céspedes N, Tsolis RM, Piliponsky AM, Luckhart S. The type 2 immune response in gut homeostasis and parasite transmission in malaria. Trends Parasitol 2025; 41:38-51. [PMID: 39658487 DOI: 10.1016/j.pt.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
Malaria predisposes to concomitant bacteremia, resulting in increased mortality risk. Previous studies indicated that malaria causes structural changes in the intestine, induces tolerogenic immune responses, inhibits neutrophil recruitment, suppresses innate synthesis of IFN-γ, dysregulates mast cells (MCs) and basophils, and induces Th2-type immune responses. These can reduce parasite control while increasing enteropathogenic dissemination. Moreover, there is growing evidence that Th2 immunity, while protecting the host from overwhelming inflammation, may also contribute to increased parasite transmission. This review explores the roles of the regulatory immune response in bacterial coinfections and parasite transmission in malaria.
Collapse
Affiliation(s)
- Nora Céspedes
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA.
| | - Renée M Tsolis
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, CA, USA
| | - Adrian M Piliponsky
- Department of Pediatrics and Department of Pathology, Seattle Children's Research Institute, Seattle, WA, USA
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA; Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|
3
|
Ngotho P, Press KD, Peedell M, Muasya W, Omondi BR, Otoboh SE, Seydel KB, Kapulu M, Laufer M, Taylor T, Bousema T, Marti M. Reversible host cell surface remodelling limits immune recognition and maximizes transmission of Plasmodium falciparum gametocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591837. [PMID: 38746342 PMCID: PMC11092622 DOI: 10.1101/2024.04.30.591837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Reducing malaria transmission has been a major pillar of control programmes and is considered crucial for achieving malaria elimination. Gametocytes, the transmissible forms of the P. falciparum parasite, arise during the blood stage of the parasite and develop through 5 morphologically distinct stages. Immature gametocytes (stage I-IV) sequester and develop in the extravascular niche of the bone marrow and possibly spleen. Only mature stage V gametocytes re-enter peripheral circulation to be taken up by mosquitoes for successful onward transmission. We have recently shown that immature, but not mature gametocytes are targets of host immune responses and identified putative target surface antigens. We hypothesize that these antigens play a role in gametocyte sequestration and contribute to acquired transmission-reducing immunity. Here we demonstrate that surface antigen expression, serum reactivity by human IgG, and opsonic phagocytosis by macrophages all show similar dynamics during gametocyte maturation, i.e., on in immature and off in mature gametocytes. Moreover, the switch in surface reactivity coincides with reversal in phosphatidylserine (PS) surface exposure, a marker for red blood cell age and clearance. PS is exposed on the surface of immature gametocytes (as well as in late asexual stages) but is removed from the surface in later gametocyte stages (IV-V). Using parasite reverse genetics and drug perturbations, we confirm that parasite protein export into the host cell and phospholipid scramblase activity are required for the observed surface modifications in asexual and sexual P. falciparum stages. These findings suggest that the dynamic surface remodelling allows (i) immature gametocyte sequestration in bone marrow and (ii) mature gametocyte release into peripheral circulation and immune evasion, therefore contributing to mature gametocyte survival in vivo and onward transmission to mosquitoes. Importantly, blocking scramblase activity during gametocyte maturation results in efficient clearance of mature gametocytes, revealing a potential path for transmission blocking interventions. Our studies have important implications for our understanding of parasite biology and form a starting point for novel intervention strategies to simultaneously reduce parasite burden and transmission.
Collapse
Affiliation(s)
- Priscilla Ngotho
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | - Megan Peedell
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - William Muasya
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Brian Roy Omondi
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stanley E. Otoboh
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Karl B. Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Miriam Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine Baltimore, MD, United States
| | - Terrie Taylor
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Ferraboli JW, Soares da Veiga GT, Albrecht L. Plasmodium vivax transcriptomics: What is new? Exp Biol Med (Maywood) 2023; 248:1645-1656. [PMID: 37786955 PMCID: PMC10723030 DOI: 10.1177/15353702231198070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Malaria is the leading human parasitosis and is transmitted through the bite of anopheline mosquitoes infected with parasites of the genus Plasmodium spp. Among the seven species that cause malaria in humans, Plasmodium vivax is the most prevalent species in Latin America. In recent years, there have been an increasing number of reports of clinical complications caused by P. vivax infections, which were previously neglected and underestimated. P. vivax biology remains with large gaps. The emergence of next-generation sequencing technology has ensured a breakthrough in species knowledge. Coupled with this, the deposition of the P. vivax Sal-1 reference genome allowed an increase in transcriptomics projects by accessing messenger RNA. Thus, the regulation of differential gene expression according to the parasite life stage was verified, and several expressed genes were linked to different biological functions. Today, with the progress associated with RNA sequencing technologies, it is possible to detect nuances and obtain robust results. Discoveries provided by transcriptomic studies allow us to understand topics such as RNA expression and regulation and proteins and metabolic pathways involved during different stages of the parasite life cycle. The information obtained enables a better comprehension of immune system evasion mechanisms; invasion and adhesion strategies used by the parasite; as well as new vaccine targets, potential molecular markers, and others therapeutic targets. In this review, we provide new insights into P. vivax biology by summarizing recent findings in transcriptomic studies.
Collapse
Affiliation(s)
- Julia Weber Ferraboli
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba 81310-020, Brazil
| | - Gisele Tatiane Soares da Veiga
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba 81310-020, Brazil
| | - Letusa Albrecht
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba 81310-020, Brazil
| |
Collapse
|
5
|
Quaye IK, Aleksenko L, Paganotti GM, Peloewetse E, Haiyambo DH, Ntebela D, Oeuvray C, Greco B, the PAVON Consortium. Malaria Elimination in Africa: Rethinking Strategies for Plasmodium vivax and Lessons from Botswana. Trop Med Infect Dis 2023; 8:392. [PMID: 37624330 PMCID: PMC10458071 DOI: 10.3390/tropicalmed8080392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
The global malaria community has picked up the theme of malaria elimination in more than 90% of the world's population in the next decade. Recent reports of Plasmodium vivax (P. vivax) in sub-Saharan Africa, including in Duffy-negative individuals, threaten the efforts aimed at achieving elimination. This is not only in view of strategies that are tailored only to P. falciparum elimination but also due to currently revealed biological characteristics of P. vivax concerning the relapse patterns of hypnozoites and conservation of large biomasses in cryptic sites in the bone marrow and spleen. A typical scenario was observed in Botswana between 2008 and 2018, which palpably projects how P. vivax could endanger malaria elimination efforts where the two parasites co-exist. The need for the global malaria community, national malaria programs (NMPs), funding agencies and relevant stakeholders to engage in a forum to discuss and recommend clear pathways for elimination of malaria, including P. vivax, in sub-Saharan Africa is warranted.
Collapse
Affiliation(s)
- Isaac K. Quaye
- Pan African Vivax and Ovale Network, Faculty of Engineering Computer and Allied Sciences, Regent University College of Science and Technology, #1 Regent Ave, McCarthy Hill, Mendskrom, Dansoman, Accra P.O. Box DS1636, Ghana
| | - Larysa Aleksenko
- Department of Health Sciences, School of Public Health, College of Health, Medicine and Life Sciences, Brunel University, Kingston Lane, Uxbridge, Middlesex, London UB8 3PH, UK;
| | - Giacomo M. Paganotti
- Botswana-University of Pennsylvania Partnership, Riverwalk, Gaborone P.O. Box 45498, Botswana;
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elias Peloewetse
- Department of Biological Sciences, Faculty of Sciences, University of Botswana, Gaborone Private Bag 00704, Botswana;
| | - Daniel H. Haiyambo
- Department of Human, Biological and Translational Medical Sciences, Faculty of Health Sciences and Veterinary Medicine, University of Namibia School of Medicine, Hage Geingob Campus, Windhoek Private Bag 13301, Namibia;
| | - Davies Ntebela
- National Malaria Program, Ministry of Health, Gaborone Private Bag 0038, Botswana;
| | - Claude Oeuvray
- Global Health Institute of Merck, Terre Bonne Building Z0, Route de Crassier 1, Eysin, 1266 Geneva, Switzerland; (C.O.); (B.G.)
| | - Beatrice Greco
- Global Health Institute of Merck, Terre Bonne Building Z0, Route de Crassier 1, Eysin, 1266 Geneva, Switzerland; (C.O.); (B.G.)
| | - the PAVON Consortium
- PAVON, Regent University College of Science and Technology, #1 Regent Avenue, McCarthy Hiil, Mendskrom, Dansoman, Accra P.O. Box DS1636, Ghana
| |
Collapse
|
6
|
Gehlot P, Vyas VK. Recent advances on patents of Plasmodium falciparum dihydroorotate dehydrogenase ( PfDHODH) inhibitors as antimalarial agents. Expert Opin Ther Pat 2023; 33:579-596. [PMID: 37942637 DOI: 10.1080/13543776.2023.2280596] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
INTRODUCTION Pyrimidine nucleotides are essential for the parasite's growth and replication. Parasites have only a de novo pathway for the biosynthesis of pyrimidine nucleotides. Dihydroorotate dehydrogenase (DHODH) enzyme is involved in the rate-limiting step of the pyrimidine biosynthesis pathway. DHODH is a biochemical target for the discovery of new antimalarial agents. AREA COVERED This review discussed the development of patented PfDHODH inhibitors published between 2007 and 2023 along with their chemical structures and activities. EXPERT OPINION PfDHODH enzyme is involved in the rate-limiting fourth step of the pyrimidine biosynthesis pathway. Thus, inhibition of PfDHODH using species-selective inhibitors has drawn much attention for treating malaria because they inhibit parasite growth without affecting normal human functions. Looking at the current scenario of antimalarial drug resistance with most of the available antimalarial drugs, there is a huge need for targeted newer agents. Newer agents with unique mechanisms of action may be devoid of drug toxicity, adverse effects, and the ability of parasites to quickly gain resistance, and PfDHODH inhibitors can be those newer agents. Many PfDHODH inhibitors were patented in the past, and the dependency of Plasmodium on de novo pyrimidine provided a new approach for the development of novel antimalarial agents.
Collapse
Affiliation(s)
- Pinky Gehlot
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
7
|
Leong YW, Russell B, Malleret B, Rénia L. Erythrocyte tropism of malarial parasites: The reticulocyte appeal. Front Microbiol 2022; 13:1022828. [PMID: 36386653 PMCID: PMC9643692 DOI: 10.3389/fmicb.2022.1022828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/07/2022] [Indexed: 10/28/2023] Open
Abstract
Erythrocytes are formed from the enucleation of erythroblasts in the bone marrow, and as erythrocytes develop from immature reticulocytes into mature normocytes, they undergo extensive cellular changes through their passage in the blood. During the blood stage of the malarial parasite life cycle, the parasite sense and invade susceptible erythrocytes. However, different parasite species display varying erythrocyte tropisms (i.e., preference for either reticulocytes or normocytes). In this review, we explore the erythrocyte tropism of malarial parasites, especially their predilection to invade reticulocytes, as shown from recent studies. We also discuss possible mechanisms mediating erythrocyte tropism and the implications of specific tropisms to disease pathophysiology. Understanding these allows better insight into the role of reticulocytes in malaria and provides opportunities for targeted interventions.
Collapse
Affiliation(s)
- Yew Wai Leong
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Benoit Malleret
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Laurent Rénia
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
8
|
Dumarchey A, Lavazec C, Verdier F. Erythropoiesis and Malaria, a Multifaceted Interplay. Int J Mol Sci 2022; 23:ijms232112762. [PMID: 36361552 PMCID: PMC9657351 DOI: 10.3390/ijms232112762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
One of the major pathophysiologies of malaria is the development of anemia. Although hemolysis and splenic clearance are well described as causes of malarial anemia, abnormal erythropoiesis has been observed in malaria patients and may contribute significantly to anemia. The interaction between inadequate erythropoiesis and Plasmodium parasite infection, which partly occurs in the bone marrow, has been poorly investigated to date. However, recent findings may provide new insights. This review outlines clinical and experimental studies describing different aspects of ineffective erythropoiesis and dyserythropoiesis observed in malaria patients and in animal or in vitro models. We also highlight the various human and parasite factors leading to erythropoiesis disorders and discuss the impact that Plasmodium parasites may have on the suppression of erythropoiesis.
Collapse
Affiliation(s)
- Aurélie Dumarchey
- Inserm U1016, CNRS UMR8104, Université Paris Cité, Institut Cochin, 75014 Paris, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
| | - Catherine Lavazec
- Inserm U1016, CNRS UMR8104, Université Paris Cité, Institut Cochin, 75014 Paris, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
| | - Frédérique Verdier
- Inserm U1016, CNRS UMR8104, Université Paris Cité, Institut Cochin, 75014 Paris, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
- Correspondence:
| |
Collapse
|
9
|
Portugaliza HP, Natama HM, Guetens P, Rovira-Vallbona E, Somé AM, Millogo A, Ouédraogo DF, Valéa I, Sorgho H, Tinto H, van Hong N, Sitoe A, Varo R, Bassat Q, Cortés A, Rosanas-Urgell A. Plasmodium falciparum sexual conversion rates can be affected by artemisinin-based treatment in naturally infected malaria patients. EBioMedicine 2022; 83:104198. [PMID: 35961203 PMCID: PMC9385555 DOI: 10.1016/j.ebiom.2022.104198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 10/25/2022] Open
|
10
|
Donnelly EL, Céspedes N, Hansten G, Wagers D, Briggs AM, Lowder C, Schauer J, Garrison SM, Haapanen L, Van de Water J, Luckhart S. Basophil Depletion Alters Host Immunity, Intestinal Permeability, and Mammalian Host-to-Mosquito Transmission in Malaria. Immunohorizons 2022; 6:581-599. [PMID: 35970557 PMCID: PMC9977168 DOI: 10.4049/immunohorizons.2200055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 02/03/2023] Open
Abstract
Malaria-induced bacteremia has been shown to result from intestinal mast cell (MC) activation. The appearance of MCs in the ileum and increased intestinal permeability to enteric bacteria are preceded by an early Th2-biased host immune response to infection, characterized by the appearance of IL-4, IL-10, mast cell protease (Mcpt)1 and Mcpt4, and increased circulating basophils and eosinophils. Given the functional similarities of basophils and MCs in the context of allergic inflammation and the capacity of basophils to produce large amounts of IL-4, we sought to define the role of basophils in increased intestinal permeability, in MC influx, and in the development of bacteremia in the context of malaria. Upon infection with nonlethal Plasmodium yoelii yoelii 17XNL, Basoph8 × ROSA-DTα mice or baso (-) mice that lack basophils exhibited increased intestinal permeability and increased ileal MC numbers, without any increase in bacterial 16S ribosomal DNA copy numbers in the blood, relative to baso (+) mice. Analysis of cytokines, chemokines, and MC-associated factors in the ileum revealed significantly increased TNF-α and IL-13 at day 6 postinfection in baso (-) mice compared with baso (+) mice. Moreover, network analysis of significantly correlated host immune factors revealed profound differences between baso (-) and baso (+) mice following infection in both systemic and ileal responses to parasites and translocated bacteria. Finally, basophil depletion was associated with significantly increased gametocytemia and parasite transmission to Anopheles mosquitoes, suggesting that basophils play a previously undescribed role in controlling gametocytemia and, in turn, mammalian host-to-mosquito parasite transmission.
Collapse
Affiliation(s)
- Erinn L Donnelly
- Department of Biological Sciences, University of Idaho, Moscow, ID
| | - Nora Céspedes
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID; and
| | - Gretchen Hansten
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID; and
| | - Delaney Wagers
- Department of Biological Sciences, University of Idaho, Moscow, ID
| | - Anna M Briggs
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID; and
| | - Casey Lowder
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID; and
| | - Joseph Schauer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA
| | - Sarah M Garrison
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID; and
| | - Lori Haapanen
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA
| | - Judy Van de Water
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA
| | - Shirley Luckhart
- Department of Biological Sciences, University of Idaho, Moscow, ID; .,Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID; and
| |
Collapse
|
11
|
Aparici Herraiz I, Caires HR, Castillo-Fernández Ó, Sima N, Méndez-Mora L, Risueño RM, Sattabongkot J, Roobsoong W, Hernández-Machado A, Fernandez-Becerra C, Barrias CC, del Portillo HA. Advancing Key Gaps in the Knowledge of Plasmodium vivax Cryptic Infections Using Humanized Mouse Models and Organs-on-Chips. Front Cell Infect Microbiol 2022; 12:920204. [PMID: 35873153 PMCID: PMC9302440 DOI: 10.3389/fcimb.2022.920204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium vivax is the most widely distributed human malaria parasite representing 36.3% of disease burden in the South-East Asia region and the most predominant species in the region of the Americas. Recent estimates indicate that 3.3 billion of people are under risk of infection with circa 7 million clinical cases reported each year. This burden is certainly underestimated as the vast majority of chronic infections are asymptomatic. For centuries, it has been widely accepted that the only source of cryptic parasites is the liver dormant stages known as hypnozoites. However, recent evidence indicates that niches outside the liver, in particular in the spleen and the bone marrow, can represent a major source of cryptic chronic erythrocytic infections. The origin of such chronic infections is highly controversial as many key knowledge gaps remain unanswered. Yet, as parasites in these niches seem to be sheltered from immune response and antimalarial drugs, research on this area should be reinforced if elimination of malaria is to be achieved. Due to ethical and technical considerations, working with the liver, bone marrow and spleen from natural infections is very difficult. Recent advances in the development of humanized mouse models and organs-on-a-chip models, offer novel technological frontiers to study human diseases, vaccine validation and drug discovery. Here, we review current data of these frontier technologies in malaria, highlighting major challenges ahead to study P. vivax cryptic niches, which perpetuate transmission and burden.
Collapse
Affiliation(s)
- Iris Aparici Herraiz
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Hugo R. Caires
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Óscar Castillo-Fernández
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Núria Sima
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Lourdes Méndez-Mora
- Department of Condensed Matter Physics, University of Barcelona (UB), Barcelona, Spain
| | - Ruth M. Risueño
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Aurora Hernández-Machado
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
- Department of Condensed Matter Physics, University of Barcelona (UB), Barcelona, Spain
- Centre de Recerca Matemàtica (CRM), Barcelona, Spain
| | - Carmen Fernandez-Becerra
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Cristina C. Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Hernando A. del Portillo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- *Correspondence: Hernando A. del Portillo,
| |
Collapse
|
12
|
Dash M, Sachdeva S, Bansal A, Sinha A. Gametogenesis in Plasmodium: Delving Deeper to Connect the Dots. Front Cell Infect Microbiol 2022; 12:877907. [PMID: 35782151 PMCID: PMC9241518 DOI: 10.3389/fcimb.2022.877907] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
In the coming decades, eliminating malaria is the foremost goal of many tropical countries. Transmission control, along with an accurate and timely diagnosis of malaria, effective treatment and prevention are the different aspects that need to be met synchronously to accomplish the goal. The current review is focused on one of these aspects i.e., transmission control, by looking deeper into the event called gametogenesis. In the Plasmodium life cycle, gametocytes are the first life forms of the sexual phase. The transmission of the parasite and the disease is critically dependent on the number, viability and sex ratio of mature gametocytes and their further development inside mosquito vectors. Gametogenesis, the process of conversion of gametocytes into viable gametes, takes place inside the mosquito midgut, and is a tightly regulated event with fast and multiple rounds of DNA replication and diverse cellular changes going on within a short period. Interrupting the gametocyte-gamete transition is ought to restrict the successful transmission and progression of the disease and hence an area worth exploring for designing transmission-blocking strategies. This review summarizes an in-depth and up-to-date understanding of the biochemical and physiological mechanism of gametogenesis in Plasmodium, which could be targeted to control parasite and malaria transmission. This review also raises certain key questions regarding gametogenesis biology in Plasmodium and brings out gaps that still accompany in understanding the spectacular process of gametogenesis.
Collapse
Affiliation(s)
- Manoswini Dash
- Parasite Host Biology, Indian Council of Medical Research (ICMR)-National Institute of Malaria Research, New Delhi, India
- Central Molecular Laboratory, Govind Ballabh (GB) Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| | - Sherry Sachdeva
- Parasite Host Biology, Indian Council of Medical Research (ICMR)-National Institute of Malaria Research, New Delhi, India
| | - Abhisheka Bansal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhinav Sinha
- Parasite Host Biology, Indian Council of Medical Research (ICMR)-National Institute of Malaria Research, New Delhi, India
- *Correspondence: Abhinav Sinha,
| |
Collapse
|
13
|
Feldman TP, Egan ES. Uncovering a Cryptic Site of Malaria Pathogenesis: Models to Study Interactions Between Plasmodium and the Bone Marrow. Front Cell Infect Microbiol 2022; 12:917267. [PMID: 35719356 PMCID: PMC9201243 DOI: 10.3389/fcimb.2022.917267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 12/21/2022] Open
Abstract
The bone marrow is a critical site of host-pathogen interactions in malaria infection. The discovery of Plasmodium asexual and transmission stages in the bone marrow has renewed interest in the tissue as a niche for cellular development of both host and parasite. Despite its importance, bone marrow in malaria infection remains largely unexplored due to the challenge of modeling the complex hematopoietic environment in vitro. Advancements in modeling human erythropoiesis ex-vivo from primary human hematopoietic stem and progenitor cells provide a foothold to study the host-parasite interactions occurring in this understudied site of malaria pathogenesis. This review focuses on current in vitro methods to recapitulate and assess bone marrow erythropoiesis and their potential applications in the malaria field. We summarize recent studies that leveraged ex-vivo erythropoiesis to shed light on gametocyte development in nucleated erythroid stem cells and begin to characterize host cell responses to Plasmodium infection in the hematopoietic niche. Such models hold potential to elucidate mechanisms of disordered erythropoiesis, an underlying contributor to malaria anemia, as well as understand the biological determinants of parasite sexual conversion. This review compares the advantages and limitations of the ex-vivo erythropoiesis approach with those of in vivo human and animal studies of the hematopoietic niche in malaria infection. We highlight the need for studies that apply single cell analyses to this complex system and incorporate physical and cellular components of the bone marrow that may influence erythropoiesis and parasite development.
Collapse
Affiliation(s)
- Tamar P. Feldman
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Elizabeth S. Egan
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Elizabeth S. Egan,
| |
Collapse
|
14
|
Hentzschel F, Gibbins MP, Attipa C, Beraldi D, Moxon CA, Otto TD, Marti M. Host cell maturation modulates parasite invasion and sexual differentiation in Plasmodium berghei. SCIENCE ADVANCES 2022; 8:eabm7348. [PMID: 35476438 PMCID: PMC9045723 DOI: 10.1126/sciadv.abm7348] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/11/2022] [Indexed: 05/04/2023]
Abstract
Malaria remains a global health problem causing more than 400,000 deaths annually. Plasmodium parasites, the causative agents of malaria, replicate asexually in red blood cells (RBCs) of their vertebrate host, while a subset differentiates into sexual stages (gametocytes) for mosquito transmission. Parasite replication and gametocyte maturation in the erythropoietic niches of the bone marrow and spleen contribute to pathogenesis and drive transmission, but the mechanisms underlying this organ enrichment remain unknown. Here, we performed a comprehensive analysis of rodent P. berghei infection by flow cytometry and single-cell RNA sequencing. We identified CD71 as a host receptor for reticulocyte invasion and found that parasites metabolically adapt to the host cell environment. Transcriptional analysis and functional assays further revealed a nutrient-dependent tropism for gametocyte formation in reticulocytes. Together, we provide a thorough characterization of host-parasite interactions in erythropoietic niches and define host cell maturation state as the key driver of parasite adaptation.
Collapse
Affiliation(s)
- Franziska Hentzschel
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Matthew P. Gibbins
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Charalampos Attipa
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Pathology, Kamuzu University of Health Sciences, Blantyre, Malawi
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Dario Beraldi
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Christopher A. Moxon
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Paediatrics and Child Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Thomas D. Otto
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
15
|
Simwela NV, Waters AP. Current status of experimental models for the study of malaria. Parasitology 2022; 149:1-22. [PMID: 35357277 PMCID: PMC9378029 DOI: 10.1017/s0031182021002134] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 01/09/2023]
Abstract
Infection by malaria parasites (Plasmodium spp.) remains one of the leading causes of morbidity and mortality, especially in tropical regions of the world. Despite the availability of malaria control tools such as integrated vector management and effective therapeutics, these measures have been continuously undermined by the emergence of vector resistance to insecticides or parasite resistance to frontline antimalarial drugs. Whilst the recent pilot implementation of the RTS,S malaria vaccine is indeed a remarkable feat, highly effective vaccines against malaria remain elusive. The barriers to effective vaccines result from the complexity of both the malaria parasite lifecycle and the parasite as an organism itself with consequent major gaps in our understanding of their biology. Historically and due to the practical and ethical difficulties of working with human malaria infections, research into malaria parasite biology has been extensively facilitated by animal models. Animals have been used to study disease pathogenesis, host immune responses and their (dys)regulation and further disease processes such as transmission. Moreover, animal models remain at the forefront of pre-clinical evaluations of antimalarial drugs (drug efficacy, mode of action, mode of resistance) and vaccines. In this review, we discuss commonly used animal models of malaria, the parasite species used and their advantages and limitations which hinder their extrapolation to actual human disease. We also place into this context the most recent developments such as organoid technologies and humanized mice.
Collapse
Affiliation(s)
- Nelson V. Simwela
- Institute of Infection, Immunity & Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Andrew P. Waters
- Institute of Infection, Immunity & Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| |
Collapse
|
16
|
Mukherjee S, Ray G, Saha B, Kar SK. Oral Therapy Using a Combination of Nanotized Antimalarials and Immunomodulatory Molecules Reduces Inflammation and Prevents Parasite Induced Pathology in the Brain and Spleen of P. berghei ANKA Infected C57BL/6 Mice. Front Immunol 2022; 12:819469. [PMID: 35095923 PMCID: PMC8793777 DOI: 10.3389/fimmu.2021.819469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
In malaria, anti-parasite immune response of the host may lead to dysregulated inflammation causing severe neuropathology arising from extensive damage to the Blood Brain Barrier (BBB). Use of anti-malarial drugs alone can control parasitemia and reduce inflammation but it cannot reduce pathology if chronic inflammation has already set in. In the present study, we have tested the efficacy of a new oral artemsinin based combination therapy (ACT) regimen using a combination of anti-malarial compounds like nanoartemisinin and nanoallylated-chalcone9 [{1-(4-Chlorophenyl)-3-[3-methoxy-4-(prop-2-en-1-yloxy) phenyl]-prop-2-en-1-one}]given together with anti-inflammatory-cum- anti-malarial compounds like nanoandrographolide and nanocurcumin to C57BL/6 mice infected with P. berghei ANKA. Untreated infected mice developed Experimental Cerebral Malaria (ECM) and died between 10 to 12 days after infection from severe BBB damage. We observed that oral treatments with nanoartemisinin or nano allylated chalcone 9 or nanoandrographolide alone, for 4 days after the onset of ECM, delayed the development of severe neurolopathology but could not prevent it. Nanocurcumin treatment for 4 days on the other hand, prevented damage to the BBB but the mice died because of hyperparasitemia. A single time oral administration of our ACT controlled blood parasitemia and prevented damage to the BBB, but recrudescence occurred due to persistence of parasites in the spleen. However the recrudescent parasites failed to induce ECM and BBB damage, leading to prolonged survival of the animals. A second time treatment at the start of recrudescence led to complete parasite clearance and survival of mice without pathology or parasitemia for 90 days. FACS analysis of spleen cells and gene expression profile in brain and spleen as well as quantitation of serum cytokine by ELISA showed that P. berghei ANKA infection in C57Bl/6 mice leads to a Th1-skewed immune response that result in severe inflammation and early death from ECM. Oral treatment with our ACT prevented a heightened pro-inflammatory response by modulating the Th1, Th2 and Treg immune responses and prevented ECM and death.
Collapse
Affiliation(s)
- Sitabja Mukherjee
- School of Biotechnology, KIIT deemed to be University, Bhubaneswar, India
| | - Gopesh Ray
- Nano Herb Research Laboratory, Kalinga Institute of Industrial Technology (KIIT) Technology Business Incubator, KIIT deemed to be University, Bhubaneswar, India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Santosh K. Kar
- Nano Herb Research Laboratory, Kalinga Institute of Industrial Technology (KIIT) Technology Business Incubator, KIIT deemed to be University, Bhubaneswar, India,*Correspondence: Santosh K. Kar,
| |
Collapse
|
17
|
Sacomboio ENM, S Sebastião C, Antonio JLF, Vezo ÁK, Bapolo DVS, Morais J. Factors Associated With Resistance to In-Hospital Treatment of Malaria in Angolan Patients. INFECTIOUS DISEASES: RESEARCH AND TREATMENT 2022; 15:11786337221076836. [PMID: 35281668 PMCID: PMC8905199 DOI: 10.1177/11786337221076836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/11/2022] [Indexed: 11/15/2022]
Abstract
Background: Malaria is a public health problem, particularly in low- and middle-income countries. In Angola, it is the leading cause of death, morbidity, and absenteeism from work and school. Objective: To evaluate the social and clinical factors associated with resistance to in-hospital treatment. Methodology: A prospective analytical cross-sectional study with a quantitative approach was conducted including 220 patients with malaria. Results: Of the 220 patients enrolled, the majority were between 21 and 40 years old (72.7%), male (53.6%), of peri-urban areas (47.7%), employees (46.4%), and with high parasitemia levels (57.7%). Of the remaining hospitalized patients (61.4%), 20.9% were resistant to treatment. The resistance risk was higher in patients over 40 years [OR: 5.91 (95% CI: 0.76-45.7), P = .088], from rural regions [OR: 2.48 (95% CI: 0.95-6.48), P = .064], that were unemployed [OR: 1.06 (95% CI: 0.52-2.15), P = .859], presenting high parasitemia [OR: 1.95 (95% CI: 1.02-3.75), P = .043] and who remained hospitalized [OR: 5.28 (95% CI: 0.63-43.1), P = .121]. The risk to develop resistance was lower in patients that were students [OR: 0.04 (95% CI: 0.01-0.37), P = .004], patients who were treated with dipyrone [OR: 0.06 (95% CI: 0.01-0.24), P < .001], metoclopramide [OR: 0.25 (95% CI: 0.09-0.67), P = .006] and ciprofloxacin [OR: 0.22 (95% CI: 0.11-0.44), P < .001]. Conclusion: Treatment with antimalarial drugs as well as the use of adjuvants such as dipyrone, metoclopramide, ciprofloxacin, and diazepam can reduce the chances of developing resistance to malaria treatment, however, it is necessary to carry out further in-depth studies.
Collapse
Affiliation(s)
- Euclides Nenga Manuel Sacomboio
- Instituto Nacional de Investigação em Saúde, Luanda, Angola
- Instituto Superior de Ciências de Saúde, Universidade Agostinho Neto, Luanda, Angola
- Centro de Formação em Saúde/Clínica Multiperfil, Luanda, Angola
- Euclides Nenga Manuel Sacomboio, Instituto Superior de Ciências de Saúde da Universidade Agostinho Neto, Luanda-Angola, 21 de Janeiro Street, Morro Bento, Luanda, Angola.
| | - Cruz S Sebastião
- Instituto Nacional de Investigação em Saúde, Luanda, Angola
- Instituto Superior de Ciências de Saúde, Universidade Agostinho Neto, Luanda, Angola
- Centro de Investigação em Saúde de Angola, Caxito, Angola
| | | | - Álvaro Kuanzambi Vezo
- Instituto Superior de Ciências de Saúde, Universidade Agostinho Neto, Luanda, Angola
| | | | - Joana Morais
- Instituto Nacional de Investigação em Saúde, Luanda, Angola
- Faculdade de Medicina, Universidade Agostinho Neto, Luanda, Angola
| |
Collapse
|
18
|
Cruz JN, Cascaes MM, Silva AG, Vale V, de Oliveira MS, de Aguiar Andrade EH. Essential Oil Antimalarial Activity. ESSENTIAL OILS 2022:351-367. [DOI: 10.1007/978-3-030-99476-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Fernandez-Becerra C, Aparici-Herraiz I, Del Portillo HA. Cryptic erythrocytic infections in Plasmodium vivax, another challenge to its elimination. Parasitol Int 2021; 87:102527. [PMID: 34896615 DOI: 10.1016/j.parint.2021.102527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/04/2021] [Accepted: 12/04/2021] [Indexed: 12/26/2022]
Abstract
Human malaria caused by Plasmodium vivax infection (vivax malaria) is a major global health issue. It is the most geographically widespread form of the disease, accounting for 7 million annual clinical cases, the majority of cases in America and Asia and an estimation of over 2.5 billion people living under risk of infection. The general perception towards vivax malaria has shifted recently, following a series of reports, from being viewed as a benign infection to the recognition of its potential for more severe manifestations including fatal cases. However, the underlying pathogenic mechanisms of vivax malaria remain largely unresolved. Asymptomatic carriers of malaria parasites are a major challenge for malaria elimination. In the case of P. vivax, it has been widely accepted that the only source of cryptic parasites is hypnozoite dormant stages. Here, we will review new evidence indicating that cryptic erythrocytic niches outside the liver, in particular in the spleen and bone marrow, can represent a major source of asymptomatic infections. The origin of such parasites is being controversial and many key gaps in the knowledge of such infections remain unanswered. Yet, as parasites in these niches seem to be sheltered from immune response and antimalarial drugs, research on this area should be reinforced if elimination of malaria is to be achieved. Last, we will glimpse into the role of reticulocyte-derived exosomes, extracellular vesicles of endocytic origin, as intercellular communicators likely involved in the formation of such cryptic erythrocytic infections.
Collapse
Affiliation(s)
- Carmen Fernandez-Becerra
- ISGlobal, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain.
| | | | - Hernando A Del Portillo
- ISGlobal, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
20
|
Raman spectroscopic analysis of skin as a diagnostic tool for Human African Trypanosomiasis. PLoS Pathog 2021; 17:e1010060. [PMID: 34780575 PMCID: PMC8629383 DOI: 10.1371/journal.ppat.1010060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 11/29/2021] [Accepted: 10/23/2021] [Indexed: 02/08/2023] Open
Abstract
Human African Trypanosomiasis (HAT) has been responsible for several deadly epidemics throughout the 20th century, but a renewed commitment to disease control has significantly reduced new cases and motivated a target for the elimination of Trypanosoma brucei gambiense-HAT by 2030. However, the recent identification of latent human infections, and the detection of trypanosomes in extravascular tissues hidden from current diagnostic tools, such as the skin, has added new complexity to identifying infected individuals. New and improved diagnostic tests to detect Trypanosoma brucei infection by interrogating the skin are therefore needed. Recent advances have improved the cost, sensitivity and portability of Raman spectroscopy technology for non-invasive medical diagnostics, making it an attractive tool for gambiense-HAT detection. The aim of this work was to assess and develop a new non-invasive diagnostic method for T. brucei through Raman spectroscopy of the skin. Infections were performed in an established murine disease model using the animal-infective Trypanosoma brucei brucei subspecies. The skin of infected and matched control mice was scrutinized ex vivo using a confocal Raman microscope with 532 nm excitation and in situ at 785 nm excitation with a portable field-compatible instrument. Spectral evaluation and Principal Component Analysis confirmed discrimination of T. brucei-infected from uninfected tissue, and a characterisation of biochemical changes in lipids and proteins in parasite-infected skin indicated by prominent Raman peak intensities was performed. This study is the first to demonstrate the application of Raman spectroscopy for the detection of T. brucei by targeting the skin of the host. The technique has significant potential to discriminate between infected and non-infected tissue and could represent a unique, non-invasive diagnostic tool in the goal for elimination of gambiense-HAT as well as for Animal African Trypanosomiasis (AAT). Human African Trypanosomiasis (HAT), also known as sleeping sickness, is a disease caused by the parasite Trypanosoma brucei and has been responsible for the death of millions of people across Africa in the 20th century. It is also a major economic burden for countries endemic for trypanosomiasis, affecting livestock productivity in rural areas (Animal African Trypanosomiasis). A long-term international collaboration with the help of the World Health Organisation has resulted in the rate of human infection decreasing to less than 1000 new cases per year. However, the human disease continues to spread within remote villages. Current diagnosis is based on the detection of parasites in blood and serum samples, but this is challenging during chronic human infections with low or non-detectable parasitaemia. However, the recent discovery of extravascular skin-dwelling trypanosomes indicates that a reservoir of infection remains undetected, threatening the effort to eliminate the disease. In this study we have targeted the skin as a site for diagnosis using Raman spectroscopy and demonstrate that this method showed great promise in the laboratory, laying the foundation for field studies to examine its potential to strengthen current diagnostic strategies for detecting HAT cases.
Collapse
|
21
|
Abstract
J. Kevin Baird and colleagues, examine and discuss the estimated global burden of vivax malaria and it's biological, clinical, and public health complexity.
Collapse
Affiliation(s)
- Katherine E. Battle
- Institute for Disease Modeling, Seattle, Washington, United States of America
| | - J. Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Eijkman Institute of Molecular Biology, Jakarta, Indonesia
- Nuffield Department of Medicine, Centre for Tropical Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Behrens HM, Schmidt S, Spielmann T. The newly discovered role of endocytosis in artemisinin resistance. Med Res Rev 2021; 41:2998-3022. [PMID: 34309894 DOI: 10.1002/med.21848] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/15/2021] [Accepted: 07/03/2021] [Indexed: 12/28/2022]
Abstract
Artemisinin and its derivatives (ART) are the cornerstone of malaria treatment as part of artemisinin combination therapy (ACT). However, reduced susceptibility to artemisinin as well as its partner drugs threatens the usefulness of ACTs. Single point mutations in the parasite protein Kelch13 (K13) are necessary and sufficient for the reduced sensitivity of malaria parasites to ART but several alternative mechanisms for this resistance have been proposed. Recent work found that K13 is involved in the endocytosis of host cell cytosol and indicated that this is the process responsible for resistance in parasites with mutated K13. These studies also identified a series of further proteins that act together with K13 in the same pathway, including previously suspected resistance proteins such as UBP1 and AP-2μ. Here, we give a brief overview of artemisinin resistance, present the recent evidence of the role of endocytosis in ART resistance and discuss previous hypotheses in light of this new evidence. We also give an outlook on how the new insights might affect future research.
Collapse
Affiliation(s)
- Hannah Michaela Behrens
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sabine Schmidt
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Tobias Spielmann
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
23
|
Leong YW, Lee EQH, Rénia L, Malleret B. Rodent Malaria Erythrocyte Preference Assessment by an Ex Vivo Tropism Assay. Front Cell Infect Microbiol 2021; 11:680136. [PMID: 34322397 PMCID: PMC8311856 DOI: 10.3389/fcimb.2021.680136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Circulating red blood cells consist of young erythrocytes (early and late reticulocytes) and mature erythrocytes (normocytes). The human malaria parasites, Plasmodium falciparum and P. vivax, have a preference to invade reticulocytes during blood-stage infection. Rodent malaria parasites that also prefer reticulocytes could be useful tools to study human malaria reticulocyte invasion. However, previous tropism studies of rodent malaria are inconsistent from one another, making it difficult to compare cell preference of different parasite species and strains. In vivo measurements of cell tropism are also subjected to many confounding factors. Here we developed an ex vivo tropism assay for rodent malaria with highly purified fractions of murine reticulocytes and normocytes. We measured invasion into the different erythrocyte populations using flow cytometry and evaluated the tropism index of the parasite strains. We found that P. berghei ANKA displayed the strongest reticulocyte preference, followed by P. yoelii 17X1.1, whereas P. chabaudi AS and P. vinckei S67 showed mixed tropism. These preferences are intrinsic and were maintained at different reticulocyte and normocyte availabilities. Our study shed light on the true erythrocyte preference of the parasites and paves the way for future investigations on the receptor-ligand interactions mediating erythrocyte tropism.
Collapse
Affiliation(s)
- Yew Wai Leong
- Agency for Science, Technology and Research Infectious Diseases Laboratories (A*STAR ID Labs), Immunos, Biopolis, Singapore, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Immunos, Biopolis, Singapore, Singapore
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, Immunology Program, Life Sciences Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Erica Qian Hui Lee
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, Immunology Program, Life Sciences Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Laurent Rénia
- Agency for Science, Technology and Research Infectious Diseases Laboratories (A*STAR ID Labs), Immunos, Biopolis, Singapore, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Immunos, Biopolis, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Benoit Malleret
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Immunos, Biopolis, Singapore, Singapore
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, Immunology Program, Life Sciences Institute, National University of Singapore (NUS), Singapore, Singapore
| |
Collapse
|
24
|
Plasmodium falciparum goes bananas for sex. Mol Biochem Parasitol 2021; 244:111385. [PMID: 34062177 DOI: 10.1016/j.molbiopara.2021.111385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022]
Abstract
The sexual blood stages of the human malaria parasite Plasmodium falciparum undergo a remarkable transformation from a roughly spherical shape to an elongated crescent or "falciform" morphology from which the species gets its name. In this review, the molecular events that drive this spectacular shape change are discussed and some questions that remain regarding the mechanistic underpinnings are posed. We speculate on the role of the shape changes in promoting sequestration and release of the developing gametocyte, thereby facilitating parasite survival in the host and underpinning transmission to the mosquito vector.
Collapse
|
25
|
Simwela NV, Hughes KR, Rennie MT, Barrett MP, Waters AP. Mammalian Deubiquitinating Enzyme Inhibitors Display in Vitro and in Vivo Activity against Malaria Parasites and Potentiate Artemisinin Action. ACS Infect Dis 2021; 7:333-346. [PMID: 33400499 DOI: 10.1021/acsinfecdis.0c00580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ubiquitin proteasome system (UPS) is an emerging drug target in malaria due to its essential role in the parasite's life cycle stages as well its contribution to resistance to artemisinins. Polymorphisms in the Kelch13 gene of Plasmodium falciparum are primary markers of artemisinin resistance and among other things are phenotypically characterized by an overactive UPS. Inhibitors targeting the proteasome, critical components of the UPS, display activity in malaria parasites and synergize artemisinin action. Here we report the activity of small molecule inhibitors targeting mammalian deubiquitinating enzymes, DUBs (upstream UPS components), in malaria parasites. We show that generic DUB inhibitors can block intraerythrocytic development of malaria parasites in vitro and possess antiparasitic activity in vivo and can be used in combination with additive to synergistic effect. We also show that inhibition of these upstream components of the UPS can potentiate the activity of artemisinin in vitro as well as in vivo to the extent that artemisinin resistance can be overcome. Combinations of DUB inhibitors anticipated to target different DUB activities and downstream proteasome inhibitors are even more effective at improving the potency of artemisinins than either inhibitors alone, providing proof that targeting multiple UPS activities simultaneously could be an attractive approach to overcoming artemisinin resistance. These data further validate the parasite UPS as a target to both enhance artemisinin action and potentially overcome resistance. Lastly, we confirm that DUB inhibitors can be developed into in vivo antimalarial drugs with promise for activity against all of human malaria and could thus further exploit their current pursuit as anticancer agents in rapid drug repurposing programs.
Collapse
Affiliation(s)
- Nelson V. Simwela
- Institute of Infection, Immunity & Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland G12 8TA, United Kingdom
| | - Katie R. Hughes
- Institute of Infection, Immunity & Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland G12 8TA, United Kingdom
| | - Michael T. Rennie
- Institute of Infection, Immunity & Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland G12 8TA, United Kingdom
| | - Michael P. Barrett
- Institute of Infection, Immunity & Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland G12 8TA, United Kingdom
| | - Andrew P. Waters
- Institute of Infection, Immunity & Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland G12 8TA, United Kingdom
| |
Collapse
|
26
|
Adigo Shibeshi M, Fentahun Enyew E, Mequanint Adinew G, Jemere Aragaw T. Antimalarial Activity of Methanolic Extracts and Solvent Fractions of Combretum molle Leaves in Plasmodium berghei Infected Mice. J Exp Pharmacol 2021; 13:69-89. [PMID: 33574717 PMCID: PMC7872902 DOI: 10.2147/jep.s285117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/09/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Malaria is an infectious disease-causing mortality and morbidity in children and adults. Our study planned to measure the antimalarial activity of Combretum molle extract in vivo assays against Plasmodium berghei in Swiss albino mice. METHODS Plasmodium berghei was inoculated to healthy mice and methanolic crude extract and solvent fractions of C. molle at 100, 200, and 400mg/kg/day were administered. Percent parasitemia inhibition, percent change in weight, temperature, packed cell volume, and mean survival time were determined. Data were analyzed using one-way ANOVA followed by the post hoc Tukey HSD test with SPSS software version 24.0 and P < 0.05 considered as statistically significant. RESULTS Chemosuppresive effect exerted by the methanolic crude extract ranged between 27 and 68%, chloroform fraction 52.93-67.73%, hexane fraction 23.61-44.97%, and aqueous fraction 29.48-51.13%. The curative effect of the crude extract was within the range of 25-49%, chloroform fraction 42.78-69.22%, and prophylactic effect of the crude extract was within the range of 51-76.2%% and chloroform fraction 46.57-71.96%. The utmost effect in all tests on chemosuppresive, curative, prophylactic, prevention of weight loss, temperature and packed cell volume, and an increase in mean survival time was observed at higher doses of the crude extract. CONCLUSION From this study, it will be concluded that crude extract of C. molle leaves has been shown promising antimalarial activity. The findings of this study may support the normal use of leaf as a part of the plant for malaria treatment.
Collapse
Affiliation(s)
| | - Engdaw Fentahun Enyew
- Department of Human Anatomy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Getnet Mequanint Adinew
- Department of Pharmacology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tezera Jemere Aragaw
- Department of Pharmacology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
27
|
Ferreira JL, Heincke D, Wichers JS, Liffner B, Wilson DW, Gilberger TW. The Dynamic Roles of the Inner Membrane Complex in the Multiple Stages of the Malaria Parasite. Front Cell Infect Microbiol 2021; 10:611801. [PMID: 33489940 PMCID: PMC7820811 DOI: 10.3389/fcimb.2020.611801] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/30/2020] [Indexed: 01/31/2023] Open
Abstract
Apicomplexan parasites, such as human malaria parasites, have complex lifecycles encompassing multiple and diverse environmental niches. Invading, replicating, and escaping from different cell types, along with exploiting each intracellular niche, necessitate large and dynamic changes in parasite morphology and cellular architecture. The inner membrane complex (IMC) is a unique structural element that is intricately involved with these distinct morphological changes. The IMC is a double membrane organelle that forms de novo and is located beneath the plasma membrane of these single-celled organisms. In Plasmodium spp. parasites it has three major purposes: it confers stability and shape to the cell, functions as an important scaffolding compartment during the formation of daughter cells, and plays a major role in motility and invasion. Recent years have revealed greater insights into the architecture, protein composition and function of the IMC. Here, we discuss the multiple roles of the IMC in each parasite lifecycle stage as well as insights into its sub-compartmentalization, biogenesis, disassembly and regulation during stage conversion of P. falciparum.
Collapse
Affiliation(s)
- Josie Liane Ferreira
- Centre for Structural Systems Biology, Hamburg, Germany
- Heinrich Pette Institut, Leibniz-Institut für Experimentelle Virologie, Hamburg, Germany
| | - Dorothee Heincke
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Jan Stephan Wichers
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Benjamin Liffner
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Danny W. Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Burnet Institute, Melbourne, VIC, Australia
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| |
Collapse
|
28
|
Monteiro W, Brito-Sousa JD, Elizalde-Torrent A, Bôtto-Menezes C, Melo GC, Fernandez-Becerra C, Lacerda M, Del Portillo HA. Cryptic Plasmodium chronic infections: was Maurizio Ascoli right? Malar J 2020; 19:440. [PMID: 33256745 PMCID: PMC7708240 DOI: 10.1186/s12936-020-03516-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 11/20/2020] [Indexed: 12/02/2022] Open
Abstract
Cryptic Plasmodium niches outside the liver possibly represent a major source of hypnozoite-unrelated recrudescences in malaria. Maurizio Ascoli, an Italian physician and scientist, suggested that infection was maintained as a result of the persistence of endoerythrocytic parasites in the circulatory bed of some internal organs, mainly the spleen. This would explain a proportion of the recurrences in patients, regardless of the Plasmodium species. Ascoli proposed a method that included the co-administration of adrenaline, in order to induce splenic contraction, and quinine to clear expelled forms in major vessels. Driven by controversy regarding safety and effectiveness, along with the introduction of new drugs, the Ascoli method was abandoned and mostly forgotten by the malaria research community. To date, however, the existence of cryptic parasites outside the liver is gaining supportive data. This work is a historical retrospective of cryptic malaria infections and the Ascoli method, highlighting key knowledge gaps regarding these possible parasite reservoirs.
Collapse
Affiliation(s)
- Wuelton Monteiro
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado (FMT-HVD), Manaus, Amazonas, Brazil. .,Universidade Do Estado Do Amazonas (UEA), Manaus, Amazonas, Brazil.
| | - José Diego Brito-Sousa
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado (FMT-HVD), Manaus, Amazonas, Brazil.,Universidade Do Estado Do Amazonas (UEA), Manaus, Amazonas, Brazil
| | - Aleix Elizalde-Torrent
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Institut D'Investigació Germans Trias I Pujol (IGTP), Badalona, Barcelona, Spain.,IrsiCaixa AIDS Research Institute, Badalona, Catalonia, Spain
| | - Camila Bôtto-Menezes
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado (FMT-HVD), Manaus, Amazonas, Brazil.,Universidade Do Estado Do Amazonas (UEA), Manaus, Amazonas, Brazil
| | - Gisely Cardoso Melo
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado (FMT-HVD), Manaus, Amazonas, Brazil.,Universidade Do Estado Do Amazonas (UEA), Manaus, Amazonas, Brazil
| | - Carmen Fernandez-Becerra
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Institut D'Investigació Germans Trias I Pujol (IGTP), Badalona, Barcelona, Spain
| | - Marcus Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado (FMT-HVD), Manaus, Amazonas, Brazil.,Instituto Leônidas & Maria Deane (ILMD), Fiocruz, Manaus, Amazonas, Brazil
| | - Hernando A Del Portillo
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain. .,Institut D'Investigació Germans Trias I Pujol (IGTP), Badalona, Barcelona, Spain. .,Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
29
|
Shibeshi MA, Kifle ZD, Atnafie SA. Antimalarial Drug Resistance and Novel Targets for Antimalarial Drug Discovery. Infect Drug Resist 2020; 13:4047-4060. [PMID: 33204122 PMCID: PMC7666977 DOI: 10.2147/idr.s279433] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
Malaria is among the most devastating and widespread tropical parasitic diseases in which most prevalent in developing countries. Antimalarial drug resistance is the ability of a parasite strain to survive and/or to multiply despite the administration and absorption of medicine given in doses equal to or higher than those usually recommended. Among the factors which facilitate the emergence of resistance to existing antimalarial drugs: the parasite mutation rate, the overall parasite load, the strength of drug selected, the treatment compliance, poor adherence to malaria treatment guideline, improper dosing, poor pharmacokinetic properties, fake drugs lead to inadequate drug exposure on parasites, and poor-quality antimalarial may aid and abet resistance. Malaria vaccines can be categorized into three categories: pre-erythrocytic, blood-stage, and transmission-blocking vaccines. Molecular markers of antimalarial drug resistance are used to screen for the emergence of resistance and assess its spread. It provides information about the parasite genetics associated with resistance, either single nucleotide polymorphisms or gene copy number variations which are associated with decreased susceptibility of parasites to antimalarial drugs. Glucose transporter PfHT1, kinases (Plasmodium kinome), food vacuole, apicoplast, cysteine proteases, and aminopeptidases are the novel targets for the development of new antimalarial drugs. Therefore, this review summarizes the antimalarial drug resistance and novel targets of antimalarial drugs.
Collapse
Affiliation(s)
- Melkamu Adigo Shibeshi
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Zemene Demelash Kifle
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Seyfe Asrade Atnafie
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
30
|
Plasmodium berghei K13 Mutations Mediate In Vivo Artemisinin Resistance That Is Reversed by Proteasome Inhibition. mBio 2020; 11:mBio.02312-20. [PMID: 33173001 PMCID: PMC7667033 DOI: 10.1128/mbio.02312-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent successes in malaria control have been seriously threatened by the emergence of Plasmodium falciparum parasite resistance to the frontline artemisinin drugs in Southeast Asia. P. falciparum artemisinin resistance is associated with mutations in the parasite K13 protein, which associates with a delay in the time required to clear the parasites upon drug treatment. Gene editing technologies have been used to validate the role of several candidate K13 mutations in mediating P. falciparum artemisinin resistance in vitro under laboratory conditions. Nonetheless, the causal role of these mutations under in vivo conditions has been a matter of debate. Here, we have used CRISPR/Cas9 gene editing to introduce K13 mutations associated with artemisinin resistance into the related rodent-infecting parasite, Plasmodium berghei. Phenotyping of these P. berghei K13 mutant parasites provides evidence of their role in mediating artemisinin resistance in vivo, which supports in vitro artemisinin resistance observations. However, we were unable to introduce some of the P. falciparum K13 mutations (C580Y and I543T) into the corresponding amino acid residues, while other introduced mutations (M476I and R539T equivalents) carried pronounced fitness costs. Our study provides evidence of a clear causal role of K13 mutations in modulating susceptibility to artemisinins in vitro and in vivo using the well-characterized P. berghei model. We also show that inhibition of the P. berghei proteasome offsets parasite resistance to artemisinins in these mutant lines. The recent emergence of Plasmodium falciparum parasite resistance to the first line antimalarial drug artemisinin is of particular concern. Artemisinin resistance is primarily driven by mutations in the P. falciparum K13 protein, which enhance survival of early ring-stage parasites treated with the artemisinin active metabolite dihydroartemisinin in vitro and associate with delayed parasite clearance in vivo. However, association of K13 mutations with in vivo artemisinin resistance has been problematic due to the absence of a tractable model. Herein, we have employed CRISPR/Cas9 genome editing to engineer selected orthologous P. falciparum K13 mutations into the K13 gene of an artemisinin-sensitive Plasmodium berghei rodent model of malaria. Introduction of the orthologous P. falciparum K13 F446I, M476I, Y493H, and R539T mutations into P. berghei K13 yielded gene-edited parasites with reduced susceptibility to dihydroartemisinin in the standard 24-h in vitro assay and increased survival in an adapted in vitro ring-stage survival assay. Mutant P. berghei K13 parasites also displayed delayed clearance in vivo upon treatment with artesunate and achieved faster recrudescence upon treatment with artemisinin. Orthologous C580Y and I543T mutations could not be introduced into P. berghei, while the equivalents of the M476I and R539T mutations resulted in significant growth defects. Furthermore, a Plasmodium-selective proteasome inhibitor strongly synergized dihydroartemisinin action in these P. berghei K13 mutant lines, providing further evidence that the proteasome can be targeted to overcome artemisinin resistance. Taken together, our findings provide clear experimental evidence for the involvement of K13 polymorphisms in mediating susceptibility to artemisinins in vitro and, most importantly, under in vivo conditions.
Collapse
|
31
|
Experimentally Engineered Mutations in a Ubiquitin Hydrolase, UBP-1, Modulate In Vivo Susceptibility to Artemisinin and Chloroquine in Plasmodium berghei. Antimicrob Agents Chemother 2020; 64:AAC.02484-19. [PMID: 32340987 PMCID: PMC7318008 DOI: 10.1128/aac.02484-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/08/2020] [Indexed: 11/20/2022] Open
Abstract
As resistance to artemisinins (current frontline drugs in malaria treatment) emerges in Southeast Asia, there is an urgent need to identify the genetic determinants and understand the molecular mechanisms underpinning such resistance. Such insights could lead to prospective interventions to contain resistance and prevent the eventual spread to other regions where malaria is endemic. Reduced susceptibility to artemisinin in Southeast Asia has been primarily linked to mutations in the Plasmodium falciparum Kelch-13 gene, which is currently widely recognized as a molecular marker of artemisinin resistance. As resistance to artemisinins (current frontline drugs in malaria treatment) emerges in Southeast Asia, there is an urgent need to identify the genetic determinants and understand the molecular mechanisms underpinning such resistance. Such insights could lead to prospective interventions to contain resistance and prevent the eventual spread to other regions where malaria is endemic. Reduced susceptibility to artemisinin in Southeast Asia has been primarily linked to mutations in the Plasmodium falciparum Kelch-13 gene, which is currently widely recognized as a molecular marker of artemisinin resistance. However, two mutations in a ubiquitin hydrolase, UBP-1, have been previously associated with reduced artemisinin susceptibility in a rodent model of malaria, and some cases of UBP-1 mutation variants associated with artemisinin treatment failure have been reported in Africa and SEA. In this study, we employed CRISPR-Cas9 genome editing and preemptive drug pressures to test these artemisinin susceptibility-associated mutations in UBP-1 in Plasmodium berghei sensitive lines in vivo. Using these approaches, we show that the V2721F UBP-1 mutation results in reduced artemisinin susceptibility, while the V2752F mutation results in resistance to chloroquine (CQ) and moderately impacts tolerance to artemisinins. Genetic reversal of the V2752F mutation restored chloroquine sensitivity in these mutant lines, whereas simultaneous introduction of both mutations could not be achieved and appears to be lethal. Interestingly, these mutations carry a detrimental growth defect, which would possibly explain their lack of expansion in natural infection settings. Our work provides independent experimental evidence on the role of UBP-1 in modulating parasite responses to artemisinin and chloroquine under in vivo conditions.
Collapse
|
32
|
Plasma-derived extracellular vesicles from Plasmodium vivax patients signal spleen fibroblasts via NF-kB facilitating parasite cytoadherence. Nat Commun 2020; 11:2761. [PMID: 32487994 PMCID: PMC7265481 DOI: 10.1038/s41467-020-16337-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 04/25/2020] [Indexed: 01/15/2023] Open
Abstract
Plasmodium vivax is the most widely distributed human malaria parasite. Previous studies have shown that circulating microparticles during P. vivax acute attacks are indirectly associated with severity. Extracellular vesicles (EVs) are therefore major components of circulating plasma holding insights into pathological processes. Here, we demonstrate that plasma-derived EVs from Plasmodium vivax patients (PvEVs) are preferentially uptaken by human spleen fibroblasts (hSFs) as compared to the uptake of EVs from healthy individuals. Moreover, this uptake induces specific upregulation of ICAM-1 associated with the translocation of NF-kB to the nucleus. After this uptake, P. vivax-infected reticulocytes obtained from patients show specific adhesion properties to hSFs, reversed by inhibiting NF-kB translocation to the nucleus. Together, these data provide physiological EV-based insights into the mechanisms of human malaria pathology and support the existence of P. vivax-adherent parasite subpopulations in the microvasculature of the human spleen. Extracellular vesicles (EVs) in plasma can affect pathogenesis of parasites, but details remain unclear. Here, Toda et al. characterize plasma-derived EVs from Plasmodium vivax patients and show that PvEVs are preferentially taken up by human spleen fibroblasts, facilitating parasite cytoadherence.
Collapse
|
33
|
Plasmodium vivax spleen-dependent genes encode antigens associated with cytoadhesion and clinical protection. Proc Natl Acad Sci U S A 2020; 117:13056-13065. [PMID: 32439708 PMCID: PMC7293605 DOI: 10.1073/pnas.1920596117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In spite of low peripheral blood parasitemia, vivax malaria causes severe disease. This conundrum finds an explanation from reports suggesting that the spleen is a place for parasite sequestration. We performed a global transcriptional analysis of parasites that grew in the presence or absence of the spleen in a nonhuman primate model. We identified 67 spleen-dependent genes, including multigene variant families, and functionally demonstrated specific adherence to human spleen fibroblasts by a member of such families. Moreover, we further demonstrated that spleen-dependent Plasmodium vivax genes code for immunogenic proteins during natural infections. Our results indicate that this organ plays an important function in P. vivax malaria and call for deeper studies of the role of spleen in P. vivax infections. Plasmodium vivax, the most widely distributed human malaria parasite, causes severe clinical syndromes despite low peripheral blood parasitemia. This conundrum is further complicated as cytoadherence in the microvasculature is still a matter of investigations. Previous reports in Plasmodium knowlesi, another parasite species shown to infect humans, demonstrated that variant genes involved in cytoadherence were dependent on the spleen for their expression. Hence, using a global transcriptional analysis of parasites obtained from spleen-intact and splenectomized monkeys, we identified 67 P. vivax genes whose expression was spleen dependent. To determine their role in cytoadherence, two Plasmodium falciparum transgenic lines expressing two variant proteins pertaining to VIR and Pv-FAM-D multigene families were used. Cytoadherence assays demonstrated specific binding to human spleen but not lung fibroblasts of the transgenic line expressing the VIR14 protein. To gain more insights, we expressed five P. vivax spleen-dependent genes as recombinant proteins, including members of three different multigene families (VIR, Pv-FAM-A, Pv-FAM-D), one membrane transporter (SECY), and one hypothetical protein (HYP1), and determined their immunogenicity and association with clinical protection in a prospective study of 383 children in Papua New Guinea. Results demonstrated that spleen-dependent antigens are immunogenic in natural infections and that antibodies to HYP1 are associated with clinical protection. These results suggest that the spleen plays a major role in expression of parasite proteins involved in cytoadherence and can reveal antigens associated with clinical protection, thus prompting a paradigm shift in P. vivax biology toward deeper studies of the spleen during infections.
Collapse
|
34
|
Abstract
Parasitic diseases, such as sleeping sickness, Chagas disease and malaria, remain a major cause of morbidity and mortality worldwide, but particularly in tropical, developing countries. Controlling these diseases requires a better understanding of host-parasite interactions, including a deep appreciation of parasite distribution in the host. The preferred accumulation of parasites in some tissues of the host has been known for many years, but recent technical advances have allowed a more systematic analysis and quantifications of such tissue tropisms. The functional consequences of tissue tropism remain poorly studied, although it has been associated with important aspects of disease, including transmission enhancement, treatment failure, relapse and clinical outcome. Here, we discuss current knowledge of tissue tropism in Trypanosoma infections in mammals, describe potential mechanisms of tissue entry, comparatively discuss relevant findings from other parasitology fields where tissue tropism has been extensively investigated, and reflect on new questions raised by recent discoveries and their potential impact on clinical treatment and disease control strategies.
Collapse
Affiliation(s)
- Sara Silva Pereira
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Sandra Trindade
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Luisa M Figueiredo
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| |
Collapse
|
35
|
Silva-Filho JL, Lacerda MVG, Recker M, Wassmer SC, Marti M, Costa FTM. Plasmodium vivax in Hematopoietic Niches: Hidden and Dangerous. Trends Parasitol 2020; 36:447-458. [PMID: 32298632 DOI: 10.1016/j.pt.2020.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 12/31/2022]
Abstract
Estimation of Plasmodium vivax biomass based on circulating biomarkers indicates the existence of a predominant biomass outside of the circulation that is not captured by peripheral parasitemia, in particular in patients with complicated outcomes. A series of recent studies have suggested that the hematopoietic niche of the bone marrow (BM) is a major reservoir for parasite replication and the development of transmission stages. However, significant knowledge gaps remain in our understanding of host-parasite interactions, pathophysiology, and the implications for treatment and diagnosis of such a reservoir. Here, we discuss the current status of this emerging research field in the context of P. vivax.
Collapse
Affiliation(s)
- João Luiz Silva-Filho
- Laboratório de Doenças Tropicais - Prof Luiz Jacintho da Silva Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil; Wellcome Center for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | - Marcus V G Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil; Instituto Leônidas and Maria Deane, Fiocruz Amazônia, Manaus, Brazil
| | - Mario Recker
- Centre for Mathematics and the Environment, University of Exeter, Penryn Campus, Penryn, UK
| | - Samuel C Wassmer
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Matthias Marti
- Wellcome Center for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | - Fabio T M Costa
- Laboratório de Doenças Tropicais - Prof Luiz Jacintho da Silva Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil.
| |
Collapse
|
36
|
Venugopal K, Hentzschel F, Valkiūnas G, Marti M. Plasmodium asexual growth and sexual development in the haematopoietic niche of the host. Nat Rev Microbiol 2020; 18:177-189. [PMID: 31919479 PMCID: PMC7223625 DOI: 10.1038/s41579-019-0306-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2019] [Indexed: 12/28/2022]
Abstract
Plasmodium spp. parasites are the causative agents of malaria in humans and animals, and they are exceptionally diverse in their morphology and life cycles. They grow and develop in a wide range of host environments, both within blood-feeding mosquitoes, their definitive hosts, and in vertebrates, which are intermediate hosts. This diversity is testament to their exceptional adaptability and poses a major challenge for developing effective strategies to reduce the disease burden and transmission. Following one asexual amplification cycle in the liver, parasites reach high burdens by rounds of asexual replication within red blood cells. A few of these blood-stage parasites make a developmental switch into the sexual stage (or gametocyte), which is essential for transmission. The bone marrow, in particular the haematopoietic niche (in rodents, also the spleen), is a major site of parasite growth and sexual development. This Review focuses on our current understanding of blood-stage parasite development and vascular and tissue sequestration, which is responsible for disease symptoms and complications, and when involving the bone marrow, provides a niche for asexual replication and gametocyte development. Understanding these processes provides an opportunity for novel therapies and interventions.
Collapse
Affiliation(s)
- Kannan Venugopal
- Wellcome Center for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Franziska Hentzschel
- Wellcome Center for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | | | - Matthias Marti
- Wellcome Center for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| |
Collapse
|
37
|
De Niz M, Meehan GR, Tavares J. Intravital microscopy: Imaging host-parasite interactions in lymphoid organs. Cell Microbiol 2019; 21:e13117. [PMID: 31512335 DOI: 10.1111/cmi.13117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/25/2019] [Accepted: 09/01/2019] [Indexed: 12/11/2022]
Abstract
Intravital microscopy allows imaging of biological phenomena within living animals, including host-parasite interactions. This has advanced our understanding of both, the function of lymphoid organs during parasitic infections, and the effect of parasites on such organs to allow their survival. In parasitic research, recent developments in this technique have been crucial for the direct study of host-parasite interactions within organs at depths, speeds and resolution previously difficult to achieve. Lymphoid organs have gained more attention as we start to understand their function during parasitic infections and the effect of parasites on them. In this review, we summarise technical and biological findings achieved by intravital microscopy with respect to the interaction of various parasites with host lymphoid organs, namely the bone marrow, thymus, lymph nodes, spleen and the mucosa-associated lymphoid tissue, and present a view into possible future applications.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, Heussler Lab, University of Bern, Bern, Switzerland
| | - Gavin R Meehan
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Joana Tavares
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| |
Collapse
|
38
|
Ngotho P, Soares AB, Hentzschel F, Achcar F, Bertuccini L, Marti M. Revisiting gametocyte biology in malaria parasites. FEMS Microbiol Rev 2019; 43:401-414. [PMID: 31220244 PMCID: PMC6606849 DOI: 10.1093/femsre/fuz010] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/05/2019] [Indexed: 12/21/2022] Open
Abstract
Gametocytes are the only form of the malaria parasite that is transmissible to the mosquito vector. They are present at low levels in blood circulation and significant knowledge gaps exist in their biology. Recent reductions in the global malaria burden have brought the possibility of elimination and eradication, with renewed focus on malaria transmission biology as a basis for interventions. This review discusses recent insights into gametocyte biology in the major human malaria parasite, Plasmodium falciparum and related species.
Collapse
Affiliation(s)
- Priscilla Ngotho
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Road, Glasgow G12 8TA, UK
| | - Alexandra Blancke Soares
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Road, Glasgow G12 8TA, UK
| | - Franziska Hentzschel
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Road, Glasgow G12 8TA, UK
| | - Fiona Achcar
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Road, Glasgow G12 8TA, UK
| | - Lucia Bertuccini
- Core Facilities, Microscopy Area, Instituto Superiore di Sanita, Via Regina Elena 299, 00161 Rome, Italy
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Road, Glasgow G12 8TA, UK.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston 02115, MA, USA
| |
Collapse
|
39
|
Dantzler KW, Ma S, Ngotho P, Stone WJR, Tao D, Rijpma S, De Niz M, Nilsson Bark SK, Jore MM, Raaijmakers TK, Early AM, Ubaida-Mohien C, Lemgruber L, Campo JJ, Teng AA, Le TQ, Walker CL, Hermand P, Deterre P, Davies DH, Felgner P, Morlais I, Wirth DF, Neafsey DE, Dinglasan RR, Laufer M, Huttenhower C, Seydel K, Taylor T, Bousema T, Marti M. Naturally acquired immunity against immature Plasmodium falciparum gametocytes. Sci Transl Med 2019; 11:eaav3963. [PMID: 31167926 PMCID: PMC6653583 DOI: 10.1126/scitranslmed.aav3963] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 04/05/2019] [Indexed: 12/11/2022]
Abstract
The recent decline in global malaria burden has stimulated efforts toward Plasmodium falciparum elimination. Understanding the biology of malaria transmission stages may provide opportunities to reduce or prevent onward transmission to mosquitoes. Immature P. falciparum transmission stages, termed stages I to IV gametocytes, sequester in human bone marrow before release into the circulation as mature stage V gametocytes. This process likely involves interactions between host receptors and potentially immunogenic adhesins on the infected red blood cell (iRBC) surface. Here, we developed a flow cytometry assay to examine immune recognition of live gametocytes of different developmental stages by naturally exposed Malawians. We identified strong antibody recognition of the earliest immature gametocyte-iRBCs (giRBCs) but not mature stage V giRBCs. Candidate surface antigens (n = 30), most of them shared between asexual- and gametocyte-iRBCs, were identified by mass spectrometry and mouse immunizations, as well as correlations between responses by protein microarray and flow cytometry. Naturally acquired responses to a subset of candidate antigens were associated with reduced asexual and gametocyte density, and plasma samples from malaria-infected individuals were able to induce immune clearance of giRBCs in vitro. Infected RBC surface expression of select candidate antigens was validated using specific antibodies, and genetic analysis revealed a subset with minimal variation across strains. Our data demonstrate that humoral immune responses to immature giRBCs and shared iRBC antigens are naturally acquired after malaria exposure. These humoral immune responses may have consequences for malaria transmission potential by clearing developing gametocytes, which could be leveraged for malaria intervention.
Collapse
Affiliation(s)
- Kathleen W Dantzler
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Siyuan Ma
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Priscilla Ngotho
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Will J R Stone
- Radboud Institute for Health Sciences, Radboud University Medical Center, Netherlands
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Dingyin Tao
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Sanna Rijpma
- Radboud Institute for Health Sciences, Radboud University Medical Center, Netherlands
| | - Mariana De Niz
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Sandra K Nilsson Bark
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Matthijs M Jore
- Radboud Institute for Health Sciences, Radboud University Medical Center, Netherlands
| | - Tonke K Raaijmakers
- Radboud Institute for Health Sciences, Radboud University Medical Center, Netherlands
| | | | | | - Leandro Lemgruber
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | | | | | | | | | - Patricia Hermand
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), UMR 1135, ERL CNRS 8255, F-75013 Paris, France
| | - Philippe Deterre
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), UMR 1135, ERL CNRS 8255, F-75013 Paris, France
| | - D Huw Davies
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, CA, USA
| | - Phil Felgner
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, CA, USA
| | - Isabelle Morlais
- UMR MIVEGEC UM1-CNRS 5290-IRD 224, Institut de Recherche pour le Développement, Montpellier Cedex, France
| | - Dyann F Wirth
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Rhoel R Dinglasan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Emerging Pathogens Institute, Department of Infectious Diseases and Immunology, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Miriam Laufer
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Karl Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Terrie Taylor
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Center, Netherlands.
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Matthias Marti
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
40
|
Malaria Resurgence in the Americas: An Underestimated Threat. Pathogens 2019; 8:pathogens8010011. [PMID: 30669301 PMCID: PMC6471461 DOI: 10.3390/pathogens8010011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 12/13/2022] Open
|
41
|
Kanjee U, Rangel GW, Clark MA, Duraisingh MT. Molecular and cellular interactions defining the tropism of Plasmodium vivax for reticulocytes. Curr Opin Microbiol 2018; 46:109-115. [PMID: 30366310 DOI: 10.1016/j.mib.2018.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 01/19/2023]
Abstract
Plasmodium vivax is uniquely restricted to invading reticulocytes, the youngest of red blood cells. Parasite invasion relies on the sequential deployment of multiple parasite invasion ligands. Correct targeting of the host reticulocyte is mediated by two families of invasion ligands: the reticulocyte binding proteins (RBPs) and erythrocyte binding proteins (EBPs). The Duffy receptor has long been established as a key determinant for P. vivax invasion. However, recently, the RBP protein PvRBP2b has been shown to bind to transferrin receptor, which is expressed on reticulocytes but lost on normocytes, implicating the ligand-receptor in the reticulocyte tropism of P. vivax. Furthermore there is increasing evidence for P. vivax growth and sexual development in reticulocyte-enriched tissues such as the bone marrow.
Collapse
Affiliation(s)
- Usheer Kanjee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gabriel W Rangel
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Martha A Clark
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
42
|
De Niz M, Heussler VT. Rodent malaria models: insights into human disease and parasite biology. Curr Opin Microbiol 2018; 46:93-101. [PMID: 30317152 DOI: 10.1016/j.mib.2018.09.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/29/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022]
Abstract
The use of rodents as model organisms to study human disease is based on the genetic and physiological similarities between the species. Successful molecular methods to generate transgenic reporter or humanized rodents has rendered rodents as powerful tools for understanding biological processes and host-pathogen interactions relevant to humans. In malaria research, rodent models have been pivotal for the study of liver stages, syndromes arising from blood stages of infection, and malaria transmission to and from the mammalian host. Importantly, many in vivo findings are comparable to pathology observed in humans only when adequate combinations of rodent strains and Plasmodium parasites are used.
Collapse
Affiliation(s)
- Mariana De Niz
- Wellcome Centre for Molecular Parasitology, Glasgow, G12 8TA, UK; Institute for Cell Biology, University of Bern, CH-3012, Switzerland
| | - Volker T Heussler
- Institute for Cell Biology, University of Bern, CH-3012, Switzerland.
| |
Collapse
|