1
|
Baatz F, Ghosh A, Herbst J, Polten S, Meyer J, Rhiel M, Maetzig T, Geffers R, Rothe M, Bastone AL, John-Neek P, Frühauf J, Eiz-Vesper B, Bonifacius A, Falk CS, Kaisenberg CV, Cathomen T, Schambach A, van den Brink MRM, Hust M, Sauer MG. Targeting BCL11B in CAR-engineered lymphoid progenitors drives NK-like cell development with prolonged anti-leukemic activity. Mol Ther 2025; 33:1584-1607. [PMID: 39955618 PMCID: PMC11997514 DOI: 10.1016/j.ymthe.2025.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/26/2024] [Accepted: 02/12/2025] [Indexed: 02/17/2025] Open
Abstract
Chimeric antigen receptor (CAR)-induced suppression of the transcription factor B cell CLL/lymphoma 11B (BCL11B) propagates CAR-induced killer (CARiK) cell development from lymphoid progenitors. Here, we show that CRISPR-Cas9-mediated Bcl11b knockout in human and murine early lymphoid progenitors distinctively modulates this process either alone or in combination with a CAR. Upon adoptive transfer into hematopoietic stem cell recipients, Bcl11b-edited progenitors mediated innate-like antigen-independent anti-leukemic immune responses. With CAR expression allowing for additional antigen-specific responses, the progeny of double-edited lymphoid progenitors acquired prolonged anti-leukemic activity in vivo. These findings give important insights into how Bcl11b targeting can be used to tailor anti-leukemia functionality of CAR-engineered lymphoid progenitor cells.
Collapse
Affiliation(s)
- Franziska Baatz
- Department of Pediatric Hematology, Department of Oncology and Blood Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Arnab Ghosh
- Adult BMT Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jessica Herbst
- Department of Pediatric Hematology, Department of Oncology and Blood Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Saskia Polten
- Department of Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Johann Meyer
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Manuel Rhiel
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany
| | - Tobias Maetzig
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | - Philipp John-Neek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany; REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Jörg Frühauf
- Clinic for Radiation Therapy and special Oncology, Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Agnes Bonifacius
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Constantin V Kaisenberg
- Department of Obstetrics, Clinic of Gynecology and Reproductive Medicine, and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Michael Hust
- Department of Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Martin G Sauer
- Department of Pediatric Hematology, Department of Oncology and Blood Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
2
|
Tithi TI, Mo J, Borcherding N, Jo S, Kates HR, Cho E, Cash KE, Honda M, Wang L, Ahmed KK, Shirlekar K, Chen L, Gibson-Corley K, Weigel R, Spies M, Kolb R, Zhang W. The distinct roles of MSH2 and MLH1 in basal-like breast cancer and immune modulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.07.20.549745. [PMID: 37745359 PMCID: PMC10515760 DOI: 10.1101/2023.07.20.549745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The mismatch repair (MMR) pathway is known as a tumor suppressive pathway and genes involved in MMR are commonly mutated in hereditary colorectal or other cancer types. However, the function of MMR genes/proteins in breast cancer progression and metastasis are largely undefined. We found that MSH2, but not MLH1, is highly enriched in basal-like breast cancer (BLBC) and that its protein expression is inversely correlated with overall survival time (OS). MSH2 expression is frequently elevated due to genomic amplification or gain-of-expression in BLBC, which results in increased MSH2 protein to pair with MSH6 (collectively referred to as MutSα). Genetic deletion of MSH2 or MLH1 results in a contrasting phenotype in metastasis, with MSH2 -deletion leading to reduced metastasis and MLH1 -deletion to enhanced liver or lung metastasis. Mechanistically, MSH2 - but not MLH1 - binds to the promoter region of interferon α receptor 1 ( IFNAR1 ) and suppresses its expression in BLBC. Deletion of MSH2 initiates a chain of immune reactions via the upregulation of IFNAR1 expression and the activation of type 1 interferon signaling, which explains a highly immune active tumor microenvironment in tumors with MSH2-deficiency. Our study supports the contrasting functions of MSH2 and MLH1 in BLBC progression and metastasis due to the differential regulation of IFNAR1 expression, which challenges the paradigm of the MMR pathway as a universal tumor suppressive mechanism.
Collapse
|
3
|
Przybylski GK, Przybylska J, Li Y. Dual role of BCL11B in T-cell malignancies. BLOOD SCIENCE 2024; 6:e00204. [PMID: 39295773 PMCID: PMC11410336 DOI: 10.1097/bs9.0000000000000204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/13/2024] [Indexed: 09/21/2024] Open
Abstract
The zinc finger transcription factor B-cell CLL/lymphoma 11B gene (BCL11B, CTIP2) plays a crucial role in T-cell development, but its role in T-cell malignancies has not yet been definitively clarified. In the literature, 2 contradictory hypotheses on the function of BCL11B exist. One suggests that BCL11B functions as tumor suppressor gene, and the other suggests that BCL11B functions as oncogene. The aim of this review is to revise the current knowledge about the function of BCL11B in T-cell malignancies, confront these 2 hypotheses and present a new model of dual role of BCL11B in T-cell malignancies and potential new therapeutic approach, based on recent findings of the function of BCL11B in DNA damage repair. Decreased BCL11B expression, resulting in deficient DNA repair, may facilitate DNA mutations in rapidly proliferating T-cell progenitors that undergo gene rearrangements, thereby leading to malignant transformation. On the other hand, decreased BCL11B expression and inefficient DNA repair may result in accumulation of DNA damages in genes crucial for the cell survival and in apoptosis of malignant T cells. We hypothesize that T-cell malignancies expressing high levels of BCL11B might be dependent on it. In those cases, targeted inhibition of BCL11B expression may have a therapeutic effect. The antitumor effect of BCL11B suppression might be strengthened by generation of induced T to NK cells (ITNK). Therefore, there is an urgent need to develop a specific BCL11B inhibitor.
Collapse
Affiliation(s)
| | - Julia Przybylska
- Department of Rheumatology, Independent Public Health Care Facility, Międzychód, Poland
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Liao R, Wu Y, Qin L, Jiang Z, Gou S, Zhou L, Hong Q, Li Y, Shi J, Yao Y, Lai L, Li Y, Liu P, Thiery JP, Qin D, Graf T, Liu X, Li P. BCL11B and the NuRD complex cooperatively guard T-cell fate and inhibit OPA1-mediated mitochondrial fusion in T cells. EMBO J 2023; 42:e113448. [PMID: 37737560 PMCID: PMC10620766 DOI: 10.15252/embj.2023113448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
The nucleosome remodeling and histone deacetylase (NuRD) complex physically associates with BCL11B to regulate murine T-cell development. However, the function of NuRD complex in mature T cells remains unclear. Here, we characterize the fate and metabolism of human T cells in which key subunits of the NuRD complex or BCL11B are ablated. BCL11B and the NuRD complex bind to each other and repress natural killer (NK)-cell fate in T cells. In addition, T cells upregulate the NK cell-associated receptors and transcription factors, lyse NK-cell targets, and are reprogrammed into NK-like cells (ITNKs) upon deletion of MTA2, MBD2, CHD4, or BCL11B. ITNKs increase OPA1 expression and exhibit characteristically elongated mitochondria with augmented oxidative phosphorylation (OXPHOS) activity. OPA1-mediated elevated OXPHOS enhances cellular acetyl-CoA levels, thereby promoting the reprogramming efficiency and antitumor effects of ITNKs via regulating H3K27 acetylation at specific targets. In conclusion, our findings demonstrate that the NuRD complex and BCL11B cooperatively maintain T-cell fate directly by repressing NK cell-associated transcription and indirectly through a metabolic-epigenetic axis, providing strategies to improve the reprogramming efficiency and antitumor effects of ITNKs.
Collapse
Affiliation(s)
- Rui Liao
- China‐New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Yi Wu
- China‐New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Le Qin
- China‐New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Zhiwu Jiang
- China‐New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Shixue Gou
- China‐New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Linfu Zhou
- China‐New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Qilan Hong
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
- Centre for Genomic RegulationThe Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Yao Li
- China‐New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Jingxuan Shi
- China‐New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Yao Yao
- China‐New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Liangxue Lai
- China‐New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Yangqiu Li
- Institute of HematologyMedical College, Jinan UniversityGuangzhouChina
| | - Pentao Liu
- School of Biomedical Sciences, Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | | | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy, and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Thomas Graf
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
- Centre for Genomic RegulationThe Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Xingguo Liu
- China‐New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & InnovationChinese Academy of SciencesHong Kong SARChina
| | - Peng Li
- China‐New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- Key Laboratory of Biological Targeting Diagnosis, Therapy, and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & InnovationChinese Academy of SciencesHong Kong SARChina
- Department of SurgeryThe Chinese University of Hong KongHong Kong SARChina
| |
Collapse
|
5
|
Helm EY, Zelenka T, Cismasiu VB, Islam S, Silvane L, Zitti B, Holmes TD, Drashansky TT, Kwiatkowski AJ, Tao C, Dean J, Obermayer AN, Chen X, Keselowsky BG, Zhang W, Huo Z, Zhou L, Sheridan BS, Conejo-Garcia JR, Shaw TI, Bryceson YT, Avram D. Bcl11b sustains multipotency and restricts effector programs of intestinal-resident memory CD8 + T cells. Sci Immunol 2023; 8:eabn0484. [PMID: 37115913 DOI: 10.1126/sciimmunol.abn0484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
The networks of transcription factors (TFs) that control intestinal-resident memory CD8+ T (TRM) cells, including multipotency and effector programs, are poorly understood. In this work, we investigated the role of the TF Bcl11b in TRM cells during infection with Listeria monocytogenes using mice with post-activation, conditional deletion of Bcl11b in CD8+ T cells. Conditional deletion of Bcl11b resulted in increased numbers of intestinal TRM cells and their precursors as well as decreased splenic effector and circulating memory cells and precursors. Loss of circulating memory cells was in part due to increased intestinal homing of Bcl11b-/- circulating precursors, with no major alterations in their programs. Bcl11b-/- TRM cells had altered transcriptional programs, with diminished expression of multipotent/multifunctional (MP/MF) program genes, including Tcf7, and up-regulation of the effector program genes, including Prdm1. Bcl11b also limits the expression of Ahr, another TF with a role in intestinal CD8+ TRM cell differentiation. Deregulation of TRM programs translated into a poor recall response despite TRM cell accumulation in the intestine. Reduced expression of MP/MF program genes in Bcl11b-/- TRM cells was linked to decreased chromatin accessibility and a reduction in activating histone marks at these loci. In contrast, the effector program genes displayed increased activating epigenetic status. These findings demonstrate that Bcl11b is a frontrunner in the tissue residency program of intestinal memory cells upstream of Tcf1 and Blimp1, promoting multipotency and restricting the effector program.
Collapse
Affiliation(s)
- Eric Y Helm
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tomas Zelenka
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Valeriu B Cismasiu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Shamima Islam
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Leonardo Silvane
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Beatrice Zitti
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| | - Tim D Holmes
- Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, N-5021 Bergen, Norway
| | - Theodore T Drashansky
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Alexander J Kwiatkowski
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Christine Tao
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Joseph Dean
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Alyssa N Obermayer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Xianghong Chen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- UF Health Cancer Center, Gainesville, FL 32610, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Medicine, College of Public Health & Health Professions, University of Florida, Gainesville, FL 32611, USA
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Brian S Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jose R Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Timothy I Shaw
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Yenan T Bryceson
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
- Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, N-5021 Bergen, Norway
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, S-14186 Stockholm, Sweden
| | - Dorina Avram
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| |
Collapse
|
6
|
Gao Y, Zamisch M, Vacchio M, Chopp L, Ciucci T, Paine EL, Lyons GC, Nie J, Xiao Q, Zvezdova E, Love PE, Vinson CR, Jenkins LM, Bosselut R. NuRD complex recruitment to Thpok mediates CD4 + T cell lineage differentiation. Sci Immunol 2022; 7:eabn5917. [PMID: 35687698 DOI: 10.1126/sciimmunol.abn5917] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although BTB-zinc finger (BTB-ZF) transcription factors control the differentiation of multiple hematopoietic and immune lineages, how they function is poorly understood. The BTB-ZF factor Thpok controls intrathymic CD4+ T cell development and the expression of most CD4+ and CD8+ lineage genes. Here, we identify the nucleosome remodeling and deacetylase (NuRD) complex as a critical Thpok cofactor. Using mass spectrometry and coimmunoprecipitation in primary T cells, we show that Thpok binds NuRD components independently of DNA association. We locate three amino acid residues within the Thpok BTB domain that are required for both NuRD binding and Thpok functions. Conversely, a chimeric protein merging the NuRD component Mta2 to a BTB-less version of Thpok supports CD4+ T cell development, indicating that NuRD recruitment recapitulates the functions of the Thpok BTB domain. We found that NuRD mediates Thpok repression of CD8+ lineage genes, including the transcription factor Runx3, but is dispensable for Cd4 expression. We show that these functions cannot be performed by the BTB domain of the Thpok-related factor Bcl6, which fails to bind NuRD. Thus, cofactor binding critically contributes to the functional specificity of BTB-ZF factors, which control the differentiation of most hematopoietic subsets.
Collapse
Affiliation(s)
- Yayi Gao
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Monica Zamisch
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Melanie Vacchio
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Laura Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.,Immunology Graduate Group, University of Pennsylvania Medical School, Philadelphia, PA, USA
| | - Thomas Ciucci
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Elliott L Paine
- Collaborative Protein Technology Resource, Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Gaelyn C Lyons
- Collaborative Protein Technology Resource, Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jia Nie
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Qi Xiao
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ekaterina Zvezdova
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Paul E Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Charles R Vinson
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa M Jenkins
- Immunology Graduate Group, University of Pennsylvania Medical School, Philadelphia, PA, USA
| | - Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
7
|
Jiang Z, Qin L, Tang Y, Liao R, Shi J, He B, Li S, Zheng D, Cui Y, Wu Q, Long Y, Yao Y, Wei Z, Hong Q, Wu Y, Mai Y, Gou S, Li X, Weinkove R, Norton S, Luo W, Feng W, Zhou H, Liu Q, Chen J, Lai L, Chen X, Pei D, Graf T, Liu X, Li Y, Liu P, Zhang Z, Li P. Human induced-T-to-natural killer cells have potent anti-tumour activities. Biomark Res 2022; 10:13. [PMID: 35331335 PMCID: PMC8943975 DOI: 10.1186/s40364-022-00358-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adoptive cell therapy (ACT) is a particularly promising area of cancer immunotherapy, engineered T and NK cells that express chimeric antigen receptors (CAR) are being explored for treating hematopoietic malignancies but exhibit limited clinical benefits for solid tumour patients, successful cellular immunotherapy of solid tumors demands new strategies. METHODS Inactivation of BCL11B were performed by CRISPR/Cas9 in human T cells. Immunophenotypic and transcriptional profiles of sgBCL11B T cells were characterized by cytometer and transcriptomics, respectively. sgBCL11B T cells are further engineered with chimeric antigen receptor. Anti-tumor activity of ITNK or CAR-ITNK cells were evaluated in preclinical and clinical studies. RESULTS We report that inactivation of BCL11B in human CD8+ and CD4+ T cells induced their reprogramming into induced T-to-natural killer cells (ITNKs). ITNKs contained a diverse TCR repertoire; downregulated T cell-associated genes such as TCF7 and LEF1; and expressed high levels of NK cell lineage-associated genes. ITNKs and chimeric antigen receptor (CAR)-transduced ITNKs selectively lysed a variety of cancer cells in culture and suppressed the growth of solid tumors in xenograft models. In a preliminary clinical study, autologous administration of ITNKs in patients with advanced solid tumors was well tolerated, and tumor stabilization was seen in six out nine patients, with one partial remission. CONCLUSIONS The novel ITNKs thus may be a promising novel cell source for cancer immunotherapy. TRIAL REGISTRATION ClinicalTrials.gov, NCT03882840 . Registered 20 March 2019-Retrospectively registered.
Collapse
Affiliation(s)
- Zhiwu Jiang
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Le Qin
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yuou Tang
- Department of Radiology; Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment; Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rui Liao
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jingxuan Shi
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Bingjia He
- Department of Radiology; Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment; Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanglin Li
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Diwei Zheng
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yuanbin Cui
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiting Wu
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Youguo Long
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yao Yao
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhihui Wei
- Guangdong Zhaotai InVivo Biomedicine Co. Ltd., Guangzhou, China
| | - Qilan Hong
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Yi Wu
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yuanbang Mai
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Shixue Gou
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoping Li
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Robert Weinkove
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | - Wei Luo
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Weineng Feng
- Department of Head and Neck/Thoracic Medical Oncology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Hongsheng Zhou
- Department of Hematology, Nanfang Hospital, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Guangzhou, China
| | - Jiekai Chen
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Liangxue Lai
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xinwen Chen
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Duanqing Pei
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Thomas Graf
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Xingguo Liu
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yangqiu Li
- Institute of Hematology, Medical College, Jinan University, Guangzhou, China
| | - Pentao Liu
- School of Biomedical Sciences, Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China.
| | - Zhenfeng Zhang
- Department of Radiology; Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment; Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Peng Li
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China. .,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China.
| |
Collapse
|
8
|
Sirtuins are crucial regulators of T cell metabolism and functions. Exp Mol Med 2022; 54:207-215. [PMID: 35296782 PMCID: PMC8979958 DOI: 10.1038/s12276-022-00739-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/23/2021] [Indexed: 01/01/2023] Open
Abstract
It is well known that metabolism underlies T cell differentiation and functions. The pathways regulating T cell metabolism and function are interconnected, and changes in T cell metabolic activity directly impact the effector functions and fate of T cells. Thus, understanding how metabolic pathways influence immune responses and ultimately affect disease progression is paramount. Epigenetic and posttranslational modification mechanisms have been found to control immune responses and metabolic reprogramming. Sirtuins are NAD+-dependent histone deacetylases that play key roles during cellular responses to a variety of stresses and have recently been reported to have potential roles in immune responses. Therefore, sirtuins are of significant interest as therapeutic targets to treat immune-related diseases and enhance antitumor immunity. This review aims to illustrate the potential roles of sirtuins in different subtypes of T cells during the adaptive immune response. Sirtuins, enzymes that regulate how cells respond to stress, regulate T cell metabolism and functions, and therefore blocking or boosting sirtuins influences immune responses. As part of the immune system, some types of T cells attack specific targets; others keep the immune response in check. Imene Hamaidi and Sungjune Kim at H. Lee Moffitt Cancer Center, Tampa, USA, have reviewed how sirtuins affect different subsets of T cells to either promote or suppress immune responses. Boosting sirtuins that increase the function of inflammation-suppressing T cells can improve outcomes for transplant recipients or help treat autoimmune diseases. Conversely, stimulating immune-activating sirtuins can help re-energize exhausted antitumor T cells. Understanding the complex web of sirtuin–T cell interactions may help in developing therapeutic strategies for improving transplant outcomes, and for treating autoimmune diseases and cancer.
Collapse
|
9
|
Lu HY, Sertori R, Contreras AV, Hamer M, Messing M, Del Bel KL, Lopez-Rangel E, Chan ES, Rehmus W, Milner JD, McNagny KM, Lehman A, Wiest DL, Turvey SE. A Novel Germline Heterozygous BCL11B Variant Causing Severe Atopic Disease and Immune Dysregulation. Front Immunol 2021; 12:788278. [PMID: 34887873 PMCID: PMC8650153 DOI: 10.3389/fimmu.2021.788278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
B-cell lymphoma/leukemia 11B (BCL11B) is a C2H2 zinc finger transcription factor that is critically important for regulating the development and function of a variety of systems including the central nervous system, the skin, and the immune system. Germline heterozygous variants are associated with a spectrum of clinical disorders, including severe combined immunodeficiency as well as neurological, craniofacial, and dermal defects. Of these individuals, ~50% present with severe allergic disease. Here, we report the detailed clinical and laboratory workup of one of the most severe BCL11B-dependent atopic cases to date. Leveraging a zebrafish model, we were able to confirm a strong T-cell defect in the patient. Based on these data, we classify germline BCL11B-dependent atopic disease as a novel primary atopic disorder.
Collapse
Affiliation(s)
- Henry Y. Lu
- Department of Pediatrics, British Columbia Children’s Hospital, The University of British Columbia, Vancouver, BC, Canada
- Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Robert Sertori
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Alejandra V. Contreras
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Mark Hamer
- Biomedical Research Centre, The University of British Columbia, Vancouver, BC, Canada
| | - Melina Messing
- Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
- Biomedical Research Centre, The University of British Columbia, Vancouver, BC, Canada
| | - Kate L. Del Bel
- Department of Pediatrics, British Columbia Children’s Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Elena Lopez-Rangel
- Department of Pediatrics, British Columbia Children’s Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Edmond S. Chan
- Department of Pediatrics, British Columbia Children’s Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Wingfield Rehmus
- Department of Pediatrics, British Columbia Children’s Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Joshua D. Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, United States
| | - Kelly M. McNagny
- Biomedical Research Centre, The University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Anna Lehman
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - David L. Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Stuart E. Turvey
- Department of Pediatrics, British Columbia Children’s Hospital, The University of British Columbia, Vancouver, BC, Canada
- Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Moreira TG, Mangani D, Cox LM, Leibowitz J, Lobo ELC, Oliveira MA, Gauthier CD, Nakagaki BN, Willocq V, Song A, Guo L, Lima DCA, Murugaiyan G, Butovsky O, Gabriely G, Anderson AC, Rezende RM, Faria AMC, Weiner HL. PD-L1 + and XCR1 + dendritic cells are region-specific regulators of gut homeostasis. Nat Commun 2021; 12:4907. [PMID: 34389726 PMCID: PMC8363668 DOI: 10.1038/s41467-021-25115-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal mucosa constitutes an environment of closely regulated immune cells. Dendritic cells (DC) interact with the gut microbiome and antigens and are important in maintaining gut homeostasis. Here, we investigate DC transcriptome, phenotype and function in five anatomical locations of the gut lamina propria (LP) which constitute different antigenic environments. We show that DC from distinct gut LP compartments induce distinct T cell differentiation and cytokine secretion. We also find that PD-L1+ DC in the duodenal LP and XCR1+ DC in the colonic LP comprise distinct tolerogenic DC subsets that are crucial for gut homeostasis. Mice lacking PD-L1+ and XCR1+ DC have a proinflammatory gut milieu associated with an increase in Th1/Th17 cells and a decrease in Treg cells and have exacerbated disease in the models of 5-FU-induced mucositis and DSS-induced colitis. Our findings identify PD-L1+ and XCR1+ DC as region-specific physiologic regulators of intestinal homeostasis.
Collapse
Affiliation(s)
- Thais G Moreira
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Davide Mangani
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura M Cox
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey Leibowitz
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eduardo L C Lobo
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mariana A Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Christian D Gauthier
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brenda N Nakagaki
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Valerie Willocq
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anya Song
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lydia Guo
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David C A Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gopal Murugaiyan
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Oleg Butovsky
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Galina Gabriely
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana C Anderson
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rafael M Rezende
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana Maria C Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Howard L Weiner
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Allergic asthma reflects the interplay between inflammatory mediators and immune, airway epithelial, and other cells. This review summarizes key insights in these areas over the past year. RECENT FINDINGS Key findings over the past year demonstrate that epithelial cells mediate tight junction breakdown to facilitate the development of asthma-like disease in mice. Innate lymph lymphoid cells (ILC), while previously shown to promote allergic airway disease, have now been shown to inhibit the development of severe allergic disease in mice. Fibrinogen cleavage products (previously shown to mediate allergic airway disease and macrophage fungistatic immunity by signaling through Toll-like receptor 4) have now been shown to first bind to the integrin Mac-1 (CD11c/CD18). Therapeutically, recent discoveries include the development of the antiasthma drug PM-43I that inhibits the allergy-related transcription factors STAT5 and STAT6 in mice, and confirmatory evidence of the efficacy of the antifungal agent voriconazole in human asthma. SUMMARY Studies over the past year provide critical new insight into the mechanisms by which epithelial cells, ILC, and coagulation factors contribute to the expression of asthma-like disease and further support the development antiasthma drugs that block STAT factors and inhibit fungal growth in the airways.
Collapse
|
12
|
Scourzic L, Salataj E, Apostolou E. Deciphering the Complexity of 3D Chromatin Organization Driving Lymphopoiesis and Lymphoid Malignancies. Front Immunol 2021; 12:669881. [PMID: 34054841 PMCID: PMC8160312 DOI: 10.3389/fimmu.2021.669881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Proper lymphopoiesis and immune responses depend on the spatiotemporal control of multiple processes, including gene expression, DNA recombination and cell fate decisions. High-order 3D chromatin organization is increasingly appreciated as an important regulator of these processes and dysregulation of genomic architecture has been linked to various immune disorders, including lymphoid malignancies. In this review, we present the general principles of the 3D chromatin topology and its dynamic reorganization during various steps of B and T lymphocyte development and activation. We also discuss functional interconnections between architectural, epigenetic and transcriptional changes and introduce major key players of genomic organization in B/T lymphocytes. Finally, we present how alterations in architectural factors and/or 3D genome organization are linked to dysregulation of the lymphopoietic transcriptional program and ultimately to hematological malignancies.
Collapse
Affiliation(s)
| | | | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
13
|
The transcription factors GFI1 and GFI1B as modulators of the innate and acquired immune response. Adv Immunol 2021; 149:35-94. [PMID: 33993920 DOI: 10.1016/bs.ai.2021.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
GFI1 and GFI1B are small nuclear proteins of 45 and 37kDa, respectively, that have a simple two-domain structure: The first consists of a group of six c-terminal C2H2 zinc finger motifs that are almost identical in sequence and bind to very similar, specific DNA sites. The second is an N-terminal 20 amino acid SNAG domain that can bind to the pocket of the histone demethylase KDM1A (LSD1) near its active site. When bound to DNA, both proteins act as bridging factors that bring LSD1 and associated proteins into the vicinity of methylated substrates, in particular histone H3 or TP53. GFI1 can also bring methyl transferases such as PRMT1 together with its substrates that include the DNA repair proteins MRE11 and 53BP1, thereby enabling their methylation and activation. While GFI1B is expressed almost exclusively in the erythroid and megakaryocytic lineage, GFI1 has clear biological roles in the development and differentiation of lymphoid and myeloid immune cells. GFI1 is required for lymphoid/myeloid and monocyte/granulocyte lineage decision as well as the correct nuclear interpretation of a number of important immune-signaling pathways that are initiated by NOTCH1, interleukins such as IL2, IL4, IL5 or IL7, by the pre TCR or -BCR receptors during early lymphoid differentiation or by T and B cell receptors during activation of lymphoid cells. Myeloid cells also depend on GFI1 at both stages of early differentiation as well as later stages in the process of activation of macrophages through Toll-like receptors in response to pathogen-associated molecular patterns. The knowledge gathered on these factors over the last decades puts GFI1 and GFI1B at the center of many biological processes that are critical for both the innate and acquired immune system.
Collapse
|
14
|
Sidwell T, Rothenberg EV. Epigenetic Dynamics in the Function of T-Lineage Regulatory Factor Bcl11b. Front Immunol 2021; 12:669498. [PMID: 33936112 PMCID: PMC8079813 DOI: 10.3389/fimmu.2021.669498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/23/2021] [Indexed: 11/18/2022] Open
Abstract
The transcription factor Bcl11b is critically required to support the development of diverse cell types, including T lymphocytes, type 2 innate lymphoid cells, neurons, craniofacial mesenchyme and keratinocytes. Although in T cell development its onset of expression is tightly linked to T-lymphoid lineage commitment, the Bcl11b protein in fact regulates substantially different sets of genes in different lymphocyte populations, playing strongly context-dependent roles. Somewhat unusually for lineage-defining transcription factors with site-specific DNA binding activity, much of the reported chromatin binding of Bcl11b appears to be indirect, or guided in large part by interactions with other transcription factors. We describe evidence suggesting that a further way in which Bcl11b exerts such distinct stage-dependent functions is by nucleating changes in regional suites of epigenetic modifications through recruitment of multiple families of chromatin-modifying enzyme complexes. Herein we explore what is - and what remains to be - understood of the roles of Bcl11b, its cofactors, and how it modifies the epigenetic state of the cell to enforce its diverse set of context-specific transcriptional and developmental programs.
Collapse
Affiliation(s)
- Tom Sidwell
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
15
|
Rothenberg EV. Logic and lineage impacts on functional transcription factor deployment for T-cell fate commitment. Biophys J 2021; 120:4162-4181. [PMID: 33838137 PMCID: PMC8516641 DOI: 10.1016/j.bpj.2021.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 11/19/2022] Open
Abstract
Transcription factors are the major agents that read the regulatory sequence information in the genome to initiate changes in expression of specific genes, both in development and in physiological activation responses. Their actions depend on site-specific DNA binding and are largely guided by their individual DNA target sequence specificities. However, their action is far more conditional in a real developmental context than would be expected for simple reading of local genomic DNA sequence, which is common to all cells in the organism. They are constrained by slow-changing chromatin states and by interactions with other transcription factors, which affect their occupancy patterns of potential sites across the genome. These mechanisms lead to emergent discontinuities in function even for transcription factors with minimally changing expression. This is well revealed by diverse lineages of blood cells developing throughout life from hematopoietic stem cells, which use overlapping combinations of transcription factors to drive strongly divergent gene regulation programs. Here, using development of T lymphocytes from hematopoietic multipotent progenitor cells as a focus, recent evidence is reviewed on how binding specificity and dynamics, transcription factor cooperativity, and chromatin state changes impact the effective regulatory functions of key transcription factors including PU.1, Runx1, Notch-RBPJ, and Bcl11b.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California.
| |
Collapse
|
16
|
Abstract
For over 35 years since Mosmann and Coffman proposed the seminal “type 1 T helper (Th1)/type 2 T helper (Th2)” hypothesis in 1986, the immunological community has appreciated that naïve CD4 T cells need to make important decisions upon their activation, namely to differentiate towards a Th1, Th2, Th17 (interleukin-17-producing T helper), follicular T helper (Tfh), or regulatory T cell (Treg) fate to orchestrate a variety of adaptive immune responses. The major molecular underpinnings of the Th1/Th2 effector fate choice had been initially characterized using excellent reductionist in vitro culture systems, through which the transcription factors T-bet and GATA3 were identified as the master regulators for the differentiation of Th1 and Th2 cells, respectively. However, Th1/Th2 cell differentiation and their cellular heterogeneity are usually determined by a combinatorial expression of multiple transcription factors, particularly in vivo, where dendritic cell (DC) and innate lymphoid cell (ILC) subsets can also influence T helper lineage choices. In addition, inflammatory cytokines that are capable of inducing Th17 cell differentiation are also found to be induced during typical Th1- or Th2-related immune responses, resulting in an alternative differentiation pathway, transiting from a Th17 cell phenotype towards Th1 or Th2 cells. In this review, we will discuss the recent advances in the field, focusing on some new players in the transcriptional network, contributions of DCs and ILCs, and alternative differentiation pathways towards understanding the Th1/Th2 effector choice in vivo.
Collapse
Affiliation(s)
- Matthew J Butcher
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Drashansky TT, Helm EY, Curkovic N, Cooper J, Cheng P, Chen X, Gautam N, Meng L, Kwiatkowski AJ, Collins WO, Keselowsky BG, Sant'Angelo D, Huo Z, Zhang W, Zhou L, Avram D. BCL11B is positioned upstream of PLZF and RORγt to control thymic development of mucosal-associated invariant T cells and MAIT17 program. iScience 2021; 24:102307. [PMID: 33870128 PMCID: PMC8042176 DOI: 10.1016/j.isci.2021.102307] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/02/2020] [Accepted: 03/10/2021] [Indexed: 12/25/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells recognize microbial riboflavin metabolites presented by MR1 and play role in immune responses to microbial infections and tumors. We report here that absence of the transcription factor (TF) Bcl11b in mice alters predominantly MAIT17 cells in the thymus and further in the lung, both at steady state and following Salmonella infection. Transcriptomics and ChIP-seq analyses show direct control of TCR signaling program and position BCL11B upstream of essential TFs of MAIT17 program, including RORγt, ZBTB16 (PLZF), and MAF. BCL11B binding at key MAIT17 and at TCR signaling program genes in human MAIT cells occurred mostly in regions enriched for H3K27Ac. Unexpectedly, in human MAIT cells, BCL11B also bound at MAIT1 program genes, at putative active enhancers, although this program was not affected in mouse MAIT cells in the absence of Bcl11b. These studies endorse BCL11B as an essential TF for MAIT cells both in mice and humans. BCL11B controls MAIT cell development in mice, predominantly MAIT17 lineage BCL11B sustains MAIT17 and TCR signaling programs at steady state and in infection BCL11B binds at MAIT17 and TCR program genes in human MAIT cells Many BCL11B binding sites at MAIT17 and TCR genes are at putative active enhancers
Collapse
Affiliation(s)
- Theodore T Drashansky
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Eric Y Helm
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Nina Curkovic
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jaimee Cooper
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Pingyan Cheng
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL 33612, USA
| | - Xianghong Chen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL 33612, USA
| | - Namrata Gautam
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL 33612, USA
| | - Lingsong Meng
- Department of Biostatistics, College of Medicine, College of Public Health & Health Professions, University of Florida, Gainesville, FL 32611, USA
| | - Alexander J Kwiatkowski
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - William O Collins
- Department of Otolaryngology, College of Medicine, University of Florida, Gainesville, FL 32605, USA
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Derek Sant'Angelo
- Department of Pediatrics, The Child Health Institute of NJ, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Medicine, College of Public Health & Health Professions, University of Florida, Gainesville, FL 32611, USA
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,UF Health Cancer Center, Gainesville, FL 32610, USA
| | - Liang Zhou
- UF Health Cancer Center, Gainesville, FL 32610, USA.,Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Dorina Avram
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL 33612, USA.,UF Health Cancer Center, Gainesville, FL 32610, USA
| |
Collapse
|
18
|
Holmes TD, Pandey RV, Helm EY, Schlums H, Han H, Campbell TM, Drashansky TT, Chiang S, Wu CY, Tao C, Shoukier M, Tolosa E, Von Hardenberg S, Sun M, Klemann C, Marsh RA, Lau CM, Lin Y, Sun JC, Månsson R, Cichocki F, Avram D, Bryceson YT. The transcription factor Bcl11b promotes both canonical and adaptive NK cell differentiation. Sci Immunol 2021; 6:6/57/eabc9801. [PMID: 33712472 DOI: 10.1126/sciimmunol.abc9801] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022]
Abstract
Epigenetic landscapes can provide insight into regulation of gene expression and cellular diversity. Here, we examined the transcriptional and epigenetic profiles of seven human blood natural killer (NK) cell populations, including adaptive NK cells. The BCL11B gene, encoding a transcription factor (TF) essential for T cell development and function, was the most extensively regulated, with expression increasing throughout NK cell differentiation. Several Bcl11b-regulated genes associated with T cell signaling were specifically expressed in adaptive NK cell subsets. Regulatory networks revealed reciprocal regulation at distinct stages of NK cell differentiation, with Bcl11b repressing RUNX2 and ZBTB16 in canonical and adaptive NK cells, respectively. A critical role for Bcl11b in driving NK cell differentiation was corroborated in BCL11B-mutated patients and by ectopic Bcl11b expression. Moreover, Bcl11b was required for adaptive NK cell responses in a murine cytomegalovirus model, supporting expansion of these cells. Together, we define the TF regulatory circuitry of human NK cells and uncover a critical role for Bcl11b in promoting NK cell differentiation and function.
Collapse
Affiliation(s)
- Tim D Holmes
- Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, N-5021 Bergen, Norway. .,Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| | - Ram Vinay Pandey
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| | - Eric Y Helm
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Heinrich Schlums
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| | - Hongya Han
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| | - Tessa M Campbell
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| | - Theodore T Drashansky
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Samuel Chiang
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Cheng-Ying Wu
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Christine Tao
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Miao Sun
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Christian Klemann
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Colleen M Lau
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yin Lin
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX 75246, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Robert Månsson
- Centre for Hematology and Regenerative Medicine, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| | - Frank Cichocki
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Dorina Avram
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Yenan T Bryceson
- Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, N-5021 Bergen, Norway. .,Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| |
Collapse
|
19
|
Dybska E, Adams AT, Duclaux-Loras R, Walkowiak J, Nowak JK. Waiting in the wings: RUNX3 reveals hidden depths of immune regulation with potential implications for inflammatory bowel disease. Scand J Immunol 2021; 93:e13025. [PMID: 33528856 DOI: 10.1111/sji.13025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Complex interactions between the environment and the mucosal immune system underlie inflammatory bowel disease (IBD). The involved cytokine signalling pathways are modulated by a number of transcription factors, one of which is runt-related transcription factor 3 (RUNX3). OBJECTIVE To systematically review the immune roles of RUNX3 in immune regulation, with a focus on the context of IBD. METHODS Relevant articles and reviews were identified through a Scopus search in April 2020. Information was categorized by immune cell types, analysed and synthesized. IBD transcriptome data sets and FANTOM5 regulatory networks were processed in order to complement the literature review. RESULTS The available evidence on the immune roles of RUNX3 allowed for its description in twelve cell types: intraepithelial lymphocyte, Th1, Th2, Th17, Treg, double-positive T, cytotoxic T, B, dendritic, innate lymphoid, natural killer and macrophages. In the gut, the activity of RUNX3 is multifaceted and context-dependent: it may promote homeostasis or exacerbated reactions via cytokine signalling and regulation of receptor expression. RUNX3 is mostly engaged in pathways involving ThPOK, T-bet, IFN-γ, TGF-β/IL-2Rβ, GATA/CBF-β, SMAD/p300 and a number of miRNAs. RUNX3 targets relevant to IBD may include RAG1, OSM and IL-17B. Moreover, in IBD RUNX3 expression correlates positively with GZMM, and negatively with IFNAR1, whereas in controls, it strongly associates with TGFBR3. CONCLUSIONS Dysregulation of RUNX3, mostly in the form of deficiency, likely contributes to IBD pathogenesis. More clinical research is needed to examine RUNX3 in IBD.
Collapse
Affiliation(s)
- Emilia Dybska
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Alex T Adams
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Rémi Duclaux-Loras
- INSERM U1111, Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Lyon, France
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Jan K Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
20
|
Valisno JAC, May J, Singh K, Helm EY, Venegas L, Budbazar E, Goodman JB, Nicholson CJ, Avram D, Cohen RA, Mitchell GF, Morgan KG, Seta F. BCL11B Regulates Arterial Stiffness and Related Target Organ Damage. Circ Res 2021; 128:755-768. [PMID: 33530702 PMCID: PMC7969164 DOI: 10.1161/circresaha.120.316666] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Supplemental Digital Content is available in the text. BCL11B (B-cell leukemia 11b) is a transcription factor known as an essential regulator of T lymphocytes and neuronal development during embryogenesis. A genome-wide association study showed that a gene desert region downstream of BCL11B, known to function as a BCL11B enhancer, harbors single nucleotide polymorphisms associated with increased arterial stiffness. However, a role for BCL11B in the adult cardiovascular system is unknown.
Collapse
Affiliation(s)
- Jeff Arni C Valisno
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, MA (J.A.C.V., J.M., L.V., E.B., J.B.G., R.A.C., F.S.)
| | - Joel May
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, MA (J.A.C.V., J.M., L.V., E.B., J.B.G., R.A.C., F.S.)
| | - Kuldeep Singh
- Department of Health Sciences, Sargent College, Boston University, MA (K.S., C.J.N., K.G.M.)
| | - Eric Y Helm
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville (E.Y.H., D.A.)
| | - Lisia Venegas
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, MA (J.A.C.V., J.M., L.V., E.B., J.B.G., R.A.C., F.S.)
| | - Enkhjargal Budbazar
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, MA (J.A.C.V., J.M., L.V., E.B., J.B.G., R.A.C., F.S.)
| | - Jena B Goodman
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, MA (J.A.C.V., J.M., L.V., E.B., J.B.G., R.A.C., F.S.)
| | - Christopher J Nicholson
- Department of Health Sciences, Sargent College, Boston University, MA (K.S., C.J.N., K.G.M.)
| | - Dorina Avram
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville (E.Y.H., D.A.).,Department of Immunology, Moffitt Cancer Center, Tampa, FL (D.A.)
| | - Richard A Cohen
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, MA (J.A.C.V., J.M., L.V., E.B., J.B.G., R.A.C., F.S.)
| | | | - Kathleen G Morgan
- Department of Health Sciences, Sargent College, Boston University, MA (K.S., C.J.N., K.G.M.)
| | - Francesca Seta
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, MA (J.A.C.V., J.M., L.V., E.B., J.B.G., R.A.C., F.S.)
| |
Collapse
|
21
|
Daher MT, Bausero P, Agbulut O, Li Z, Parlakian A. Bcl11b/Ctip2 in Skin, Tooth, and Craniofacial System. Front Cell Dev Biol 2020; 8:581674. [PMID: 33363142 PMCID: PMC7758212 DOI: 10.3389/fcell.2020.581674] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
Ctip2/Bcl11b is a zinc finger transcription factor with dual action (repression/activation) that couples epigenetic regulation to gene transcription during the development of various tissues. It is involved in a variety of physiological responses under healthy and pathological conditions. Its role and mechanisms of action are best characterized in the immune and nervous systems. Furthermore, its implication in the development and homeostasis of other various tissues has also been reported. In the present review, we describe its role in skin development, adipogenesis, tooth formation and cranial suture ossification. Experimental data from several studies demonstrate the involvement of Bcl11b in the control of the balance between cell proliferation and differentiation during organ formation and repair, and more specifically in the context of stem cell self-renewal and fate determination. The impact of mutations in the coding sequences of Bcl11b on the development of diseases such as craniosynostosis is also presented. Finally, we discuss genome-wide association studies that suggest a potential influence of single nucleotide polymorphisms found in the 3’ regulatory region of Bcl11b on the homeostasis of the cardiovascular system.
Collapse
Affiliation(s)
- Marie-Thérèse Daher
- Biological Adaptation and Ageing, Inserm ERL U1164, UMR CNRS 8256, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Pedro Bausero
- Biological Adaptation and Ageing, Inserm ERL U1164, UMR CNRS 8256, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Onnik Agbulut
- Biological Adaptation and Ageing, Inserm ERL U1164, UMR CNRS 8256, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Zhenlin Li
- Biological Adaptation and Ageing, Inserm ERL U1164, UMR CNRS 8256, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Ara Parlakian
- Biological Adaptation and Ageing, Inserm ERL U1164, UMR CNRS 8256, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| |
Collapse
|
22
|
Wu J, Liu Y, Hu J, Xie J, Nie Z, Yin W. Protective activity of asatone against ovalbumin-induced allergic asthma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:2487-2494. [PMID: 33165354 PMCID: PMC7642709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Allergic asthma is a chronic lung disease characterized by wheezing, coughing, chest tightness and shortness of breath. Clinically, the treatments against asthma focus on controlling the symptoms rather than inhibiting recurrence radically. Additionally, local and systemic side effects caused by current treatments are worthy of attention. Therefore, a novel therapeutic strategy against asthma is needed. Asatone is a pharmacologically active component from Radix et Rhizoma Asari, which has anti-inflammatory effects in lipopolysaccharide-induced lung injury. In the present study, we showed that asatone could protect mice against OVA-induced asthma, as manifested by attenuating inflammation infiltration, mucus production, and airway hyperreactivity and suppressing the elevation of IL-4, IL-5, and IL-13 in broncho-alveolar lavage fluid. Overall, results of the present study support use of asatone as a potent therapeutic strategy for clinical treatment of allergic asthma.
Collapse
Affiliation(s)
- Jing Wu
- Department of Gerontology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Yaqiong Liu
- Department of Gerontology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Jun Hu
- Department of Gerontology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Jun Xie
- Department of Gerontology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Zuqiong Nie
- Department of Gerontology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Wanling Yin
- Department of Gerontology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
23
|
Ren H, Ji W, Yu X, Ge D, Dong R, Wang Q, Liu M. Mahuang Xixin Fuzi decoction protects against ovalbumin-induced allergic rhinitis by inhibiting type 2 innate lymphoid cells in mice. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2019. [DOI: 10.1016/j.jtcms.2019.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
24
|
Drashansky TT, Helm E, Huo Z, Curkovic N, Kumar P, Luo X, Parthasarathy U, Zuniga A, Cho JJ, Lorentsen KJ, Xu Z, Uddin M, Moshkani S, Zhou L, Avram D. Bcl11b prevents fatal autoimmunity by promoting T reg cell program and constraining innate lineages in T reg cells. SCIENCE ADVANCES 2019; 5:eaaw0480. [PMID: 31457080 PMCID: PMC6685710 DOI: 10.1126/sciadv.aaw0480] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 06/28/2019] [Indexed: 05/15/2023]
Abstract
Regulatory T (Treg) cells are essential for peripheral tolerance and rely on the transcription factor (TF) Foxp3 for their generation and function. Several other TFs are critical for the Treg cell program. We found that mice deficient in Bcl11b TF solely in Treg cells developed fatal autoimmunity, and Bcl11b-deficient Treg cells had severely altered function. Bcl11b KO Treg cells showed decreased functional marker levels in homeostatic conditions, inflammation, and tumors. Bcl11b controlled expression of essential Treg program genes at steady state and in inflammation. Bcl11b bound to genomic regulatory regions of Treg program genes in both human and mouse Treg cells, overlapping with Foxp3 binding; these genes showed altered chromatin accessibility in the absence of Bcl11b. Additionally, Bcl11b restrained myeloid and NK cell programs in Treg cells. Our study provides new mechanistic insights on the Treg cell program and identity control, with major implications for therapies in autoimmunity and cancer.
Collapse
MESH Headings
- Animals
- Autoimmunity
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Lineage
- Colitis/etiology
- Colitis/immunology
- Colitis/pathology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/mortality
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Fetus/immunology
- Forkhead Transcription Factors/metabolism
- Humans
- Kaplan-Meier Estimate
- Male
- Melanoma, Experimental/immunology
- Melanoma, Experimental/mortality
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Protein Binding
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Skin/pathology
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Theodore T. Drashansky
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Eric Helm
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Medicine, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA
| | - Nina Curkovic
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Preet Kumar
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Xiaoping Luo
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Upasana Parthasarathy
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Ashley Zuniga
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jonathan J. Cho
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kyle J. Lorentsen
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zhiwei Xu
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mohammad Uddin
- Department of Microbiology and Immunology, Albany Medical College, Albany, NY 12208, USA
| | | | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
- UF Health Cancer Center, Gainesville, FL 32610, USA
| | - Dorina Avram
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- UF Health Cancer Center, Gainesville, FL 32610, USA
- Corresponding author.
| |
Collapse
|
25
|
Warren JL, MacIver NJ. Regulation of Adaptive Immune Cells by Sirtuins. Front Endocrinol (Lausanne) 2019; 10:466. [PMID: 31354630 PMCID: PMC6637536 DOI: 10.3389/fendo.2019.00466] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/26/2019] [Indexed: 12/16/2022] Open
Abstract
It is now well-established that the pathways that control lymphocyte metabolism and function are intimately linked, and changes in lymphocyte metabolism can influence and direct cellular function. Interestingly, a number of recent advances indicate that lymphocyte identity and metabolism is partially controlled via epigenetic regulation. Epigenetic mechanisms, such as changes in DNA methylation or histone acetylation, have been found to alter immune function and play a role in numerous chronic disease states. There are several enzymes that can mediate epigenetic changes; of particular interest are sirtuins, protein deacetylases that mediate adaptive responses to a variety of stresses (including calorie restriction and metabolic stress) and are now understood to play a significant role in immunity. This review will focus on recent advances in the understanding of how sirtuins affect the adaptive immune system. These pathways are of significant interest as therapeutic targets for the treatment of autoimmunity, cancer, and transplant tolerance.
Collapse
Affiliation(s)
- Jonathan L. Warren
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - Nancie J. MacIver
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, United States
- *Correspondence: Nancie J. MacIver
| |
Collapse
|
26
|
Chen Y, Mao ZD, Shi YJ, Qian Y, Liu ZG, Yin XW, Zhang Q. Comprehensive analysis of miRNA-mRNA-lncRNA networks in severe asthma. Epigenomics 2018; 11:115-131. [PMID: 30426778 DOI: 10.2217/epi-2018-0132] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AIM This study aimed to explore the molecular mechanism of severe asthma. MATERIALS & METHODS The shared and divergent differentially expressed mRNAs (DEmRNAs), miRNAs (DEmiRNAs) and lncRNAs (DElncRNAs) in asthma and severe asthma were identified by RNA-sequencing. Severe asthma-specific and shared DEmiRNA-DEmRNA-DElncRNA interaction networks were performed. RESULTS Compared with normal control, 1328 DEmRNAs, 608 DElncRNAs and 63 DEmiRNAs were identified in severe asthma. Compared with asthma, 95 DEmRNAs, 143 DElncRNAs and 96 DEmiRNAs were identified in severe asthma. MiR-133a-3p-EFHD2/CNN2-AC144831.1 interactions and miR-3613-3p-CD44/BCL11B-LINC00158/CTA-217C2.1/AC010976.2/RP11-641A6.2 interactions were speculated to involve with the development of severe asthma. The results of GSE69683 validation were generally consistent with our RNA-sequencing results. CONCLUSION This study provides clues for understanding the mechanism of severe asthma.
Collapse
Affiliation(s)
- Yi Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinlong Road, Changzhou 213003, PR China
| | - Zheng-Dao Mao
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinlong Road, Changzhou 213003, PR China
| | - Yu-Jia Shi
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinlong Road, Changzhou 213003, PR China
| | - Yan Qian
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinlong Road, Changzhou 213003, PR China
| | - Zhi-Guang Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinlong Road, Changzhou 213003, PR China
| | - Xiao-Wei Yin
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinlong Road, Changzhou 213003, PR China
| | - Qian Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinlong Road, Changzhou 213003, PR China
| |
Collapse
|