1
|
Wang Y, Chen W, Chen H, Gong M, Shao Y, Wang L, Bao D, Zou G. Editing a mushroom with high-digestibility using a novel endo-N-acetyl-β-D-glucosaminidase. Int J Biol Macromol 2025; 305:141165. [PMID: 39971052 DOI: 10.1016/j.ijbiomac.2025.141165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/21/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Fungi comprise approximately 2 % of the Earth's biomass; however, the human gastrointestinal tract has a limited capacity to digest fungal biomass. In this study, a novel endo-N-acetyl-β-D-glucosaminidase, Endo CM, was characterized in the mushroom-forming fungus Cordyceps militaris, where it plays a role in maintaining the integrity of the fungal cell wall. Through gene editing, the Endo CM promoter was engineered to remove the binding site of the CmCreA carbon catabolite repressor, and the transformant was named CmT. After 12 h of treatment with simulated digestive fluids, the residual mycelial biomass of CmT was reduced to 50.00 ± 1.57 %, compared with 69.47 ± 0.97 % (p = 0.00005) for the parent strain. CmT also released more amino acids during the simulated digestion, suggesting that the expression level of Endo CM affects the accessibility of mycelial biomass to digestive enzymes. Additionally, CmT produced fruiting bodies with improved flavor but impaired appearance. This study highlights the production of alternative proteins with high digestibility and provides a sustainable approach for breeding mushrooms with improved digestibility and absorption properties.
Collapse
Affiliation(s)
- Ying Wang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Rd., Shanghai 201403, China
| | - Wenjing Chen
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Rd., Shanghai 201403, China; College of Food Sciences and Technology, Shanghai Ocean University, 999 Huchenghuan Rd., Shanghai 201306, China
| | - Hongyu Chen
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Rd., Shanghai 201403, China
| | - Ming Gong
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Rd., Shanghai 201403, China
| | - Youran Shao
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Rd., Shanghai 201403, China
| | - Li Wang
- Pureway Biotechnology Ltd., No.1065, West Zhongshan Road, Changning District, Shanghai 200051, China
| | - Dapeng Bao
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Rd., Shanghai 201403, China.
| | - Gen Zou
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Rd., Shanghai 201403, China.
| |
Collapse
|
2
|
Bolino M, Haththotuwe Gamage N, Duman H, Abiodun O, De Mello AS, Karav S, Frese SA. Novel Endo-β- N-Acetylglucosaminidases Derived from Human Fecal Samples Selectively Release N-Glycans from Model Glycoproteins. Foods 2025; 14:1288. [PMID: 40282690 PMCID: PMC12025955 DOI: 10.3390/foods14081288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Three novel endo-β-N-acetylglucosaminidases (AVUL01, BCAC01, and BFIN01) classified as members of the glucoside hydrolase (GH) family 18 were identified from human fecal samples and then cloned and characterized for their ability to hydrolyze two distinct classes of N-glycans. Endo-β-N-acetylglucosaminidases (ENGases) are known for the hydrolysis of chitin and the N,N'-diacetylchitobiose core of N-linked glycans, depending on the glycan architecture. N-glycans have shown bioactivity as substrates in the human gut microbiome for microbes that encode ENGases, thus demonstrating their ecological relevance in the gut. However, distinct types of N-glycan structures, for example, oligomannosidic or complex, have been shown to enrich different microbes within the human gut. Novel advances in food technology have commercialized animal-derived dietary proteins with oligomannosidic instead of traditionally complex N-glycans using precision fermentation. This indicates that there is an unmet need to identify the classes of N-glycans that gut-derived ENGases act upon to determine whether these novel proteins alter gut ecology. AVUL01, BCAC01, and BFIN01 all demonstrated activity on exclusively oligomannosidic N-glycans from RNase B and bovine lactoferrin; however, they failed to show activity on complex or α-1,3-core fucosylated high-mannose N-glycans derived from fetuin and horseradish peroxidase, respectively. These results suggest that α-1,3 core fucosylation and complex N-glycan architecture inhibit the activity of AVUL01, BCAC01, and BFIN01. Furthermore, BFIN01 performed significantly better than BCAC01, resulting in a greater amount of N-glycans, suggesting that certain ENGases may possess enhanced specificity and kinetics as an evolutionary strategy to compete for resources.
Collapse
Affiliation(s)
- Matthew Bolino
- Department of Nutrition, University of Nevada, Reno, Reno, NV 89557, USA
| | - Nadini Haththotuwe Gamage
- Department of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, Reno, Reno, NV 89557, USA
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, 17020 Çanakkale, Türkiye
| | - Odunayo Abiodun
- Department of Nutrition, University of Nevada, Reno, Reno, NV 89557, USA
| | - Amilton S. De Mello
- Department of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, Reno, Reno, NV 89557, USA
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, 17020 Çanakkale, Türkiye
| | - Steven A. Frese
- Department of Nutrition, University of Nevada, Reno, Reno, NV 89557, USA
- University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| |
Collapse
|
3
|
Hsieh YC, Guan HH, Lin CC, Huang TY, Chuankhayan P, Chen NC, Wang NH, Hu PL, Tsai YC, Huang YC, Yoshimura M, Lin PJ, Hsieh YH, Chen CJ. Structure-Based High-Efficiency Homogeneous Antibody Platform by Endoglycosidase Sz Provides Insights into Its Transglycosylation Mechanism. JACS AU 2024; 4:2130-2150. [PMID: 38938812 PMCID: PMC11200250 DOI: 10.1021/jacsau.4c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 06/29/2024]
Abstract
Monoclonal antibodies (mAbs) have gradually dominated the drug markets for various diseases. Improvement of the therapeutic activities of mAbs has become a critical issue in the pharmaceutical industry. A novel endo-β-N-acetylglucosaminidase, EndoSz, from Streptococcus equisubsp. zooepidemicus Sz105 is discovered and applied to enhance the activities of mAbs. Our studies demonstrate that the mutant EndoSz-D234M possesses an excellent transglycosylation activity to generate diverse glycoconjugates on mAbs. We prove that EndoSz-D234M can be applied to various marketed therapeutic antibodies and those in development for antibody remodeling. The remodeled homogeneous antibodies (mAb-G2S2) produced by EndoSz-D234M increase the relative ADCC activities by 3-26-fold. We further report the high-resolution crystal structures of EndoSz-D234M in the apo-form at 2.15 Å and the complex form with a bound G2S2-oxazoline intermediate at 2.25 Å. A novel pH-jump method was utilized to obtain the complex structure with a high resolution. The detailed interactions of EndoSz-D234M and the carried G2S2-oxazoline are hence delineated. The oxazoline sits in a hole, named the oxa-hole, which stabilizes the G2S2-oxazoline in transit and catalyzes the further transglycosylation reaction while targeting Asn-GlcNAc (+1) of Fc. In the oxa-hole, the H-bonding network involved with oxazoline dominates the transglycosylation activity. A mobile loop2 (a.a. 152-159) of EndoSz-D234M reshapes the binding grooves for the accommodation of G2S2-oxazoline upon binding, at which Trp154 forms a hydrogen bond with Man (-2). The long loop4 (a.a. 236-248) followed by helix3 is capable of dominating the substrate selectivity of EndoSz-D234M. In addition, the stepwise transglycosylation behavior of EndoSz-D234M is elucidated. Based on the high-resolution structures of the apo-form and the bound form with G2S2-oxazoline as well as a systematic mutagenesis study of the relative transglycosylation activity, the transglycosylation mechanism of EndoSz-D234M is revealed.
Collapse
Affiliation(s)
- Yin-Cheng Hsieh
- OBI
Pharma, Inc., No. 508, Sec. 7, ZhongXiao E. Rd, Nangang Dist., Taipei City 115, Taiwan
| | - Hong-Hsiang Guan
- Life
Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101, Hsin-Ann Road, Hsinchu 300092, Taiwan
| | - Chien-Chih Lin
- Life
Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101, Hsin-Ann Road, Hsinchu 300092, Taiwan
| | - Teng-Yi Huang
- OBI
Pharma, Inc., No. 508, Sec. 7, ZhongXiao E. Rd, Nangang Dist., Taipei City 115, Taiwan
| | - Phimonphan Chuankhayan
- Life
Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101, Hsin-Ann Road, Hsinchu 300092, Taiwan
| | - Nai-Chi Chen
- Life
Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101, Hsin-Ann Road, Hsinchu 300092, Taiwan
| | - Nan-Hsuan Wang
- OBI
Pharma, Inc., No. 508, Sec. 7, ZhongXiao E. Rd, Nangang Dist., Taipei City 115, Taiwan
| | - Pu-Ling Hu
- OBI
Pharma, Inc., No. 508, Sec. 7, ZhongXiao E. Rd, Nangang Dist., Taipei City 115, Taiwan
| | - Yi-Chien Tsai
- OBI
Pharma, Inc., No. 508, Sec. 7, ZhongXiao E. Rd, Nangang Dist., Taipei City 115, Taiwan
| | - Yen-Chieh Huang
- Life
Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101, Hsin-Ann Road, Hsinchu 300092, Taiwan
| | - Masato Yoshimura
- Life
Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101, Hsin-Ann Road, Hsinchu 300092, Taiwan
| | - Pei-Ju Lin
- Life
Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101, Hsin-Ann Road, Hsinchu 300092, Taiwan
| | - Yih-Huang Hsieh
- OBI
Pharma, Inc., No. 508, Sec. 7, ZhongXiao E. Rd, Nangang Dist., Taipei City 115, Taiwan
| | - Chun-Jung Chen
- Life
Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101, Hsin-Ann Road, Hsinchu 300092, Taiwan
- Institute
of Biotechnology and industry Science, and University Center for Bioscience
and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
- Department
of Physics, National Tsing Hua University, Hsinchu 300044, Taiwan
- Department
of Biological Science and Technology, National
Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
4
|
Sudol ASL, Crispin M, Tews I. The IgG-specific endoglycosidases EndoS and EndoS2 are distinguished by conformation and antibody recognition. J Biol Chem 2024; 300:107245. [PMID: 38569940 PMCID: PMC11063906 DOI: 10.1016/j.jbc.2024.107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024] Open
Abstract
The IgG-specific endoglycosidases EndoS and EndoS2 from Streptococcus pyogenes can remove conserved N-linked glycans present on the Fc region of host antibodies to inhibit Fc-mediated effector functions. These enzymes are therefore being investigated as therapeutics for suppressing unwanted immune activation, and have additional application as tools for antibody glycan remodeling. EndoS and EndoS2 differ in Fc glycan substrate specificity due to structural differences within their catalytic glycosyl hydrolase domains. However, a chimeric EndoS enzyme with a substituted glycosyl hydrolase from EndoS2 loses catalytic activity, despite high structural homology between the two enzymes, indicating either mechanistic divergence of EndoS and EndoS2, or improperly-formed domain interfaces in the chimeric enzyme. Here, we present the crystal structure of the EndoS2-IgG1 Fc complex determined to 3.0 Å resolution. Comparison of complexed and unliganded EndoS2 reveals relative reorientation of the glycosyl hydrolase, leucine-rich repeat and hybrid immunoglobulin domains. The conformation of the complexed EndoS2 enzyme is also different when compared to the earlier EndoS-IgG1 Fc complex, and results in distinct contact surfaces between the two enzymes and their Fc substrate. These findings indicate mechanistic divergence of EndoS2 and EndoS. It will be important to consider these differences in the design of IgG-specific enzymes, developed to enable customizable antibody glycosylation.
Collapse
Affiliation(s)
- Abigail S L Sudol
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK.
| | - Ivo Tews
- School of Biological Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
5
|
Happonen L, Collin M. Immunomodulating Enzymes from Streptococcus pyogenes-In Pathogenesis, as Biotechnological Tools, and as Biological Drugs. Microorganisms 2024; 12:200. [PMID: 38258026 PMCID: PMC10818452 DOI: 10.3390/microorganisms12010200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Streptococcus pyogenes, or Group A Streptococcus, is an exclusively human pathogen that causes a wide variety of diseases ranging from mild throat and skin infections to severe invasive disease. The pathogenesis of S. pyogenes infection has been extensively studied, but the pathophysiology, especially of the more severe infections, is still somewhat elusive. One key feature of S. pyogenes is the expression of secreted, surface-associated, and intracellular enzymes that directly or indirectly affect both the innate and adaptive host immune systems. Undoubtedly, S. pyogenes is one of the major bacterial sources for immunomodulating enzymes. Major targets for these enzymes are immunoglobulins that are destroyed or modified through proteolysis or glycan hydrolysis. Furthermore, several enzymes degrade components of the complement system and a group of DNAses degrade host DNA in neutrophil extracellular traps. Additional types of enzymes interfere with cellular inflammatory and innate immunity responses. In this review, we attempt to give a broad overview of the functions of these enzymes and their roles in pathogenesis. For those enzymes where experimentally determined structures exist, the structural aspects of the enzymatic activity are further discussed. Lastly, we also discuss the emerging use of some of the enzymes as biotechnological tools as well as biological drugs and vaccines.
Collapse
Affiliation(s)
- Lotta Happonen
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, SE-22184 Lund, Sweden
| | - Mattias Collin
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, SE-22184 Lund, Sweden
| |
Collapse
|
6
|
Helm J, Grünwald-Gruber C, Urteil J, Pabst M, Altmann F. Simple Routes to Stable Isotope-Coded Native Glycans. Anal Chem 2024; 96:163-169. [PMID: 38153380 PMCID: PMC10782419 DOI: 10.1021/acs.analchem.3c03446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023]
Abstract
Understanding the biological role of protein-linked glycans requires the reliable identification of glycans. Isomer separation and characterization often entail mass spectrometric detection preceded by high-performance chromatography on porous graphitic carbon. To this end, stable isotope-labeled glycans have emerged as powerful tools for retention time normalization. Hitherto, such standards were obtained by chemoenzymatic or purely enzymatic methods, which introduce, e.g., 13C-containing N-acetyl groups or galactose into native glycans. Glycan release with anhydrous hydrazine opens another route for heavy isotope introduction via concomitant de-N-acetylation. Here, we describe that de-N-acetylation can also be achieved with hydrazine hydrate, which is a more affordable and less hazardous reagent. Despite the slower reaction rate, complete conversion is achievable in 72 h at 100 °C for glycans with biantennary glycans with or without sialic acids. Shorter incubation times allow for the isolation of intermediate products with a defined degree of free amino groups, facilitating introduction of different numbers of heavy isotopes. Mass encoded glycans obtained by this versatile approach can serve a broad range of applications, e.g., as internal standards for isomer-specific studies of N-glycans, O-glycans, and human milk oligosaccharide by LC-MS on either porous graphitic carbon or─following permethylation─on reversed phase.
Collapse
Affiliation(s)
- Johannes Helm
- Department of Chemistry, University of Natural Resources and Life Sciences
Vienna, Muthgasse 18, 1190 Vienna, Austria
| | | | | | | | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences
Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
7
|
García-Alija M, van Moer B, Sastre DE, Azzam T, Du JJ, Trastoy B, Callewaert N, Sundberg EJ, Guerin ME. Modulating antibody effector functions by Fc glycoengineering. Biotechnol Adv 2023; 67:108201. [PMID: 37336296 PMCID: PMC11027751 DOI: 10.1016/j.biotechadv.2023.108201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Antibody based drugs, including IgG monoclonal antibodies, are an expanding class of therapeutics widely employed to treat cancer, autoimmune and infectious diseases. IgG antibodies have a conserved N-glycosylation site at Asn297 that bears complex type N-glycans which, along with other less conserved N- and O-glycosylation sites, fine-tune effector functions, complement activation, and half-life of antibodies. Fucosylation, galactosylation, sialylation, bisection and mannosylation all generate glycoforms that interact in a specific manner with different cellular antibody receptors and are linked to a distinct functional profile. Antibodies, including those employed in clinical settings, are generated with a mixture of glycoforms attached to them, which has an impact on their efficacy, stability and effector functions. It is therefore of great interest to produce antibodies containing only tailored glycoforms with specific effects associated with them. To this end, several antibody engineering strategies have been developed, including the usage of engineered mammalian cell lines, in vitro and in vivo glycoengineering.
Collapse
Affiliation(s)
- Mikel García-Alija
- Structural Glycobiology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia 48903, Spain
| | - Berre van Moer
- VIB Center for Medical Biotechnology, VIB, Zwijnaarde, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium
| | - Diego E Sastre
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tala Azzam
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jonathan J Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Beatriz Trastoy
- Structural Glycoimmunology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia, 48903, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| | - Nico Callewaert
- VIB Center for Medical Biotechnology, VIB, Zwijnaarde, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium.
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Marcelo E Guerin
- Structural Glycobiology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia 48903, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
8
|
St. Germain R, Bossard EL, Corey L, Sholukh AM. Serum concentration of antigen-specific IgG can substantially bias interpretation of antibody-dependent phagocytosis assay readout. iScience 2023; 26:107527. [PMID: 37664583 PMCID: PMC10469534 DOI: 10.1016/j.isci.2023.107527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/21/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
Because virus neutralization cannot solely explain vaccine-induced, antibody-mediated protection, antibody effector functions are being considered as a potential correlate of protection (CoP). However, measuring effector functions at a fixed serum dilution for high throughput purposes makes it difficult to distinguish between the effect of serum antibody concentration and antibody properties such as epitopes, subclass, and glycosylation. To address this issue, we evaluated antibody-dependent cellular phagocytosis (ADCP) assay against SARS-CoV-2 spike. Adjustment of serum samples to the same concentration of antigen-specific IgG prior to the ADCP assay revealed concentration-independent differences in ADCP after mRNA vaccination in subjects with and without prior SARS-CoV-2 infection not detectable in assay performed with fixed serum dilution. Phagocytosis measured at different concentrations of spike-specific IgG strongly correlated with the area under the curve (AUC) indicating that ADCP assay can be performed at a standardized antibody concentration for the high throughput necessary for vaccine trial analyses.
Collapse
Affiliation(s)
- Russell St. Germain
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, WA 98109, USA
| | - Emily L. Bossard
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, WA 98109, USA
| | - Lawrence Corey
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, WA 98109, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Anton M. Sholukh
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
9
|
Crouch LI. N-glycan breakdown by bacterial CAZymes. Essays Biochem 2023; 67:373-385. [PMID: 37067180 PMCID: PMC10154615 DOI: 10.1042/ebc20220256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 04/18/2023]
Abstract
The modification of proteins by N-glycans is ubiquitous to most organisms and they have multiple biological functions, including protecting the adjoining protein from degradation and facilitating communication or adhesion between cells, for example. Microbes have evolved CAZymes to deconstruct different types of N-glycans and some of these have been characterised from microbes originating from different niches, both commensals and pathogens. The specificity of these CAZymes provides clues as to how different microbes breakdown these substrates and possibly cross-feed them. Discovery of CAZymes highly specific for N-glycans also provides new tools and options for modifying glycoproteins.
Collapse
Affiliation(s)
- Lucy I Crouch
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| |
Collapse
|
10
|
Anso I, Naegeli A, Cifuente JO, Orrantia A, Andersson E, Zenarruzabeitia O, Moraleda-Montoya A, García-Alija M, Corzana F, Del Orbe RA, Borrego F, Trastoy B, Sjögren J, Guerin ME. Turning universal O into rare Bombay type blood. Nat Commun 2023; 14:1765. [PMID: 36997505 PMCID: PMC10063614 DOI: 10.1038/s41467-023-37324-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/09/2023] [Indexed: 04/01/2023] Open
Abstract
AbstractRed blood cell antigens play critical roles in blood transfusion since donor incompatibilities can be lethal. Recipients with the rare total deficiency in H antigen, the Oh Bombay phenotype, can only be transfused with group Oh blood to avoid serious transfusion reactions. We discover FucOB from the mucin-degrading bacteria Akkermansia muciniphila as an α-1,2-fucosidase able to hydrolyze Type I, Type II, Type III and Type V H antigens to obtain the afucosylated Bombay phenotype in vitro. X-ray crystal structures of FucOB show a three-domain architecture, including a GH95 glycoside hydrolase. The structural data together with site-directed mutagenesis, enzymatic activity and computational methods provide molecular insights into substrate specificity and catalysis. Furthermore, using agglutination tests and flow cytometry-based techniques, we demonstrate the ability of FucOB to convert universal O type into rare Bombay type blood, providing exciting possibilities to facilitate transfusion in recipients/patients with Bombay phenotype.
Collapse
|
11
|
Trastoy B, Du JJ, Cifuente JO, Rudolph L, García-Alija M, Klontz EH, Deredge D, Sultana N, Huynh CG, Flowers MW, Li C, Sastre DE, Wang LX, Corzana F, Mallagaray A, Sundberg EJ, Guerin ME. Mechanism of antibody-specific deglycosylation and immune evasion by Streptococcal IgG-specific endoglycosidases. Nat Commun 2023; 14:1705. [PMID: 36973249 PMCID: PMC10042849 DOI: 10.1038/s41467-023-37215-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 03/03/2023] [Indexed: 03/29/2023] Open
Abstract
Bacterial pathogens have evolved intricate mechanisms to evade the human immune system, including the production of immunomodulatory enzymes. Streptococcus pyogenes serotypes secrete two multi-modular endo-β-N-acetylglucosaminidases, EndoS and EndoS2, that specifically deglycosylate the conserved N-glycan at Asn297 on IgG Fc, disabling antibody-mediated effector functions. Amongst thousands of known carbohydrate-active enzymes, EndoS and EndoS2 represent just a handful of enzymes that are specific to the protein portion of the glycoprotein substrate, not just the glycan component. Here, we present the cryoEM structure of EndoS in complex with the IgG1 Fc fragment. In combination with small-angle X-ray scattering, alanine scanning mutagenesis, hydrolytic activity measurements, enzyme kinetics, nuclear magnetic resonance and molecular dynamics analyses, we establish the mechanisms of recognition and specific deglycosylation of IgG antibodies by EndoS and EndoS2. Our results provide a rational basis from which to engineer novel enzymes with antibody and glycan selectivity for clinical and biotechnological applications.
Collapse
Affiliation(s)
- Beatriz Trastoy
- Structural Glycobiology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia, 48903, Spain.
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain.
| | - Jonathan J Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Javier O Cifuente
- Structural Glycobiology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia, 48903, Spain
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Lorena Rudolph
- University of Lübeck, Center of Structural and Cell Biology in Medicine (CSCM), Institute of Chemistry and Metabolomics, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Mikel García-Alija
- Structural Glycobiology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia, 48903, Spain
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Erik H Klontz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Daniel Deredge
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA
| | - Nazneen Sultana
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Chau G Huynh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Maria W Flowers
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Diego E Sastre
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Francisco Corzana
- Departamento Química and Centro de Investigación en Síntesis Quı́mica, Universidad de La Rioja, 26006, Rioja, Spain
| | - Alvaro Mallagaray
- University of Lübeck, Center of Structural and Cell Biology in Medicine (CSCM), Institute of Chemistry and Metabolomics, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Marcelo E Guerin
- Structural Glycobiology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia, 48903, Spain.
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain.
| |
Collapse
|
12
|
Fan S, Li W, Zhang K, Zou X, Shi W, Liu Z, Tang C, Huang W, Tang F. Enhanced antibody-defucosylation capability of α-L-fucosidase by proximity-based protein fusion. Biochem Biophys Res Commun 2023; 645:40-46. [PMID: 36680935 DOI: 10.1016/j.bbrc.2023.01.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Up to date, the reported fucosidases generally show poor activities toward the IgG core-fucose, which limits the efficiency of ENGase-catalyzed glycoengineering process. However, EndoS or EndoS2 owns excellent activity and great selectivity towards the N-glycosylation of IgGs, and their non-catalytic domains are deduced to have specific interactions to IgG Fc domain that result in the great activity and selectivity. Herein, we constructed a series fusion protein of AlfC (an α-l-fucosidase from Lactobacillus casei BL23) with EndoS/S2 non-catalytic domain by replacing the catalytic GH (glycan hydrolase) domain of EndoS/S2 with the AlfC. We found that all these fused AlfCs showed significantly enhanced defucosylation activity toward the deglycosylated IgGs (Fucα1,6GlcNAc-IgG). We also performed the kinetic study of these fusion enzymes, and our results tend to tell that the EndoS-based fusion proteins have higher kcat values while the EndoS2-based ones possess lower Km values other than higher kcat. Conclusively, our research provides an effective approach to improve the activity of AlfC and remarkably shortened the defucosylation process within several minutes, which will significantly promote the development of glycoengineered antibodies in the future.
Collapse
Affiliation(s)
- Shuquan Fan
- School of Life Science, Liaocheng University, 1 Hunan Road, Liaocheng, 252000, PR China.
| | - Wanzhen Li
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, PR China
| | - Kuixing Zhang
- School of Life Science, Liaocheng University, 1 Hunan Road, Liaocheng, 252000, PR China
| | - Xiangman Zou
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, PR China
| | - Wei Shi
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, PR China
| | - Zhi Liu
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, PR China
| | - Caihong Tang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, PR China
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, PR China; School of Pharmaceutical Science and Technology, Hangzhou, Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, PR China.
| | - Feng Tang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, PR China.
| |
Collapse
|
13
|
Abstract
Glycosylation has a profound influence on protein activity and cell biology through a variety of mechanisms, such as protein stability, receptor interactions and signal transduction. In many rheumatic diseases, a shift in protein glycosylation occurs, and is associated with inflammatory processes and disease progression. For example, the Fc-glycan composition on (auto)antibodies is associated with disease activity, and the presence of additional glycans in the antigen-binding domains of some autoreactive B cell receptors can affect B cell activation. In addition, changes in synovial fibroblast cell-surface glycosylation can alter the synovial microenvironment and are associated with an altered inflammatory state and disease activity in rheumatoid arthritis. The development of our understanding of the role of glycosylation of plasma proteins (particularly (auto)antibodies), cells and tissues in rheumatic pathological conditions suggests that glycosylation-based interventions could be used in the treatment of these diseases.
Collapse
Affiliation(s)
- Theresa Kissel
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Thomas W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
14
|
Du JJ, Sastre D, Trastoy B, Roberts B, Deredge D, Klontz EH, Flowers MW, Sultana N, Guerin ME, Sundberg EJ. Mass Spectrometry-Based Methods to Determine the Substrate Specificities and Kinetics of N-Linked Glycan Hydrolysis by Endo-β-N-Acetylglucosaminidases. Methods Mol Biol 2023; 2674:147-167. [PMID: 37258966 PMCID: PMC10988651 DOI: 10.1007/978-1-0716-3243-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Glycosylation is a common posttranslational modification of proteins and refers to the covalent addition of glycans, chains of polysaccharides, onto proteins producing glycoproteins. The glycans influence the structure, function, and stability of proteins. They also play an integral role in the immune system, and aberrantly glycosylated proteins have wide ranging effects, including leading to diseases such as autoimmune conditions and cancer. Carbohydrate-active enzymes (CAZymes) are produced in bacteria, fungi, and humans and are enzymes which modify glycans via the addition or subtraction of individual or multiple saccharides from glycans. One of the hurdles in studying these enzymes is determining the types of substrates each enzyme is specific for and the kinetics of enzymatic activity. In this chapter, we discuss methods which are currently used to study the substrate specificity and kinetics of CAZymes and introduce a novel mass spectrometry-based technique which enables the specificity and kinetics of CAZymes to be determined accurately and efficiently.
Collapse
Affiliation(s)
- Jonathan J Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.
| | - Diego Sastre
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Beatriz Trastoy
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
| | - Blaine Roberts
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel Deredge
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Erik H Klontz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maria W Flowers
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Nazneen Sultana
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Marcelo E Guerin
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
15
|
Ishii N, Muto H, Nagata M, Sano K, Sato I, Iino K, Matsuzaki Y, Katoh T, Yamamoto K, Matsuo I. A fluorogenic probe for core-fucosylated glycan-preferred ENGase. Carbohydr Res 2023; 523:108724. [PMID: 36435009 DOI: 10.1016/j.carres.2022.108724] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
A fluorescence-quenching-based assay system to determine the hydrolytic activity of endo-β-N-acetylglucosaminidases (ENGases), which act on the innermost N-acetylglucosamine (GlcNAc) residue of the chitobiose segment of core-fucosylated N-glycans, was constructed using a dual-labeled fluorescent probe with a hexasaccharide structure. The fluorogenic probe was evaluated using a variety of ENGases, including Endo-M W251N mutant, Endo-F3, and Endo-S, which recognize core fucosylated N-glycans. The occurrence of a hydrolysis reaction was detected by observing an increased fluorescence intensity, ultimately allowing the ENGase activities to be easily and quantitatively evaluated, with the exception of Endo-S. The obtained results clearly indicated the substrate specificities of the examined ENGases.
Collapse
Affiliation(s)
- Nozomi Ishii
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Hiroshi Muto
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan; Biologics Technology Research Laboratories, Daiichi Sankyo Co., Ltd., 3-5-1, Nihonbashi-honcho, Tokyo, 103-8426, Japan
| | - Mitsuo Nagata
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Kanae Sano
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Itsuki Sato
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Kenta Iino
- Glyco Synthetic Lab., Tokyo Chemical Industry Co., Ltd, 6-15-9 Toshima, Kita-ku, Tokyo, 114-0003, Japan
| | - Yuji Matsuzaki
- Glyco Synthetic Lab., Tokyo Chemical Industry Co., Ltd, 6-15-9 Toshima, Kita-ku, Tokyo, 114-0003, Japan
| | - Toshihiko Katoh
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Kenji Yamamoto
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan
| | - Ichiro Matsuo
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan.
| |
Collapse
|
16
|
Sudol ASL, Butler J, Ivory DP, Tews I, Crispin M. Extensive substrate recognition by the streptococcal antibody-degrading enzymes IdeS and EndoS. Nat Commun 2022; 13:7801. [PMID: 36528711 PMCID: PMC9759587 DOI: 10.1038/s41467-022-35340-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Enzymatic cleavage of IgG antibodies is a common strategy used by pathogenic bacteria to ablate immune effector function. The Streptococcus pyogenes bacterium secretes the protease IdeS and the glycosidase EndoS, which specifically catalyse cleavage and deglycosylation of human IgG, respectively. IdeS has received clinical approval for kidney transplantation in hypersensitised individuals, while EndoS has found application in engineering antibody glycosylation. We present crystal structures of both enzymes in complex with their IgG1 Fc substrate, which was achieved using Fc engineering to disfavour preferential Fc crystallisation. The IdeS protease displays extensive Fc recognition and encases the antibody hinge. Conversely, the glycan hydrolase domain in EndoS traps the Fc glycan in a "flipped-out" conformation, while additional recognition of the Fc peptide is driven by the so-called carbohydrate binding module. In this work, we reveal the molecular basis of antibody recognition by bacterial enzymes, providing a template for the development of next-generation enzymes.
Collapse
Affiliation(s)
- Abigail S. L. Sudol
- grid.5491.90000 0004 1936 9297School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ UK
| | - John Butler
- grid.5491.90000 0004 1936 9297School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ UK
| | - Dylan P. Ivory
- grid.5491.90000 0004 1936 9297School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ UK
| | - Ivo Tews
- grid.5491.90000 0004 1936 9297School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ UK
| | - Max Crispin
- grid.5491.90000 0004 1936 9297School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ UK
| |
Collapse
|
17
|
Bienes KM, Tautau FAP, Mitani A, Kinoshita T, Nakakita SI, Higuchi Y, Takegawa K. Characterization of novel endo-β-N-acetylglucosaminidase from Bacteroides nordii that hydrolyzes multi-branched complex type N-glycans. J Biosci Bioeng 2022; 134:7-13. [PMID: 35484013 DOI: 10.1016/j.jbiosc.2022.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022]
Abstract
Endo-β-N-acetylglucosaminidases (ENGases) are enzymes that hydrolyze the N-linked oligosaccharides. Many ENGases have already been identified and characterized. However, there are still a few enzymes that have hydrolytic activity toward multibranched complex-type N-glycans on glycoproteins. In this study, one novel ENGase from Bacteroides nordii (Endo-BN) species was identified and characterized. The recombinant protein was prepared and expressed in Escherichia coli cells. This Endo-BN exhibited optimum hydrolytic activity at pH 4.0. High performance liquid chromatography (HPLC) analysis showed that Endo-BN preferred core-fucosylated complex-type N-glycans, with galactose or α2,6-linked sialic acid residues at their non-reducing ends. The hydrolytic activities of Endo-BN were also tested on different glycoproteins from high-mannose type to complex-type oligosaccharides. The reaction with human transferrin, fetuin, and α1-acid glycoprotein subsequently showed that Endo-BN is capable of releasing multi-branched complex-type N-glycans from these glycoproteins.
Collapse
Affiliation(s)
- Kristina Mae Bienes
- Laboratory of Applied Microbiology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Feunai Agape Papalii Tautau
- Laboratory of Applied Microbiology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ai Mitani
- Fushimi Pharmaceutical Co. Ltd., Marugame, Kagawa 763-8605, Japan
| | | | | | - Yujiro Higuchi
- Laboratory of Applied Microbiology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kaoru Takegawa
- Laboratory of Applied Microbiology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
18
|
Mechanism of cooperative N-glycan processing by the multi-modular endoglycosidase EndoE. Nat Commun 2022; 13:1137. [PMID: 35241669 PMCID: PMC8894350 DOI: 10.1038/s41467-022-28722-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/04/2022] [Indexed: 11/29/2022] Open
Abstract
Bacteria produce a remarkably diverse range of glycoside hydrolases to metabolize glycans from the environment as a primary source of nutrients, and to promote the colonization and infection of a host. Here we focus on EndoE, a multi-modular glycoside hydrolase secreted by Enterococcus faecalis, one of the leading causes of healthcare-associated infections. We provide X-ray crystal structures of EndoE, which show an architecture composed of four domains, including GH18 and GH20 glycoside hydrolases connected by two consecutive three α-helical bundles. We determine that the GH20 domain is an exo-β-1,2-N-acetylglucosaminidase, whereas the GH18 domain is an endo-β-1,4-N-acetylglucosaminidase that exclusively processes the central core of complex-type or high-mannose-type N-glycans. Both glycoside hydrolase domains act in a concerted manner to process diverse N-glycans on glycoproteins, including therapeutic IgG antibodies. EndoE combines two enzyme domains with distinct functions and glycan specificities to play a dual role in glycan metabolism and immune evasion. EndoE is a multi-domain glycoside hydrolase of the human pathogen Enterococcus faecalis. Here, the authors present crystal structures of EndoE and provide biochemical insights into the molecular basis of EndoE’s substrate specificity and catalytic mechanism.
Collapse
|
19
|
Sculpting therapeutic monoclonal antibody N-glycans using endoglycosidases. Curr Opin Struct Biol 2022; 72:248-259. [PMID: 34998123 PMCID: PMC8860878 DOI: 10.1016/j.sbi.2021.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 02/03/2023]
Abstract
Immunoglobulin G (IgG) monoclonal antibodies are a prominent and expanding class of therapeutics used for the treatment of diverse human disorders. The chemical composition of the N-glycan on the fragment crystallizable (Fc) region determines the effector functions through interaction with the Fc gamma receptors and complement proteins. The chemoenzymatic synthesis using endo-β-N-acetylglucosaminidases (ENGases) emerged as a strategy to obtain antibodies with customized glycoforms that modulate their therapeutic activity. We discuss the molecular mechanism by which ENGases recognize different N-glycans and protein substrates, especially those that are specific for IgG antibodies, in order to rationalize the glycoengineering of immunotherapeutic antibodies, which increase the impact on the treatment of myriad diseases.
Collapse
|
20
|
Shenoy A, Barb AW. Recent Advances Toward Engineering Glycoproteins Using Modified Yeast Display Platforms. Methods Mol Biol 2022; 2370:185-205. [PMID: 34611870 DOI: 10.1007/978-1-0716-1685-7_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Yeast are capable recombinant protein expression hosts that provide eukaryotic posttranslational modifications such as disulfide bond formation and N-glycosylation. This property has been used to create surface display libraries for protein engineering; however, yeast surface display (YSD) with common laboratory strains has limitations in terms of diversifying glycoproteins due to the incorporation of high levels of mannose residues which often obscure important epitopes and are immunogenic in humans. Developing new strains for efficient and appropriate display will require combining existing technologies to permit efficient glycoprotein engineering. Foundational efforts generating knockout strains lacking characteristic hypermannosylation reactions exhibited morphological defects and poor growth. Later strains with "humanized" N-glycosylation machinery surmounted these limitations by targeting a small suite of glycosylhydrolase and glycosyltransferase enzymes from other taxa to the endoplasmic reticulum and Golgi. Advanced yeast strains also provide key modifications at the glycan termini that are essential for the full function of many glycoproteins. Here we review progress toward glycoprotein engineering when glycosylation is required for full function using advanced yeast expression platforms and the suitability of each for YSD of glycoproteins.
Collapse
Affiliation(s)
- Anjali Shenoy
- Biochemistry and Molecular Biology Department, University of Georgia, Athens, GA, USA
| | - Adam W Barb
- Biochemistry and Molecular Biology Department, University of Georgia, Athens, GA, USA.
| |
Collapse
|
21
|
Trastoy B, Du JJ, Li C, García-Alija M, Klontz EH, Roberts BR, Donahue TC, Wang LX, Sundberg EJ, Guerin ME. GH18 endo-β-N-acetylglucosaminidases use distinct mechanisms to process hybrid-type N-linked glycans. J Biol Chem 2021; 297:101011. [PMID: 34324829 PMCID: PMC8374693 DOI: 10.1016/j.jbc.2021.101011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022] Open
Abstract
N-glycosylation is one of the most abundant posttranslational modifications of proteins, essential for many physiological processes, including protein folding, protein stability, oligomerization and aggregation, and molecular recognition events. Defects in the N-glycosylation pathway cause diseases that are classified as congenital disorders of glycosylation. The ability to manipulate protein N-glycosylation is critical not only to our fundamental understanding of biology but also for the development of new drugs for a wide range of human diseases. Chemoenzymatic synthesis using engineered endo-β-N-acetylglucosaminidases (ENGases) has been used extensively to modulate the chemistry of N-glycosylated proteins. However, defining the molecular mechanisms by which ENGases specifically recognize and process N-glycans remains a major challenge. Here we present the X-ray crystal structure of the ENGase EndoBT-3987 from Bacteroides thetaiotaomicron in complex with a hybrid-type glycan product. In combination with alanine scanning mutagenesis, molecular docking calculations and enzymatic activity measurements conducted on a chemically engineered monoclonal antibody substrate unveil two mechanisms for hybrid-type recognition and processing by paradigmatic ENGases. Altogether, the experimental data provide pivotal insight into the molecular mechanism of substrate recognition and specificity for GH18 ENGases and further advance our understanding of chemoenzymatic synthesis and remodeling of homogeneous N-glycan glycoproteins.
Collapse
Affiliation(s)
- Beatriz Trastoy
- Structural Glycobiology Lab, Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia, Derio, Spain; Structural Glycobiology Lab, IIS-Biocruces Bizkaia, Barakaldo, Bizkaia, Spain.
| | - Jonathan J Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Mikel García-Alija
- Structural Glycobiology Lab, Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia, Derio, Spain; Structural Glycobiology Lab, IIS-Biocruces Bizkaia, Barakaldo, Bizkaia, Spain
| | - Erik H Klontz
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Blaine R Roberts
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Thomas C Donahue
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA.
| | - Marcelo E Guerin
- Structural Glycobiology Lab, Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia, Derio, Spain; Structural Glycobiology Lab, IIS-Biocruces Bizkaia, Barakaldo, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
22
|
Hasan MM, Mimi MA, Mamun MA, Islam A, Waliullah ASM, Nabi MM, Tamannaa Z, Kahyo T, Setou M. Mass Spectrometry Imaging for Glycome in the Brain. Front Neuroanat 2021; 15:711955. [PMID: 34393728 PMCID: PMC8358800 DOI: 10.3389/fnana.2021.711955] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Glycans are diverse structured biomolecules that play crucial roles in various biological processes. Glycosylation, an enzymatic system through which various glycans are bound to proteins and lipids, is the most common and functionally crucial post-translational modification process. It is known to be associated with brain development, signal transduction, molecular trafficking, neurodegenerative disorders, psychopathologies, and brain cancers. Glycans in glycoproteins and glycolipids expressed in brain cells are involved in neuronal development, biological processes, and central nervous system maintenance. The composition and expression of glycans are known to change during those physiological processes. Therefore, imaging of glycans and the glycoconjugates in the brain regions has become a “hot” topic nowadays. Imaging techniques using lectins, antibodies, and chemical reporters are traditionally used for glycan detection. However, those techniques offer limited glycome detection. Mass spectrometry imaging (MSI) is an evolving field that combines mass spectrometry with histology allowing spatial and label-free visualization of molecules in the brain. In the last decades, several studies have employed MSI for glycome imaging in brain tissues. The current state of MSI uses on-tissue enzymatic digestion or chemical reaction to facilitate successful glycome imaging. Here, we reviewed the available literature that applied MSI techniques for glycome visualization and characterization in the brain. We also described the general methodologies for glycome MSI and discussed its potential use in the three-dimensional MSI in the brain.
Collapse
Affiliation(s)
- Md Mahmudul Hasan
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mst Afsana Mimi
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Md Al Mamun
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ariful Islam
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - A S M Waliullah
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Md Mahamodun Nabi
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Zinat Tamannaa
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoaki Kahyo
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mitsutoshi Setou
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu, Japan
| |
Collapse
|
23
|
Insights into substrate recognition and specificity for IgG by Endoglycosidase S2. PLoS Comput Biol 2021; 17:e1009103. [PMID: 34310592 PMCID: PMC8354483 DOI: 10.1371/journal.pcbi.1009103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/10/2021] [Accepted: 06/30/2021] [Indexed: 01/15/2023] Open
Abstract
Antibodies bind foreign antigens with high affinity and specificity leading to their neutralization and/or clearance by the immune system. The conserved N-glycan on IgG has significant impact on antibody effector function, with the endoglycosidases of Streptococcus pyogenes deglycosylating the IgG to evade the immune system, a process catalyzed by the endoglycosidase EndoS2. Studies have shown that two of the four domains of EndoS2, the carbohydrate binding module (CBM) and the glycoside hydrolase (GH) domain are critical for catalytic activity. To yield structural insights into contributions of the CBM and the GH domains as well as the overall flexibility of EndoS2 to the proteins’ catalytic activity, models of EndoS2-Fc complexes were generated through enhanced-sampling molecular-dynamics (MD) simulations and site-identification by ligand competitive saturation (SILCS) docking followed by reconstruction and multi-microsecond MD simulations. Modeling results predict that EndoS2 initially interacts with the IgG through its CBM followed by interactions with the GH yielding catalytically competent states. These may involve the CBM and GH of EndoS2 simultaneously interacting with either the same Fc CH2/CH3 domain or individually with the two Fc CH2/CH3 domains, with EndoS2 predicted to assume closed conformations in the former case and open conformations in the latter. Apo EndoS2 is predicted to sample both the open and closed states, suggesting that either complex can directly form following initial IgG-EndoS2 encounter. Interactions of the CBM and GH domains with the IgG are predicted to occur through both its glycan and protein regions. Simulations also predict that the Fc glycan can directly transfer from the CBM to the GH, facilitating formation of catalytically competent complexes and how the 734 to 751 loop on the CBM can facilitate extraction of the glycan away from the Fc CH2/CH3 domain. The predicted models are compared and consistent with Hydrogen/Deuterium Exchange data. In addition, the complex models are consistent with the high specificity of EndoS2 for the glycans on IgG supporting the validity of the predicted models. The pathogen Streptococcus pyogenes uses the endoglycosidases S and S2 to cleave the glycans on the Fc portion of IgG antibodies, leading to a decreased cytotoxicity of the antibodies, thereby evading the host immune response. To identify potential structures of the complex of EndoS2 with IgG that could lead to the catalytic hydrolysis of the IgG glycan, molecular modeling and molecular dynamics simulations were applied. The resulting structural models predict that EndoS2 initially interacts through its carbohydrate binding module (CBM) with the IgG with subsequent interactions with the catalytic glycoside hydrolase (GH) domain yielding stable complexes. In the modeled complexes the CBM and the GH interact either simultaneously with the same Fc CH2/CH3 domain or with the two individual Fc CH2/CH3 domains separately to yield potentially catalytically competent species. In addition, apo EndoS2 is shown to assume both open and closed conformations allowing it to directly form either type of complex from which deglycosylation of either mono- or diglycosylated IgG species may occur.
Collapse
|
24
|
Takashima S, Kurogochi M, Tsukimura W, Mori M, Osumi K, Sugawara SI, Amano J, Mizuno M, Takada Y, Matsuda A. Preparation and biological activities of anti-HER2 monoclonal antibodies with multi-branched complex-type N-glycans. Glycobiology 2021; 31:1401-1414. [PMID: 34192331 DOI: 10.1093/glycob/cwab064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Immunoglobulin G (IgG) has a conserved N-glycosylation site at Asn297 in the fragment crystallizable (Fc) region. Previous studies have shown that N-glycosylation of this site is a critical mediator of the antibody's effector functions, such as antibody-dependent cellular cytotoxicity. While the N-glycan structures attached to the IgG-Fc region are generally heterogenous, IgGs engineered to be homogenously glycosylated with functional N-glycans may improve the efficacy of antibodies. The major glycoforms of the N-glycans on the IgG-Fc region are bi-antennary complex-type N-glycans, while multi-branched complex-type N-glycans are not typically found. However, IgGs with tri-antennary complex-type N-glycans have been generated using the N-glycan remodeling technique, suggesting that more branched N-glycans might be artificially attached. At present, little is known about the properties of these IgGs. In this study, IgGs with multi-branched N-glycans on the Fc region were prepared by using a combination of the glycosynthase/oxazoline substrate-based N-glycan remodeling technique and successive reactions with glycosyltransferases. Among the IgGs produced by these methods, the largest N-glycan attached was a bisecting N-acetylglucosamine (GlcNAc) containing a sialylated penta-antennary structure. Concerning the Fc-mediated effector functions, the majority of IgGs with tri- and tetra-antennary N-glycans on their Fc region showed properties similar to IgGs with ordinary bi-antennary N-glycans.
Collapse
Affiliation(s)
- Shou Takashima
- Laboratory of Glycobiology, The Noguchi Institute, Tokyo 173-0003, Japan
| | - Masaki Kurogochi
- Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, Tokyo 173-0003, Japan
| | - Wataru Tsukimura
- Laboratory of Glycobiology, The Noguchi Institute, Tokyo 173-0003, Japan
| | - Masako Mori
- Laboratory of Glycobiology, The Noguchi Institute, Tokyo 173-0003, Japan
| | - Kenji Osumi
- Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, Tokyo 173-0003, Japan
| | - Shu-Ichi Sugawara
- Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, Tokyo 173-0003, Japan
| | - Junko Amano
- Laboratory of Glycobiology, The Noguchi Institute, Tokyo 173-0003, Japan
| | - Mamoru Mizuno
- Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, Tokyo 173-0003, Japan
| | - Yoshio Takada
- Laboratory of Glycobiology, The Noguchi Institute, Tokyo 173-0003, Japan
| | - Akio Matsuda
- Laboratory of Glycobiology, The Noguchi Institute, Tokyo 173-0003, Japan.,Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, Tokyo 173-0003, Japan
| |
Collapse
|
25
|
Habazin S, Štambuk J, Šimunović J, Keser T, Razdorov G, Novokmet M. Mass Spectrometry-Based Methods for Immunoglobulin G N-Glycosylation Analysis. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:73-135. [PMID: 34687008 DOI: 10.1007/978-3-030-76912-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mass spectrometry and its hyphenated techniques enabled by the improvements in liquid chromatography, capillary electrophoresis, novel ionization, and fragmentation modes are truly a cornerstone of robust and reliable protein glycosylation analysis. Boost in immunoglobulin G (IgG) glycan and glycopeptide profiling demands for both applied biomedical and research applications has brought many new advances in the field in terms of technical innovations, sample preparation, improved throughput, and confidence in glycan structural characterization. This chapter summarizes mass spectrometry basics, focusing on IgG and monoclonal antibody N-glycosylation analysis on several complexity levels. Different approaches, including antibody enrichment, glycan release, labeling, and glycopeptide preparation and purification, are covered and illustrated with recent breakthroughs and examples from the literature omitting excessive theoretical frameworks. Finally, selected highly popular methodologies in IgG glycoanalytics such as liquid chromatography-mass spectrometry and matrix-assisted laser desorption ionization are discussed more thoroughly yet in simple terms making this text a practical starting point either for the beginner in the field or an experienced clinician trying to make sense out of the IgG glycomic or glycoproteomic dataset.
Collapse
Affiliation(s)
- Siniša Habazin
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - Jerko Štambuk
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | | | - Toma Keser
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | - Mislav Novokmet
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia.
| |
Collapse
|
26
|
ŞahutoĞlu AS, Duman H, Frese SA, Karav S. Structural insights of two novel N-acetyl-glucosaminidase enzymes through in silico methods. Turk J Chem 2020; 44:1703-1712. [PMID: 33488263 PMCID: PMC7763110 DOI: 10.3906/kim-2006-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/04/2020] [Indexed: 12/22/2022] Open
Abstract
EndoBI-1 and EndoBI-2 are two endo-
β-N-
acetylglucosaminidase isoenzymes that cleave
N-N’-
diacetylchitobiosyl moieties found in various types of native
N
-glycans. These
N
-glycans are indigestible by human infants and adults due to the lack of responsible glycosyl hydrolases and they act as selective prebiotics for a probiotic microorganism,
Bifidobacterium longum
subsp
. infantis
, in the large intestine. The selectivity and the thermostability of EndoBI-1 and EndoBI-2 suggest that these enzymes may be useful for many scientific and industrial applications. In this study, the growing numbers of homologous sequences in different databases were exploited in a comparative approach to investigate structural properties of EndoBI-1 and EndoBI-2 enzymes. Moreover, the complete and partial homology models of these two enzymes were generated and evaluated. Selected models were used for docking studies of the plus subsite ligand of these enzymes for further understanding on the substrate selectivity of EndoBI enzymes.
Collapse
Affiliation(s)
- Arif Sercan ŞahutoĞlu
- Department of Chemistry, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University, Çanakkale Turkey
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University, Çanakkale Turkey
| | - Steven Alex Frese
- Evolve Biosystems, Inc., Davis, CA USA.,Department of Food Science and Technology, University of Nebraska, Lincoln, NE USA
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University, Çanakkale Turkey
| |
Collapse
|
27
|
Sjögren J, Lood R, Nägeli A. On enzymatic remodeling of IgG glycosylation; unique tools with broad applications. Glycobiology 2020; 30:254-267. [PMID: 31616919 PMCID: PMC7109354 DOI: 10.1093/glycob/cwz085] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/05/2019] [Accepted: 09/30/2019] [Indexed: 01/14/2023] Open
Abstract
The importance of IgG glycosylation has been known for many years not only by scientists in glycobiology but also by human pathogens that have evolved specific enzymes to modify these glycans with fundamental impact on IgG function. The rise of IgG as a major therapeutic scaffold for many cancer and immunological indications combined with the availability of unique enzymes acting specifically on IgG Fc-glycans have spurred a range of applications to study this important post-translational modification on IgG. This review article introduces why the IgG glycans are of distinguished interest, gives a background on the unique enzymatic tools available to study the IgG glycans and finally presents an overview of applications utilizing these enzymes for various modifications of the IgG glycans. The applications covered include site-specific glycan transglycosylation and conjugation, analytical workflows for monoclonal antibodies and serum diagnostics. Additionally, the review looks ahead and discusses the importance of O-glycosylation for IgG3, Fc-fusion proteins and other new formats of biopharmaceuticals.
Collapse
Affiliation(s)
| | - Rolf Lood
- Genovis AB, Scheelevägen 2, 223 63 Lund, Sweden
| | | |
Collapse
|
28
|
Du JJ, Klontz EH, Guerin ME, Trastoy B, Sundberg EJ. Structural insights into the mechanisms and specificities of IgG-active endoglycosidases. Glycobiology 2020; 30:268-279. [PMID: 31172182 DOI: 10.1093/glycob/cwz042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/22/2019] [Accepted: 06/02/2019] [Indexed: 11/12/2022] Open
Abstract
The conserved N-glycan on Asn297 of immunoglobulin G (IgG) has significant impacts on antibody effector functions, and is a frequent target for antibody engineering. Chemoenzymatic synthesis has emerged as a strategy for producing antibodies with homogenous glycosylation and improved effector functions. Central to this strategy is the use of enzymes with activity on the Asn297 glycan. EndoS and EndoS2, produced by Streptococcus pyogenes, are endoglycosidases with remarkable specificity for Asn297 glycosylation, making them ideal tools for chemoenzymatic synthesis. Although both enzymes are specific for IgG, EndoS2 recognizes a wider range of glycans than EndoS. Recent progress has been made in understanding the structural basis for their activities on antibodies. In this review, we examine the molecular mechanism of glycosidic bond cleavage by these enzymes and how specific point mutations convert them into glycosynthases. We also discuss the structural basis for differences in the glycan repertoire that IgG-active endoglycosidases recognize, which focuses on the structure of the loops within the glycoside hydrolase (GH) domain. Finally, we discuss the important contributions of carbohydrate binding modules (CBMs) to endoglycosidase activity, and how CBMs work in concert with GH domains to produce optimal activity on IgG.
Collapse
Affiliation(s)
- Jonathan J Du
- Institute of Human Virology 725 W Lombard Street, Baltimore, MD 21201, USA
| | - Erik H Klontz
- Institute of Human Virology 725 W Lombard Street, Baltimore, MD 21201, USA.,Department of Microbiology & Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street HSF-I Suite 380, Baltimore, MD 21201, USA.,Program in Molecular Microbiology & Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, MD 21201, USA
| | - Marcelo E Guerin
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz Haroko Kalea, 3, 48013 Bilbo, Bizkaia, Spain
| | - Beatriz Trastoy
- Program in Molecular Microbiology & Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, MD 21201, USA
| | - Eric J Sundberg
- Institute of Human Virology 725 W Lombard Street, Baltimore, MD 21201, USA.,Department of Microbiology & Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street HSF-I Suite 380, Baltimore, MD 21201, USA.,Department of Medicine, University of Maryland School of Medicine, 655 W Baltimore St, Baltimore, MD 21201, USA
| |
Collapse
|
29
|
Klontz EH, Li C, Kihn K, Fields JK, Beckett D, Snyder GA, Wintrode PL, Deredge D, Wang LX, Sundberg EJ. Structure and dynamics of an α-fucosidase reveal a mechanism for highly efficient IgG transfucosylation. Nat Commun 2020; 11:6204. [PMID: 33277506 PMCID: PMC7718225 DOI: 10.1038/s41467-020-20044-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/15/2020] [Indexed: 11/26/2022] Open
Abstract
Fucosylation is important for the function of many proteins with biotechnical and medical applications. Alpha-fucosidases comprise a large enzyme family that recognizes fucosylated substrates with diverse α-linkages on these proteins. Lactobacillus casei produces an α-fucosidase, called AlfC, with specificity towards α(1,6)-fucose, the only linkage found in human N-glycan core fucosylation. AlfC and certain point mutants thereof have been used to add and remove fucose from monoclonal antibody N-glycans, with significant impacts on their effector functions. Despite the potential uses for AlfC, little is known about its mechanism. Here, we present crystal structures of AlfC, combined with mutational and kinetic analyses, hydrogen–deuterium exchange mass spectrometry, molecular dynamic simulations, and transfucosylation experiments to define the molecular mechanisms of the activities of AlfC and its transfucosidase mutants. Our results indicate that AlfC creates an aromatic subsite adjacent to the active site that specifically accommodates GlcNAc in α(1,6)-linkages, suggest that enzymatic activity is controlled by distinct open and closed conformations of an active-site loop, with certain mutations shifting the equilibrium towards open conformations to promote transfucosylation over hydrolysis, and provide a potentially generalizable framework for the rational creation of AlfC transfucosidase mutants. AlfC transfucosidase is used to modulate fucosylation of glycans decorating monoclonal antibodies. Herein, structural and biophysical characterization reveals the enzymatic mechanism of AlfC and a blueprint for the design of AlfC mutants with novel specificities and functions.
Collapse
Affiliation(s)
- Erik H Klontz
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Program in Molecular Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Kyle Kihn
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, College Park, MD, 21201, USA
| | - James K Fields
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Program in Molecular Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Dorothy Beckett
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Greg A Snyder
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Patrick L Wintrode
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, College Park, MD, 21201, USA
| | - Daniel Deredge
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, College Park, MD, 21201, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Eric J Sundberg
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
30
|
Trastoy B, Du JJ, Klontz EH, Li C, Cifuente JO, Wang LX, Sundberg EJ, Guerin ME. Structural basis of mammalian high-mannose N-glycan processing by human gut Bacteroides. Nat Commun 2020; 11:899. [PMID: 32060313 PMCID: PMC7021837 DOI: 10.1038/s41467-020-14754-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/30/2020] [Indexed: 11/24/2022] Open
Abstract
The human gut microbiota plays a central role not only in regulating the metabolism of nutrients but also promoting immune homeostasis, immune responses and protection against pathogen colonization. The genome of the Gram-negative symbiont Bacteroides thetaiotaomicron, a dominant member of the human intestinal microbiota, encodes polysaccharide utilization loci PULs, the apparatus required to orchestrate the degradation of a specific glycan. EndoBT-3987 is a key endo-β-N-acetylglucosaminidase (ENGase) that initiates the degradation/processing of mammalian high-mannose-type (HM-type) N-glycans in the intestine. Here, we provide structural snapshots of EndoBT-3987, including the unliganded form, the EndoBT-3987-Man9GlcNAc2Asn substrate complex, and two EndoBT-3987-Man9GlcNAc and EndoBT-3987-Man5GlcNAc product complexes. In combination with alanine scanning mutagenesis and activity measurements we unveil the molecular mechanism of HM-type recognition and specificity for EndoBT-3987 and an important group of the GH18 ENGases, including EndoH, an enzyme extensively used in biotechnology, and for which the mechanism of substrate recognition was largely unknown.
Collapse
Affiliation(s)
- Beatriz Trastoy
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
| | - Jonathan J Du
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Erik H Klontz
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Program in Molecular Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Javier O Cifuente
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Eric J Sundberg
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Marcelo E Guerin
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain.
| |
Collapse
|
31
|
Fairbanks AJ. Chemoenzymatic synthesis of glycoproteins. Curr Opin Chem Biol 2019; 53:9-15. [DOI: 10.1016/j.cbpa.2019.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 11/26/2022]
|
32
|
Structural basis for the specific cleavage of core-fucosylated N-glycans by endo-β- N-acetylglucosaminidase from the fungus Cordyceps militaris. J Biol Chem 2019; 294:17143-17154. [PMID: 31548313 PMCID: PMC6851319 DOI: 10.1074/jbc.ra119.010842] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/20/2019] [Indexed: 01/07/2023] Open
Abstract
N-Linked glycans play important roles in various cellular and immunological events. Endo-β-N-acetylglucosaminidase (ENGase) can release or transglycosylate N-glycans and is a promising tool for the chemoenzymatic synthesis of glycoproteins with homogeneously modified glycans. The ability of ENGases to act on core-fucosylated glycans is a key factor determining their therapeutic utility because mammalian N-glycans are frequently α-1,6-fucosylated. Although the biochemistries and structures of various ENGases have been studied extensively, the structural basis for the recognition of the core fucose and the asparagine-linked GlcNAc is unclear. Herein, we determined the crystal structures of a core fucose-specific ENGase from the caterpillar fungus Cordyceps militaris (Endo-CoM), which belongs to glycoside hydrolase family 18. Structures complexed with fucose-containing ligands were determined at 1.75-2.35 Å resolutions. The fucose moiety linked to GlcNAc is extensively recognized by protein residues in a round-shaped pocket, whereas the asparagine moiety linked to the GlcNAc is exposed to the solvent. The N-glycan-binding cleft of Endo-CoM is Y-shaped, and several lysine and arginine residues are present at its terminal regions. These structural features were consistent with the activity of Endo-CoM on fucose-containing glycans on rituximab (IgG) and its preference for a sialobiantennary substrate. Comparisons with other ENGases provided structural insights into their core fucose tolerance and specificity. In particular, Endo-F3, a known core fucose-specific ENGase, has a similar fucose-binding pocket, but the surrounding residues are not shared with Endo-CoM. Our study provides a foothold for protein engineering to develop enzymatic tools for the preparation of more effective therapeutic antibodies.
Collapse
|
33
|
Klontz EH, Trastoy B, Deredge D, Fields JK, Li C, Orwenyo J, Marina A, Beadenkopf R, Günther S, Flores J, Wintrode PL, Wang LX, Guerin ME, Sundberg EJ. Molecular Basis of Broad Spectrum N-Glycan Specificity and Processing of Therapeutic IgG Monoclonal Antibodies by Endoglycosidase S2. ACS CENTRAL SCIENCE 2019; 5:524-538. [PMID: 30937380 PMCID: PMC6439443 DOI: 10.1021/acscentsci.8b00917] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Indexed: 06/02/2023]
Abstract
Immunoglobulin G (IgG) glycosylation critically modulates antibody effector functions. Streptococcus pyogenes secretes a unique endo-β-N-acetylglucosaminidase, EndoS2, which deglycosylates the conserved N-linked glycan at Asn297 on IgG Fc to eliminate its effector functions and evade the immune system. EndoS2 and specific point mutants have been used to chemoenzymatically synthesize antibodies with customizable glycosylation for gain of functions. EndoS2 is useful in these schemes because it accommodates a broad range of N-glycans, including high-mannose, complex, and hybrid types; however, its mechanism of substrate recognition is poorly understood. We present crystal structures of EndoS2 alone and bound to complex and high-mannose glycans; the broad N-glycan specificity is governed by critical loops that shape the binding site of EndoS2. Furthermore, hydrolytic experiments, domain-swap chimeras, and hydrogen-deuterium exchange mass spectrometry reveal the importance of the carbohydrate-binding module in the mechanism of IgG recognition by EndoS2, providing insights into engineering enzymes to catalyze customizable glycosylation reactions.
Collapse
Affiliation(s)
- Erik H. Klontz
- Institute
of Human Virology, Department of Microbiology & Immunology, and Program in Molecular
Microbiology & Immunology, University
of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Beatriz Trastoy
- Structural
Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Daniel Deredge
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - James K. Fields
- Institute
of Human Virology, Department of Microbiology & Immunology, and Program in Molecular
Microbiology & Immunology, University
of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Chao Li
- Department
of Chemistry and Biochemistry, University
of Maryland, College Park, Maryland 20742, United States
| | - Jared Orwenyo
- Department
of Chemistry and Biochemistry, University
of Maryland, College Park, Maryland 20742, United States
| | - Alberto Marina
- Structural
Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Robert Beadenkopf
- Institute
of Human Virology, Department of Microbiology & Immunology, and Program in Molecular
Microbiology & Immunology, University
of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Sebastian Günther
- Institute
of Human Virology, Department of Microbiology & Immunology, and Program in Molecular
Microbiology & Immunology, University
of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Photon
Science, Deutsches Elektronen-Synchrotron, Hamburg 22607, Germany
| | - Jair Flores
- Institute
of Human Virology, Department of Microbiology & Immunology, and Program in Molecular
Microbiology & Immunology, University
of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Patrick L. Wintrode
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Lai-Xi Wang
- Department
of Chemistry and Biochemistry, University
of Maryland, College Park, Maryland 20742, United States
| | - Marcelo E. Guerin
- Structural
Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
- IKERBASQUE,
Basque Foundation for Science, 48013 Bilbao, Spain
| | - Eric J. Sundberg
- Institute
of Human Virology, Department of Microbiology & Immunology, and Program in Molecular
Microbiology & Immunology, University
of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Department
of Medicine, University of Maryland School
of Medicine, Baltimore, Maryland 21201, United States
| |
Collapse
|
34
|
Abstract
The translation of biological glycosylation in humans to the clinical applications involves systematic studies using homogeneous samples of oligosaccharides and glycoconjugates, which could be accessed by chemical, enzymatic or other biological methods. However, the structural complexity and wide-range variations of glycans and their conjugates represent a major challenge in the synthesis of this class of biomolecules. To help navigate within many methods of oligosaccharide synthesis, this Perspective offers a critical assessment of the most promising synthetic strategies with an eye on the therapeutically relevant targets.
Collapse
Affiliation(s)
- Larissa Krasnova
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Chi-Huey Wong
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States.,Genomics Research Center, Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
35
|
Abstract
Glycosylation is one of the most prevalent posttranslational modifications that profoundly affects the structure and functions of proteins in a wide variety of biological recognition events. However, the structural complexity and heterogeneity of glycoproteins, usually resulting from the variations of glycan components and/or the sites of glycosylation, often complicates detailed structure-function relationship studies and hampers the therapeutic applications of glycoproteins. To address these challenges, various chemical and biological strategies have been developed for producing glycan-defined homogeneous glycoproteins. This review highlights recent advances in the development of chemoenzymatic methods for synthesizing homogeneous glycoproteins, including the generation of various glycosynthases for synthetic purposes, endoglycosidase-catalyzed glycoprotein synthesis and glycan remodeling, and direct enzymatic glycosylation of polypeptides and proteins. The scope, limitation, and future directions of each method are discussed.
Collapse
Affiliation(s)
- Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
36
|
Tong X, Li T, Li C, Wang LX. Generation and Comparative Kinetic Analysis of New Glycosynthase Mutants from Streptococcus pyogenes Endoglycosidases for Antibody Glycoengineering. Biochemistry 2018; 57:5239-5246. [PMID: 30102520 PMCID: PMC6202118 DOI: 10.1021/acs.biochem.8b00719] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chemoenzymatic glycan remodeling by endoglycosidase-catalyzed deglycosylation and reglycosylation is emerging as an attractive approach for producing homogeneous glycoforms of antibodies, and the success of this approach depends on the discovery of efficient endoglycosidases and their glycosynthase mutants. We report in this paper a systematic site-directed mutagenesis of an endoglycosidase from Streptococcus pyogenes (Endo-S) at the critical Asp-233 (D233) site and evaluation of the hydrolysis and transglycosylation activities of the resulting mutants. We found that in addition to the previously identified D233A and D233Q mutants of Endo-S, most of the Asp-233 mutants discovered here were also glycosynthases that demonstrated glycosylation activity using glycan oxazoline as the donor substrate with diminished hydrolytic activity. The glycosynthase activity of the resultant mutants varied significantly depending on the nature of the amino acid substituents. Among them, the D233M mutant was identified as the most efficient glycosynthase variant with the highest transglycosylation/hydrolysis ratio, which is similar to the recently reported D184M mutant of Endo-S2, another S. pyogenes endoglycosidase. Kinetic studies of the D233M and D233A mutants of Endo-S, as well as glycosynthase mutants D184M and D184A of Endo-S2, indicated that the enhanced catalytic efficacy of the Asp-to-Met mutants of both enzymes was mainly due to an increased turnover number (increased kcat) for the glycan oxazoline substrate and the significantly enhanced substrate affinity (as judged by the reduced KM value) for the antibody acceptor.
Collapse
Affiliation(s)
- Xin Tong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Tiezheng Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
37
|
Carlo U, Yasuhiro K. Recent advances in the chemical synthesis of N-linked glycoproteins. Curr Opin Chem Biol 2018; 46:130-137. [PMID: 30144649 DOI: 10.1016/j.cbpa.2018.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 11/15/2022]
Abstract
Glycoproteins have many biological roles. Due to the heterogeneity of natural glycoproteins in the sugar part resulting in glycoforms the evaluation of the biochemical roles of individual glycans remains difficult to investigate. Since pure glycoforms are still not accessible via recombinant or chromatographic methods, the synthesis of proteins with uniform posttranslational modifications using ligation methods or glycan remodeling are currently the best options for accessing these targets. Recent developments in chemical protein synthesis, the assembly of N-glycans and the use of enzymatic procedures have provided access to many glycoproteins with modifications as well as their analogs.
Collapse
Affiliation(s)
- Unverzagt Carlo
- Bioorganic Chemistry, Gebäude NWI, University of Bayreuth, 95440 Bayreuth, Germany.
| | - Kajihara Yasuhiro
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|