1
|
Zhao Y, Yuan C, Shi Y, Liu X, Luo L, Zhang L, Pešić M, Yao H, Li L. Drug screening approaches for small-molecule compounds in cancer-targeted therapy. J Drug Target 2025; 33:368-383. [PMID: 39575843 DOI: 10.1080/1061186x.2024.2427185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 02/08/2025]
Abstract
Small-molecule compounds exhibit distinct pharmacological properties and clinical effectiveness. Over the past decade, advances in covalent drug discovery have led to successful small-molecule drugs, such as EGFR, BTK, and KRAS (G12C) inhibitors, for cancer therapy. Researchers are paying more attention to refining drug screening methods aiming for high throughput, fast speed, high specificity, and accuracy. Therefore, the discovery and development of small-molecule drugs has been facilitated by significantly reducing screening time and financial resources, and increasing promising lead compounds compared with traditional methods. This review aims to introduce classical and emerging methods for screening small-molecule compounds in targeted cancer therapy. It includes classification, principles, advantages, disadvantages, and successful applications, serving as valuable references for subsequent researchers.
Collapse
Affiliation(s)
- Yelin Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenyu Yuan
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuchen Shi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohong Liu
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Xicheng District, Beijing, China
| | - Liaoxin Luo
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Li Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research, 'Siniša Stanković'- National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Hongjuan Yao
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liang Li
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Zhang X, Wang Y, He X, Yang Y, Chen X, Li J. Advances in microneedle technology for biomedical detection. Biomater Sci 2024; 12:5134-5149. [PMID: 39225488 DOI: 10.1039/d4bm00794h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microneedles have recently emerged as a groundbreaking technology in the field of biomedical detection. Notable for their small size and ability to penetrate the superficial layers of the skin, microneedles provide an innovative platform for localized and real-time detection. This review explores the integration of various detection methods with microneedle technology, focusing particularly on its applications in biomedical contexts. First, the common detection methods, such as colorimetric, electrochemical, spectrometric, and fluorescence methods, combined with microneedle technology, are summarized. Then we showcase exemplary uses of microneedle technology in biomedical detection, including the monitoring of blood glucose levels, evaluating infection statuses in skin wounds, facilitating point-of-care testing, and identifying biomarkers in the interstitial fluid of the skin. Microneedle-based detection, with its painless, minimally invasive, and biocompatible approach, holds significant promise for enhancing biological assays. Finally, the review concludes by assessing the future potential and challenges of microneedle detection technology, underscoring its transformative capacity to advance personalized medicine and revolutionize healthcare practices.
Collapse
Affiliation(s)
- Xinmei Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu 610003, China.
| | - Yuemin Wang
- College of Medicine, Southwest Jiaotong University, Chengdu 610003, China.
| | - Xinyu He
- College of Medicine, Southwest Jiaotong University, Chengdu 610003, China.
| | - Yan Yang
- The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Xingyu Chen
- College of Medicine, Southwest Jiaotong University, Chengdu 610003, China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Abel AC, Mühlethaler T, Dessin C, Schachtsiek T, Sammet B, Sharpe T, Steinmetz MO, Sewald N, Prota AE. Bridging the maytansine and vinca sites: Cryptophycins target β-tubulin's T5-loop. J Biol Chem 2024; 300:107363. [PMID: 38735475 PMCID: PMC11190709 DOI: 10.1016/j.jbc.2024.107363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024] Open
Abstract
Cryptophycins are microtubule-targeting agents (MTAs) that belong to the most potent antimitotic compounds known to date; however, their exact molecular mechanism of action remains unclear. Here, we present the 2.2 Å resolution X-ray crystal structure of a potent cryptophycin derivative bound to the αβ-tubulin heterodimer. The structure addresses conformational issues present in a previous 3.3 Å resolution cryo-electron microscopy structure of cryptophycin-52 bound to the maytansine site of β-tubulin. It further provides atomic details on interactions of cryptophycins, which had not been described previously, including ones that are in line with structure-activity relationship studies. Interestingly, we discovered a second cryptophycin-binding site that involves the T5-loop of β-tubulin, a critical secondary structure element involved in the exchange of the guanosine nucleotide and in the formation of longitudinal tubulin contacts in microtubules. Cryptophycins are the first natural ligands found to bind to this new "βT5-loop site" that bridges the maytansine and vinca sites. Our results offer unique avenues to rationally design novel MTAs with the capacity to modulate T5-loop dynamics and to simultaneously engage multiple β-tubulin binding sites.
Collapse
Affiliation(s)
- Anne-Catherine Abel
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland; Biozentrum, University of Basel, Basel, Switzerland
| | | | - Cedric Dessin
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Thomas Schachtsiek
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Benedikt Sammet
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | | | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland; Biozentrum, University of Basel, Basel, Switzerland
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany.
| | - Andrea E Prota
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland.
| |
Collapse
|
4
|
Lizzadro L, Spieß O, Reinecke S, Stadler M, Schinzer D. Synthesis of a Non-Symmetrical Disorazole C 1-Analogue and Its Biological Activity. Molecules 2024; 29:1123. [PMID: 38474635 DOI: 10.3390/molecules29051123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The synthesis of a novel disorazole C1 analogue is described, and its biological activity as a cytotoxic compound is reported. Based on our convergent and flexible route to the disorazole core, we wish to report a robust strategy to synthesize a non-symmetrical disorazole in which we couple one half of the molecule containing the naturally occurring oxazole heterocycle and the second half of the disorazole macrocycle containing a thiazole heterocycle. This resulted in a very unusual non-symmetrical disorazole C1 analogue containing two different heterocycles, and its biological activity was studied. This provided exciting information about SAR (structure-activity-relationship) for this highly potent class of antitumor compounds.
Collapse
Affiliation(s)
- Luca Lizzadro
- Medicinal Chemistry and Chemical Biology Laboratory, School of Pharmacy, University of California San Francisco, 600 16th St., San Francisco, CA 94158, USA
| | - Oliver Spieß
- Chemisches Institut, Otto-von-Guericke-Universität, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Silke Reinecke
- Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Marc Stadler
- Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Dieter Schinzer
- Chemisches Institut, Otto-von-Guericke-Universität, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
5
|
Severin O, Pilyo S, Kachaeva M, Zhirnov V, Hodyna D, Bahrieieva O, Brovarets V. Synthesis, characterization of novel N-(4-cyano-1,3-oxazol-5-yl)sulfonamide derivatives and in vitro screening their activity against NCI-60 cancer cell lines. ChemMedChem 2024; 19:e202300527. [PMID: 38241069 DOI: 10.1002/cmdc.202300527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/03/2024] [Indexed: 02/13/2024]
Abstract
A novel series of N-(4-cyano-1,3-oxazol-5-yl)sulfonamides have been synthesized and characterized by IR, 1 H NMR, 13 C NMR spectroscopy, elemental analysis and chromato-mass-spectrometry. The anticancer activities of all newly synthesized compounds were evaluated via a single high-dose assay (10 μM) against 60 cancer cell lines by the National Cancer Institute (USA) according to its screening protocol. Among them, compounds 2 and 10 exhibited the highest activity against the 60 cancer cell lines panel in the one-dose assay. Compounds 2 and 10 showed inhibitory activity within the GI50 parameter and in five dose analyses. However, their cytostatic activity was only observed against some cancer cell lines, and cytotoxic concentration was outside the maximum used, i. e., >100 μM. The COMPARE analysis showed that the average graphs of the tested compounds have a moderate positive correlation with compounds with the L-cysteine analog and vinblastine (GI50 ) as well as paclitaxel (TGI), which target microtubules. Therefore, disruption of microtubule formation may be one of the mechanisms of the anticancer activity of the tested compounds, especially since among tubulin inhibitors with antitumor activity, compounds with an oxazole motif are widely represented. Therefore, N-(4-cyano-1,3-oxazol-5-yl)sulfonamides may be promising for further functionalization to obtain more active compounds.
Collapse
Affiliation(s)
- Oleksandr Severin
- Department of Chemistry of bioactive nitrogen-containing heterocyclic bases, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, 1, Academician Kukhar str, 02094, Kyiv, Ukraine
| | - Stepan Pilyo
- Department of Chemistry of bioactive nitrogen-containing heterocyclic bases, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, 1, Academician Kukhar str, 02094, Kyiv, Ukraine
| | - Maryna Kachaeva
- Department of Chemistry of bioactive nitrogen-containing heterocyclic bases, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, 1, Academician Kukhar str, 02094, Kyiv, Ukraine
| | - Victor Zhirnov
- Department of Chemistry of bioactive nitrogen-containing heterocyclic bases, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, 1, Academician Kukhar str, 02094, Kyiv, Ukraine
| | - Diana Hodyna
- Department of Biomedical Research, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, 1, Academician Kukhar str, 02094, Kyiv, Ukraine
| | - Oksana Bahrieieva
- Department of Chemistry of bioactive nitrogen-containing heterocyclic bases, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, 1, Academician Kukhar str, 02094, Kyiv, Ukraine
| | - Volodymyr Brovarets
- Department of Chemistry of bioactive nitrogen-containing heterocyclic bases, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, 1, Academician Kukhar str, 02094, Kyiv, Ukraine
| |
Collapse
|
6
|
Liu W, He Y, Guo Z, Wang M, Han X, Jia H, He J, Miao S, Wang S. Discovery of potent tubulin inhibitors targeting the colchicine binding site via structure-based lead optimization and antitumor evaluation. J Enzyme Inhib Med Chem 2023; 38:2155815. [PMID: 36629423 PMCID: PMC9848350 DOI: 10.1080/14756366.2022.2155815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The colchicine binding site of tubulin is a promising target for discovering novel antitumour agents. Previously, we identified 2-aryl-4-amide-quinoline derivatives displayed moderate tubulin polymerisation inhibitory activity and broad-spectrum in vitro antitumour activity. In this study, structure based rational design and systematic structural optimisation were performed to obtain analogues C1∼J2 bearing diverse substituents and scaffolds. Among them, analogue G13 bearing a hydroxymethyl group displayed good tubulin polymerisation inhibitory activity (IC50 = 13.5 μM) and potent antiproliferative activity (IC50 values: 0.65 μM∼0.90 μM). G13 potently inhibited the migration and invasion of MDA-MB-231 cells, and displayed potent antiangiogenic activity. It efficiently increased intracellular ROS level and decreased MMP in cancer cells, and obviously induced the fragmentation and disassembly of the microtubules network. More importantly, G13 exhibited good in vivo antitumour efficacy in MDA-MB-231 xenograft model (TGI = 38.2%; i.p., 30 mg/kg).
Collapse
Affiliation(s)
- Wei Liu
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Youyou He
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China,Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Zhongjie Guo
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Miaomiao Wang
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Xiaodong Han
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Hairui Jia
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Jin He
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Shanshan Miao
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Shengzheng Wang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi’an, China,CONTACT Shengzheng Wang Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
7
|
Gao Y, Birkelbach J, Fu C, Herrmann J, Irschik H, Morgenstern B, Hirschfelder K, Li R, Zhang Y, Jansen R, Müller R. The Disorazole Z Family of Highly Potent Anticancer Natural Products from Sorangium cellulosum: Structure, Bioactivity, Biosynthesis, and Heterologous Expression. Microbiol Spectr 2023; 11:e0073023. [PMID: 37318329 PMCID: PMC10434194 DOI: 10.1128/spectrum.00730-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/24/2023] [Indexed: 06/16/2023] Open
Abstract
Myxobacteria serve as a treasure trove of secondary metabolites. During our ongoing search for bioactive natural products, a novel subclass of disorazoles termed disorazole Z was discovered. Ten disorazole Z family members were purified from a large-scale fermentation of the myxobacterium Sorangium cellulosum So ce1875 and characterized by electrospray ionization-high-resolution mass spectrometry (ESI-HRMS), X-ray, nuclear magnetic resonance (NMR), and Mosher ester analysis. Disorazole Z compounds are characterized by the lack of one polyketide extension cycle, resulting in a shortened monomer in comparison to disorazole A, which finally forms a dimer in the bis-lactone core structure. In addition, an unprecedented modification of a geminal dimethyl group takes place to form a carboxylic acid methyl ester. The main component disorazole Z1 shows comparable activity in effectively killing cancer cells to disorazole A1 via binding to tubulin, which we show induces microtubule depolymerization, endoplasmic reticulum delocalization, and eventually apoptosis. The disorazole Z biosynthetic gene cluster (BGC) was identified and characterized from the alternative producer S. cellulosum So ce427 and compared to the known disorazole A BGC, followed by heterologous expression in the host Myxococcus xanthus DK1622. Pathway engineering by promoter substitution and gene deletion paves the way for detailed biosynthesis studies and efficient heterologous production of disorazole Z congeners. IMPORTANCE Microbial secondary metabolites are a prolific reservoir for the discovery of bioactive compounds, which prove to be privileged scaffolds for the development of new drugs such as antibacterial and small-molecule anticancer drugs. Consequently, the continuous discovery of novel bioactive natural products is of great importance for pharmaceutical research. Myxobacteria, especially Sorangium spp., which are known for their large genomes with yet-underexploited biosynthetic potential, are proficient producers of such secondary metabolites. From the fermentation broth of Sorangium cellulosum strain So ce1875, we isolated and characterized a family of natural products named disorazole Z, which showed potent anticancer activity. Further, we report on the biosynthesis and heterologous production of disorazole Z. These results can be stepping stones toward pharmaceutical development of the disorazole family of anticancer natural products for (pre)clinical studies.
Collapse
Affiliation(s)
- Yunsheng Gao
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmacy at Saarland University, Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Helmholtz International Lab for Anti-Infectives, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Joy Birkelbach
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmacy at Saarland University, Saarbrücken, Germany
| | - Chengzhang Fu
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmacy at Saarland University, Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmacy at Saarland University, Saarbrücken, Germany
| | - Herbert Irschik
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Bernd Morgenstern
- Department of Inorganic Chemistry, Saarland University, Saarbrücken, Germany
| | - Kerstin Hirschfelder
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmacy at Saarland University, Saarbrücken, Germany
| | - Ruijuan Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Rolf Jansen
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmacy at Saarland University, Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Center for Infection Research, Braunschweig, Germany
| |
Collapse
|
8
|
Ren Y, Wang Y, Liu J, Liu T, Yuan L, Wu C, Yang Z, Chen J. X-ray Crystal Structure-Guided Discovery of Novel Indole Analogues as Colchicine-Binding Site Tubulin Inhibitors with Immune-Potentiating and Antitumor Effects against Melanoma. J Med Chem 2023; 66:6697-6714. [PMID: 37145846 DOI: 10.1021/acs.jmedchem.3c00011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A series of novel indole analogues were discovered as colchicine-binding site inhibitors of tubulin. Among them, 3a exhibited the highest antiproliferative activity (average IC50 = 4.5 nM), better than colchicine (IC50 = 65.3 nM). The crystal structure of 3a in complex with tubulin was solved by X-ray crystallography, which explained the improved binding affinity of 3a to tubulin and thus its higher anticancer activity (IC50 = 4.5 nM) than the lead compound 12b (IC50 = 32.5 nM). In vivo, 3a (5 mg/kg) displayed significant antitumor efficacy against B16-F10 melanoma with a TGI of 62.96% and enhanced the antitumor efficacy of a small-molecule PD-1/PD-L1 inhibitor NP19 (TGI = 77.85%). Moreover, 3a potentiated the antitumor immunity of NP19 by activating the tumor immune microenvironment, as demonstrated by the increased tumor-infiltrating lymphocytes (TIL). Collectively, this work shows a successful example of crystal structure-guided discovery of a novel tubulin inhibitor 3a as a potential anticancer and immune-potentiating agent.
Collapse
Affiliation(s)
- Yichang Ren
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Yuxi Wang
- Targeted Tracer Research and development laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, Tianfu Jincheng Laboratory, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jin Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Ting Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Lin Yuan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Chengyong Wu
- Targeted Tracer Research and development laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, Tianfu Jincheng Laboratory, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zichao Yang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
9
|
Computational Approaches to the Rational Design of Tubulin-Targeting Agents. Biomolecules 2023; 13:biom13020285. [PMID: 36830654 PMCID: PMC9952983 DOI: 10.3390/biom13020285] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Microtubules are highly dynamic polymers of α,β-tubulin dimers which play an essential role in numerous cellular processes such as cell proliferation and intracellular transport, making them an attractive target for cancer and neurodegeneration research. To date, a large number of known tubulin binders were derived from natural products, while only one was developed by rational structure-based drug design. Several of these tubulin binders show promising in vitro profiles while presenting unacceptable off-target effects when tested in patients. Therefore, there is a continuing demand for the discovery of safer and more efficient tubulin-targeting agents. Since tubulin structural data is readily available, the employment of computer-aided design techniques can be a key element to focus on the relevant chemical space and guide the design process. Due to the high diversity and quantity of structural data available, we compiled here a guide to the accessible tubulin-ligand structures. Furthermore, we review different ligand and structure-based methods recently used for the successful selection and design of new tubulin-targeting agents.
Collapse
|
10
|
Bold CP, Lucena-Agell D, Oliva MÁ, Díaz JF, Altmann KH. Synthesis and Biological Evaluation of C(13)/C(13')-Bis(desmethyl)disorazole Z. Angew Chem Int Ed Engl 2023; 62:e202212190. [PMID: 36281761 PMCID: PMC10107878 DOI: 10.1002/anie.202212190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
Abstract
We describe the total synthesis of the macrodiolide C(13)/C(13')-bis(desmethyl)disorazole Z through double inter-/intramolecular Stille cross-coupling of a monomeric vinyl stannane/vinyl iodide precursor to form the macrocycle. The key step in the synthesis of this precursor was a stereoselective aldol reaction of a formal Evans acetate aldol product with crotonaldehyde. As demonstrated by X-ray crystallography, the binding mode of C(13)/C(13')-bis(desmethyl)disorazole Z to tubulin is virtually identical with that of the natural product disorazole Z. Likewise, C(13)/C(13')-bis(desmethyl)disorazole Z inhibits tubulin assembly with at least the same potency as disorazole Z and it appears to be a more potent cell growth inhibitor.
Collapse
Affiliation(s)
- Christian Paul Bold
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Daniel Lucena-Agell
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - María Ángela Oliva
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - José Fernando Díaz
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Karl-Heinz Altmann
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| |
Collapse
|
11
|
Boiarska Z, Pérez-Peña H, Abel AC, Marzullo P, Álvarez-Bernad B, Bonato F, Santini B, Horvath D, Lucena-Agell D, Vasile F, Sironi M, Díaz JF, Prota AE, Pieraccini S, Passarella D. Maytansinol Functionalization: Towards Useful Probes for Studying Microtubule Dynamics. Chemistry 2023; 29:e202203431. [PMID: 36468686 DOI: 10.1002/chem.202203431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Maytansinoids are a successful class of natural and semisynthetic tubulin binders, known for their potent cytotoxic activity. Their wider application as cytotoxins and chemical probes to study tubulin dynamics has been held back by the complexity of natural product chemistry. Here we report the synthesis of long-chain derivatives and maytansinoid conjugates. We confirmed that bulky substituents do not impact their high activity or the scaffold's binding mode. These encouraging results open new avenues for the design of new maytansine-based probes.
Collapse
Affiliation(s)
- Zlata Boiarska
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Helena Pérez-Peña
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Anne-Catherine Abel
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Paola Marzullo
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Beatriz Álvarez-Bernad
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Francesca Bonato
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Benedetta Santini
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Dragos Horvath
- Laboratory of Chemoinformatics, Faculty of Chemistry, University of Strasbourg, 67081, Strasbourg, France
| | - Daniel Lucena-Agell
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Francesca Vasile
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Maurizio Sironi
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| | - J Fernando Díaz
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Andrea E Prota
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Stefano Pieraccini
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Daniele Passarella
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| |
Collapse
|
12
|
Zhao Y, Guo L, Cao S, Xie M, Peng H, Li J, Luo S, Ma L, Wang L. DNA framework carriers with asymmetric hydrophobic drug patterns for enhanced cellular cytotoxicity. Chem Commun (Camb) 2023; 59:306-309. [PMID: 36507912 DOI: 10.1039/d2cc05763h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We devise a class of amphiphilic drug complexes by programming hydrophobic drug patterns (HDPs) on DNA frameworks. We investigate the effect of HDPs on cellular uptake efficiency and drug potency. We achieve enhanced cytotoxicity against tumor cells by using an asymmetric HDP.
Collapse
Affiliation(s)
- Yan Zhao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China.,Division of Physical Biology Department, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
| | - Linjie Guo
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,Zhangjiang Laboratory, Shanghai 201210, China
| | - Shuting Cao
- Division of Physical Biology Department, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
| | - Mo Xie
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Hongzhen Peng
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,Zhangjiang Laboratory, Shanghai 201210, China
| | - Jiang Li
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,Zhangjiang Laboratory, Shanghai 201210, China
| | - Shihua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Lan Ma
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Lihua Wang
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,Zhangjiang Laboratory, Shanghai 201210, China
| |
Collapse
|
13
|
Wang ZJ, Liu X, Zhou H, Liu Y, Zhong L, Wang X, Tu Q, Huo L, Yan F, Gu L, Müller R, Zhang Y, Bian X, Xu X. Engineering of Burkholderia thailandensis strain E264 serves as a chassis for expression of complex specialized metabolites. Front Microbiol 2022; 13:1073243. [PMID: 36466684 PMCID: PMC9712229 DOI: 10.3389/fmicb.2022.1073243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 09/16/2023] Open
Abstract
Heterologous expression is an indispensable approach to exploiting natural products from phylogenetically diverse microbial communities. In this study, we constructed a heterologous expression system based on strain Burkholderia thailandensis E264 by deleting efflux pump genes and screening constitutive strong promoters. The biosynthetic gene cluster (BGC) of disorazol from Sorangium cellulosum So ce12 was expressed successfully with this host, and the yield of its product, disorazol F2, rather than A1, was improved to 38.3 mg/L by promoter substitution and insertion. In addition to the disorazol gene cluster, the BGC of rhizoxin from Burkholderia rhizoxinica was also expressed efficiently, whereas no specific peak was detected when shuangdaolide BGC from Streptomyces sp. B59 was transformed into the host. This system provides another option to explore natural products from different phylogenetic taxa.
Collapse
Affiliation(s)
- Zong-Jie Wang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiaotong Liu
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yang Liu
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Lin Zhong
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xue Wang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qiang Tu
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liujie Huo
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Fu Yan
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Lichuan Gu
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research, Helmholtz Centre for Infection Research and Department of Pharmacy at Saarland University, Saarbrücken, Germany
| | - Youming Zhang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiaokun Xu
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
14
|
Andres AE, Mariano A, Rane D, Peterson BR. Quantification of Engagement of Microtubules by Small Molecules in Living Cells by Flow Cytometry. ACS BIO & MED CHEM AU 2022; 2:529-537. [PMID: 36281300 PMCID: PMC9585582 DOI: 10.1021/acsbiomedchemau.2c00031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022]
Abstract
![]()
Drugs such as paclitaxel (Taxol) that bind microtubules
are widely
used for the treatment of cancer. Measurements of the affinity and
selectivity of these compounds for their targets are largely based
on studies of purified proteins, and only a few quantitative methods
for the analysis of interactions of small molecules with microtubules
in living cells have been reported. We describe here a novel method
for rapidly quantifying the affinities of compounds that bind polymerized
tubulin in living HeLa cells. This method uses the fluorescent molecular
probe Pacific Blue-GABA-Taxol in conjunction with verapamil to block
cellular efflux. Under physiologically relevant conditions of 37 °C,
this combination allowed quantification of equilibrium saturation
binding of this probe to cellular microtubules (Kd = 1.7 μM) using flow cytometry. Competitive binding
of the microtubule stabilizers paclitaxel (cellular Ki = 22 nM), docetaxel (cellular Ki = 16 nM), cabazitaxel (cellular Ki = 6 nM), and ixabepilone (cellular Ki = 10 nM) revealed intracellular affinities for microtubules that
closely matched previously reported biochemical affinities. By including
a cooperativity factor (α) for curve fitting of allosteric modulators,
this probe also allowed quantification of binding (Kb) of the microtubule destabilizers colchicine (Kb = 80 nM, α = 0.08), vinblastine (Kb = 7 nM, α = 0.18), and maytansine (Kb = 3 nM, α = 0.21). Screening of this
assay against 1008 NCI diversity compounds identified NSC 93427 as
a novel microtubule destabilizer (Kb =
485 nM, α = 0.02), illustrating the potential of this approach
for drug discovery.
Collapse
Affiliation(s)
- Angelo E. Andres
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andres Mariano
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Digamber Rane
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Blake R. Peterson
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
15
|
Tian C, Wang M, Shi X, Chen X, Wang X, Zhang Z, Liu J. Discovery of (2-(pyrrolidin-1-yl)thieno[3,2-d]pyrimidin-4-yl)(3,4,5-trimethoxyphenyl)methanone as a novel potent tubulin depolymerizing and vascular disrupting agent. Eur J Med Chem 2022; 238:114466. [DOI: 10.1016/j.ejmech.2022.114466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 11/15/2022]
|
16
|
Alpízar-Pedraza D, Veulens ADLN, Araujo EC, Piloto-Ferrer J, Sánchez-Lamar Á. Microtubules destabilizing agents binding sites in tubulin. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Bordeau BM, Abuqayyas L, Nguyen TD, Chen P, Balthasar JP. Development and Evaluation of Competitive Inhibitors of Trastuzumab-HER2 Binding to Bypass the Binding-Site Barrier. Front Pharmacol 2022; 13:837744. [PMID: 35250584 PMCID: PMC8895951 DOI: 10.3389/fphar.2022.837744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/27/2022] [Indexed: 12/31/2022] Open
Abstract
Our group has developed and experimentally validated a strategy to increase antibody penetration in solid tumors through transient inhibition of antibody-antigen binding. In prior work, we demonstrated that 1HE, an anti-trastuzumab single domain antibody that transiently inhibits trastuzumab binding to HER2, increased the penetration of trastuzumab and increased the efficacy of ado-trastuzumab emtansine (T-DM1) in HER2+ xenograft bearing mice. In the present work, 1HE variants were developed using random mutagenesis and phage display to enable optimization of tumor penetration and efficacy of trastuzumab-based therapeutics. To guide the rational selection of a particular 1HE mutant for a specific trastuzumab-therapy, we developed a mechanistic pharmacokinetic (PK) model to predict within-tumor exposure of trastuzumab/T-DM1. A pharmacodynamic (PD) component was added to the model to predict the relationship between intratumor exposure to T-DM1 and the corresponding therapeutic effect in HER2+ xenografts. To demonstrate the utility of the competitive inhibition approach for immunotoxins, PK parameters specific for a recombinant immunotoxin were incorporated into the model structure. Dissociation half-lives for variants ranged from 1.1 h (for variant LG11) to 107.9 h (for variant HE10). Simulations predicted that 1HE co-administration can increase the tumor penetration of T-DM1, with inhibitors with longer trastuzumab binding half-lives relative to 1HE (15.5 h) further increasing T-DM1 penetration at the expense of total tumor uptake of T-DM1. The PK/PD model accurately predicted the response of NCI-N87 xenografts to treatment with T-DM1 or T-DM1 co-administered with 1HE. Model predictions indicate that the 1HE mutant HF9, with a trastuzumab binding half-life of 51.1 h, would be the optimal inhibitor for increasing T-DM1 efficacy with a modest extension in the median survival time relative to T-DM1 with 1HE. Model simulations predict that LG11 co-administration will dramatically increase immunotoxin penetration within all tumor regions. We expect that the mechanistic model structure and the wide range of inhibitors developed in this work will enable optimization of trastuzumab-cytotoxin penetration and efficacy in solid tumors.
Collapse
Affiliation(s)
| | | | | | | | - Joseph P. Balthasar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
18
|
Ma W, Yang Y, Zhu J, Jia W, Zhang T, Liu Z, Chen X, Lin Y. Biomimetic Nanoerythrosome-Coated Aptamer-DNA Tetrahedron/Maytansine Conjugates: pH-Responsive and Targeted Cytotoxicity for HER2-Positive Breast Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109609. [PMID: 35064993 DOI: 10.1002/adma.202109609] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/19/2022] [Indexed: 02/05/2023]
Abstract
DNA materials have emerged as potential nanocarriers for targeted cancer therapy to precisely deliver cargos with specific purposes. The short half-life and low bioavailability of DNA materials due to their interception by the reticuloendothelial system and blood clearance further limit their clinical translation. This study employs an HER2-targeted DNA-aptamer-modified DNA tetrahedron (HApt-tFNA) as a drug delivery system, and combines maytansine (DM1) to develop the HApt-DNA tetrahedron/DM1 conjugate (HApt-tFNA@DM1, HTD, HApDC) for targeted therapy of HER2-positive cancer. To optimize the pharmacokinetics and tumor-aggregation of HTD, a biomimetic camouflage is applied to embed HTD. The biomimetic camouflage is constructed by merging the erythrocyte membrane with pH-responsive functionalized synthetic liposomes, thus with excellent performance of drug delivery and tumor-stimulated drug release. The hybrid erythrosome-based nanoparticles show better inhibition of HER2-positive cancer than other drug formulations and exhibit superior biosafety. With the strengths of precise delivery, increased drug loading, sensitive tumor probing, and prolonged circulation time, the HApDC represents a promising nanomedicine to treat HER2-positive tumors. Notably, this study developsa dual-targeting nanoparticle by combining pH-sensitive camouflage and HApDC, initiating an important step toward the development and application of DNA-based medicine and biomimetic cell membrane materials in cancer treatment and other potential biological applications.
Collapse
Affiliation(s)
- Wenjuan Ma
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Yuting Yang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Jianwei Zhu
- Department of Neurosurgery Sichuan Provincial People's Hospital University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Weiqiang Jia
- Department of Neurosurgery Sichuan Provincial People's Hospital University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Xingyu Chen
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
- College of Biomedical Engineering Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
19
|
Discovery of novel tubulin inhibitors targeting the colchicine binding site via virtual screening, structural optimization and antitumor evaluation. Bioorg Chem 2021; 118:105486. [PMID: 34801948 DOI: 10.1016/j.bioorg.2021.105486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/31/2021] [Accepted: 11/09/2021] [Indexed: 11/21/2022]
Abstract
The colchicine binding site of tubulin is a promising target for discovering novel antitumor agents which exert the antiangiogenic effect and are not susceptible to multidrug resistance. For identifying novel tubulin inhibitors, structure-based virtual screening was applied to identify hit 9 which displayed moderate tubulin polymerization inhibition and broad-spectrum in vitro antitumor activity. Structural optimization was performed, and biological assay revealed analog E27 displayed the best antitumor activity with IC50 values ranging from 7.81 μM to 10.36 μM, and improved tubulin polymerization inhibitory activity (IC50 = 16.1 μM). It significantly inhibited cancer cell migration and invasion, induced cell apoptosis and arrested the cell cycle at G2/M phase. Moreover, the apoptotic effect of E27 is related to the increased ROS level, the decrease of MMP, and the abnormal expression of apoptosis-related proteins. Taken together, these results suggested E27 was a promising lead compound for discovering novel tubulin-targeted antitumor agents.
Collapse
|
20
|
Marzullo P, Boiarska Z, Pérez-Peña H, Abel AC, Álvarez-Bernad B, Lucena-Agell D, Vasile F, Sironi M, Altmann KH, Prota AE, Díaz JF, Pieraccini S, Passarella D. Maytansinol Derivatives: Side Reactions as a Chance for New Tubulin Binders. Chemistry 2021; 28:e202103520. [PMID: 34788896 PMCID: PMC9299702 DOI: 10.1002/chem.202103520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 11/07/2022]
Abstract
Maytansinol is a valuable precursor for the preparation of maytansine derivatives (known as maytansinoids). Inspired by the intriguing structure of the macrocycle and the success in targeted cancer therapy of the derivatives, we explored the maytansinol acylation reaction. As a result, we were able to obtain a series of derivatives with novel modifications of the maytansine scaffold. We characterized these molecules by docking studies, by a comprehensive biochemical evaluation, and by determination of their crystal structures in complex with tubulin. The results shed further light on the intriguing chemical behavior of maytansinoids and confirm the relevance of this peculiar scaffold in the scenario of tubulin binders.
Collapse
Affiliation(s)
- Paola Marzullo
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Zlata Boiarska
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Helena Pérez-Peña
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Anne-Catherine Abel
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Beatriz Álvarez-Bernad
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Daniel Lucena-Agell
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Francesca Vasile
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Maurizio Sironi
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Karl-Heinz Altmann
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH, Zürich, Vladimir-Prelog Weg 4, HCI H405, 8093, Zürich, Switzerland
| | - Andrea E Prota
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - J Fernando Díaz
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Stefano Pieraccini
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Daniele Passarella
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| |
Collapse
|
21
|
Huang Q, Chen B, Shen J, Liu L, Li J, Shi J, Li Q, Zuo X, Wang L, Fan C, Li J. Encoding Fluorescence Anisotropic Barcodes with DNA Fameworks. J Am Chem Soc 2021; 143:10735-10742. [PMID: 34242004 DOI: 10.1021/jacs.1c04942] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorescence anisotropy (FA) holds great potential for multiplexed analysis and imaging of biomolecules since it can effectively discriminate fluorophores with overlapping emission spectra. Nevertheless, its susceptibility to environmental variation hampers its widespread applications in biology and biotechnology. In this study, we design FA DNA frameworks (FAFs) by scaffolding fluorophores in a fluorescent protein-like microenvironment. We find that the FA stability of the fluorophores is remarkably improved due to the sequestration effects of FAFs. The FA level of the fluorophores can be finely tuned when placed at different locations on an FAF, analogous to spectral shifts of protein-bound fluorophores. The high programmability of FAFs further enables the design of a spectrum of encoded FA barcodes for multiplexed sensing of nucleic acids and multiplexed labeling of live cells. This FAF system thus establishes a new paradigm for designing multiplexing FA probes for cellular imaging and other biological applications.
Collapse
Affiliation(s)
- Qiuling Huang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Chen
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Liu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiajun Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiye Shi
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lihua Wang
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
22
|
Guerra WD, Lucena-Agell D, Hortigüela R, Rossi RA, Fernando Díaz J, Padrón JM, Barolo SM. Design, Synthesis, and in vitro Evaluation of Tubulin-Targeting Dibenzothiazines with Antiproliferative Activity as a Novel Heterocycle Building Block. ChemMedChem 2021; 16:3003-3016. [PMID: 34231318 DOI: 10.1002/cmdc.202100383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/27/2021] [Indexed: 01/15/2023]
Abstract
We prepared a series of free NH and N-substituted dibenzonthiazines with potential anti-tumor activity from N-aryl-benzenesulfonamides. A biological test of synthesized compounds (59 samples) was performed in vitro measuring their antiproliferative activity against a panel of six human solid tumor cell lines and its tubulin inhibitory activity. We identified 6-(phenylsulfonyl)-6H-dibenzo[c,e][1,2]thiazine 5,5-dioxide and 6-tosyl-6H-dibenzo[c,e][1,2]thiazine 5,5-dioxide as the best compounds with promising values of activity (overall range of 2-5.4 μM). Herein, we report the dibenzothiazine core as a novel building block with antiproliferative activity, targeting tubulin dynamics.
Collapse
Affiliation(s)
- Walter D Guerra
- Instituto de Investigaciones en Físico Química de Córdoba, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - Daniel Lucena-Agell
- Centro de Investigaciones Biológicas Margarita Salas (CIB-MS, CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Rafael Hortigüela
- Centro de Investigaciones Biológicas Margarita Salas (CIB-MS, CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Roberto A Rossi
- Instituto de Investigaciones en Físico Química de Córdoba, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - J Fernando Díaz
- Centro de Investigaciones Biológicas Margarita Salas (CIB-MS, CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, C/Astrofísico Francisco Sánchez 2, 38206, La Laguna, Spain
| | - Silvia M Barolo
- Instituto de Investigaciones en Físico Química de Córdoba, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| |
Collapse
|
23
|
C3 ester side chain plays a pivotal role in the antitumor activity of Maytansinoids. Biochem Biophys Res Commun 2021; 566:197-203. [PMID: 34144258 DOI: 10.1016/j.bbrc.2021.05.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023]
Abstract
Maytansinoids, the chemical derivatives of Maytansine, are commonly used as potent cytotoxic payloads in antibody-drug conjugates (ADC). Structure-activity-relationship studies had identified the C3 ester side chain as a critical element for antitumor activity of maytansinoids. The maytansinoids bearing the methyl group at C3 position with D configuration were about 100 to 400-fold less cytotoxic than their corresponding L-epimers toward various cell lines. The detailed mechanism of how chirality affects the anticancer activity remains elusive. In this study, we determined the high-resolution crystal structure of tubulin in complex with maytansinol, L-DM1-SMe and D-DM1-SMe. And we found the carbonyl oxygen atom of the ester moiety and the tail thiomethyl group at C3 side chain of L-DM1-SMe form strong intramolecular interaction with the hydroxyl at position 9 and the benzene ring, respectively, fixing the bioactive conformation and enhancing the binding affinity. Additionally, ligand-based and structure-based virtually screening methods were used to screen the commercially macrocyclic compounds library, and 15 macrocyclic structures were picketed out as putatively new maytansine-site inhibitors. Our study provides a possible strategy for the rational discovery of next-generation maytansine site inhibitors.
Collapse
|
24
|
Lam NYS, Stockdale TP, Anketell MJ, Paterson I. Conquering peaks and illuminating depths: developing stereocontrolled organic reactions to unlock nature's macrolide treasure trove. Chem Commun (Camb) 2021; 57:3171-3189. [PMID: 33666631 DOI: 10.1039/d1cc00442e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structural complexity and biological importance of macrolide natural products has inspired the development of innovative strategies for their chemical synthesis. With their dense stereochemical content, high level of oxygenation and macrocyclic cores, we viewed the efficient total synthesis of these valuable compounds as an aspirational driver towards developing robust methods and strategies for their construction. Starting out from the initial development of our versatile asymmetric aldol methodology, this personal perspective reflects on an adventurous journey, with all its trials, tribulations and serendipitous discoveries, across the total synthesis, in our group, of a representative selection of six macrolide natural products of marine and terrestrial origin - swinholide A, spongistatin 1, spirastrellolide A, leiodermatolide, chivosazole F and actinoallolide A.
Collapse
Affiliation(s)
- Nelson Y S Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | | | |
Collapse
|
25
|
Ren Y, Wang Y, Li G, Zhang Z, Ma L, Cheng B, Chen J. Discovery of Novel Benzimidazole and Indazole Analogues as Tubulin Polymerization Inhibitors with Potent Anticancer Activities. J Med Chem 2021; 64:4498-4515. [PMID: 33788562 DOI: 10.1021/acs.jmedchem.0c01837] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Novel indazole and benzimidazole analogues were designed and synthesized as tubulin inhibitors with potent antiproliferative activities. Among them, compound 12b exhibited the strongest inhibitory effects on the growth of cancer cells with an average IC50 value of 50 nM, slightly better than colchicine. 12b exhibited nearly equal potency against both, a paclitaxel-resistant cancer cell line (A2780/T, IC50 = 9.7 nM) and the corresponding parental cell line (A2780S, IC50 = 6.2 nM), thus effectively overcoming paclitaxel resistance in vitro. The crystal structure of 12b in complex with tubulin was solved to 2.45 Å resolution by X-ray crystallography, and its direct binding was confirmed to the colchicine site. Furthermore, 12b displayed significant in vivo antitumor efficacy in a melanoma tumor model with tumor growth inhibition rates of 78.70% (15 mg/kg) and 84.32% (30 mg/kg). Collectively, this work shows that 12b is a promising lead compound deserving further investigation as a potential anticancer agent.
Collapse
Affiliation(s)
- Yichang Ren
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Precision Medicine Research Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Zherong Zhang
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Lingling Ma
- Targeted Tracer Research and Development Laboratory, Precision Medicine Research Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Binbin Cheng
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
26
|
Matthew S, Chen QY, Ratnayake R, Fermaintt CS, Lucena-Agell D, Bonato F, Prota AE, Lim ST, Wang X, Díaz JF, Risinger AL, Paul VJ, Oliva MÁ, Luesch H. Gatorbulin-1, a distinct cyclodepsipeptide chemotype, targets a seventh tubulin pharmacological site. Proc Natl Acad Sci U S A 2021; 118:e2021847118. [PMID: 33619102 PMCID: PMC7936326 DOI: 10.1073/pnas.2021847118] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tubulin-targeted chemotherapy has proven to be a successful and wide spectrum strategy against solid and liquid malignancies. Therefore, new ways to modulate this essential protein could lead to new antitumoral pharmacological approaches. Currently known tubulin agents bind to six distinct sites at α/β-tubulin either promoting microtubule stabilization or depolymerization. We have discovered a seventh binding site at the tubulin intradimer interface where a novel microtubule-destabilizing cyclodepsipeptide, termed gatorbulin-1 (GB1), binds. GB1 has a unique chemotype produced by a marine cyanobacterium. We have elucidated this dual, chemical and mechanistic, novelty through multidimensional characterization, starting with bioactivity-guided natural product isolation and multinuclei NMR-based structure determination, revealing the modified pentapeptide with a functionally critical hydroxamate group; and validation by total synthesis. We have investigated the pharmacology using isogenic cancer cell screening, cellular profiling, and complementary phenotypic assays, and unveiled the underlying molecular mechanism by in vitro biochemical studies and high-resolution structural determination of the α/β-tubulin-GB1 complex.
Collapse
Affiliation(s)
- Susan Matthew
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610
| | - Qi-Yin Chen
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610
- Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 32610
| | - Ranjala Ratnayake
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610
- Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 32610
| | - Charles S Fermaintt
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Daniel Lucena-Agell
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Francesca Bonato
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Andrea E Prota
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Seok Ting Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 636921 Singapore
| | - Xiaomeng Wang
- Lee Kong Chian School of Medicine, Nanyang Technological University, 636921 Singapore
| | - J Fernando Díaz
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - April L Risinger
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | | | - Maria Ángela Oliva
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain;
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610;
- Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 32610
- Lee Kong Chian School of Medicine, Nanyang Technological University, 636921 Singapore
| |
Collapse
|
27
|
Zhu T, Wang SH, Li D, Wang SY, Liu X, Song J, Wang YT, Zhang SY. Progress of tubulin polymerization activity detection methods. Bioorg Med Chem Lett 2021; 37:127698. [PMID: 33468346 DOI: 10.1016/j.bmcl.2020.127698] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/05/2020] [Accepted: 11/14/2020] [Indexed: 12/13/2022]
Abstract
Tubulin, an important target in tumor therapy, is one of the hotspots in the field of antineoplastic drugs in recent years, and it is of great significance to design and screen new inhibitors for this target. Natural products and chemical synthetic drugs are the main sources of tubulin inhibitors. However, due to the variety of compound structure types, it has always been difficult for researchers to screen out polymerization inhibitors with simple operation, high efficiency and low cost. A large number of articles have reported the screening methods of tubulin inhibitors and their biological activity. In this article, the biological activity detection methods of tubulin polymerization inhibitors are reviewed. Thus, it provides a theoretical basis for the further study of tubulin polymerization inhibitors and the selection of methods for tubulin inhibitors.
Collapse
Affiliation(s)
- Ting Zhu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Sheng-Hui Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Dong Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shu-Yu Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xu Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Ya-Ting Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
28
|
Olatunde OZ, Yong J, Lu C. The Progress of the Anticancer Agents Related to the Microtubules Target. Mini Rev Med Chem 2020; 20:2165-2192. [PMID: 32727327 DOI: 10.2174/1389557520666200729162510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/11/2020] [Accepted: 05/22/2020] [Indexed: 11/22/2022]
Abstract
Anticancer drugs based on the microtubules target are potent mitotic spindle poison agents, which interact directly with the microtubules, and were classified as microtubule-stabilizing agents and microtubule-destabilizing agents. Researchers have worked tremendously towards the improvements of anticancer drugs, in terms of improving the efficacy, solubility and reducing the side effects, which brought about advancement in chemotherapy. In this review, we focused on describing the discovery, structures and functions of the microtubules as well as the progress of anticancer agents related to the microtubules, which will provide adequate references for researchers.
Collapse
Affiliation(s)
- Olagoke Zacchaeus Olatunde
- CAS Key Laboratory of Desing and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structures of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Jianping Yong
- Xiamen Institute of Rare-Earth Materials, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
| | - Canzhong Lu
- CAS Key Laboratory of Desing and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structures of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| |
Collapse
|
29
|
Colombo E, Polito L, Biocotino M, Marzullo P, Hyeraci M, Via LD, Passarella D. New Class of Betulinic Acid-Based Nanoassemblies of Cabazitaxel, Podophyllotoxin, and Thiocolchicine. ACS Med Chem Lett 2020; 11:895-898. [PMID: 32435402 DOI: 10.1021/acsmedchemlett.9b00668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Betulinic acid is validated as a new self-assembly inducer for the formation of nanoparticles (NPs) in combination with different drugs. The target compounds are characterized by the presence of anticancer drugs acting on tubulin dynamics and of a linker that could be a carbon chain or a triazole-based one. Nanoparticles formed are characterized and their biological activity is evaluated.
Collapse
Affiliation(s)
- Eleonora Colombo
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Laura Polito
- CNR-ISTM, Via G. Fantoli 16/15, 20138 Milano, Italy
| | - Michele Biocotino
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Paola Marzullo
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Mariafrancesca Hyeraci
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Lisa Dalla Via
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Daniele Passarella
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| |
Collapse
|
30
|
Risinger AL, Du L. Targeting and extending the eukaryotic druggable genome with natural products: cytoskeletal targets of natural products. Nat Prod Rep 2020; 37:634-652. [PMID: 31764930 PMCID: PMC7797185 DOI: 10.1039/c9np00053d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2014-2019We review recent progress on natural products that target cytoskeletal components, including microtubules, actin, intermediate filaments, and septins and highlight their demonstrated and potential utility in the treatment of human disease. The anticancer efficacy of microtubule targeted agents identified from plants, microbes, and marine organisms is well documented. We highlight new microtubule targeted agents currently in clinical evaluations for the treatment of drug resistant cancers and the accumulating evidence that the anticancer efficacy of these agents is not solely due to their antimitotic effects. Indeed, the effects of microtubule targeted agents on interphase microtubules are leading to their potential for more mechanistically guided use in cancers as well as neurological disease. The discussion of these agents as more targeted drugs also prompts a reevaluation of our thinking about natural products that target other components of the cytoskeleton. For instance, actin active natural products are largely considered chemical probes and non-selective toxins. However, studies utilizing these probes have uncovered aspects of actin biology that can be more specifically targeted to potentially treat cancer, neurological disorders, and infectious disease. Compounds that target intermediate filaments and septins are understudied, but their continued discovery and mechanistic evaluations have implications for numerous therapeutic indications.
Collapse
Affiliation(s)
- April L Risinger
- The University of Texas Health Science Center at San Antonio, Department of Pharmacology, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA.
| | | |
Collapse
|
31
|
Cao S, Dong YH, Wang DF, Liu ZP. Tubulin Maytansine Site Binding Ligands and their Applications as MTAs and ADCs for Cancer Therapy. Curr Med Chem 2020; 27:4567-4576. [PMID: 32175831 DOI: 10.2174/0929867327666200316144610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Microtubule Targeting Agents (MTAs) represent the most successful anticancer drugs for cancer chemotherapy. Through interfering with the tubulin polymerization and depolymerization dynamics, MTAs influence intracellular transport and cell signal pathways, inhibit cell mitosis and cell proliferation, and induce cell apoptosis and death. The tubulin maytansine site binding agents are natural or nature-derived products that represent one type of the MTAs that inhibit tubulin polymerization and exhibit potent antitumor activity both in vitro and in vivo. They are used as Antibody-Drug Conjugates (ADCs) in cancer chemotherapy. METHODS Using SciFinder® as a tool, the publications about maytansine, its derivatives, maytansine binding site, maytansine site binding agents and their applications as MTAs for cancer therapy were surveyed with an exclusion on those published as patents. The latest progresses in clinical trials were obtained from the clinical trial web. RESULTS This article presents an introduction about MTAs, maytansine, maytansine binding site and its ligands, the applications of these ligands as MTAs and ADCs in cancer therapy. CONCLUSION The maytansine site binding agents are powerful MTAs for cancer chemotherapy. The maytansine site ligands-based ADCs are used in clinic or under clinical trials as cancer targeted therapy to improve their selectivity and to reduce their side effects. Further improvements in the delivery efficiency of the ADCs will benefit the patients in cancer targeted therapy.
Collapse
Affiliation(s)
- Shuo Cao
- Department of Medicinal Chemistry, Faculty of Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Yue-Hui Dong
- Jinan Vocational College of Nursing, Jinan 250102, China
| | - De-Feng Wang
- Department of Medicinal Chemistry, Faculty of Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Zhao-Peng Liu
- Department of Medicinal Chemistry, Faculty of Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
32
|
Guo H, Li X, Guo Y, Zhen L. An overview of tubulin modulators deposited in protein data bank. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02352-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Xu J, Liu M, Athukorale S, Zou S, Zhang D. Linear Extrapolation of the Analyte-Specific Light Scattering and Fluorescence Depolarization in Turbid Samples. ACS OMEGA 2019; 4:4739-4747. [PMID: 31459660 PMCID: PMC6648588 DOI: 10.1021/acsomega.8b03354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/19/2019] [Indexed: 05/14/2023]
Abstract
Anisotropy and depolarization are two interconvertible parameters in fluorescence and light scattering spectroscopy that describe the polarization distribution of emitted and scattered photons generated with linearly polarized excitation light. Whereas anisotropy is more frequently used in fluorescence literature for studying association/dissociation of fluorophore-bearing reagents, depolarization is more popular in the light-scattering literature for investigating the effect of scatterers' geometries and chemical compositions. Presented herein is a combined computational and experimental study of the scattering and fluorescence depolarization enhancement induced by light scattering in turbid samples. The most important finding is that sample light scattering and fluorescence depolarization increases linearly with sample light-scattering extinction. Therefore, one can extrapolate the analyte-specific scattering and fluorescence depolarization through linear curve fitting of the sample light scattering and fluorescence depolarization as a function of the sample concentration or the path length of the sampling cuvettes. An example application of this linear extrapolation method is demonstrated for quantifying the fluorophore-specific fluorescence depolarization and consequently its anisotropy for an aggregation-induced-emission sample. This work should be important for a wide range of macromolecular, supramolecular, and nanoscale fluorescent materials that are often strong light scatterers due to their large sizes.
Collapse
Affiliation(s)
- Joanna
Xiuzhu Xu
- Department
of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Muqiong Liu
- Department
of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Sumudu Athukorale
- Department
of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Shengli Zou
- Department
of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Dongmao Zhang
- Department
of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
- Department
of Chemistry, Xihua University, Chengdu 610039, China
| |
Collapse
|
34
|
Anti-tubulin agents of natural origin: Targeting taxol, vinca, and colchicine binding domains. Eur J Med Chem 2019; 171:310-331. [PMID: 30953881 DOI: 10.1016/j.ejmech.2019.03.025] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 12/24/2022]
Abstract
Microtubules are a protein which is made of α- and β-heterodimer. It is one of the main components of the cell which play a vital role in cell division especially in G2/M-phase. It exists in equilibrium dynamic of polymerization and depolymerization of α- and β-heterodimer. It is one of the best targets for developing anti-cancer drugs. Various natural occurring molecules are well known for their anti-tubulin effect such as vinca, paclitaxel, combretastatin, colchicine etc. These microtubule-targeted drugs are acted through two processes (i) inhibiting depolymerization of tubulin (tubulin stabilizing agents) and (ii) inhibiting polymerization of tubulin (tubulin destabilizing agents). Now days, various binding domains have been explore through which these molecules are binding to tubulin but the three major binding domain of tubulin are taxol, vinca and colchicine binding domain. The present article mainly focus on the classification of various naturally occurring compounds on the basis of their inhibition processes (depolymerization and polymerization) and the site of interaction (targets taxol, vinca and colchicine binding domain) which has been hitherto reported. By placing all the naturally occurring taxol, vinca and colchicine binding site analogues at one place makes a better understanding of the tubulin interactions with known natural tubulin binders that would helps in the discovery of new and potent natural, semi-synthetic and synthetic analogues for treating cancer.
Collapse
|
35
|
Gaugaz FZ, Chicca A, Redondo-Horcajo M, Barasoain I, Díaz JF, Altmann KH. Synthesis, Microtubule-Binding Affinity, and Antiproliferative Activity of New Epothilone Analogs and of an EGFR-Targeted Epothilone-Peptide Conjugate. Int J Mol Sci 2019; 20:E1113. [PMID: 30841526 PMCID: PMC6429585 DOI: 10.3390/ijms20051113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/10/2019] [Accepted: 02/26/2019] [Indexed: 11/16/2022] Open
Abstract
A new simplified, epoxide-free epothilone analog was prepared incorporating an N-(2-hydroxyethyl)-benzimidazole side chain, which binds to microtubules with high affinity and inhibits cancer cell growth in vitro with nM potency. Building on this scaffold, a disulfide-linked conjugate with the purported EGFR-binding (EGFR, epidermal growth factor receptor) peptide GE11 was then prepared. The conjugate retained significant microtubule-binding affinity, in spite of the size of the peptide attached to the benzimidazole side chain. The antiproliferative activity of the conjugate was significantly lower than for the parent scaffold and, surprisingly, was independent of the EGFR expression status of cells. Our data indicate that the disulfide-based conjugation with the GE11 peptide is not a viable approach for effective tumor-targeting of highly potent epothilones and probably not for other cytotoxics.
Collapse
Affiliation(s)
- Fabienne Zdenka Gaugaz
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, 8093 Zürich, Switzerland.
| | - Andrea Chicca
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland.
| | - Mariano Redondo-Horcajo
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain.
| | - Isabel Barasoain
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain.
| | - J Fernando Díaz
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain.
| | - Karl-Heinz Altmann
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, 8093 Zürich, Switzerland.
| |
Collapse
|
36
|
Karier P, Ungeheuer F, Ahlers A, Anderl F, Wille C, Fürstner A. Metathesis at an Implausible Site: A Formal Total Synthesis of Rhizoxin D. Angew Chem Int Ed Engl 2018; 58:248-253. [DOI: 10.1002/anie.201812096] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Pol Karier
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Felix Ungeheuer
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Andreas Ahlers
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Felix Anderl
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Christian Wille
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| |
Collapse
|
37
|
Karier P, Ungeheuer F, Ahlers A, Anderl F, Wille C, Fürstner A. Metathesis at an Implausible Site: A Formal Total Synthesis of Rhizoxin D. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Pol Karier
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Felix Ungeheuer
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Andreas Ahlers
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Felix Anderl
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Christian Wille
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| |
Collapse
|
38
|
Microtubule-Targeting Agents: Strategies To Hijack the Cytoskeleton. Trends Cell Biol 2018; 28:776-792. [PMID: 29871823 DOI: 10.1016/j.tcb.2018.05.001] [Citation(s) in RCA: 308] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 11/20/2022]
Abstract
Microtubule-targeting agents (MTAs) such as paclitaxel and the vinca alkaloids are among the most important medical weapons available to combat cancer. MTAs interfere with intracellular transport, inhibit eukaryotic cell proliferation, and promote cell death by suppressing microtubule dynamics. Recent advances in the structural analysis of MTAs have enabled the extensive characterization of their interactions with microtubules and their building block tubulin. We review here our current knowledge on the molecular mechanisms used by MTAs to hijack the microtubule cytoskeleton, and discuss dual inhibitors that target both kinases and microtubules. We further formulate some outstanding questions related to MTA structural biology and present possible routes for future investigations of this fascinating class of antimitotic agents.
Collapse
|