1
|
Alfonso-Hernandez L, Freixas VM, Gibson T, Tretiak S, Fernandez-Alberti S. Tuning Electronic Relaxation of Nanorings Through Their Interlocking. J Comput Chem 2025; 46:e27533. [PMID: 39680665 DOI: 10.1002/jcc.27533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 12/18/2024]
Abstract
Electronic and vibrational relaxation processes can be optimized and tuned by introducing alternative pathways that channel excess energy more efficiently. An ensemble of interacting molecular systems can help overcome the bottlenecks caused by large energy gaps between intermediate excited states involved in the relaxation process. By employing this strategy, catenanes composed of mechanically interlocked carbon nanostructures show great promise as new materials for achieving higher efficiencies in electronic devices. Herein, we perform nonadiabatic excited state molecular dynamics on different all-benzene catenanes. We observe that catenanes experience faster relaxations than individual units. Coupled catenanes present overlapping energy manifolds that include several electronic excited states spatially localized on the different moieties, increasing the density of states that ultimately improve the efficiency in the energy relaxation. This result suggests the use of catenanes as a viable strategy for tuning the internal conversion rates in a quest for their utilization for new optoelectronic applications.
Collapse
Affiliation(s)
- Laura Alfonso-Hernandez
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Bernal, Argentina
| | - Victor M Freixas
- Department of Chemistry and Physics and Astronomy, University of California, Irvine, California, USA
| | - Tammie Gibson
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Sergei Tretiak
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | |
Collapse
|
2
|
Zhang B, Gu Y, Freixas VM, Sun S, Tretiak S, Jiang J, Mukamel S. Cavity Manipulation of Attosecond Charge Migration in Conjugated Dendrimers. J Am Chem Soc 2024; 146:26743-26750. [PMID: 39291347 DOI: 10.1021/jacs.4c06727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Dendrimers are branched polymers with wide applications to photosensitization, photocatalysis, photodynamic therapy, photovoltaic conversion, and light sensor amplification. The primary step of numerous photophysical and photochemical processes in many molecules involves ultrafast coherent electronic dynamics and charge oscillations triggered by photoexcitation. This electronic wavepacket motion at short times where the nuclei are frozen is known as attosecond charge migration. We show how charge migration in a dendrimer can be manipulated by placing it in an optical cavity and monitored by time-resolved X-ray diffraction. Our simulations demonstrate that the dendrimer charge migration modes and the character of photoexcited wave function can be significantly influenced by the strong light-matter interaction in the cavity. This presents a new avenue for modulating initial ultrafast charge dynamics and subsequently controlling coherent energy transfer in dendritic nanostructures.
Collapse
Affiliation(s)
- Baicheng Zhang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Yonghao Gu
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Victor Manuel Freixas
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Shichao Sun
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
3
|
Rather SR, Scholes GD, Chen LX. From Coherence to Function: Exploring the Connection in Chemical Systems. Acc Chem Res 2024; 57:2620-2630. [PMID: 39222721 DOI: 10.1021/acs.accounts.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
ConspectusThe role of quantum mechanical coherences or coherent superposition states in excited state processes has received considerable attention in the last two decades largely due to advancements in ultrafast laser spectroscopy. These coherence effects hold promise for enhancing the efficiency and robustness of functionally relevant processes, even when confronted with energy disorder and environmental fluctuations. Understanding coherence deeply drives us to unravel mechanisms and dynamics controlled by order and synchronization at a quantum mechanical level, envisioning optical control of coherence to enhance functions or create new ones in molecular and material systems. In this frontier, the interplay between electronic and vibrational dynamics, specifically the influence of vibrations in directing electronic dynamics, has emerged as the leading principle. Here, two energetically disparate quantum degrees of freedom work in-sync to dictate the trajectory of an excited state reaction. Moreover, with the vibrational degree being directly related to the structural composition of molecular or material systems, new molecular designs could be inspired by tailoring certain structural elements.In the realm of chemical kinetics, our understanding of the dynamics of chemical transformations is underpinned by fundamental theories, such as transition state theory, activated rate theory, and Marcus theory. These theories elucidate reaction rates by considering the energy barriers that must be overcome for reactants to transform into products. Those barriers are surmounted by the stochastic nature of energy gap fluctuations within reacting systems, emphasizing that the reaction coordinate, the pathway from reactants to products, is not rigidly defined by a specific vibrational motion but encompasses a diverse array of molecular motions. While less is known about the involvement of specific intramolecular vibrational modes, their significance in certain cases cannot be overlooked.In this Account, we summarize key experimental findings that offer deeper insights into the complex electronic-vibrational trajectories encompassing excited states afforded from state-of-the-art ultrafast laser spectroscopy in three exemplary processes: photoinduced electron transfer, singlet-triplet intersystem crossing, and intramolecular vibrational energy flow in molecular systems. We delve into the rapid decoherence, or loss of phase and amplitude correlations, of vibrational coherences along promoter vibrations during subpicosecond intersystem crossing dynamics in a series of binuclear platinum complexes. This rapid decoherence illustrates the vibration-driven reactive pathways from the Franck-Condon state to the curve crossing region. We also explore the generation of new vibrational coherences induced by impulsive reaction dynamics rather than by the laser pulse in these systems, which sheds light on specific energy dissipation pathways and thereby on the progression of the reaction trajectory in the vicinity of the curve crossing on the product side. Another property of vibrational coherences, amplitude, reveals how energy can flow from one vibration to another in the electronic excited state of a terpyridine-molybdenum complex hosting a nonreactive dinitrogen substrate. A slight change in vibrational energy triggers a quasi-resonant interaction, leading to constructive wavepacket interference and ultimately intramolecular vibrational redistribution from a Franck-Condon active terpyridine vibration to a dinitrogen stretching vibration, energizing the dinitrogen bond.
Collapse
Affiliation(s)
- Shahnawaz R Rather
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08541, United States
| | - Lin X Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60204, United States
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
4
|
Sheng Z, Jiang T, Li W, Shuai Z. TD-DMRG Study of Exciton Dynamics with both Thermal and Static Disorders for Fenna-Matthews-Olson Complex. J Chem Theory Comput 2024. [PMID: 39087905 DOI: 10.1021/acs.jctc.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Photosynthesis is a fundamental process that converts solar energy into chemical energy. Understanding the microscopic mechanisms of energy transfer in photosynthetic systems is crucial for the development of novel optoelectronic materials. Simulating these processes poses significant challenges due to the intricate interactions between electrons and phonons, compounded by static disorder. In this work, we present a numerically nearly exact study using the time-dependent density matrix renormalization group (TD-DMRG) method to simulate the quantum dynamics of the Fenna-Matthews-Olson (FMO) complex considering an eight-site model with both thermal and static disorders. We employ the thermo-field dynamics formalism for temperature effects. We merge all electronic interactions into one large matrix product state (MPS) site, boosting accuracy efficiently without increasing complexity. Previous combined experimental and computational studies indicated that the static disorders range from 30 to 90 cm-1 for different FMO sites. We employ a Gaussian distribution and the auxiliary bosonic operator approach to consider the static disorder in our TD-DMRG algorithm. We investigate the impact of different initial excitation sites, temperatures, and degrees of static disorder on the exciton dynamics and temporal coherence. It is found that under the influence of the experimentally determined static disorder strength, the exciton population evolution shows a non-negligible difference at zero temperature, while it is hardly affected at room temperature.
Collapse
Affiliation(s)
- Zirui Sheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
| | - Tong Jiang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084 Beijing, P. R. China
| | - Weitang Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
| | - Zhigang Shuai
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084 Beijing, P. R. China
| |
Collapse
|
5
|
Haghshenas H, Spano FC. Impact of Local and Nonlocal Vibronic Coupling on the Absorption and Emission Spectra of J- and H-Dimers. J Chem Theory Comput 2024; 20:4790-4803. [PMID: 38768310 DOI: 10.1021/acs.jctc.4c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The impact of exciton-vibrational (EV) coupling involving low-energy ("slow") intermolecular vibrations and higher-energy ("fast") intramolecular vibrations on the absorption and emission spectra of H- and J-dimers is studied theoretically for a pair of chromophores with excitonic coupling dominated by transition dipole-dipole coupling, JC. Exact quantum-mechanical solutions based on a Frenkel-Holstein-Peierls Hamiltonian reveal a fascinating interplay between the two coupling sources in determining the spectral line widths, Stoke shifts and radiative decay rates. It is shown that the ratio rules derived from the vibronic progression of the fast mode in molecular dimers remain valid under the influence of slow-mode EV coupling under most conditions. However, a highly unusual aggregate behavior occurs when the product of local and nonlocal couplings, |gLgNL|, exceeds 2ℏωs|JC|, where ℏωs is the energy of the slow mode. In this regime and when gL and gNL are in-phase, an H-dimer (JC > 0) becomes strongly emissive and can even be super-radiant, while a J-dimer (JC < 0) with out-of-phase gL and gNL values becomes subradiant. Such behaviors are in marked contrast to the predictions of Kasha theory and demonstrate the richness of the photophysical behavior resulting from EV coupling involving inter- and intramolecular vibrations.
Collapse
Affiliation(s)
- Hamed Haghshenas
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Frank C Spano
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
6
|
Petropoulos V, Rukin PS, Quintela F, Russo M, Moretti L, Moore A, Moore T, Gust D, Prezzi D, Scholes GD, Molinari E, Cerullo G, Troiani F, Rozzi CA, Maiuri M. Vibronic Coupling Drives the Ultrafast Internal Conversion in a Functionalized Free-Base Porphyrin. J Phys Chem Lett 2024; 15:4461-4467. [PMID: 38630018 DOI: 10.1021/acs.jpclett.4c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Internal conversion (IC) is a common radiationless transition in polyatomic molecules. Theory predicts that molecular vibrations assist IC between excited states, and ultrafast experiments can provide insight into their structure-function relationship. Here we elucidate the dynamics of the vibrational modes driving the IC process within the Q band of a functionalized porphyrin molecule. Through a combination of ultrafast multidimensional spectroscopies and theoretical modeling, we observe a 60 fs Qy-Qx IC and demonstrate that it is driven by the interplay among multiple high-frequency modes. Notably, we identify 1510 cm-1 as the leading tuning mode that brings the porphyrin to an optimal geometry for energy surface crossing. By employing coherent wave packet analysis, we highlight a set of short-lived vibrations (1200-1400 cm-1), promoting the IC within ≈60 fs. Furthermore, we identify one coupling mode (1350 cm-1) that is responsible for vibronic mixing within the Q states. Our findings indicate that porphyrin-core functionalization modulates IC effectively, offering new opportunities in photocatalysis and optoelectronics.
Collapse
Affiliation(s)
- Vasilis Petropoulos
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Pavel S Rukin
- CNR - Istituto Nanoscienze, Via Campi 213A, I-41125 Modena, Italy
| | - Frank Quintela
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 213A, I-41125 Modena, Italy
| | - Mattia Russo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Luca Moretti
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Ana Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Thomas Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Devens Gust
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Deborah Prezzi
- CNR - Istituto Nanoscienze, Via Campi 213A, I-41125 Modena, Italy
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| | - Elisa Molinari
- CNR - Istituto Nanoscienze, Via Campi 213A, I-41125 Modena, Italy
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 213A, I-41125 Modena, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Filippo Troiani
- CNR - Istituto Nanoscienze, Via Campi 213A, I-41125 Modena, Italy
| | - Carlo A Rozzi
- CNR - Istituto Nanoscienze, Via Campi 213A, I-41125 Modena, Italy
| | - Margherita Maiuri
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
7
|
Titov E. Visible Light Induced Exciton Dynamics and trans-to- cis Isomerization in Azobenzene Aggregates: Insights from Surface Hopping/Semiempirical Configuration Interaction Molecular Dynamics Simulations. ACS OMEGA 2024; 9:8520-8532. [PMID: 38405525 PMCID: PMC10882624 DOI: 10.1021/acsomega.3c09900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/27/2024]
Abstract
Assemblies of photochromic molecules feature exciton states, which govern photochemical and photophysical processes in multichromophoric systems. Understanding the photoinduced dynamics of the assemblies requires nonadiabatic treatment involving multiple exciton states and numerous nuclear degrees of freedom, thus posing a challenge for simulations. In this work, we address this challenge for aggregates of azobenzene, a prototypical molecular switch, performing on-the-fly surface hopping calculations combined with semiempirical configuration interaction electronic structure and augmented with transition density matrix analysis to characterize exciton evolution. Specifically, we consider excitation of azobenzene tetramers in the nπ* absorption band located in the visible (blue) part of the electromagnetic spectrum, thus extending our recent work on dynamics after ππ* excitation corresponding to the ultraviolet region [Titov, J. Phys. Chem. C2023, 127, 13678-13688]. We find that the nπ* excitons, which are initially strongly localized by ground-state conformational disorder, undergo further (very strong) localization during short-time photodynamics. This excited-state localization process is extremely ultrafast, occurring within the first 10 fs of photodynamics. We observe virtually no exciton transfer of the localized excitons in the nπ* manifold. However, the transfer may occur via secondary pathways involving ππ* states or the ground state. Moreover, we find that the nπ* quantum yields of the trans-to-cis isomerization are reduced in the aggregated state.
Collapse
Affiliation(s)
- Evgenii Titov
- Institute of Chemistry, Theoretical
Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| |
Collapse
|
8
|
Puro RL, Gray TP, Kapfunde TA, Richter-Addo GB, Raschke MB. Vibrational Coupling Infrared Nanocrystallography. NANO LETTERS 2024; 24:1909-1915. [PMID: 38315708 DOI: 10.1021/acs.nanolett.3c03958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Coupling between molecular vibrations leads to collective vibrational states with spectral features sensitive to local molecular order. This provides spectroscopic access to the low-frequency intermolecular energy landscape. In its nanospectroscopic implementation, this technique of vibrational coupling nanocrystallography (VCNC) offers information on molecular disorder and domain formation with nanometer spatial resolution. However, deriving local molecular order relies on prior knowledge of the transition dipole magnitude and crystal structure of the underlying ordered phase. Here we develop a quantitative model for VCNC by relating nano-FTIR collective vibrational spectra to the molecular crystal structure from X-ray crystallography. We experimentally validate our approach at the example of a metal organic porphyrin complex with a carbonyl ligand as the probe vibration. This framework establishes VCNC as a powerful tool for measuring low-energy molecular interactions, wave function delocalization, nanoscale disorder, and domain formation in a wide range of molecular systems.
Collapse
Affiliation(s)
- Richard L Puro
- Department of Physics and JILA, University of Colorado, Boulder, Colorado 80309, United States
| | - Thomas P Gray
- Department of Physics and JILA, University of Colorado, Boulder, Colorado 80309, United States
| | - Tsitsi A Kapfunde
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - George B Richter-Addo
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Markus B Raschke
- Department of Physics and JILA, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
9
|
Gustin I, Kim CW, McCamant DW, Franco I. Mapping electronic decoherence pathways in molecules. Proc Natl Acad Sci U S A 2023; 120:e2309987120. [PMID: 38015846 PMCID: PMC10710033 DOI: 10.1073/pnas.2309987120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023] Open
Abstract
Establishing the fundamental chemical principles that govern molecular electronic quantum decoherence has remained an outstanding challenge. Fundamental questions such as how solvent and intramolecular vibrations or chemical functionalization contribute to the decoherence remain unanswered and are beyond the reach of state-of-the-art theoretical and experimental approaches. Here we address this challenge by developing a strategy to isolate electronic decoherence pathways for molecular chromophores immersed in condensed phase environments that enables elucidating how electronic quantum coherence is lost. For this, we first identify resonance Raman spectroscopy as a general experimental method to reconstruct molecular spectral densities with full chemical complexity at room temperature, in solvent, and for fluorescent and non-fluorescent molecules. We then show how to quantitatively capture the decoherence dynamics from the spectral density and identify decoherence pathways by decomposing the overall coherence loss into contributions due to individual molecular vibrations and solvent modes. We illustrate the utility of the strategy by analyzing the electronic decoherence pathways of the DNA base thymine in water. Its electronic coherences decay in [Formula: see text]30 fs. The early-time decoherence is determined by intramolecular vibrations while the overall decay by solvent. Chemical substitution of thymine modulates the decoherence with hydrogen-bond interactions of the thymine ring with water leading to the fastest decoherence. Increasing temperature leads to faster decoherence as it enhances the importance of solvent contributions but leaves the early-time decoherence dynamics intact. The developed strategy opens key opportunities to establish the connection between molecular structure and quantum decoherence as needed to develop chemical strategies to rationally modulate it.
Collapse
Affiliation(s)
- Ignacio Gustin
- Department of Chemistry, University of Rochester, Rochester, NY14627
| | - Chang Woo Kim
- Department of Chemistry, Chonnam National University, Gwangju61186, South Korea
| | - David W. McCamant
- Department of Chemistry, University of Rochester, Rochester, NY14627
| | - Ignacio Franco
- Department of Chemistry, University of Rochester, Rochester, NY14627
- Department of Physics, University of Rochester, Rochester, NY14627
| |
Collapse
|
10
|
Mejia-Rodriguez D, Aprà E, Autschbach J, Bauman NP, Bylaska EJ, Govind N, Hammond JR, Kowalski K, Kunitsa A, Panyala A, Peng B, Rehr JJ, Song H, Tretiak S, Valiev M, Vila FD. NWChem: Recent and Ongoing Developments. J Chem Theory Comput 2023; 19:7077-7096. [PMID: 37458314 DOI: 10.1021/acs.jctc.3c00421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
This paper summarizes developments in the NWChem computational chemistry suite since the last major release (NWChem 7.0.0). Specifically, we focus on functionality, along with input blocks, that is accessible in the current stable release (NWChem 7.2.0) and in the "master" development branch, interfaces to quantum computing simulators, interfaces to external libraries, the NWChem github repository, and containerization of NWChem executable images. Some ongoing developments that will be available in the near future are also discussed.
Collapse
Affiliation(s)
- Daniel Mejia-Rodriguez
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Edoardo Aprà
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Nicholas P Bauman
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Eric J Bylaska
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Niranjan Govind
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jeff R Hammond
- Accelerated Computing, NVIDIA Helsinki Oy, Porkkalankatu 1, 00180 Helsinki, Finland
| | - Karol Kowalski
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Alexander Kunitsa
- Zapata Computing, Inc., 100 Federal Street, Boston, Massachusetts 02110, United States
| | - Ajay Panyala
- Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Bo Peng
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - John J Rehr
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Huajing Song
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Marat Valiev
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Fernando D Vila
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
11
|
Mandal A, Taylor MA, Weight BM, Koessler ER, Li X, Huo P. Theoretical Advances in Polariton Chemistry and Molecular Cavity Quantum Electrodynamics. Chem Rev 2023; 123:9786-9879. [PMID: 37552606 PMCID: PMC10450711 DOI: 10.1021/acs.chemrev.2c00855] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 08/10/2023]
Abstract
When molecules are coupled to an optical cavity, new light-matter hybrid states, so-called polaritons, are formed due to quantum light-matter interactions. With the experimental demonstrations of modifying chemical reactivities by forming polaritons under strong light-matter interactions, theorists have been encouraged to develop new methods to simulate these systems and discover new strategies to tune and control reactions. This review summarizes some of these exciting theoretical advances in polariton chemistry, in methods ranging from the fundamental framework to computational techniques and applications spanning from photochemistry to vibrational strong coupling. Even though the theory of quantum light-matter interactions goes back to the midtwentieth century, the gaps in the knowledge of molecular quantum electrodynamics (QED) have only recently been filled. We review recent advances made in resolving gauge ambiguities, the correct form of different QED Hamiltonians under different gauges, and their connections to various quantum optics models. Then, we review recently developed ab initio QED approaches which can accurately describe polariton states in a realistic molecule-cavity hybrid system. We then discuss applications using these method advancements. We review advancements in polariton photochemistry where the cavity is made resonant to electronic transitions to control molecular nonadiabatic excited state dynamics and enable new photochemical reactivities. When the cavity resonance is tuned to the molecular vibrations instead, ground-state chemical reaction modifications have been demonstrated experimentally, though its mechanistic principle remains unclear. We present some recent theoretical progress in resolving this mystery. Finally, we review the recent advances in understanding the collective coupling regime between light and matter, where many molecules can collectively couple to a single cavity mode or many cavity modes. We also lay out the current challenges in theory to explain the observed experimental results. We hope that this review will serve as a useful document for anyone who wants to become familiar with the context of polariton chemistry and molecular cavity QED and thus significantly benefit the entire community.
Collapse
Affiliation(s)
- Arkajit Mandal
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Michael A.D. Taylor
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Braden M. Weight
- Department
of Physics and Astronomy, University of
Rochester, Rochester, New York 14627, United
States
| | - Eric R. Koessler
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Xinyang Li
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Pengfei Huo
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
12
|
Weight BM, Sifain AE, Gifford BJ, Htoon H, Tretiak S. On-the-Fly Nonadiabatic Dynamics Simulations of Single-Walled Carbon Nanotubes with Covalent Defects. ACS NANO 2023; 17:6208-6219. [PMID: 36972076 DOI: 10.1021/acsnano.2c08579] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) with covalent surface defects have been explored recently due to their promise for use in single-photon telecommunication emission and in spintronic applications. The all-atom dynamic evolution of electrostatically bound excitons (the primary electronic excitations) in these systems has only been loosely explored from a theoretical perspective due to the size limitations of these large systems (>500 atoms). In this work, we present computational modeling of nonradiative relaxation in a variety of SWCNT chiralities with single-defect functionalizations. Our excited-state dynamics modeling uses a trajectory surface hopping algorithm accounting for excitonic effects with a configuration interaction approach. We find a strong chirality and defect-composition dependence on the population relaxation (varying over 50-500 fs) between the primary nanotube band gap excitation E11 and the defect-associated, single-photon-emitting E11* state. These simulations give direct insight into the relaxation between the band-edge states and the localized excitonic state, in competition with dynamic trapping/detrapping processes observed in experiment. Engineering fast population decay into the quasi-two-level subsystem with weak coupling to higher-energy states increases the effectiveness and controllability of these quantum light emitters.
Collapse
Affiliation(s)
- Braden M Weight
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, United States
- Center for Integrated Nanotechnologies, Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Andrew E Sifain
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540 United States
| | - Brendan J Gifford
- Center for Integrated Nanotechnologies, Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Han Htoon
- Center for Integrated Nanotechnologies, Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Center for Integrated Nanotechnologies, Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
13
|
Maimaris M, Pettipher AJ, Azzouzi M, Walke DJ, Zheng X, Gorodetsky A, Dong Y, Tuladhar PS, Crespo H, Nelson J, Tisch JWG, Bakulin AA. Sub-10-fs observation of bound exciton formation in organic optoelectronic devices. Nat Commun 2022; 13:4949. [PMID: 35999214 PMCID: PMC9399228 DOI: 10.1038/s41467-022-32478-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/02/2022] [Indexed: 11/09/2022] Open
Abstract
Fundamental mechanisms underlying exciton formation in organic semiconductors are complex and elusive as it occurs on ultrashort sub-100-fs timescales. Some fundamental aspects of this process, such as the evolution of exciton binding energy, have not been resolved in time experimentally. Here, we apply a combination of sub-10-fs Pump-Push-Photocurrent, Pump-Push-Photoluminescence, and Pump-Probe spectroscopies to polyfluorene devices to track the ultrafast formation of excitons. While Pump-Probe is sensitive to the total concentration of excited states, Pump-Push-Photocurrent and Pump-Push-Photoluminescence are sensitive to bound states only, providing access to exciton binding dynamics. We find that excitons created by near-absorption-edge photons are intrinsically bound states, or become such within 10 fs after excitation. Meanwhile, excitons with a modest >0.3 eV excess energy can dissociate spontaneously within 50 fs before acquiring bound character. These conclusions are supported by excited-state molecular dynamics simulations and a global kinetic model which quantitatively reproduce experimental data. Ultrafast action spectroscopies of organic optoelectronic devices reveal that the formation of bound exciton state occurs as fast as 10 fs. Excitons having excess energy can dissociate spontaneously within 50-fs before acquiring bound character.
Collapse
Affiliation(s)
- Marios Maimaris
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | | | - Mohammed Azzouzi
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - Daniel J Walke
- Department of Physics, Imperial College London, London, SW7 2AZ, UK.,Helmholtz Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, Berlin, 14109, Germany
| | - Xijia Zheng
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Andrei Gorodetsky
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.,School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Yifan Dong
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.,National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Pabitra Shakya Tuladhar
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Helder Crespo
- Department of Physics, Imperial College London, London, SW7 2AZ, UK.,IFIMUP and Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, R. do Campo Alegre 687, 4169-007, Porto, Portugal
| | - Jenny Nelson
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - John W G Tisch
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - Artem A Bakulin
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
| |
Collapse
|
14
|
Sneyd A, Beljonne D, Rao A. A New Frontier in Exciton Transport: Transient Delocalization. J Phys Chem Lett 2022; 13:6820-6830. [PMID: 35857739 PMCID: PMC9340810 DOI: 10.1021/acs.jpclett.2c01133] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/18/2022] [Indexed: 05/20/2023]
Abstract
Efficient exciton transport is crucial to the application of organic semiconductors (OSCs) in light-harvesting devices. While the physics of exciton transport in highly disordered media is well-explored, the description of transport in structurally and energetically ordered OSCs is less established, despite such materials being favorable for devices. In this Perspective we describe and highlight recent research pointing toward a highly efficient exciton transport mechanism which occurs in ordered OSCs, transient delocalization. Here, exciton-phonon couplings play a critical role in allowing localized exciton states to temporarily access higher-energy delocalized states whereupon they move large distances. The mechanism shows great promise for facilitating long-range exciton transport and may allow for improved device efficiencies and new device architectures. However, many fundamental questions on transient delocalization remain to be answered. These questions and suggested next steps are summarized.
Collapse
Affiliation(s)
- Alexander
J. Sneyd
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - David Beljonne
- Laboratory
for Chemistry of Novel Materials, University
of Mons, Mons 7000, Belgium
| | - Akshay Rao
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
15
|
Wu X, Wen S, Song H, Frauenheim T, Tretiak S, Yam C, Zhang Y. Nonadiabatic Molecular Dynamics Simulations Based on Time-Dependent Density Functional Tight-Binding Method. J Chem Phys 2022; 157:084114. [DOI: 10.1063/5.0100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nonadiabatic excited-state molecular dynamics underpin many photophysical and photochemical phenomena, such as exciton dynamics, charge separation and transport. In this work, we present an efficient nonadiabatic molecular dynamic (NAMD) simulation method based on time-dependent density functional tight-binding (TDDFTB) theory. Specifically, the adiabatic electronic structure, an essential NAMD input, is described at the TDDFTB level. The nonadiabatic effects originating from the coupled motions of electrons and nuclei are treated by the trajectory surface hopping algorithm. To improve the computational efficiency, nonadiabatic couplings between excited states within the TDDFTB method are derived and implemented using an analytical approach. Further, the time-dependent nonadiabatic coupling scalars are calculated based on the overlap between molecular orbitals rather than the Slater determinants to speed up the simulations. In addition, the electronic decoherence scheme and a state reassigned unavoided crossings algorithm, which has been implemented in the NEXMD software, are used to improve the accuracy of the simulated dynamics and handle trivial unavoided crossings. Finally, the photoinduced nonadiabatic dynamics of a benzene molecule are simulated to demonstrate our implementation. The results for excited state NAMD simulations of benzene molecule based on TDDFTB method compare well that obtained with numerically expensive time-dependent density functional theory. The proposed methodology provides an attractive theoretical simulation tool for predicting the photophysical and photochemical properties of complex materials.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Shenzhen JL Computational Science and Applied Research Institute, Shenzhen JL Computational Science and Applied Research Institute, China
| | | | - Huajing Song
- Los Alamos National Laboratory, United States of America
| | | | - Sergei Tretiak
- Theoretical Division, T-1, Los Alamos National Laboratory, United States of America
| | - ChiYung Yam
- Beijing Computational Science Research Center, Beijing Computational Science Research Center, China
| | - Yu Zhang
- Theoretical Division, Los Alamos National Laboratory, United States of America
| |
Collapse
|
16
|
Freixas VM, Keefer D, Tretiak S, Fernandez-Alberti S, Mukamel S. Ultrafast coherent photoexcited dynamics in a trimeric dendrimer probed by X-ray stimulated-Raman signals. Chem Sci 2022; 13:6373-6384. [PMID: 35733898 PMCID: PMC9159119 DOI: 10.1039/d2sc00601d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022] Open
Abstract
The photoinduced ultrafast coherent inter-chromophore energy redistribution in a triarylamine trimer is explored using nonadiabatic excited state molecular dynamics followed by simulations of X-ray Raman signals. The nitrogencentered system ensures strong interchromophore interactions and, thus, the presence of coherences. Nevertheless, the multitude of non-deterministic photoinduced pathways during the ultrafast inter-branch migration of the excitation results in random confinement on some branches and, therefore, spatial exciton scrambling and loss of phase information at long times. We show that the vibronic coherence dynamics evolving into the incoherent scrambling mechanism on ultrafast 50 fs timescale, is accurately probed by the TRUECARS X-ray stimulated Raman signal. In combination with previous results, where the technique has revealed long-lived coherences in a rigid heterodimer, the signal is most valuable for detecting ultrafast molecular coherences or their absence. We demonstrate that X-ray Raman spectroscopy is a useful tool in the chemical design of functional molecular building blocks. The photoinduced ultrafast coherent inter-chromophore energy redistribution in a triarylamine trimer is explored using nonadiabatic excited state molecular dynamics followed by simulations of X-ray Raman signals.![]()
Collapse
Affiliation(s)
- Victor M Freixas
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET B1876BXD Bernal Argentina
| | - Daniel Keefer
- Department of Chemistry and Physics and Astronomy, University of California Irvine California 92697-2025 USA
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | | | - Shaul Mukamel
- Department of Chemistry and Physics and Astronomy, University of California Irvine California 92697-2025 USA
| |
Collapse
|
17
|
Dimitriev OP. Dynamics of Excitons in Conjugated Molecules and Organic Semiconductor Systems. Chem Rev 2022; 122:8487-8593. [PMID: 35298145 DOI: 10.1021/acs.chemrev.1c00648] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The exciton, an excited electron-hole pair bound by Coulomb attraction, plays a key role in photophysics of organic molecules and drives practically important phenomena such as photoinduced mechanical motions of a molecule, photochemical conversions, energy transfer, generation of free charge carriers, etc. Its behavior in extended π-conjugated molecules and disordered organic films is very different and very rich compared with exciton behavior in inorganic semiconductor crystals. Due to the high degree of variability of organic systems themselves, the exciton not only exerts changes on molecules that carry it but undergoes its own changes during all phases of its lifetime, that is, birth, conversion and transport, and decay. The goal of this review is to give a systematic and comprehensive view on exciton behavior in π-conjugated molecules and molecular assemblies at all phases of exciton evolution with emphasis on rates typical for this dynamic picture and various consequences of the above dynamics. To uncover the rich variety of exciton behavior, details of exciton formation, exciton transport, exciton energy conversion, direct and reverse intersystem crossing, and radiative and nonradiative decay are considered in different systems, where these processes lead to or are influenced by static and dynamic disorder, charge distribution symmetry breaking, photoinduced reactions, electron and proton transfer, structural rearrangements, exciton coupling with vibrations and intermediate particles, and exciton dissociation and annihilation as well.
Collapse
Affiliation(s)
- Oleg P Dimitriev
- V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine, pr. Nauki 41, Kyiv 03028, Ukraine
| |
Collapse
|
18
|
Titov E, Kopp T, Hoche J, Humeniuk A, Mitrić R. (De)localization dynamics of molecular excitons: comparison of mixed quantum–classical and fully quantum treatments. Phys Chem Chem Phys 2022; 24:12136-12148. [DOI: 10.1039/d2cp00586g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular excitons play a central role in processes of solar energy conversion, both natural and artificial. It is therefore no wonder that numerous experimental and theoretical investigations in the last...
Collapse
|
19
|
Li TE, Cui B, Subotnik JE, Nitzan A. Molecular Polaritonics: Chemical Dynamics Under Strong Light-Matter Coupling. Annu Rev Phys Chem 2021; 73:43-71. [PMID: 34871038 DOI: 10.1146/annurev-physchem-090519-042621] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chemical manifestations of strong light-matter coupling have recently been a subject of intense experimental and theoretical studies. Here we review the present status of this field. Section 1 is an introduction to molecular polaritonics and to collective response aspects of light-matter interactions. Section 2 provides an overview of the key experimental observations of these effects, while Section 3 describes our current theoretical understanding of the effect of strong light-matter coupling on chemical dynamics. A brief outline of applications to energy conversion processes is given in Section 4. Pending technical issues in the construction of theoretical approaches are briefly described in Section 5. Finally, the summary in Section 6 outlines the paths ahead in this exciting endeavor. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Tao E Li
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Bingyu Cui
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA; .,School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Abraham Nitzan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA; .,School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
20
|
Solling TI. Nonstatistical Photoinduced Processes in Gaseous Organic Molecules. ACS OMEGA 2021; 6:29325-29344. [PMID: 34778606 PMCID: PMC8581993 DOI: 10.1021/acsomega.1c04035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 05/26/2023]
Abstract
Processes that proceed in femtoseconds are usually referred to as being ultrafast, and they are investigated in experiments that involve laser pulses with femtosecond duration in so-called pump probe schemes, where a light pulse triggers a molecular process and a second light pulse interrogates the temporal evolution of the molecular population. The focus of this review is on the reactivity patterns that arise when energy is not equally distributed on all the available degrees of freedom as a consequence of the very short time scale in play and on how the localization of internal energy in a specific mode can be thought of as directing a process toward (or away from) a certain outcome. The nonstatistical aspects are illustrated with examples from photophysics and photochemistry for a range of organic molecules. The processes are initiated by a variety of nuclear motions that are all governed by the energy gradients in the Franck-Condon region. Essentially, the molecules will start to adapt to the new electronic environment on the excited state to eventually reach the equilibrium structure. It is this structural change that is enabling an ultrafast electronic transition in cases where the nuclear motion leads to a transition point with significant coupling between to electronic states and to ultrafast reaction if there is a coupling to a reactive mode at the transition point between the involved states. With the knowledge of the relation between electronic excitation and equilibrium structure, it is possible to predict how the nuclei move after excitation and often whether an ultrafast (and inherently nonstatistical) electronic transition or even a bond breakage will take place. In addition to the understanding of how nonstatistical photoinduced processes proceed from a given excited state, it has been found that randomization of the energy does not even always take place when the molecule takes part in processes that are normally considered statistical, such as for example nonradiative transitions between excited states. This means that energy can be localized in a specific degree of freedom on a state other than the one that is initially prepared. This is a finding that could kickoff the ultimate dream in applied photochemistry; namely light excitation that leads to the rupture of a specific bond.
Collapse
Affiliation(s)
- Theis I. Solling
- Center for Integrative Petroleum
Research, King Fahd University of Petroleum
& Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
21
|
Rama Krishna VS, Adak S, Jana P, Bheemireddy V, Bandyopadhyay S. Mimicking the Energy Funnel of the Photosynthetic Unit Using a Dendrimer-Dye Supramolecular Assembly. Chem Asian J 2021; 16:3481-3486. [PMID: 34487427 DOI: 10.1002/asia.202100886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Indexed: 11/10/2022]
Abstract
Photosynthesis involves light-harvesting complexes where an array of antenna pigment channels the absorbed solar energy to the reaction centre of a photosystem. This work reports a supramolecular dendrimer-dye assembly that mimics the natural light-harvesting mechanism. A dendrimeric molecule based on two-fluorophores has been constructed with three coumarin units at the end of three long arms and a 7-diethylaminocoumarin unit at the interior. The molecule self-aggregates in water into spherical micelles, which can encapsulate a rose-bengal dye (RB). On excitation, peripheral coumarin units shuttled the energy to the loaded RB dye reaction center via a two-step cascade resonance energy transfer (RET). The energy absorbed in the periphery is funnelled efficiently, resulting in a strong emission from the dye that resembles an energy funnel. The energy transfer cascade has been studied with both steady-state and time-resolved fluorescence spectroscopy. Molecular dynamics simulations of the self-assembled aggregates in water were also in agreement with the experimental observations.
Collapse
Affiliation(s)
- V Siva Rama Krishna
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, West Bengal, India
| | - Soumen Adak
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, West Bengal, India
| | - Palash Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, West Bengal, India
| | - Varun Bheemireddy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, West Bengal, India
| | - Subhajit Bandyopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, West Bengal, India
| |
Collapse
|
22
|
Karak P, Ruud K, Chakrabarti S. Demystifying the Origin of Vibrational Coherence Transfer Between the S 1 and T 1 States of the Pt-pop Complex. J Phys Chem Lett 2021; 12:9768-9773. [PMID: 34595923 DOI: 10.1021/acs.jpclett.1c02789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We demonstrate that spin-vibronic coupling is the most significant mechanism in vibrational coherence transfer (VCT) from the singlet (S1) to the triplet (T1) state of the [Pt2(P2O5H2)4]4- complex. Our time-dependent correlation function-based study shows that the rate of intersystem crossing (kISC) through direct spin-orbit coupling is negligibly small, making VCT vanishingly small due to the ultrashort decoherence time (2.5 ps). However, the inclusion of the spin-vibronic contribution to the net kISC in selective normal modes along the Pt-Pt axis increases the kISC to such an extent that VCT becomes feasible. Our results suggest that kISC for the S1 →T2 (τISC = 1.084 ps) is much faster than the S1 → T1 (τISC = 763.4 ps) and S1 → T3 (τISC = 13.38 ps) in CH3CN solvent, indicating that VCT is possible from the low-lying excited singlet (S1) to the triplet (T1) state through the intermediate T2 state. This is the first example where VCT occurs solely due to spin-vibronic interactions. This finding can pave the way for new types of photocatalysis.
Collapse
Affiliation(s)
- Pijush Karak
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, West Bengal, India
| | - Kenneth Ruud
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Swapan Chakrabarti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, West Bengal, India
| |
Collapse
|
23
|
Freixas VM, Wilhelm P, Nelson T, Hinderer F, Höger S, Tretiak S, Lupton JM, Fernandez-Alberti S. Excitation Energy Transfer between bodipy Dyes in a Symmetric Molecular Excitonic Seesaw. J Phys Chem A 2021; 125:8404-8416. [PMID: 34542292 DOI: 10.1021/acs.jpca.1c06332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We examine the redistribution of energy between electronic and vibrational degrees of freedom that takes place between a π-conjugated oligomer, a phenylene-butadiynylene, and two identical boron-dipyrromethene (bodipy) end-caps using femtosecond transient absorption spectroscopy, single-molecule spectroscopy, and nonadiabatic excited-state molecular dynamics (NEXMD) modeling techniques. The molecular structure represents an excitonic seesaw in that the excitation energy on the oligomer backbone can migrate to either one end-cap or the other, but not to both. The NEXMD simulations closely reproduce the characteristic time scale for redistribution of electronic and vibrational energy of 2.2 ps and uncover the vibrational modes contributing to the intramolecular relaxation. The calculations indicate that the dihedral angle between the bodipy dye and the oligomer change upon excitation of the oligomer. Single-molecule experiments reveal a difference in photoluminescence lifetime of the bodipy dyes depending on whether they are excited by direct absorption or by redistribution of energy from the backbone. This difference in lifetime may be attributed to the difference in dihedral angle. The simulations also suggest that a strong coupling can occur between the two end-caps, giving rise to a reversible shuttling of excitation energy between them. Strong coupling should lead to a pronounced loss in polarization memory of the fluorescence since the oligomer backbone tends to be slightly distorted and the two bodipy transition dipoles have different orientations. A sensitive single-molecule technique is presented to test for such coupling. However, although redistribution of electronic and vibrational energy between the end-caps can occur, it appears to be unidirectional and irreversible, suggesting that an additional localization mechanism is at play which is, as yet, not fully accounted for in the simulations.
Collapse
Affiliation(s)
- Victor M Freixas
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - Philipp Wilhelm
- Institut für Angewandte und Experimentelle Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Tammie Nelson
- Theoretical Division and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Florian Hinderer
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Sigurd Höger
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - John M Lupton
- Institut für Angewandte und Experimentelle Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | | |
Collapse
|
24
|
Huo D, Li M, Zhao Z, Wang X, Xia A, Lu P, Wan Y. Delocalized Excitation or Intramolecular Energy Transfer in Pyrene Core Dendrimers. J Phys Chem Lett 2021; 12:7717-7725. [PMID: 34355904 DOI: 10.1021/acs.jpclett.1c02182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Light-harvesting and then intramolecular energy transfer are the crucial steps in natural photosynthesis. Dendrimers are one of the most promising artificial light-harvesting antennas. Insight into the relationship between molecular structure and energy transfer (or delocalized excitation) in dendrimers would help in understanding and mimicking photosynthesis. Here, a series of dendrimers T1-T4 based on pyrene as a core and fluorene/carbazole as the dendrons have been studied with time-resolved fluorescence and femtosecond transient absorption spectroscopies, revealing that the large planar structure of T1 and T2 has led to strong coupling of pyrene and fluorene units, enabling delocalized excitation over the entire molecules. But for T3 and T4, the carbazole units linking the first- and second-generation branches have broken the planar structure and suppressed the π-electron delocalization, enabling the Förster resonance energy transfer. The efficient intramolecular energy transfer from peripheral branches to the core occurs within 2 ps.
Collapse
Affiliation(s)
- Dayujia Huo
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Minjie Li
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xian Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Andong Xia
- School of Sciences, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Ping Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yan Wan
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
25
|
Díaz FR, Duan HG, Miller RJD, Thorwart M. Ultrafast Charge Transfer and Relaxation at a Donor-Acceptor Interface. J Phys Chem B 2021; 125:8869-8875. [PMID: 34319718 DOI: 10.1021/acs.jpcb.1c03595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The efficiency of charge separation in organic photovoltaic materials is crucially determined by the underlying dynamics of the charge transfer (CT) excitons and their dissociation into free electrons and holes. To unravel the main principles of the underlying mechanism on a molecular level, we construct a toy model of electronically coupled donors interacting with a manifold of CT exciton states. In particular, we set up a ladder of CT site energies to model the exciton dissociation. To mimic the complexity of the exciton dynamics at the donor-acceptor interface, the electronic CT manifold is designed to include two vibrational modes that are vibronically coupled to the excitons. We examine the impact of the electronic and vibrational coherences and the structure of the vibronic manifold on the transfer efficiency and charge recombination. Optimal configurations of the vibronic CT manifold are revealed. In particular, the rate of charge recombination can be minimized when the transient dynamics are carefully explored. Such a toy model can be used as a guide for the design of organic materials for efficient photovoltaic devices.
Collapse
Affiliation(s)
- Fernando Rodríguez Díaz
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2A, 12489 Berlin, Germany.,Nanosystems Institute, Universidad Nacional de San Martín, Av.ËIJ 25 de Mayo 1021, San Martín, Buenos Aires, Argentina
| | - Hong-Guang Duan
- I. Institut für Theoretische Physik, Universität Hamburg, Notkestraße 9, 22607 Hamburg, Germany.,The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - R J Dwayne Miller
- Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 3H6
| | - Michael Thorwart
- I. Institut für Theoretische Physik, Universität Hamburg, Notkestraße 9, 22607 Hamburg, Germany.,The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
26
|
Han Y, Iduoku K, Grant G, Rasulev B, Leontyev A, Hobbie EK, Tretiak S, Kilina SV, Kilin DS. Hot Carrier Dynamics at Ligated Silicon(111) Surfaces: A Computational Study. J Phys Chem Lett 2021; 12:7504-7511. [PMID: 34342460 DOI: 10.1021/acs.jpclett.1c02084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We provide a case-study for thermal grafting of benzenediazonium bromide onto a hydrogenated Si(111) surface using ab initio molecular dynamics (AIMD) calculations. A sequence of reaction steps is identified in the AIMD trajectory, including the loss of N2 from the diazonium salt, proton transfer from the surface to the bromide ion that eliminates HBr, and deposition of the phenyl group onto the surface. We next assess the influence of the phenyl groups on photophysics of hydrogen-terminated Si(111) slabs. The nonadiabatic couplings necessary for a description of the excited-state dynamics are calculated by combining ab initio electronic structures and reduced density matrix formalism with Redfield theory. The phenyl-terminated slab shows reduced nonradiative relaxation and recombination rates of hot charge carriers in comparison with the hydrogen-terminated slab. Altogether, our results provide atomistic insights revealing that (i) the diazonium salt thermally decomposes at the surface allowing the formation of covalently bonded phenyl group, and (ii) the coverage of phenyl groups on the surface slows down charge carrier cooling driven by electron-phonon interactions, which increases photoluminescence efficiency at the near-infrared spectral region.
Collapse
Affiliation(s)
- Yulun Han
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Kweeni Iduoku
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Gena Grant
- Turtle Mountain Community College, 10145 BIA Road 7, PO Box 340, Belcourt, North Dakota 58316, United States
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Alexey Leontyev
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Erik K Hobbie
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Svetlana V Kilina
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Dmitri S Kilin
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
27
|
Kim W, Tahara S, Kuramochi H, Takeuchi S, Kim T, Tahara T, Kim D. Mode‐Specific Vibrational Analysis of Exciton Delocalization and Structural Dynamics in Conjugated Oligomers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Woojae Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional, π-Electronic Systems Yonsei University Seoul 03722 Korea
- Current address: Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
| | - Shinya Tahara
- Molecular Spectroscopy Laboratory RIKEN 2-1 Hirosawa Wako 351-0198 Japan
- Current address: Graduate School of Pharmaceutical Sciences Tohoku University 6-3 Aramaki-aza-Aoba, Aoba-ku Sendai 980-8578 Japan
| | - Hikaru Kuramochi
- Molecular Spectroscopy Laboratory RIKEN 2-1 Hirosawa Wako 351-0198 Japan
- Ultrafast Spectroscopy Research Team RIKEN Center for Advanced Photonics (RAP) 2-1 Hirosawa Wako 351-0198 Japan
- JST PRESTO 4-1-8 Honcho Kawaguchi 332-0012 Japan
- Current address: Research Center of Integrative Molecular Systems (CIMoS) Institute for Molecular Science 38 Nishigo-Naka, Myodaji Okazaki 444-8585 Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory RIKEN 2-1 Hirosawa Wako 351-0198 Japan
- Ultrafast Spectroscopy Research Team RIKEN Center for Advanced Photonics (RAP) 2-1 Hirosawa Wako 351-0198 Japan
- Current address: Graduate School of Material Science University of Hyogo 3-2-1 Koto Kamigori Ako 678-1297 Japan
| | - Taeyeon Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional, π-Electronic Systems Yonsei University Seoul 03722 Korea
- Current address: Department of Chemistry and Institute for Sustainability and Energy at Northwestern Northwestern University Evanston IL 60208-3113 USA
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory RIKEN 2-1 Hirosawa Wako 351-0198 Japan
- Ultrafast Spectroscopy Research Team RIKEN Center for Advanced Photonics (RAP) 2-1 Hirosawa Wako 351-0198 Japan
| | - Dongho Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional, π-Electronic Systems Yonsei University Seoul 03722 Korea
| |
Collapse
|
28
|
Cho KH, Rhee YM. Cooperation between Excitation Energy Transfer and Antisynchronously Coupled Vibrations. J Phys Chem B 2021; 125:5601-5610. [PMID: 34013724 DOI: 10.1021/acs.jpcb.1c01194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of the environment in energy transfer systems have been continuously studied for decades. Here, we investigate how the energy transfer and the emergence of vibrational correlations cooperate with each other based on simulations with a few numerically approximate mixed quantum classical (MQC) methods. By adopting a two-state system with locally coupled underdamped vibrations that are resonant with the electronic energy gap, we observe prominent energy dissipations from the electronic system to the vibrations, rehighlighting the role of underdamped vibrations as a temporal electronic energy buffer. More importantly, this energy dissipation generates specific phase relations between the two vibrations. Namely, the vibrations become anticorrelated right after the initiation of the energy transfer but then synchronized as the transfer completes. These phase relations are interpreted as a selective activation of an anticorrelated motion of the vibrations and a subsequent deactivation by thermal energy redistribution. Furthermore, we show that a single vibration simultaneously coupled to the two electronic states with opposite phases induces a completely equivalent energy transfer dynamics as the two localized vibrations. Finally, we discuss how the vibrational energy dissipation dynamics is affected by the adopted MQC approaches and warn about the increased subtlety toward properly treating dissipation effects over having reliable population dynamics.
Collapse
Affiliation(s)
- Kwang Hyun Cho
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
29
|
Song H, Freixas VM, Fernandez-Alberti S, White AJ, Zhang Y, Mukamel S, Govind N, Tretiak S. An Ab Initio Multiple Cloning Method for Non-Adiabatic Excited-State Molecular Dynamics in NWChem. J Chem Theory Comput 2021; 17:3629-3643. [PMID: 34014085 DOI: 10.1021/acs.jctc.1c00131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The recently developed ab initio multiple cloning (AIMC) approach based on the multiconfigurational Ehrenfest (MCE) method provides a powerful and accurate way of describing the excited-state dynamics of molecular systems. The AIMC method is a controlled approximation to nonadiabatic dynamics with a particular strength in the proper description of decoherence effects because of the branching of vibrational wavepackets at a level crossing. Here, we report a new implementation of the AIMC algorithm in the open source NWChem computational chemistry program. The framework combines linear-response time-dependent density functional theory with Ehrenfest mean-field theory to determine the equations of motion for classical trajectories. The multidimensional wave function is decomposed into a superposition of Gaussian coherent states guided by Ehrenfest trajectories (i.e., MCE approach), which can clone with fully quantum mechanical amplitudes and phases. By using an efficient time-derivative based nonadiabatic coupling approach within the AIMC method, all observables are calculated on-the-fly in the nonadiabatic molecular dynamics process. As a representative example, we apply our implementation to study the ultrafast photoinduced electronic and vibrational energy transfer in a pyridine molecule. The effects of the cloning procedure on electronic and vibrational coherence, relaxation and unidirectional energy transfer are discussed. This new AIMC implementation provides a high-level nonadiabatic molecular dynamics framework for simulating photoexcited dynamics in complex molecular systems and experimentally relevant ultrafast spectroscopic probes, such as nonlinear coherent optical and X-ray signals.
Collapse
Affiliation(s)
- Huajing Song
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Victor M Freixas
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD, Bernal, Argentina
| | | | - Alexander J White
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Yu Zhang
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Shaul Mukamel
- Departments of Chemistry, Physics, and Astronomy, University of California, Irvine, California 92697, United States
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.,Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
30
|
Nematiaram T, Padula D, Troisi A. Bright Frenkel Excitons in Molecular Crystals: A Survey. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2021; 33:3368-3378. [PMID: 34526736 PMCID: PMC8432684 DOI: 10.1021/acs.chemmater.1c00645] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/14/2021] [Indexed: 05/12/2023]
Abstract
We computed the optical properties of a large set of molecular crystals (∼2200 structures) composed of molecules whose lowest excited states are strongly coupled and generate wide excitonic bands. Such bands are classified in terms of their dimensionality (1-, 2-, and 3-dimensional), the position of the optically allowed state in relation with the excitonic density of states, and the presence of Davydov splitting. The survey confirms that one-dimensional aggregates are rare in molecular crystals highlighting the need to go beyond the simple low-dimensional models. Furthermore, this large set of data is used to search for technologically interesting and less common properties. For instance, we considered the largest excitonic bandwidth that is achievable within known molecular crystals and identified materials with strong super-radiant states. Finally, we explored the possibility that strong excitonic coupling can be used to generate emissive states in the near-infrared region in materials formed by molecules with bright visible absorption and we could identify the maximum allowable red shift in this material class. These insights with the associated searchable database provide practical guidelines for designing materials with interesting optical properties.
Collapse
Affiliation(s)
- Tahereh Nematiaram
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Daniele Padula
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, via A. Moro 2, Siena 53100, Italy
| | - Alessandro Troisi
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| |
Collapse
|
31
|
Kim W, Tahara S, Kuramochi H, Takeuchi S, Kim T, Tahara T, Kim D. Mode-Specific Vibrational Analysis of Exciton Delocalization and Structural Dynamics in Conjugated Oligomers. Angew Chem Int Ed Engl 2021; 60:16999-17008. [PMID: 33730430 DOI: 10.1002/anie.202102168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Indexed: 11/09/2022]
Abstract
Exciton delocalization in organic semiconducting polymers, affected by structures at a molecular level, plays a crucial role in modulating relaxation pathways, such as charge generation and singlet fission, which can boost device efficiency. However, the structural diversity of polymers and broad signals from typical electronic spectroscopy have their limits when it comes to revealing the interplay between local structures and exciton delocalization. To tackle these problems, we apply femtosecond stimulated Raman spectroscopy in archetypical conjugated oligothiophenes with different chain lengths. We observed Raman frequency dispersions of symmetric bond stretching modes and mode-specific kinetics in the S1 Raman spectra, which underpins the subtle and complex interplay between exciton delocalization and bond length alternation along the conjugation coordinate. Our results provide a more general picture of exciton delocalization in the context of molecular structures for conjugated materials.
Collapse
Affiliation(s)
- Woojae Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional, π-Electronic Systems, Yonsei University, Seoul, 03722, Korea.,Current address: Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Shinya Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan.,Current address: Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Hikaru Kuramochi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, 351-0198, Japan.,JST PRESTO, 4-1-8 Honcho, Kawaguchi, 332-0012, Japan.,Current address: Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, 38 Nishigo-Naka, Myodaji, Okazaki, 444-8585, Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, 351-0198, Japan.,Current address: Graduate School of Material Science, University of Hyogo, 3-2-1 Koto, Kamigori, Ako, 678-1297, Japan
| | - Taeyeon Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional, π-Electronic Systems, Yonsei University, Seoul, 03722, Korea.,Current address: Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL, 60208-3113, USA
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, 351-0198, Japan
| | - Dongho Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional, π-Electronic Systems, Yonsei University, Seoul, 03722, Korea
| |
Collapse
|
32
|
Hu Z, Xu Z, Chen G. Vibration-mediated resonant charge separation across the donor-acceptor interface in an organic photovoltaic device. J Chem Phys 2021; 154:154703. [PMID: 33887946 DOI: 10.1063/5.0049176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Examination of a recent open-system Ehrenfest dynamics simulation suggests that a vibration-mediate resonance may play a pivotal role in the charge transfer across a donor-acceptor interface in an organic solar cell. Based on this, a concise dissipative two-level electronic system coupled to a molecular vibrational mode is proposed and solved quantum mechanically. It is found that the charge transfer is enhanced substantially when the vibrational energy quanta is equal to the electronic energy loss across the interface. This vibration-mediate resonant charge transfer process is ultrafast, occurring within 100 fs, comparable to experimental findings. The open-system Ehrenfest dynamics simulation of the two-level model is carried out, and similar results are obtained, which confirms further that the earlier open-system Ehrenfest dynamics simulation indeed correctly predicted the occurrence of the resonant charge transfer across the donor-acceptor interface.
Collapse
Affiliation(s)
- Ziyang Hu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ziyao Xu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - GuanHua Chen
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
33
|
Freixas VM, White AJ, Nelson T, Song H, Makhov DV, Shalashilin D, Fernandez-Alberti S, Tretiak S. Nonadiabatic Excited-State Molecular Dynamics Methodologies: Comparison and Convergence. J Phys Chem Lett 2021; 12:2970-2982. [PMID: 33730495 DOI: 10.1021/acs.jpclett.1c00266] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Direct atomistic simulation of nonadiabatic molecular dynamics is a challenging goal that allows important insights into fundamental physical phenomena. A variety of frameworks, ranging from fully quantum treatment of nuclei to semiclassical and mixed quantum-classical approaches, were developed. These algorithms are then coupled to specific electronic structure techniques. Such diversity and lack of standardized implementation make it difficult to compare the performance of different methodologies when treating realistic systems. Here, we compare three popular methods for large chromophores: Ehrenfest, surface hopping, and multiconfigurational Ehrenfest with ab initio multiple cloning (MCE-AIMC). These approaches are implemented in the NEXMD software, which features a common computational chemistry model. The resulting comparisons reveal the method performance for population relaxation and coherent vibronic dynamics. Finally, we study the numerical convergence of MCE-AIMC algorithms by considering the number of trajectories, cloning thresholds, and Gaussian wavepacket width. Our results provide helpful reference data for selecting an optimal methodology for simulating excited-state molecular dynamics.
Collapse
Affiliation(s)
- Victor M Freixas
- Universidad Nacional de Quilmes, Roque Saénz Peña 352, B1876BXD Bernal, Argentina
| | - Alexander J White
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Tammie Nelson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Huajing Song
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dmitry V Makhov
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
- School of Mathematics, University of Bristol, Bristol BS8 1TW, U.K
| | | | | | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
34
|
Weng XL, Liu JY. Strategies for maximizing photothermal conversion efficiency based on organic dyes. Drug Discov Today 2021; 26:2045-2052. [PMID: 33741495 DOI: 10.1016/j.drudis.2021.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/16/2021] [Accepted: 03/09/2021] [Indexed: 01/15/2023]
Abstract
Photothermal therapy (PTT) has emerged as a promising therapeutic approach for tumor control and ablation. Attention has focused on exploring advanced organic photothermal agents (OPTAs), with advantages of easy modification, adjustable photophysical and photochemical properties, good compatibility, and inherent biodegradability. However, few detailed studies on how to maximally channelize nonradiative heat generation from the viewpoint of the photothermal conversion mechanism have been reported. Thus, here we assimilate and elaborate on several available action mechanisms to maximize the photothermal conversion efficiency (PCE) of organic dyes. Moreover, we also propose several potential challenges that require substantial future work to address.
Collapse
Affiliation(s)
- Xiao-Lu Weng
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jian-Yong Liu
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China; Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou 350108, China; State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
35
|
Keefer D, Freixas VM, Song H, Tretiak S, Fernandez-Alberti S, Mukamel S. Monitoring molecular vibronic coherences in a bichromophoric molecule by ultrafast X-ray spectroscopy. Chem Sci 2021; 12:5286-5294. [PMID: 34168779 PMCID: PMC8179640 DOI: 10.1039/d0sc06328b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/24/2021] [Indexed: 11/21/2022] Open
Abstract
The role of quantum-mechanical coherences in the elementary photophysics of functional optoelectronic molecular materials is currently under active study. Designing and controlling stable coherences arising from concerted vibronic dynamics in organic chromophores is the key for numerous applications. Here, we present fundamental insight into the energy transfer properties of a rigid synthetic heterodimer that has been experimentally engineered to study coherences. Quantum non-adiabatic excited state simulations are used to compute X-ray Raman signals, which are able to sensitively monitor the coherence evolution. Our results verify their vibronic nature, that survives multiple conical intersection passages for several hundred femtoseconds at room temperature. Despite the contributions of highly heterogeneous evolution pathways, the coherences are unambiguously visualized by the experimentally accessible X-ray signals. They offer direct information on the dynamics of electronic and structural degrees of freedom, paving the way for detailed coherence measurements in functional organic materials.
Collapse
Affiliation(s)
- Daniel Keefer
- Departments of Chemistry and Physics and Astronomy, University of California Irvine California 92697-2025 USA
| | - Victor M Freixas
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET B1876BXD Bernal Argentina
| | - Huajing Song
- Theoretical Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | | | - Shaul Mukamel
- Departments of Chemistry and Physics and Astronomy, University of California Irvine California 92697-2025 USA
| |
Collapse
|
36
|
Darghouth AAMHM, Casida ME, Zhu X, Natarajan B, Su H, Humeniuk A, Titov E, Miao X, Mitrić R. Effect of varying the TD-lc-DFTB range-separation parameter on charge and energy transfer in a model pentacene/buckminsterfullerene heterojunction. J Chem Phys 2021; 154:054102. [PMID: 33557554 DOI: 10.1063/5.0024559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Atomistic modeling of energy and charge transfer at the heterojunction of organic solar cells is an active field with many remaining outstanding questions owing, in part, to the difficulties in performing reliable photodynamics calculations on very large systems. One approach to being able to overcome these difficulties is to design and apply an appropriate simplified method. Density-functional tight binding (DFTB) has become a popular form of approximate density-functional theory based on a minimal valence basis set and neglect of all but two center integrals. We report the results of our tests of a recent long-range correction (lc) [A. Humeniuk and R. Mitrić, J. Chem. Phys. 143, 134120 (2015)] for time-dependent (TD) lc-DFTB by carrying out TD-lc-DFTB fewest switches surface hopping calculations of energy and charge transfer times using the relatively new DFTBABY [A. Humeniuk and R. Mitrić, Comput. Phys. Commun. 221, 174 (2017)] program. An advantage of this method is the ability to run enough trajectories to get meaningful ensemble averages. Our interest in the present work is less in determining exact energy and charge transfer rates than in understanding how the results of these calculations vary with the value of the range-separation parameter (Rlc = 1/μ) for a model organic solar cell heterojunction consisting of a gas-phase van der Waals complex P/F made up of a single pentacene (P) molecule together with a single buckminsterfullerene (F) molecule. The default value of Rlc = 3.03 a0 is found to be much too small as neither energy nor charge transfer is observed until Rlc ≈ 10 a0. Tests at a single geometry show that the best agreement with high-quality ab initio spectra is obtained in the limit of no lc (i.e., very large Rlc). A plot of energy and charge transfer rates as a function of Rlc is provided, which suggests that a value of Rlc ≈ 15 a0 yields the typical literature (condensed-phase) charge transfer time of about 100 fs. However, energy and charge transfer times become as high as ∼300 fs for Rlc ≈ 25 a0. A closer examination of the charge transfer process P*/F → P+/F- shows that the initial electron transfer is accompanied by a partial delocalization of the P hole onto F, which then relocalizes back onto P, consistent with a polaron-like picture in which the nuclei relax to stabilize the resultant redistribution of charges.
Collapse
Affiliation(s)
| | - Mark E Casida
- Laboratoire de Spectrométrie, Interactions et Chimie Théorique (SITh), Département de Chimie Moléculaire (DCM), Institut de Chimie Moléculaire de Grenoble (ICMG), Université Grenoble-Alpes, 301 rue de la Chimie, CS 40700, 38058 Grenoble Cedex 9, France
| | - Xi Zhu
- Institute of Advanced Studies, Nanyang Technological University, 60 Nanyang View, 639673, Singapore
| | - Bhaarathi Natarajan
- Institute of Advanced Studies, Nanyang Technological University, 60 Nanyang View, 639673, Singapore
| | - Haibin Su
- Institute of Advanced Studies, Nanyang Technological University, 60 Nanyang View, 639673, Singapore
| | - Alexander Humeniuk
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, D-97074 Würzburg, Germany
| | - Evgenii Titov
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, D-97074 Würzburg, Germany
| | - Xincheng Miao
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, D-97074 Würzburg, Germany
| | - Roland Mitrić
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, D-97074 Würzburg, Germany
| |
Collapse
|
37
|
Rodríguez-Hernández B, Nelson T, Oldani N, Martínez-Mesa A, Uranga-Piña L, Segawa Y, Tretiak S, Itami K, Fernandez-Alberti S. Exciton Spatial Dynamics and Self-Trapping in Carbon Nanocages. J Phys Chem Lett 2021; 12:224-231. [PMID: 33326240 DOI: 10.1021/acs.jpclett.0c03364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Three-dimensional cage-shaped molecules formed from chainlike structures hold potential as unique optoelectronic materials and host compounds. Their optical, structural, and dynamical features are tunable by changes in shape and size. We perform a comparison of these properties for three sizes of strained conjugated [n.n.n]carbon nanocages composed of three paraphenylene chains (bridges) of length n = 4, 5, or 6. The exciton intramolecular redistribution occurring during nonradiative relaxation has been explored using nonadiabatic excited-state molecular dynamics. Our results provide atomistic insight into the conformational features associated with the observed red- and blue-shift trends in the absorption and fluorescence spectra, respectively, with increasing nanocage size. Their internal conversion processes involve intramolecular energy transfer that leads to exciton self-trapping on a few phenylene units at the center of a single bridge. The dependence of these dynamical features on the size of the nanocage can be used to tune their host-guest chemical properties and their use for organic electronics and catenane-like applications.
Collapse
Affiliation(s)
| | - Tammie Nelson
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nicolas Oldani
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - Aliezer Martínez-Mesa
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
- DynAMoS (Dynamical processes in Atomic and Molecular Systems), Facultad de Física, Universidad de La Habana, San Lázaro y L, La Habana 10400, Cuba
| | - Llinersy Uranga-Piña
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
- DynAMoS (Dynamical processes in Atomic and Molecular Systems), Facultad de Física, Universidad de La Habana, San Lázaro y L, La Habana 10400, Cuba
| | - Yasutomo Segawa
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
- JST, ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Nagoya 464-8602, Japan
- Institute for Molecular Science, Myodaiji, Okazaki 444-8787, Japan
- Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki 444-8787, Japan
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Kenichiro Itami
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
- JST, ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8602, Japan
| | | |
Collapse
|
38
|
Liu X, Zou Q, Liu W. Tracking the effect of chlorine as a substituent on vibrational coupling and energy transfer. NEW J CHEM 2021. [DOI: 10.1039/d0nj05508e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The selective excitation of different modes and the detection of the effect of substituents on coupling and energy transfer via CARS spectroscopy were carried out using benzene derivatives.
Collapse
Affiliation(s)
- Xiaosong Liu
- School of Physics and Energy
- Xuzhou University of Technology
- Yunlong
- China
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education
| | - Qingxiao Zou
- School of Physics and Energy
- Xuzhou University of Technology
- Yunlong
- China
| | - Weilong Liu
- Department of Physics
- Harbin Institute of Technology – 92 Xidazhi Street
- Nangang
- China
| |
Collapse
|
39
|
Kim J, Kishi R, Kayahara E, Kim W, Yamago S, Nakano M, Kim D. Ultrafast Exciton Self-Trapping and Delocalization in Cycloparaphenylenes: The Role of Excited-State Symmetry in Electron-Vibrational Coupling. Angew Chem Int Ed Engl 2020; 59:16989-16996. [PMID: 32558161 DOI: 10.1002/anie.202006066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Indexed: 11/06/2022]
Abstract
Upon photon absorption, π-conjugated organics are apt to undergo ultrafast structural reorganization via electron-vibrational coupling during non-adiabatic transitions. Ultrafast nuclear motions modulate local planarity and quinoid/benzenoid characters within conjugated backbones, which control primary events in the excited states, such as localization, energy transfer, and so on. Femtosecond broadband fluorescence upconversion measurements were conducted to investigate exciton self-trapping and delocalization in cycloparaphenylenes as ultrafast structural reorganizations are achieved via excited-state symmetry-dependent electron-vibrational coupling. By accessing two high-lying excited states, one-photon and two-photon allowed states, a clear discrepancy in the initial time-resolved fluorescence spectra and the temporal dynamics/spectral evolution of fluorescence spectra were monitored. Combined with quantum chemical calculations, a novel insight into the effect of the excited-state symmetry on ultrafast structural reorganization and exciton self-trapping in the emerging class of π-conjugated materials is provided.
Collapse
Affiliation(s)
- Juno Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional, π-Electronic Systems, Yonsei University, 03722, Seoul, Korea
| | - Ryohei Kishi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Eiichi Kayahara
- Institute for Chemical Research, Kyoto University, Uji, 611-0011, Japan
| | - Woojae Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional, π-Electronic Systems, Yonsei University, 03722, Seoul, Korea
| | - Shigeru Yamago
- Institute for Chemical Research, Kyoto University, Uji, 611-0011, Japan
| | - Masayoshi Nakano
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Dongho Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional, π-Electronic Systems, Yonsei University, 03722, Seoul, Korea
| |
Collapse
|
40
|
Song H, Fischer SA, Zhang Y, Cramer CJ, Mukamel S, Govind N, Tretiak S. First Principles Nonadiabatic Excited-State Molecular Dynamics in NWChem. J Chem Theory Comput 2020; 16:6418-6427. [DOI: 10.1021/acs.jctc.0c00295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Huajing Song
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, United States
| | - Sean A. Fischer
- Chemistry Division, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States
| | - Yu Zhang
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, United States
| | - Christopher J. Cramer
- Department of Chemistry, Supercomputing Institute and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Shaul Mukamel
- Departments of Chemistry, and physics and astronomy, University of California, Irvine, California 92697, United States
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
41
|
Kim J, Kishi R, Kayahara E, Kim W, Yamago S, Nakano M, Kim D. Ultrafast Exciton Self‐Trapping and Delocalization in Cycloparaphenylenes: The Role of Excited‐State Symmetry in Electron‐Vibrational Coupling. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Juno Kim
- Department of Chemistry Spectroscopy Laboratory for Functional, π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Ryohei Kishi
- Department of Materials Engineering Science Graduate School of Engineering Science Osaka University Toyonaka Osaka 560–8531 Japan
| | - Eiichi Kayahara
- Institute for Chemical Research Kyoto University Uji 611-0011 Japan
| | - Woojae Kim
- Department of Chemistry Spectroscopy Laboratory for Functional, π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Shigeru Yamago
- Institute for Chemical Research Kyoto University Uji 611-0011 Japan
| | - Masayoshi Nakano
- Department of Materials Engineering Science Graduate School of Engineering Science Osaka University Toyonaka Osaka 560–8531 Japan
| | - Dongho Kim
- Department of Chemistry Spectroscopy Laboratory for Functional, π-Electronic Systems Yonsei University 03722 Seoul Korea
| |
Collapse
|
42
|
Rodríguez-Hernández B, Oldani N, Martínez-Mesa A, Uranga-Piña L, Tretiak S, Fernandez-Alberti S. Photoexcited energy relaxation and vibronic couplings in π-conjugated carbon nanorings. Phys Chem Chem Phys 2020; 22:15321-15332. [PMID: 32628225 DOI: 10.1039/d0cp01452d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Conjugated carbon nanorings exhibit unique photophysical properties that, combined with their tunable sizes and conformations, make them suitable for a variety of practical applications. These properties are intimately associated to their strained, bent and sterically hindered cyclic structures. Herein we perform a comparative analysis of the photoinduced dynamics in carbon nanorings composed of nine phenyl units([9]CPP) and nine naphthyl units ([9]CN) respectively. The sterically demanding naphthyl units lead to large dihedral angles between neighboring units. Nevertheless, the ultrafast electronic and vibrational energy relaxation and redistribution is found to be similar for both systems. We observe that vibronic couplings, introduced by nonadiabatic energy transfer between electronic excited states, ensure the intramolecular vibrational energy redistribution through specific vibrational modes. The comparative impact of the internal conversion process on the exciton spatial localization and intra-ring migration indicates that naphthyl units in [9]CN achieve more efficient but less dynamical self-trapping compared to that of phenyl units in [9]CPP. That is, during the photoinduced process, the exciton in [9]CN is more static and localized than the exciton in [9]CPP. The internal conversion processes take place through a specific set of middle- to high-frequency normal modes, which directly influence the spatial exciton redistribution during the internal conversion, self-trapping and intra-ring migration.
Collapse
Affiliation(s)
- B Rodríguez-Hernández
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
The spreading of a particle along a chain, and its relaxation, are central themes in statistical and quantum mechanics. One wonders what are the consequences of the interplay between coherent and stochastic transitions. This fundamental puzzle has not been addressed in the literature, though closely related themes were in the focus of the Physics literature throughout the last century, highlighting quantum versions of Brownian motion. Most recently this question has surfaced again in the context of photo-synthesis. Here we consider both an infinite tight-binding chain and a finite ring within the framework of an Ohmic master equation. With added disorder it becomes the quantum version of the Sinai-Derrida-Hatano-Nelson model, which features sliding and delocalization transitions. We highlight non-monotonic dependence of the current on the bias, and a counter-intuitive enhancement of the effective disorder due to coherent hopping.
Collapse
Affiliation(s)
- Dekel Shapira
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| | - Doron Cohen
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
44
|
Freixas VM, Tretiak S, Makhov DV, Shalashilin DV, Fernandez-Alberti S. Vibronic Quantum Beating between Electronic Excited States in a Heterodimer. J Phys Chem B 2020; 124:3992-4001. [DOI: 10.1021/acs.jpcb.0c01685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- V. M. Freixas
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - S. Tretiak
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - D. V. Makhov
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
- School of Mathematics, University of Bristol, Bristol BS8 1TW, U.K
| | | | - S. Fernandez-Alberti
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| |
Collapse
|
45
|
Muller EA, Gray TP, Zhou Z, Cheng X, Khatib O, Bechtel HA, Raschke MB. Vibrational exciton nanoimaging of phases and domains in porphyrin nanocrystals. Proc Natl Acad Sci U S A 2020; 117:7030-7037. [PMID: 32170023 PMCID: PMC7132254 DOI: 10.1073/pnas.1914172117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Much of the electronic transport, photophysical, or biological functions of molecular materials emerge from intermolecular interactions and associated nanoscale structure and morphology. However, competing phases, defects, and disorder give rise to confinement and many-body localization of the associated wavefunction, disturbing the performance of the material. Here, we employ vibrational excitons as a sensitive local probe of intermolecular coupling in hyperspectral infrared scattering scanning near-field optical microscopy (IR s-SNOM) with complementary small-angle X-ray scattering to map multiscale structure from molecular coupling to long-range order. In the model organic electronic material octaethyl porphyrin ruthenium(II) carbonyl (RuOEP), we observe the evolution of competing ordered and disordered phases, in nucleation, growth, and ripening of porphyrin nanocrystals. From measurement of vibrational exciton delocalization, we identify coexistence of ordered and disordered phases in RuOEP that extend down to the molecular scale. Even when reaching a high degree of macroscopic crystallinity, identify significant local disorder with correlation lengths of only a few nanometers. This minimally invasive approach of vibrational exciton nanospectroscopy and -imaging is generally applicable to provide the molecular-level insight into photoresponse and energy transport in organic photovoltaics, electronics, or proteins.
Collapse
Affiliation(s)
- Eric A Muller
- Department of Physics, University of Colorado Boulder, Boulder, CO 80309;
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309
- JILA, University of Colorado Boulder, Boulder, CO 80309
| | - Thomas P Gray
- Department of Physics, University of Colorado Boulder, Boulder, CO 80309
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309
- JILA, University of Colorado Boulder, Boulder, CO 80309
| | - Zhou Zhou
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xinbin Cheng
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Omar Khatib
- Department of Physics, University of Colorado Boulder, Boulder, CO 80309
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309
- JILA, University of Colorado Boulder, Boulder, CO 80309
- Advanced Light Source Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720
| | - Hans A Bechtel
- Advanced Light Source Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720
| | - Markus B Raschke
- Department of Physics, University of Colorado Boulder, Boulder, CO 80309;
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309
- JILA, University of Colorado Boulder, Boulder, CO 80309
| |
Collapse
|
46
|
|
47
|
Nelson TR, White AJ, Bjorgaard JA, Sifain AE, Zhang Y, Nebgen B, Fernandez-Alberti S, Mozyrsky D, Roitberg AE, Tretiak S. Non-adiabatic Excited-State Molecular Dynamics: Theory and Applications for Modeling Photophysics in Extended Molecular Materials. Chem Rev 2020; 120:2215-2287. [PMID: 32040312 DOI: 10.1021/acs.chemrev.9b00447] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Optically active molecular materials, such as organic conjugated polymers and biological systems, are characterized by strong coupling between electronic and vibrational degrees of freedom. Typically, simulations must go beyond the Born-Oppenheimer approximation to account for non-adiabatic coupling between excited states. Indeed, non-adiabatic dynamics is commonly associated with exciton dynamics and photophysics involving charge and energy transfer, as well as exciton dissociation and charge recombination. Understanding the photoinduced dynamics in such materials is vital to providing an accurate description of exciton formation, evolution, and decay. This interdisciplinary field has matured significantly over the past decades. Formulation of new theoretical frameworks, development of more efficient and accurate computational algorithms, and evolution of high-performance computer hardware has extended these simulations to very large molecular systems with hundreds of atoms, including numerous studies of organic semiconductors and biomolecules. In this Review, we will describe recent theoretical advances including treatment of electronic decoherence in surface-hopping methods, the role of solvent effects, trivial unavoided crossings, analysis of data based on transition densities, and efficient computational implementations of these numerical methods. We also emphasize newly developed semiclassical approaches, based on the Gaussian approximation, which retain phase and width information to account for significant decoherence and interference effects while maintaining the high efficiency of surface-hopping approaches. The above developments have been employed to successfully describe photophysics in a variety of molecular materials.
Collapse
Affiliation(s)
- Tammie R Nelson
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Alexander J White
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Josiah A Bjorgaard
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Andrew E Sifain
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States.,U.S. Army Research Laboratory , Aberdeen Proving Ground , Maryland 21005 , United States
| | - Yu Zhang
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Benjamin Nebgen
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | | | - Dmitry Mozyrsky
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Adrian E Roitberg
- Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Sergei Tretiak
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| |
Collapse
|
48
|
Nieman R, Aquino AJA, Lischka H. Benchmark ab initio calculations on intermolecular structures and the exciton character of poly(p-phenylenevinylene) dimers. J Chem Phys 2020; 152:044306. [DOI: 10.1063/1.5139411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Reed Nieman
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA
| | - Adelia J. A. Aquino
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| |
Collapse
|
49
|
Vibronic coherence contributes to photocurrent generation in organic semiconductor heterojunction diodes. Nat Commun 2020; 11:617. [PMID: 32001688 PMCID: PMC6992633 DOI: 10.1038/s41467-020-14476-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/09/2020] [Indexed: 11/24/2022] Open
Abstract
Charge separation dynamics after the absorption of a photon is a fundamental process relevant both for photosynthetic reaction centers and artificial solar conversion devices. It has been proposed that quantum coherence plays a role in the formation of charge carriers in organic photovoltaics, but experimental proofs have been lacking. Here we report experimental evidence of coherence in the charge separation process in organic donor/acceptor heterojunctions, in the form of low frequency oscillatory signature in the kinetics of the transient absorption and nonlinear two-dimensional photocurrent spectroscopy. The coherence plays a decisive role in the initial ~200 femtoseconds as we observe distinct experimental signatures of coherent photocurrent generation. This coherent process breaks the energy barrier limitation for charge formation, thus competing with excitation energy transfer. The physics may inspire the design of new photovoltaic materials with high device performance, which explore the quantum effects in the next-generation optoelectronic applications. Although coherent vibrational motion in donor-acceptor blends may contribute to photogeneration generation in organic solar cells (OSCs), proof of a direct correlation is still lacking. Here, the authors report the role of vibrational coherence on photocurrent generation in ternary OSC blends.
Collapse
|
50
|
Xu Z, Zhou Y, Groß L, De Sio A, Yam CY, Lienau C, Frauenheim T, Chen G. Coherent Real-Space Charge Transport Across a Donor-Acceptor Interface Mediated by Vibronic Couplings. NANO LETTERS 2019; 19:8630-8637. [PMID: 31698905 DOI: 10.1021/acs.nanolett.9b03194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
There is growing experimental and theoretical evidence that vibronic couplings, couplings between electronic and nuclear degrees of freedom, play a fundamental role in ultrafast excited-state dynamics in organic donor-acceptor hybrids. Whereas vibronic coupling has been shown to support charge separation at donor-acceptor interfaces, so far, little is known about its role in the real-space transport of charges in such systems. Here we theoretically study charge transport in thiophene:fullerene stacks using time-dependent density functional tight-binding theory combined with Ehrenfest molecular dynamics for open systems. Our results reveal coherent oscillations of the charge density between neighboring donor sites, persisting for ∼200 fs and promoting charge transport within the polymer stacks. At the donor-acceptor interface, vibronic wave packets are launched, propagating coherently over distances of more than 3 nm into the acceptor region. This supports previous experimental observations of long-range ballistic charge-carrier motion in organic photovoltaic systems and highlights the importance of vibronic coupling engineering as a concept for tailoring the functionality of hybrid organic devices.
Collapse
Affiliation(s)
- Ziyao Xu
- Department of Chemistry , University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| | - Yi Zhou
- Department of Chemistry , University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| | - Lynn Groß
- Bremen Center for Computational Materials Science , University of Bremen , Am Fallturm 1 , 28359 Bremen , Germany
| | - Antonietta De Sio
- Institut für Physik and Center of Interface Science , Carl von Ossietzky Universität , Oldenburg 26129 , Germany
| | - Chi Yung Yam
- Beijing Computational Science Research Center , Beijing 100084 , China
| | - Christoph Lienau
- Institut für Physik and Center of Interface Science , Carl von Ossietzky Universität , Oldenburg 26129 , Germany
- Research Center Neurosensory Science , Carl von Ossietzky Universität , Oldenburg 26111 , Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science , University of Bremen , Am Fallturm 1 , 28359 Bremen , Germany
| | - GuanHua Chen
- Department of Chemistry , University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| |
Collapse
|