1
|
Marchand T, Akinnola KE, Takeishi S, Maryanovich M, Pinho S, Saint-Vanne J, Birbrair A, Lamy T, Tarte K, Frenette P, Gritsman K. Periosteal skeletal stem cells can migrate into the bone marrow and support hematopoiesis after injury. eLife 2025; 13:RP101714. [PMID: 40401637 PMCID: PMC12097789 DOI: 10.7554/elife.101714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025] Open
Abstract
Skeletal stem cells (SSCs) have been isolated from various tissues, including periosteum and bone marrow, where they exhibit key functions in bone biology and hematopoiesis, respectively. The role of periosteal SSCs (P-SSCs) in bone regeneration and healing has been extensively studied, but their ability to contribute to the bone marrow stroma is still under debate. In the present study, we characterized a mouse whole bone transplantation model that mimics the initial bone marrow necrosis and fatty infiltration seen after injury. Using this model and a lineage tracing approach, we observed the migration of P-SSCs into the bone marrow after transplantation. Once in the bone marrow, P-SSCs are phenotypically and functionally reprogrammed into bone marrow mesenchymal stem cells (BM-MSCs) that express high levels of hematopoietic stem cell niche factors such as Cxcl12 and Kitl. In addition, using ex vivo and in vivo approaches, we found that P-SSCs are more resistant to acute stress than BM-MSCs. These results highlight the plasticity of P-SSCs and their potential role in bone marrow regeneration after bone marrow injury.
Collapse
Affiliation(s)
- Tony Marchand
- Service d’hématologie Clinique, Centre Hospitalier Universitaire de RennesRennesFrance
- UMR U1236, INSERM, Université Rennes, EFS Bretagne, Equipe Labellisée Ligue Contre le CancerRennesFrance
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
| | - Kemi E Akinnola
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
| | - Shoichiro Takeishi
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
| | - Maria Maryanovich
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
| | - Sandra Pinho
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
- Department of Medical Oncology, Albert Einstein College of MedicineBronxUnited States
- Department of Pharmacology & Regenerative Medicine, University of Illinois at ChicagoChicagoUnited States
| | - Julien Saint-Vanne
- UMR U1236, INSERM, Université Rennes, EFS Bretagne, Equipe Labellisée Ligue Contre le CancerRennesFrance
| | - Alexander Birbrair
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
- Department of Dermatology, University of Wisconsin-MadisonMadisonUnited States
| | - Thierry Lamy
- Service d’hématologie Clinique, Centre Hospitalier Universitaire de RennesRennesFrance
- UMR U1236, INSERM, Université Rennes, EFS Bretagne, Equipe Labellisée Ligue Contre le CancerRennesFrance
| | - Karin Tarte
- UMR U1236, INSERM, Université Rennes, EFS Bretagne, Equipe Labellisée Ligue Contre le CancerRennesFrance
- Laboratoire Suivi Immunologique des Thérapeutiques Innovantes, Centre Hospitalier Universitaire de RennesRennesFrance
| | - Paul Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
- Department of Medical Oncology, Albert Einstein College of MedicineBronxUnited States
| | - Kira Gritsman
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
- Department of Medical Oncology, Albert Einstein College of MedicineBronxUnited States
| |
Collapse
|
2
|
Thompson GB, Barnhouse VR, Bierman SK, Harley BA. Influence of Hypoxia on a Biomaterial Model of the Bone Marrow Perivascular Niche. Adv Healthc Mater 2025; 14:e2500858. [PMID: 40285591 PMCID: PMC12118339 DOI: 10.1002/adhm.202500858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Hematopoietic stem cell (HSC) fate is shaped by distinct microenvironments termed niches within the bone marrow. Quiescence, expansion, and differentiation are directly and indirectly regulated by complex combinations of cell secretomes, cell-cell interactions, mechanical signals, and metabolic factors including oxygen tension. The perivascular environment in the bone marrow has been implicated in guiding HSC fate. However, bone marrow presents an environment which is hypoxic (≈1-4% O2) relative to traditional cell culture conditions, and the study of hypoxia in vitro is complicated by the speed with which normoxic conditions during HSC isolation induce differentiation. There is a unique opportunity to use engineered models of the bone marrow to investigate the impact of defined hypoxia on HSC fate. Here, the coordinated impact of oxygen tension and the perivascular secretome upon murine hematopoietic stem and progenitor cells (HSPCs) is examined in vitro. The findings highlight the importance of mitigating oxygen shock during cell isolation in engineered marrow models. We report a shift toward the Lineage- phenotype with hypoxic culture, expansion of HSPCs in response to perivascular niche conditioned medium, and enhanced HSPC maintenance in a hydrogel model of bone marrow in hypoxic culture when oxygen shock is mitigated during isolation using cyclosporin A.
Collapse
Affiliation(s)
- Gunnar B. Thompson
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Victoria R. Barnhouse
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Sydney K. Bierman
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Brendan A.C. Harley
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Cancer Center at IllinoisUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
3
|
Yip RKH, Hawkins ED, Bowden R, Rogers KL. Towards deciphering the bone marrow microenvironment with spatial multi-omics. Semin Cell Dev Biol 2025; 167:10-21. [PMID: 39889539 DOI: 10.1016/j.semcdb.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/23/2024] [Accepted: 01/18/2025] [Indexed: 02/03/2025]
Abstract
The tissue microenvironment refers to a localised tissue area where a complex combination of cells, structural components, and signalling molecules work together to support specific biological activities. A prime example is the bone marrow microenvironment, particularly the hematopoietic stem cell (HSC) niche, which is of immense interest due to its critical role in supporting lifelong blood cell production and the growth of malignant cells. In this review, we summarise the current understanding of HSC niche biology, highlighting insights gained from advanced imaging and genomic techniques. We also discuss the potential of emerging technologies such as spatial multi-omics to unravel bone marrow architecture in unprecedented detail.
Collapse
Affiliation(s)
- Raymond K H Yip
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Colonial Foundation Diagnostics Centre, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.
| | - Edwin D Hawkins
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Colonial Foundation Diagnostics Centre, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Rory Bowden
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kelly L Rogers
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
4
|
Thompson GB, Barnhouse VR, Bierman SK, Harley BAC. Influence of Hypoxia on a Biomaterial Model of the Bone Marrow Perivascular Niche. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.20.639296. [PMID: 40060591 PMCID: PMC11888168 DOI: 10.1101/2025.02.20.639296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Hematopoietic stem cell (HSC) fate is shaped by distinct microenvironments termed niches within the bone marrow. Quiescence, expansion, and differentiation are directly and indirectly regulated by complex combinations of cell secretomes, cell-cell interactions, mechanical signals, and metabolic factors including oxygen tension. The perivascular environment in the bone marrow has been implicated in guiding HSC fate. However, bone marrow presents an environment which is hypoxic (~1-4% O2) relative to traditional cell culture conditions, and the study of hypoxia in vitro is complicated by the speed with which normoxic conditions during HSC isolation induce differentiation. There is a unique opportunity to use engineered models of the bone marrow to investigate the impact of defined hypoxia on HSC fate. Here, we examine the coordinated impact of oxygen tension and the perivascular secretome upon murine hematopoietic stem and progenitor cells (HSPCs) in vitro. Our findings highlight the importance of mitigating oxygen shock during cell isolation in engineered marrow models. We report a shift toward the Lineage- phenotype with hypoxic culture, expansion of HSPCs in response to perivascular niche conditioned medium, and enhanced HSPC maintenance in a hydrogel model of bone marrow in hypoxic culture when oxygen shock is mitigated during isolation using cyclosporin A.
Collapse
Affiliation(s)
- Gunnar B Thompson
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Victoria R Barnhouse
- Dept. Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Sydney K Bierman
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Dept. Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
5
|
Aljagthmi AA, Abdel-Aziz AK. Hematopoietic stem cells: Understanding the mechanisms to unleash the therapeutic potential of hematopoietic stem cell transplantation. Stem Cell Res Ther 2025; 16:60. [PMID: 39924510 PMCID: PMC11809095 DOI: 10.1186/s13287-024-04126-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/21/2024] [Indexed: 02/11/2025] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is a promising approach in regenerative medicine and serves as a standard treatment for different malignant and non-malignant conditions. Despite its widespread applications, HSCT is associated with various complications that compromise patients' lives and pose considerable risks of morbidity and mortality. Understanding the molecular physiology of HSCs is fundamental to ultimately enhance the mobilization, engraftment and differentiation of HSCs, thus unleashing the full therapeutic potential of HSCT in the treated patients. This review outlines the current understanding of HSC biology and its relevance to the clinical challenges associated with HSCT. Furthermore, we critically discuss the pros and cons of the preclinical murine models exploited in the HSCT field. Understanding the molecular physiology of HSCs will ultimately unleash the full therapeutic potential of HSCT. HSCs derived from induced pluripotent stem cells (iPSCs) might present an attractive tool which could be exploited preclinically and clinically. Nonetheless, further studies are warranted to systematically evaluate their potential in terms of improving the therapeutic outcome and minimizing the adverse effects of HSCT.
Collapse
Affiliation(s)
- Amjad Ahmed Aljagthmi
- Research center, King Faisal Specialist Hospital and Research Centre, Jeddah, 21499, Kingdom of Saudi Arabia.
| | - Amal Kamal Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| |
Collapse
|
6
|
Furuhashi K, Kakiuchi M, Ueda R, Oda H, Ummarino S, Ebralidze AK, Bassal MA, Meng C, Sato T, Lyu J, Han MG, Maruyama S, Watanabe Y, Sawa Y, Kato D, Wake H, Reizis B, Frangos JA, Owens DM, Tenen DG, Ghiran IC, Robson SC, Fujisaki J. Bone marrow niches orchestrate stem-cell hierarchy and immune tolerance. Nature 2025; 638:206-215. [PMID: 39743593 PMCID: PMC11956426 DOI: 10.1038/s41586-024-08352-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 11/06/2024] [Indexed: 01/04/2025]
Abstract
Stem cells reside in specialized microenvironments, termed niches, at several different locations in tissues1-3. The differential functions of heterogeneous stem cells and niches are important given the increasing clinical applications of stem-cell transplantation and immunotherapy. Whether hierarchical structures among stem cells at distinct niches exist and further control aspects of immune tolerance is unknown. Here we describe previously unknown new hierarchical arrangements in haematopoietic stem cells (HSCs) and bone marrow niches that dictate both regenerative potential and immune privilege. High-level nitric oxide-generating (NOhi) HSCs are refractory to immune attack and exhibit delayed albeit robust long-term reconstitution. Such highly immune-privileged, primitive NOhi HSCs co-localize with distinctive capillaries characterized by primary ciliated endothelium and high levels of the immune-checkpoint molecule CD200. These capillaries regulate the regenerative functions of NOhi HSCs through the ciliary protein IFT20 together with CD200, endothelial nitric oxide synthase and autophagy signals, which further mediate immunoprotection. Notably, previously described niche constituents, sinusoidal cells and type-H vessels2-10 co-localize with less immune-privileged and less potent NOlow HSCs. Together, we identify highly immune-privileged, late-rising primitive HSCs and characterize their immunoprotective niches comprising specialized vascular domains. Our results indicate that the niche orchestrates hierarchy in stem cells and immune tolerance, and highlight future immunotherapeutic targets.
Collapse
Affiliation(s)
- Kazuhiro Furuhashi
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Columbia Stem Cell Initiatives, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Nagoya University Institute for Advanced Research, Nagoya, Japan
| | - Miwako Kakiuchi
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Columbia Stem Cell Initiatives, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Ryosuke Ueda
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Columbia Stem Cell Initiatives, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Inflammation Research, Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hiroko Oda
- Center for Inflammation Research, Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Simone Ummarino
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Hematology and Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Alexander K Ebralidze
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Hematology and Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mahmoud A Bassal
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
- Division of Hematology and Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Chen Meng
- Center for Inflammation Research, Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Tatsuyuki Sato
- Center for Inflammation Research, Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jing Lyu
- Center for Inflammation Research, Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Min-Guk Han
- Center for Inflammation Research, Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shoichi Maruyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yu Watanabe
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuriko Sawa
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Kato
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Wake
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Boris Reizis
- Translational Immunology Center, Department of Pathology, New York University, New York, NY, USA
| | | | - David M Owens
- Department of Dermatology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Daniel G Tenen
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Hematology and Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Ionita C Ghiran
- Center for Inflammation Research, Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Simon C Robson
- Center for Inflammation Research, Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joji Fujisaki
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Columbia Stem Cell Initiatives, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Center for Inflammation Research, Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Division of Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Calvo J, Naguibneva I, Kypraios A, Gilain F, Uzan B, Gaillard B, Bellenger L, Renou L, Antoniewski C, Lapillonne H, Petit A, Ballerini P, Mancini SJ, Marchand T, Peyron JF, Pflumio F. High CD44 expression and enhanced E-selectin binding identified as biomarkers of chemoresistant leukemic cells in human T-ALL. Leukemia 2025; 39:323-336. [PMID: 39580584 PMCID: PMC11794132 DOI: 10.1038/s41375-024-02473-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a hematopoietic malignancy characterized by increased proliferation and incomplete maturation of T-cell progenitors, for which relapse is often of poor prognosis. To improve patient outcomes, it is critical to understand the chemoresistance mechanisms arising from cell plasticity induced by the bone marrow (BM) microenvironment. Single-cell RNA sequencing of human T-ALL cells from adipocyte-rich and adipocyte-poor BM revealed a distinct leukemic cell population defined by quiescence and high CD44 expression (Ki67neg/lowCD44high). During in vivo treatment, these cells evaded chemotherapy, and were further called Chemotherapy-resistant Leukemic Cells (CLCs). Patient sample analysis revealed Ki67neg/lowCD44high CLCs at diagnosis and during relapse, with each displaying a specific transcriptomic signature. Interestingly, CD44high expression in T-ALL Ki67neg/low CLCs was associated with E-selectin binding. Analysis of 39 human T-ALL samples revealed significantly enhanced E-selectin binding activity in relapse/refractory samples compared with drug-sensitive samples. These characteristics of chemoresistant T-ALL CLCs provide key insights for prognostic stratification and novel therapeutic options.
Collapse
Affiliation(s)
- Julien Calvo
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France.
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France.
- Laboratoire des cellules Souches Hématopoïétiques et des Leucémies, Equipe Niche et Cancer dans l'Hématopoïèse, équipe labellisée Ligue Nationale Contre le Cancer, Unité Mixte de Recherche (UMR) 1274-E008, Inserm, CEA, 92265, Fontenay-aux Roses, France.
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Paris, France.
| | - Irina Naguibneva
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Laboratoire des cellules Souches Hématopoïétiques et des Leucémies, Equipe Niche et Cancer dans l'Hématopoïèse, équipe labellisée Ligue Nationale Contre le Cancer, Unité Mixte de Recherche (UMR) 1274-E008, Inserm, CEA, 92265, Fontenay-aux Roses, France
| | - Anthony Kypraios
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, 06204, Nice, France
| | - Florian Gilain
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Laboratoire des cellules Souches Hématopoïétiques et des Leucémies, Equipe Niche et Cancer dans l'Hématopoïèse, équipe labellisée Ligue Nationale Contre le Cancer, Unité Mixte de Recherche (UMR) 1274-E008, Inserm, CEA, 92265, Fontenay-aux Roses, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Paris, France
| | - Benjamin Uzan
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Laboratoire des cellules Souches Hématopoïétiques et des Leucémies, Equipe Niche et Cancer dans l'Hématopoïèse, équipe labellisée Ligue Nationale Contre le Cancer, Unité Mixte de Recherche (UMR) 1274-E008, Inserm, CEA, 92265, Fontenay-aux Roses, France
| | - Baptiste Gaillard
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Laboratoire des cellules Souches Hématopoïétiques et des Leucémies, Equipe Niche et Cancer dans l'Hématopoïèse, équipe labellisée Ligue Nationale Contre le Cancer, Unité Mixte de Recherche (UMR) 1274-E008, Inserm, CEA, 92265, Fontenay-aux Roses, France
| | - Lea Bellenger
- ARTbio Bioinformatics Analysis Facility, IBPS, CNRS, Sorbonne Université, Institut Français de Bioinformatique, 75005, Paris, France
| | - Laurent Renou
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Laboratoire des cellules Souches Hématopoïétiques et des Leucémies, Equipe Niche et Cancer dans l'Hématopoïèse, équipe labellisée Ligue Nationale Contre le Cancer, Unité Mixte de Recherche (UMR) 1274-E008, Inserm, CEA, 92265, Fontenay-aux Roses, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Paris, France
| | - Christophe Antoniewski
- ARTbio Bioinformatics Analysis Facility, IBPS, CNRS, Sorbonne Université, Institut Français de Bioinformatique, 75005, Paris, France
| | - Helene Lapillonne
- Sorbonne University, AP-HP, Laboratory of Hematology, Armand-Trousseau Hospital, 75012, Paris, France
- Sorbonne Université, Centre de Recherche Saint-Antoine UMR_S938, Pediatric Hematology Oncology Unit, AP-HP, Armand-Trousseau Hospital, 75012, Paris, France
| | - Arnaud Petit
- Sorbonne University, AP-HP, Laboratory of Hematology, Armand-Trousseau Hospital, 75012, Paris, France
- Sorbonne Université, Centre de Recherche Saint-Antoine UMR_S938, Pediatric Hematology Oncology Unit, AP-HP, Armand-Trousseau Hospital, 75012, Paris, France
| | - Paola Ballerini
- Sorbonne University, AP-HP, Laboratory of Hematology, Armand-Trousseau Hospital, 75012, Paris, France
- Sorbonne Université, Centre de Recherche Saint-Antoine UMR_S938, Pediatric Hematology Oncology Unit, AP-HP, Armand-Trousseau Hospital, 75012, Paris, France
| | | | - Tony Marchand
- Université Rennes, EFS, Inserm, MOBIDIC-UMR_S 1236, F-35000, Rennes, France
- Service d'hématologie Clinique, Centre Hospitalier Universitaire de Rennes, 35003, Rennes, France
| | - Jean-François Peyron
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, 06204, Nice, France
| | - Françoise Pflumio
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Laboratoire des cellules Souches Hématopoïétiques et des Leucémies, Equipe Niche et Cancer dans l'Hématopoïèse, équipe labellisée Ligue Nationale Contre le Cancer, Unité Mixte de Recherche (UMR) 1274-E008, Inserm, CEA, 92265, Fontenay-aux Roses, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Paris, France
| |
Collapse
|
8
|
Marchand T, Akinnola KE, Takeishi S, Maryanovich M, Pinho S, Saint-Vanne J, Birbrair A, Lamy T, Tarte K, Frenette PS, Gritsman K. Periosteal skeletal stem cells can migrate into the bone marrow and support hematopoiesis after injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.01.12.523842. [PMID: 36711927 PMCID: PMC9882153 DOI: 10.1101/2023.01.12.523842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Skeletal stem cells have been isolated from various tissues, including periosteum and bone marrow, where they exhibit key functions in bone biology and hematopoiesis, respectively. The role of periosteal skeletal stem cells in bone regeneration and healing has been extensively studied, but their ability to contribute to the bone marrow stroma is still under debate. In the present study, we characterized a whole bone transplantation model that mimics the initial bone marrow necrosis and fatty infiltration seen after injury. Using this model and a lineage tracing approach, we observed the migration of periosteal skeletal stem cells into the bone marrow after transplantation. Once in the bone marrow, periosteal skeletal stem cells are phenotypically and functionally reprogrammed into bone marrow mesenchymal stem cells that express high levels of hematopoietic stem cell niche factors such as Cxcl12 and Kitl. In addition, using ex vivo and in vivo approaches, we found that periosteal skeletal stem cells are more resistant to acute stress than bone marrow mesenchymal stem cells. These results highlight the plasticity of periosteal skeletal stem cells and their potential role in bone marrow regeneration after bone marrow injury.
Collapse
Affiliation(s)
- Tony Marchand
- Service d’hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France
- UMR U1236, INSERM, Université Rennes, EFS Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price Center, 1300 Morris Park Avenue, Room 101, Bronx, NY 10461, USA
| | - Kemi E. Akinnola
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price Center, 1300 Morris Park Avenue, Room 101, Bronx, NY 10461, USA
| | - Shoichiro Takeishi
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price Center, 1300 Morris Park Avenue, Room 101, Bronx, NY 10461, USA
| | - Maria Maryanovich
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price Center, 1300 Morris Park Avenue, Room 101, Bronx, NY 10461, USA
| | - Sandra Pinho
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price Center, 1300 Morris Park Avenue, Room 101, Bronx, NY 10461, USA
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Julien Saint-Vanne
- UMR U1236, INSERM, Université Rennes, EFS Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
| | - Alexander Birbrair
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price Center, 1300 Morris Park Avenue, Room 101, Bronx, NY 10461, USA
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Thierry Lamy
- Service d’hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France
- UMR U1236, INSERM, Université Rennes, EFS Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
| | - Karin Tarte
- UMR U1236, INSERM, Université Rennes, EFS Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
- Laboratoire Suivi Immunologique des Thérapeutiques Innovantes, Centre Hospitalier Universitaire de Rennes, F-35033 Rennes, France
| | - Paul S. Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price Center, 1300 Morris Park Avenue, Room 101, Bronx, NY 10461, USA
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kira Gritsman
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price Center, 1300 Morris Park Avenue, Room 101, Bronx, NY 10461, USA
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
9
|
Boueya IL, Sandhow L, Albuquerque JRP, Znaidi R, Passaro D. Endothelial heterogeneity in bone marrow: insights across development, adult life and leukemia. Leukemia 2025; 39:8-24. [PMID: 39528790 PMCID: PMC11717709 DOI: 10.1038/s41375-024-02453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
The central role of the endothelial microenvironment in orchestrating bone marrow (BM) homeostasis and hematopoietic support has been confirmed at various developmental stages and in adult life. The BM vasculature is crucial in mediating communication between BM parenchyma and circulating blood, displaying remarkable heterogeneity in structure and function. While vascular cell diversity in other tissues has long been recognized, the molecular basis of this phenomenon in BM is just now emerging. Over the past decade, single-cell approaches and microscopic observations have expanded our understanding of BM vasculature. While solely characterized for their paracrine properties in the past, recent advances have revolutionized our perception of endothelial function, revealing distinct anatomical locations associated with diverse endothelial cell states. The identification of phenotypic differences between normal and pathological conditions has therefore deepened our understanding of vascular dynamics and their impact on hematopoiesis in health and disease. In this review, we highlight key milestones and recent advances in understanding vascular heterogeneity within BM microenvironment during development, adulthood and aging. We also explore how leukemia affects this heterogeneity and how we can take this knowledge forward to improve clinical practices. By synthesizing existing literature, we aim to address unresolved questions and outline future research directions.
Collapse
Affiliation(s)
- I L Boueya
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France
| | - L Sandhow
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France
| | - J R P Albuquerque
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France
| | - R Znaidi
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France
| | - D Passaro
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France.
| |
Collapse
|
10
|
Huang Z, Iqbal Z, Zhao Z, Liu J, Alabsi AM, Shabbir M, Mahmood A, Liang Y, Li W, Deng Z. Cellular crosstalk in the bone marrow niche. J Transl Med 2024; 22:1096. [PMID: 39627858 PMCID: PMC11613879 DOI: 10.1186/s12967-024-05900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/19/2024] [Indexed: 12/08/2024] Open
Abstract
The bone marrow niche is a special microenvironment that comprises elements, including hematopoietic stem cells, osteoblasts, and endothelial cells, and helps maintain their characteristic functions. Here, we elaborate on the crosstalk between various cellular components, hematopoietic stem cells, and other cells in the bone marrow niche. We further explain the mechanism of preserving equilibrium in the bone marrow niche, which is crucial for the directional regulation of bone reconstruction and repair. Additionally, we elucidate the intercommunication among osteocytes, the regulation of osteoblast maturation and activation by lymphocytes, the deficiency of megakaryocytes that can markedly impair osteoblast formation, and the mechanism of interaction between macrophages and mesenchymal stem cells in the bone marrow niche. Finally, we discussed the new immunotherapies for bone tumors in the BM niche. In this review, we aimed to provide a candid overview of the crosstalk among bone marrow niche cells and to highlight new concepts underlying the unknown mechanisms of hematopoiesis and bone reconstruction. Thus, this review may provide a more comprehensive understanding of the role of these niche cells in improving hematopoietic function and help identify their therapeutic potential for different diseases in the future.
Collapse
Affiliation(s)
- Zeqi Huang
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - Zoya Iqbal
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - Zhe Zhao
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - Jianquan Liu
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - A M Alabsi
- Faculty of Dentistry, MAHSA University, Selangor, Malaysia
- School of Dentistry, Management and Science University, University Drive, Off Persiaran Olahraga, 40100 ShahAlam, Selangor, Malaysia
| | - Maryam Shabbir
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Ayesha Mahmood
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Yujie Liang
- Faculty of Dentistry, MAHSA University, Selangor, Malaysia.
- Department of Child and Adolescent Psychiatry, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, China.
| | - Wencui Li
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China.
| | - Zhiqin Deng
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China.
| |
Collapse
|
11
|
Sánchez-Lanzas R, Jiménez-Pompa A, Ganuza M. The evolving hematopoietic niche during development. Front Mol Biosci 2024; 11:1488199. [PMID: 39417006 PMCID: PMC11480086 DOI: 10.3389/fmolb.2024.1488199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Mammalian hematopoietic stem cells (HSCs) emerge from the hemogenic endothelium in the major embryonic arteries. HSCs undergo a complex journey first migrating to the fetal liver (FL) and from there to the fetal bone marrow (FBM), where they mostly remain during adult life. In this process, a pool of adult HSCs is produced, which sustains lifelong hematopoiesis. Multiple cellular components support HSC maturation and expansion and modulate their response to environmental and developmental cues. While the adult HSC niche has been extensively studied over the last two decades, the niches present in the major embryonic arteries, FL, FBM and perinatal bone marrow (BM) are poorly described. Recent investigations highlight important differences among FL, FBM and adult BM niches and emphasize the important role that inflammation, microbiota and hormonal factors play regulating HSCs and their niches. We provide a review on our current understanding of these important cellular microenvironments across ontogeny. We mainly focused on mice, as the most widely used research model, and, when possible, include relevant insights from other vertebrates including birds, zebrafish, and human. Developing a comprehensive picture on these processes is critical to understand the earliest origins of childhood leukemia and to achieve multiple goals in regenerative medicine, such as mimicking HSC development in vitro to produce HSCs for broad transplantation purposes in leukemia, following chemotherapy, bone marrow failure, and in HSC-based gene therapy.
Collapse
Affiliation(s)
| | | | - Miguel Ganuza
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
12
|
Alonso-Pérez V, Galant K, Boudia F, Robert E, Aid Z, Renou L, Barroca V, Devanand S, Babin L, Rouiller-Fabre V, Moison D, Busso D, Piton G, Metereau C, Abermil N, Ballerini P, Hirsch P, Haddad R, Martinovic J, Petit A, Lapillonne H, Brunet E, Mercher T, Pflumio F. Developmental interplay between transcriptional alterations and a targetable cytokine signaling dependency in pediatric ETO2::GLIS2 leukemia. Mol Cancer 2024; 23:204. [PMID: 39304903 DOI: 10.1186/s12943-024-02110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Several fusion oncogenes showing a higher incidence in pediatric acute myeloid leukemia (AML) are associated with heterogeneous megakaryoblastic and other myeloid features. Here we addressed how developmental mechanisms influence human leukemogenesis by ETO2::GLIS2, associated with dismal prognosis. METHODS We created novel ETO2::GLIS2 models of leukemogenesis through lentiviral transduction and CRISPR-Cas9 gene editing of human fetal and post-natal hematopoietic stem/progenitor cells (HSPCs), performed in-depth characterization of ETO2::GLIS2 transformed cells through multiple omics and compared them to patient samples. This led to a preclinical assay using patient-derived-xenograft models to test a combination of two clinically-relevant molecules. RESULTS We showed that ETO2::GLIS2 expression in primary human fetal CD34+ hematopoietic cells led to more efficient in vivo leukemia development than expression in post-natal cells. Moreover, cord blood-derived leukemogenesis has a major dependency on the presence of human cytokines, including IL3 and SCF. Single cell transcriptomes revealed that this cytokine environment controlled two ETO2::GLIS2-transformed states that were also observed in primary patient cells. Importantly, this cytokine sensitivity may be therapeutically-exploited as combined MEK and BCL2 inhibition showed higher efficiency than individual molecules to reduce leukemia progression in vivo. CONCLUSIONS Our study uncovers an interplay between the cytokine milieu and transcriptional programs that extends a developmental window of permissiveness to transformation by the ETO2::GLIS2 AML fusion oncogene, controls the intratumoral cellular heterogeneity, and offers a ground-breaking therapeutical opportunity by a targeted combination strategy.
Collapse
Affiliation(s)
- Verónica Alonso-Pérez
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Laboratoire Des Cellules Souches Hématopoïétiques Et Des Leucémies, Équipe Labellisée Ligue Contre Le Cancer, Equipe Niche Et Cancer Dans L'Hématopoïèse, Unité Mixte de Recherche (UMR) 1274 INSERM, CEA, 18 route du panorama, Fontenay-Aux Roses, F-92265, France
| | - Klaudia Galant
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Laboratoire Des Cellules Souches Hématopoïétiques Et Des Leucémies, Équipe Labellisée Ligue Contre Le Cancer, Equipe Niche Et Cancer Dans L'Hématopoïèse, Unité Mixte de Recherche (UMR) 1274 INSERM, CEA, 18 route du panorama, Fontenay-Aux Roses, F-92265, France
| | - Fabien Boudia
- INSERM U1170, Gustave Roussy, Université Paris-Saclay, PEDIAC Program, Equipe Labellisée Ligue Contre Le Cancer, Villejuif, France
| | - Elie Robert
- INSERM U1170, Gustave Roussy, Université Paris-Saclay, PEDIAC Program, Equipe Labellisée Ligue Contre Le Cancer, Villejuif, France
| | - Zakia Aid
- INSERM U1170, Gustave Roussy, Université Paris-Saclay, PEDIAC Program, Equipe Labellisée Ligue Contre Le Cancer, Villejuif, France
| | - Laurent Renou
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Laboratoire Des Cellules Souches Hématopoïétiques Et Des Leucémies, Équipe Labellisée Ligue Contre Le Cancer, Equipe Niche Et Cancer Dans L'Hématopoïèse, Unité Mixte de Recherche (UMR) 1274 INSERM, CEA, 18 route du panorama, Fontenay-Aux Roses, F-92265, France
| | - Vilma Barroca
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Animal Experimentation Platform, IRCM, CEA, Fontenay-Aux-Roses, F-92260, France
| | - Saryiami Devanand
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Animal Experimentation Platform, IRCM, CEA, Fontenay-Aux-Roses, F-92260, France
| | - Loélia Babin
- Laboratory of theGenome Dynamics in the Immune System, Équipe Labellisée Ligue Contre Le Cancer, Université Paris Cité, Université Paris-Saclay, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Virginie Rouiller-Fabre
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
| | - Delphine Moison
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
| | - Didier Busso
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Cigex Molecular Platform, IRCM, CEA, IBFJ, Fontenay-Aux-Roses, France
| | - Guillaume Piton
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Cigex Molecular Platform, IRCM, CEA, IBFJ, Fontenay-Aux-Roses, France
| | - Christophe Metereau
- INSERM U1170, Gustave Roussy, Université Paris-Saclay, PEDIAC Program, Equipe Labellisée Ligue Contre Le Cancer, Villejuif, France
| | - Nassera Abermil
- Centre de Recherche Saint-Antoine, CRSA, SIRIC CURAMUS, Hôpital Saint-Antoine, Service d'Hématologie Biologique, Sorbonne Université, 75012, Paris, France
| | - Paola Ballerini
- Department of Pediatric Hematology-Oncology, Hôpital Armand Trousseau, AP-HP, Paris, France
| | - Pierre Hirsch
- Centre de Recherche Saint-Antoine, CRSA, SIRIC CURAMUS, Hôpital Saint-Antoine, Service d'Hématologie Biologique, Sorbonne Université, 75012, Paris, France
| | - Rima Haddad
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Laboratoire Des Cellules Souches Hématopoïétiques Et Des Leucémies, Équipe Labellisée Ligue Contre Le Cancer, Equipe Niche Et Cancer Dans L'Hématopoïèse, Unité Mixte de Recherche (UMR) 1274 INSERM, CEA, 18 route du panorama, Fontenay-Aux Roses, F-92265, France
| | - Jelena Martinovic
- Unit of Fetal Pathology, Hôpital Antoine Beclère, AP-HP, Clamart, France
| | - Arnaud Petit
- Department of Pediatric Hematology-Oncology, Hôpital Armand Trousseau, AP-HP, Paris, France
| | - Hélène Lapillonne
- Department of Pediatric Hematology-Oncology, Hôpital Armand Trousseau, AP-HP, Paris, France
| | - Erika Brunet
- Laboratory of theGenome Dynamics in the Immune System, Équipe Labellisée Ligue Contre Le Cancer, Université Paris Cité, Université Paris-Saclay, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Thomas Mercher
- INSERM U1170, Gustave Roussy, Université Paris-Saclay, PEDIAC Program, Equipe Labellisée Ligue Contre Le Cancer, Villejuif, France.
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Paris, France.
| | - Françoise Pflumio
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France.
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France.
- Laboratoire Des Cellules Souches Hématopoïétiques Et Des Leucémies, Équipe Labellisée Ligue Contre Le Cancer, Equipe Niche Et Cancer Dans L'Hématopoïèse, Unité Mixte de Recherche (UMR) 1274 INSERM, CEA, 18 route du panorama, Fontenay-Aux Roses, F-92265, France.
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Paris, France.
| |
Collapse
|
13
|
Swann JW, Zhang R, Verovskaya EV, Calero-Nieto FJ, Wang X, Proven MA, Shyu PT, Guo XE, Göttgens B, Passegué E. Inflammation perturbs hematopoiesis by remodeling specific compartments of the bone marrow niche. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612751. [PMID: 39314376 PMCID: PMC11419052 DOI: 10.1101/2024.09.12.612751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Hematopoietic stem and progenitor cells (HSPC) are regulated by interactions with stromal cells in the bone marrow (BM) cavity, which can be segregated into two spatially defined central marrow (CM) and endosteal (Endo) compartments. However, the importance of this spatial compartmentalization for BM responses to inflammation and neoplasia remains largely unknown. Here, we extensively validate a combination of scRNA-seq profiling and matching flow cytometry isolation that reproducibly identifies 7 key CM and Endo populations across mouse strains and accurately surveys both niche locations. We demonstrate that different perturbations exert specific effects on different compartments, with type I interferon responses causing CM mesenchymal stromal cells to adopt an inflammatory phenotype associated with overproduction of chemokines modulating local monocyte dynamics in the surrounding microenvironment. Our results provide a comprehensive method for molecular and functional stromal characterization and highlight the importance of altered stomal cell activity in regulating hematopoietic responses to inflammatory challenges.
Collapse
|
14
|
Li N, Shi B, Li Z, Han J, Sun J, Huang H, Yallowitz AR, Bok S, Xiao S, Wu Z, Chen Y, Xu Y, Qin T, Huang R, Zheng H, Shen R, Meng L, Greenblatt MB, Xu R. Schnurri-3 inhibition rescues skeletal fragility and vascular skeletal stem cell niche pathology in the OIM model of osteogenesis imperfecta. Bone Res 2024; 12:46. [PMID: 39183236 PMCID: PMC11345453 DOI: 10.1038/s41413-024-00349-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 08/27/2024] Open
Abstract
Osteogenesis imperfecta (OI) is a disorder of low bone mass and increased fracture risk due to a range of genetic variants that prominently include mutations in genes encoding type I collagen. While it is well known that OI reflects defects in the activity of bone-forming osteoblasts, it is currently unclear whether OI also reflects defects in the many other cell types comprising bone, including defects in skeletal vascular endothelium or the skeletal stem cell populations that give rise to osteoblasts and whether correcting these broader defects could have therapeutic utility. Here, we find that numbers of skeletal stem cells (SSCs) and skeletal arterial endothelial cells (AECs) are augmented in Col1a2oim/oim mice, a well-studied animal model of moderate to severe OI, suggesting that disruption of a vascular SSC niche is a feature of OI pathogenesis. Moreover, crossing Col1a2oim/oim mice to mice lacking a negative regulator of skeletal angiogenesis and bone formation, Schnurri 3 (SHN3), not only corrected the SSC and AEC phenotypes but moreover robustly corrected the bone mass and spontaneous fracture phenotypes. As this finding suggested a strong therapeutic utility of SHN3 inhibition for the treatment of OI, a bone-targeting AAV was used to mediate Shn3 knockdown, rescuing the Col1a2oim/oim phenotype and providing therapeutic proof-of-concept for targeting SHN3 for the treatment of OI. Overall, this work both provides proof-of-concept for inhibition of the SHN3 pathway and more broadly addressing defects in the stem/osteoprogenitor niche as is a strategy to treat OI.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Cellular Stress Biology, Cancer Research Center, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Baohong Shi
- State Key Laboratory of Cellular Stress Biology, Cancer Research Center, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Zan Li
- State Key Laboratory of Cellular Stress Biology, Cancer Research Center, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Jie Han
- State Key Laboratory of Cellular Stress Biology, Cancer Research Center, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jun Sun
- Research Division, Hospital for Special Surgery, New York, NY, 10065, USA
| | - Haitao Huang
- State Key Laboratory of Cellular Stress Biology, Cancer Research Center, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Alisha R Yallowitz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Seoyeon Bok
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Shuang Xiao
- State Key Laboratory of Cellular Stress Biology, Cancer Research Center, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Zuoxing Wu
- State Key Laboratory of Cellular Stress Biology, Cancer Research Center, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yu Chen
- State Key Laboratory of Cellular Stress Biology, Cancer Research Center, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yan Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Tian Qin
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Rui Huang
- State Key Laboratory of Cellular Stress Biology, Cancer Research Center, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Haiping Zheng
- State Key Laboratory of Cellular Stress Biology, Cancer Research Center, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Rong Shen
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Lin Meng
- Department of Electronic and Computer Engineering, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Matthew B Greenblatt
- Research Division, Hospital for Special Surgery, New York, NY, 10065, USA.
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, Cancer Research Center, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China.
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
15
|
Dumbali SP, Horton PD, Moore TI, Wenzel PL. Mitochondrial permeability transition dictates mitochondrial maturation upon switch in cellular identity of hematopoietic precursors. Commun Biol 2024; 7:967. [PMID: 39122870 PMCID: PMC11316084 DOI: 10.1038/s42003-024-06671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The mitochondrial permeability transition pore (mPTP) is a supramolecular channel that regulates exchange of solutes across cristae membranes, with executive roles in mitochondrial function and cell death. The contribution of the mPTP to normal physiology remains debated, although evidence implicates the mPTP in mitochondrial inner membrane remodeling in differentiating progenitor cells. Here, we demonstrate that strict control over mPTP conductance shapes metabolic machinery as cells transit toward hematopoietic identity. Cells undergoing the endothelial-to-hematopoietic transition (EHT) tightly control chief regulatory elements of the mPTP. During EHT, maturing arterial endothelium restricts mPTP activity just prior to hematopoietic commitment. After transition in cellular identity, mPTP conductance is restored. In utero treatment with NIM811, a molecule that blocks sensitization of the mPTP to opening by Cyclophilin D (CypD), amplifies oxidative phosphorylation (OXPHOS) in hematopoietic precursors and increases hematopoiesis in the embryo. Additionally, differentiating pluripotent stem cells (PSCs) acquire greater organization of mitochondrial cristae and hematopoietic activity following knockdown of the CypD gene, Ppif. Conversely, knockdown of Opa1, a GTPase critical for proper cristae architecture, induces cristae irregularity and impairs hematopoiesis. These data elucidate a mechanism that regulates mitochondrial maturation in hematopoietic precursors and underscore a role for the mPTP in the acquisition of hematopoietic fate.
Collapse
Affiliation(s)
- Sandeep P Dumbali
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paulina D Horton
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Immunology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Travis I Moore
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Molecular & Translational Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Pamela L Wenzel
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Immunology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
- Molecular & Translational Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
16
|
Pereira AL, Galli S, Nombela‐Arrieta C. Bone marrow niches for hematopoietic stem cells. Hemasphere 2024; 8:e133. [PMID: 39086665 PMCID: PMC11289431 DOI: 10.1002/hem3.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/05/2024] [Accepted: 05/06/2024] [Indexed: 08/02/2024] Open
Abstract
Hematopoietic stem cells (HSCs) are the cornerstone of the hematopoietic system. HSCs sustain the continuous generation of mature blood derivatives while self-renewing to preserve a relatively constant pool of progenitors throughout life. Yet, long-term maintenance of functional HSCs exclusively takes place in association with their native tissue microenvironment of the bone marrow (BM). HSCs have been long proposed to reside in fixed and identifiable anatomical units found in the complex BM tissue landscape, which control their identity and fate in a deterministic manner. In the last decades, tremendous progress has been made in the dissection of the cellular and molecular fabric of the BM, the structural organization governing tissue function, and the plethora of interactions established by HSCs. Nonetheless, a holistic model of the mechanisms controlling HSC regulation in their niche is lacking to date. Here, we provide an overview of our current understanding of BM anatomy, HSC localization, and crosstalk within local cellular neighborhoods in murine and human tissues, and highlight fundamental open questions on how HSCs functionally integrate in the BM microenvironment.
Collapse
Affiliation(s)
- Ana Luísa Pereira
- Department of Medical Oncology and HematologyUniversity Hospital and University of ZurichZurichSwitzerland
| | - Serena Galli
- Department of Medical Oncology and HematologyUniversity Hospital and University of ZurichZurichSwitzerland
| | - César Nombela‐Arrieta
- Department of Medical Oncology and HematologyUniversity Hospital and University of ZurichZurichSwitzerland
| |
Collapse
|
17
|
Busch C, Nyamondo K, Wheadon H. Complexities of modeling the bone marrow microenvironment to facilitate hematopoietic research. Exp Hematol 2024; 135:104233. [PMID: 38740324 DOI: 10.1016/j.exphem.2024.104233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Hematopoiesis occurs in the bone marrow (BM), within a specialized microenvironment referred to as the stem cell niche, where the hematopoietic stem cells (HSCs) reside and are regulated for quiescence, self-renewal and differentiation through intrinsic and extrinsic mechanisms. The BM contains at least two distinctive HSC-supportive niches: an endosteal osteoblastic niche that supports quiescence and self-renewal and a more vascular/perisinusoidal niche that promotes proliferation and differentiation. Both associate with supporting mesenchymal stromal cells. Within the more hypoxic osteoblastic niche, HSCs specifically interact with the osteoblasts that line the endosteal surface, which secrete several important HSC quiescence and maintenance regulatory factors. In vivo imaging indicates that the HSCs and progenitors located further away, in the vicinity of sinusoidal endothelial cells, are more proliferative. Here, HSCs interact with endothelial cells via specific cell adhesion molecules. Endothelial cells also secrete several factors important for HSC homeostasis and proliferation. In addition, HSCs and mesenchymal stromal cells are embedded within the extracellular matrix (ECM), an important network of proteins such as collagen, elastin, laminin, proteoglycans, vitronectin, and fibronectin. The ECM provides mechanical characteristics such as stiffness and elasticity important for cell behavior regulation. ECM proteins are also able to bind, sequester, display, and distribute growth factors across the BM, thus directly affecting stem cell fate and regulation of hematopoiesis. These important physical and chemical features of the BM require careful consideration when creating three-dimensional models of the BM.
Collapse
Affiliation(s)
- Caroline Busch
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kudzai Nyamondo
- Wellcome-Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Helen Wheadon
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
18
|
Doherty-Boyd WS, Donnelly H, Tsimbouri MP, Dalby MJ. Building bones for blood and beyond: the growing field of bone marrow niche model development. Exp Hematol 2024; 135:104232. [PMID: 38729553 DOI: 10.1016/j.exphem.2024.104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
The bone marrow (BM) niche is a complex microenvironment that provides the signals required for regulation of hematopoietic stem cells (HSCs) and the process of hematopoiesis they are responsible for. Bioengineered models of the BM niche incorporate various elements of the in vivo BM microenvironment, including cellular components, soluble factors, a three-dimensional environment, mechanical stimulation of included cells, and perfusion. Recent advances in the bioengineering field have resulted in a spate of new models that shed light on BM function and are approaching precise imitation of the BM niche. These models promise to improve our understanding of the in vivo microenvironment in health and disease. They also aim to serve as platforms for HSC manipulation or as preclinical models for screening novel therapies for BM-associated disorders and diseases.
Collapse
Affiliation(s)
- W Sebastian Doherty-Boyd
- The Centre for the Cellular Microenvironment (CeMi), University of Glasgow, Glasgow, United Kingdom.
| | - Hannah Donnelly
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Monica P Tsimbouri
- The Centre for the Cellular Microenvironment (CeMi), University of Glasgow, Glasgow, United Kingdom
| | - Matthew J Dalby
- The Centre for the Cellular Microenvironment (CeMi), University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
19
|
Guo T, Pei F, Zhang M, Yamada T, Feng J, Jing J, Ho TV, Chai Y. Vascular architecture regulates mesenchymal stromal cell heterogeneity via P53-PDGF signaling in the mouse incisor. Cell Stem Cell 2024; 31:904-920.e6. [PMID: 38703771 PMCID: PMC11162319 DOI: 10.1016/j.stem.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/17/2024] [Accepted: 04/15/2024] [Indexed: 05/06/2024]
Abstract
Mesenchymal stem cells (MSCs) reside in niches to maintain tissue homeostasis and contribute to repair and regeneration. Although the physiological functions of blood and lymphatic vasculature are well studied, their regulation of MSCs as niche components remains largely unknown. Using adult mouse incisors as a model, we uncover the role of Trp53 in regulating vascular composition through THBS2 to maintain mesenchymal tissue homeostasis. Loss of Trp53 in GLI1+ progeny increases arteries and decreases other vessel types. Platelet-derived growth factors from arteries deposit in the MSC region and interact with PDGFRA and PDGFRB. Significantly, PDGFRA+ and PDGFRB+ cells differentially contribute to defined cell lineages in the adult mouse incisor. Collectively, our results highlight Trp53's importance in regulating the vascular niche for MSCs. They also shed light on how different arterial cells provide unique cues to regulate MSC subpopulations and maintain their heterogeneity. Furthermore, they provide mechanistic insight into MSC-vasculature crosstalk.
Collapse
Affiliation(s)
- Tingwei Guo
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Fei Pei
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Mingyi Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Takahiko Yamada
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
20
|
Carpenter RS, Maryanovich M. Systemic and local regulation of hematopoietic homeostasis in health and disease. NATURE CARDIOVASCULAR RESEARCH 2024; 3:651-665. [PMID: 39196230 DOI: 10.1038/s44161-024-00482-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/24/2024] [Indexed: 08/29/2024]
Abstract
Hematopoietic stem cells (HSCs) generate all blood cell lineages responsible for tissue oxygenation, life-long hematopoietic homeostasis and immune protection. In adulthood, HSCs primarily reside in the bone marrow (BM) microenvironment, consisting of diverse cell types that constitute the stem cell 'niche'. The adaptability of the hematopoietic system is required to respond to the needs of the host, whether to maintain normal physiology or during periods of physical, psychosocial or environmental stress. Hematopoietic homeostasis is achieved by intricate coordination of systemic and local factors that orchestrate the function of HSCs throughout life. However, homeostasis is not a static process; it modulates HSC and progenitor activity in response to circadian rhythms coordinated by the central and peripheral nervous systems, inflammatory cues, metabolites and pathologic conditions. Here, we review local and systemic factors that impact hematopoiesis, focusing on the implications of aging, stress and cardiovascular disease.
Collapse
Affiliation(s)
- Randall S Carpenter
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maria Maryanovich
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Ruth L. and David S. Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA.
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
21
|
Poulos MG, Ramalingam P, Winiarski A, Gutkin MC, Katsnelson L, Carter C, Pibouin-Fragner L, Eichmann A, Thomas JL, Miquerol L, Butler JM. Complementary and Inducible creER T2 Mouse Models for Functional Evaluation of Endothelial Cell Subtypes in the Bone Marrow. Stem Cell Rev Rep 2024; 20:1135-1149. [PMID: 38438768 PMCID: PMC11087254 DOI: 10.1007/s12015-024-10703-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 03/06/2024]
Abstract
In the adult bone marrow (BM), endothelial cells (ECs) are an integral component of the hematopoietic stem cell (HSC)-supportive niche, which modulates HSC activity by producing secreted and membrane-bound paracrine signals. Within the BM, distinct vascular arteriole, transitional, and sinusoidal EC subtypes display unique paracrine expression profiles and create anatomically-discrete microenvironments. However, the relative contributions of vascular endothelial subtypes in supporting hematopoiesis is unclear. Moreover, constitutive expression and off-target activity of currently available endothelial-specific and endothelial-subtype-specific murine cre lines potentially confound data analysis and interpretation. To address this, we describe two tamoxifen-inducible cre-expressing lines, Vegfr3-creERT2 and Cx40-creERT2, that efficiently label sinusoidal/transitional and arteriole endothelium respectively in adult marrow, without off-target activity in hematopoietic or perivascular cells. Utilizing an established mouse model in which cre-dependent recombination constitutively-activates MAPK signaling within adult endothelium, we identify arteriole ECs as the driver of MAPK-mediated hematopoietic dysfunction. These results define complementary tamoxifen-inducible creERT2-expressing mouse lines that label functionally-discrete and non-overlapping sinusoidal/transitional and arteriole EC populations in the adult BM, providing a robust toolset to investigate the differential contributions of vascular subtypes in maintaining hematopoietic homeostasis.
Collapse
Affiliation(s)
- Michael G Poulos
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL, 32610, USA
- Division of Hematology/Oncology, University of Florida, 1333 Center Drive, BH-022D, Gainesville, FL, 32610, USA
| | - Pradeep Ramalingam
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL, 32610, USA
- Division of Hematology/Oncology, University of Florida, 1333 Center Drive, BH-022D, Gainesville, FL, 32610, USA
| | - Agatha Winiarski
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL, 32610, USA
| | - Michael C Gutkin
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Lizabeth Katsnelson
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Cody Carter
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL, 32610, USA
| | | | - Anne Eichmann
- Université de Paris Cité, Inserm, PARCC, 75015, Paris, France
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Jean-Leon Thomas
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
- Paris Brain Institute, Université Pierre et Marie Curie Paris, 06 UMRS1127, Sorbonne Université, Paris Brain Institute, Paris, France
| | - Lucile Miquerol
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13288, Marseille, France
| | - Jason M Butler
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL, 32610, USA.
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
- Division of Hematology/Oncology, University of Florida, 1333 Center Drive, BH-022D, Gainesville, FL, 32610, USA.
| |
Collapse
|
22
|
Vercellino J, Małachowska B, Kulkarni S, Bell BI, Shajahan S, Shinoda K, Eichenbaum G, Verma AK, Ghosh SP, Yang WL, Frenette PS, Guha C. Thrombopoietin mimetic stimulates bone marrow vascular and stromal niches to mitigate acute radiation syndrome. Stem Cell Res Ther 2024; 15:123. [PMID: 38679747 PMCID: PMC11057170 DOI: 10.1186/s13287-024-03734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Acute radiation syndrome (ARS) manifests after exposure to high doses of radiation in the instances of radiologic accidents or incidents. Facilitating regeneration of the bone marrow (BM), namely the hematopoietic stem and progenitor cells (HSPCs), is key in mitigating ARS and multi-organ failure. JNJ-26366821, a PEGylated thrombopoietin mimetic (TPOm) peptide, has been shown as an effective medical countermeasure (MCM) to treat hematopoietic-ARS (H-ARS) in mice. However, the activity of TPOm on regulating BM vascular and stromal niches to support HSPC regeneration has yet to be elucidated. METHODS C57BL/6J mice (9-14 weeks old) received sublethal or lethal total body irradiation (TBI), a model for H-ARS, by 137Cs or X-rays. At 24 h post-irradiation, mice were subcutaneously injected with a single dose of TPOm (0.3 mg/kg or 1.0 mg/kg) or PBS (vehicle). At homeostasis and on days 4, 7, 10, 14, 18, and 21 post-TBI with and without TPOm treatment, BM was harvested for histology, BM flow cytometry of HSPCs, endothelial (EC) and mesenchymal stromal cells (MSC), and whole-mount confocal microscopy. For survival, irradiated mice were monitored and weighed for 30 days. Lastly, BM triple negative cells (TNC; CD45-, TER-119-, CD31-) were sorted for single-cell RNA-sequencing to examine transcriptomics after TBI with or without TPOm treatment. RESULTS At homeostasis, TPOm expanded the number of circulating platelets and HSPCs, ECs, and MSCs in the BM. Following sublethal TBI, TPOm improved BM architecture and promoted recovery of HSPCs, ECs, and MSCs. Furthermore, TPOm elevated VEGF-C levels in normal and irradiated mice. Following lethal irradiation, mice improved body weight recovery and 30-day survival when treated with TPOm after 137Cs and X-ray exposure. Additionally, TPOm reduced vascular dilation and permeability. Finally, single-cell RNA-seq analysis indicated that TPOm increased the expression of collagens in MSCs to enhance their interaction with other progenitors in BM and upregulated the regeneration pathway in MSCs. CONCLUSIONS TPOm interacts with BM vascular and stromal niches to locally support hematopoietic reconstitution and systemically improve survival in mice after TBI. Therefore, this work warrants the development of TPOm as a potent radiation MCM for the treatment of ARS.
Collapse
Affiliation(s)
- Justin Vercellino
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Beata Małachowska
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Shilpa Kulkarni
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Brett I Bell
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shahin Shajahan
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Kosaku Shinoda
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gary Eichenbaum
- Johnson & Johnson, Office of the Chief Medical Officer, New Brunswick, NJ, USA
- Bioconvergent Health, LLC, Purchase, NY, USA
| | - Amit K Verma
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sanchita P Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Weng-Lang Yang
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Paul S Frenette
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Bioconvergent Health, LLC, Purchase, NY, USA.
| |
Collapse
|
23
|
Zhang Y, Kang Z, Liu M, Wang L, Liu F. Single-cell omics identifies inflammatory signaling as a trans-differentiation trigger in mouse embryos. Dev Cell 2024; 59:961-978.e7. [PMID: 38508181 DOI: 10.1016/j.devcel.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/08/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
Trans-differentiation represents a direct lineage conversion; however, insufficient characterization of this process hinders its potential applications. Here, to explore a potential universal principal for trans-differentiation, we performed single-cell transcriptomic analysis of endothelial-to-hematopoietic transition (EHT), endothelial-to-mesenchymal transition, and epithelial-to-mesenchymal transition in mouse embryos. We applied three scoring indexes of entropies, cell-type signature transcription factor expression, and critical transition signals to show common features underpinning the fate plasticity of transition states. Cross-model comparison identified inflammatory-featured transition states and a common trigger role of interleukin-33 in promoting fate conversions. Multimodal profiling (integrative transcriptomic and chromatin accessibility analysis) demonstrated the inflammatory regulation of hematopoietic specification. Furthermore, multimodal omics and fate-mapping analyses showed that endothelium-specific Spi1, as an inflammatory effector, governs appropriate chromatin accessibility and transcriptional programs to safeguard EHT. Overall, our study employs single-cell omics to identify critical transition states/signals and the common trigger role of inflammatory signaling in developmental-stress-induced fate conversions.
Collapse
Affiliation(s)
- Yifan Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhixin Kang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Mengyao Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Feng Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China; Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
24
|
da Silva Gonçalves CE, Fock RA. Semaphorins and the bone marrow microenvironment: New candidates that influence the hematopoietic system. Cytokine Growth Factor Rev 2024; 76:22-29. [PMID: 38472041 DOI: 10.1016/j.cytogfr.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
The bone marrow is a haven for hematopoietic and non-hematopoietic cells, creating complex micro-anatomical regions called niches. These distinct niches all participate in an intricate orchestra of cellular interactions that regulates the hematopoietic stem cell and its progenies. In this review, we provide a detailed description of the three most well-known bone marrow niches and their participation in hematopoiesis. We use pre-clinical data, including different in vitro and in vivo studies to discuss how a group of proteins called Semaphorins could potentially modulate both hematopoietic and non-hematopoietic cells, establishing links between the niches, semaphorins, and hematopoietic regulation. Thus, here we provide a deep dive into the inner functioning of the bone marrow and discuss the overarching implications that semaphorins might have on blood formation.
Collapse
Affiliation(s)
- Carlos E da Silva Gonçalves
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Ricardo A Fock
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Bandyopadhyay S, Duffy M, Ahn KJ, Pang M, Smith D, Duncan G, Sussman J, Zhang I, Huang J, Lin Y, Xiong B, Imtiaz T, Chen CH, Thadi A, Chen C, Xu J, Reichart M, Pillai V, Snaith O, Oldridge D, Bhattacharyya S, Maillard I, Carroll M, Nelson C, Qin L, Tan K. Mapping the Cellular Biogeography of Human Bone Marrow Niches Using Single-Cell Transcriptomics and Proteomic Imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585083. [PMID: 38559168 PMCID: PMC10979999 DOI: 10.1101/2024.03.14.585083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The bone marrow is the organ responsible for blood production. Diverse non-hematopoietic cells contribute essentially to hematopoiesis. However, these cells and their spatial organization remain largely uncharacterized as they have been technically challenging to study in humans. Here, we used fresh femoral head samples and performed single-cell RNA sequencing (scRNA-Seq) to profile 29,325 enriched non-hematopoietic bone marrow cells and discover nine transcriptionally distinct subtypes. We next employed CO-detection by inDEXing (CODEX) multiplexed imaging of 18 individuals, including both healthy and acute myeloid leukemia (AML) samples, to spatially profile over one million single cells with a novel 53-antibody panel. We discovered a relatively hyperoxygenated arterio-endosteal niche for early myelopoiesis, and an adipocytic, but not endosteal or perivascular, niche for early hematopoietic stem and progenitor cells. We used our atlas to predict cell type labels in new bone marrow images and used these predictions to uncover mesenchymal stromal cell (MSC) expansion and leukemic blast/MSC-enriched spatial neighborhoods in AML patient samples. Our work represents the first comprehensive, spatially-resolved multiomic atlas of human bone marrow and will serve as a reference for future investigation of cellular interactions that drive hematopoiesis.
Collapse
Affiliation(s)
- Shovik Bandyopadhyay
- Cellular and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael Duffy
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kyung Jin Ahn
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Minxing Pang
- Applied Mathematics & Computational Science Graduate Group, University of Pennsylvania, Philadelphia, PA
| | - David Smith
- Center for Single Cell Biology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Gwendolyn Duncan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Jonathan Sussman
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Iris Zhang
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA
| | - Jeffrey Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Yulieh Lin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Barbara Xiong
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Tamjid Imtiaz
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Chia-Hui Chen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Anusha Thadi
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Changya Chen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jason Xu
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Melissa Reichart
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Vinodh Pillai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Oraine Snaith
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Derek Oldridge
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Siddharth Bhattacharyya
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ivan Maillard
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Martin Carroll
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Charles Nelson
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kai Tan
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Center for Single Cell Biology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
26
|
Vercellino J, Małachowska B, Kulkarni S, Bell BI, Shajahan S, Shinoda K, Eichenbaum G, Verma AK, Ghosh SP, Yang WL, Frenette PS, Guha C. Thrombopoietin mimetic stimulates bone marrow vascular and stromal niches to mitigate acute radiation syndrome. RESEARCH SQUARE 2024:rs.3.rs-3946910. [PMID: 38463959 PMCID: PMC10925435 DOI: 10.21203/rs.3.rs-3946910/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Acute radiation syndrome (ARS) manifests after exposure to high doses of radiation in the instances of radiologic accidents or incidents. Facilitating the regeneration of the bone marrow (BM), namely the hematopoietic stem and progenitor cells (HSPCs), is a key in mitigating ARS and multi-organ failure. JNJ-26366821, a PEGylated thrombopoietin mimetic (TPOm) peptide, has been shown as an effective medical countermeasure (MCM) to treat hematopoietic-ARS (H-ARS) in mice. However, the activity of TPOm on regulating BM vascular and stromal niches to support HSPC regeneration has not yet been elucidated. Methods C57BL/6J mice (9-14 weeks old) received sublethal or lethal total body irradiation (TBI), a model for H-ARS, by 137Cs or X-rays. At 24 hours post-irradiation, mice were subcutaneously injected with a single dose of TPOm (0.3 mg/kg or 1.0 mg/kg) or PBS (vehicle). At homeostasis and on days 4, 7, 10, 14, 18, and 21 post-TBI with and without TPOm treatment, BM was harvested for histology, BM flow cytometry of HSPCs, endothelial (EC) and mesenchymal stromal cells (MSC), and whole-mount confocal microscopy. For survival, irradiated mice were monitored and weighed for 30 days. Lastly, BM triple negative cells (TNC; CD45-, TER-119-, CD31-) were sorted for single-cell RNA-sequencing to examine transcriptomics after TBI with or without TPOm treatment. Results At homeostasis, TPOm expanded the number of circulating platelets and HSPCs, ECs, and MSCs in the BM. Following sublethal TBI, TPOm improved BM architecture and promoted recovery of HSPCs, ECs, and MSCs. Furthermore, TPOm elevated VEGF-C levels in normal and irradiated mice. Following lethal irradiation, mice improved body weight recovery and 30-day survival when treated with TPOm after 137Cs and X-ray exposure. Additionally, TPOm reduced vascular dilation and permeability. Finally, single-cell RNA-seq analysis indicated that TPOm increased the expression of collagens in MSCs to enhance their interaction with other progenitors in BM and upregulated the regeneration pathway in MSCs. Conclusions TPOm interacts with BM vascular and stromal niches to locally support hematopoietic reconstitution and systemically improve survival in mice after TBI. Therefore, this work warrants the development of TPOm as a potent radiation MCM for the treatment of ARS.
Collapse
Affiliation(s)
| | | | - Shilpa Kulkarni
- NIAID: National Institute of Allergy and Infectious Diseases
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Huang D, Yuan Y, Cao L, Zhang D, Jiang Y, Zhang Y, Chen C, Yu Z, Xie L, Wei Y, Wan J, Zheng J. Endothelial-derived small extracellular vesicles support B-cell acute lymphoblastic leukemia development. Cell Oncol (Dordr) 2024; 47:129-140. [PMID: 37751067 PMCID: PMC10899377 DOI: 10.1007/s13402-023-00855-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 09/27/2023] Open
Abstract
PURPOSE The bone marrow niche plays an important role in leukemia development. However, the contributions of different niche components to leukemia development and their underlying mechanisms remain largely unclear. METHOD Cre/LoxP-based conditional knockout technology was used to delete VPS33B or ANGPTL2 gene in niche cells. Murine B-ALL model was established by overexpressing the N-Myc oncogene in hematopoietic stem progenitor cells. The frequency of leukemia cells and immunophenotypic B220+ CD43+ LICs was detected by flow cytometry. SEVs was isolated by sequential centrifugation and mass spectrometry was performed to analyze the different components of SEVs. Immunoprecipitation and western blot were used to measure the interaction of VPS33B and ANGPTL2. RESULTS Here, we showed that specific knockout of vascular protein sorting 33b (Vps33b) in endothelial cells (ECs), but not megakaryocytes or mesenchymal stem cells, resulted in a significant decrease in the secretion of small extracellular vesicles (SEVs) and a delay in the development of B-cell lymphoblastic leukemia (B-ALL). Vps33b knockdown endothelial cells contained much lower levels of SEVs that contained angiopoietin-like protein 2 (ANGPTL2) than the control cells. Importantly, conditional knockout of Angptl2 in ECs significantly delayed B-ALL progression. Moreover, C-terminal region of ANGPTL2 (aa247-471) could directly interact with Sec1-like domain 1 of VPS33B (aa1-aa146). We further demonstrated that the point mutations R399H and G402S in ANGPTL2 led to a dramatic decrease in the secretion of ANGPTL2-SEVs. We also showed that wild-type ANGPTL2-containing SEVs, but not mutant ANGPTL2-containing SEVs, significantly enhanced B-ALL development. CONCLUSION In summary, our findings indicate that the secretion of ANGPTL2-containing SEVs in ECs sustains the leukemogenic activities of B-ALL cells, which is fine-tuned by the direct interaction of VPS33B and ANGPTL2. These findings reveal that niche-specific SEVs play an important role in B-ALL development.
Collapse
Affiliation(s)
- Dan Huang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yamin Yuan
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liyuan Cao
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Difan Zhang
- Department of Hematology, Xinhua Hospital, Affiliated to Shanghai, Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yu Jiang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yaping Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chiqi Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhuo Yu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Xie
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yujuan Wei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jiangbo Wan
- Department of Hematology, Xinhua Hospital, Affiliated to Shanghai, Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
28
|
Ma Z, Sugimura R, Lui KO. The role of m6A mRNA modification in normal and malignant hematopoiesis. J Leukoc Biol 2024; 115:100-115. [PMID: 37195903 DOI: 10.1093/jleuko/qiad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/04/2023] [Accepted: 05/01/2023] [Indexed: 05/19/2023] Open
Abstract
Hematopoiesis is a highly orchestrated biological process sustaining the supply of leukocytes involved in the maintenance of immunity, O2 and CO2 exchange, and wound healing throughout the lifetime of an animal, including humans. During early hematopoietic cell development, several waves of hematopoiesis require the precise regulation of hematopoietic ontogeny as well as the maintenance of hematopoietic stem and progenitor cells in the hematopoietic tissues, such as the fetal liver and bone marrow. Recently, emerging evidence has suggested the critical role of m6A messenger RNA (mRNA) modification, an epigenetic modification dynamically regulated by its effector proteins, in the generation and maintenance of hematopoietic cells during embryogenesis. In the adulthood, m6A has also been demonstrated to be involved in the functional maintenance of hematopoietic stem and progenitor cells in the bone marrow and umbilical cord blood, as well as the progression of malignant hematopoiesis. In this review, we focus on recent progress in identifying the biological functions of m6A mRNA modification, its regulators, and downstream gene targets during normal and pathological hematopoiesis. We propose that targeting m6A mRNA modification could offer novel insights into therapeutic development against abnormal and malignant hematopoietic cell development in the future.
Collapse
Affiliation(s)
- Zhangjing Ma
- Department of Chemical Pathology, and Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Rio Sugimura
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam , Hong Kong, China
| | - Kathy O Lui
- Department of Chemical Pathology, and Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Nanshan District, Shenzhen, China
| |
Collapse
|
29
|
Karima G, Kim HD. Unlocking the regenerative key: Targeting stem cell factors for bone renewal. J Tissue Eng 2024; 15:20417314241287491. [PMID: 39479284 PMCID: PMC11523181 DOI: 10.1177/20417314241287491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/12/2024] [Indexed: 11/02/2024] Open
Abstract
Stem cell factors (SCFs) are pivotal factors existing in both soluble and membrane-bound forms, expressed by endothelial cells (ECs) and fibroblasts throughout the body. These factors enhance cell growth, viability, and migration in multipotent cell lineages. The preferential expression of SCF by arteriolar ECs indicates that arterioles create a unique microenvironment tailored to hematopoietic stem cells (HSCs). Insufficiency of SCF within bone marrow (BM)-derived adipose tissue results in decreased their overall cellularity, affecting HSCs and their immediate progenitors critical for generating diverse blood cells and maintaining the hematopoietic microenvironment. SCF deficiency disrupts BM function, impacting the production and differentiation of HSCs. Additionally, deleting SCF from adipocytes reduces lipogenesis, highlighting the crucial role of SCF/c-kit signaling in controlling lipid accumulation. This review elucidates the sources, roles, mechanisms, and molecular strategies of SCF in bone renewal, offering a comprehensive overview of recent advancements, challenges, and future directions for leveraging SCF as a key agent in regenerative medicine.
Collapse
Affiliation(s)
- Gul Karima
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, Republic of Korea
| | - Hwan D. Kim
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, Republic of Korea
- Department of IT Convergence (Brain Korea Plus 21), Korea National University of Transportation, Chungju, Republic of Korea
- Department of Biomedical Engineering, Korea National University of Transportation, Chungju, Republic of Korea
| |
Collapse
|
30
|
Kaszuba CM, Rodems BJ, Sharma S, Franco EI, Ashton JM, Calvi LM, Bajaj J. Identifying Bone Marrow Microenvironmental Populations in Myelodysplastic Syndrome and Acute Myeloid Leukemia. J Vis Exp 2023:10.3791/66093. [PMID: 38009736 PMCID: PMC10849042 DOI: 10.3791/66093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
The bone marrow microenvironment consists of distinct cell populations, such as mesenchymal stromal cells, endothelial cells, osteolineage cells, and fibroblasts, which provide support for hematopoietic stem cells (HSCs). In addition to supporting normal HSCs, the bone marrow microenvironment also plays a role in the development of hematopoietic stem cell disorders, such as myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). MDS-associated mutations in HSCs lead to a block in differentiation and progressive bone marrow failure, especially in the elderly. MDS can often progress to therapy-resistant AML, a disease characterized by a rapid accumulation of immature myeloid blasts. The bone marrow microenvironment is known to be altered in patients with these myeloid neoplasms. Here, a comprehensive protocol to isolate and phenotypically characterize bone marrow microenvironmental cells from murine models of myelodysplastic syndrome and acute myeloid leukemia is described. Isolating and characterizing changes in the bone marrow niche populations can help determine their role in disease initiation and progression and may lead to the development of novel therapeutics targeting cancer-promoting alterations in the bone marrow stromal populations.
Collapse
Affiliation(s)
- Christina M Kaszuba
- Wilmot Cancer Institute, University of Rochester Medical Center; Department of Biomedical Engineering, University of Rochester
| | - Benjamin J Rodems
- Wilmot Cancer Institute, University of Rochester Medical Center; Department of Biomedical Genetics, University of Rochester Medical Center
| | - Sonali Sharma
- Wilmot Cancer Institute, University of Rochester Medical Center; Department of Biomedical Genetics, University of Rochester Medical Center
| | - Edgardo I Franco
- Wilmot Cancer Institute, University of Rochester Medical Center; Department of Biomedical Engineering, University of Rochester
| | - John M Ashton
- Wilmot Cancer Institute, University of Rochester Medical Center; Department of Biomedical Genetics, University of Rochester Medical Center; Genomics Research Center, University of Rochester Medical Center
| | - Laura M Calvi
- Wilmot Cancer Institute, University of Rochester Medical Center; Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center
| | - Jeevisha Bajaj
- Wilmot Cancer Institute, University of Rochester Medical Center; Department of Biomedical Genetics, University of Rochester Medical Center;
| |
Collapse
|
31
|
Chen H, Hu A, Xiao M, Hong S, Liang J, Zhang Q, Xiong Y, Gu M, Mu C. Preliminary delivery efficiency prediction of nanotherapeutics into crucial cell populations in bone marrow niche. Asian J Pharm Sci 2023; 18:100868. [PMID: 38089836 PMCID: PMC10711387 DOI: 10.1016/j.ajps.2023.100868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 01/27/2025] Open
Abstract
Several crucial stromal cell populations regulate hematopoiesis and malignant diseases in bone marrow niches. Precise regulation of these cell types can remodel niches and develop new therapeutics. Multiple nanocarriers have been developed to transport drugs into the bone marrow selectively. However, the delivery efficiency of these nanotherapeutics into crucial niche cells is still unknown, and there is no method available for predicting delivery efficiency in these cell types. Here, we constructed a three-dimensional bone marrow niche composed of three crucial cell populations: endothelial cells (ECs), mesenchymal stromal cells (MSCs), and osteoblasts (OBs). Mimetic niches were used to detect the cellular uptake of three typical drug nanocarriers into ECs/MSCs/OBs in vitro. Less than 5% of nanocarriers were taken up by three stromal cell types, and most of them were located in the extracellular matrix. Delivery efficiency in sinusoidal ECs, arteriole ECs, MSCs, and OBs in vivo was analyzed. The correlation analysis showed that the cellular uptake of three nanocarriers in crucial cell types in vitro is positively linear correlated with its delivery efficiency in vivo. The delivery efficiency into MSCs was remarkably higher than that into ECs and OBs, no matter what kind of nanocarrier. The overall efficiency into sinusoidal ECs was greatly lower than that into arteriole ECs. All nanocarriers were hard to be delivered into OBs (<1%). Our findings revealed that cell tropisms of nanocarriers with different compositions and ligand attachments in vivo could be predicted via detecting their cellular uptake in bone marrow niches in vitro. This study provided the methodology for niche-directed nanotherapeutics development.
Collapse
Affiliation(s)
- Huijuan Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Anzhi Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Mengdi Xiao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shiyi Hong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jing Liang
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Quanlong Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yang Xiong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Mancang Gu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chaofeng Mu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
32
|
Bianchini M, Möller-Ramon Z, Weber C, Megens RTA, Duchêne J. Short-Term Western Diet Causes Rapid and Lasting Alterations of Bone Marrow Physiology. Thromb Haemost 2023; 123:1100-1104. [PMID: 37549687 PMCID: PMC11321714 DOI: 10.1055/a-2149-4431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 07/14/2023] [Indexed: 08/09/2023]
Affiliation(s)
- Mariaelvy Bianchini
- Helmholtz Zentrum München, Institute of Radiation Medicine, Neuherberg, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität in Munich (LMU Munich), Munich, Germany
| | - Zoe Möller-Ramon
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität in Munich (LMU Munich), Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität in Munich (LMU Munich), Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, The Netherlands
| | - Remco T. A. Megens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität in Munich (LMU Munich), Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, The Netherlands
| | - Johan Duchêne
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität in Munich (LMU Munich), Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
33
|
Takeishi S, Marchand T, Koba WR, Borger DK, Xu C, Guha C, Bergman A, Frenette PS, Gritsman K, Steidl U. Haematopoietic stem cell numbers are not solely determined by niche availability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.28.564559. [PMID: 37961493 PMCID: PMC10634881 DOI: 10.1101/2023.10.28.564559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Haematopoietic stem cells (HSCs) reside in specialized microenvironments, also referred to as niches, and it has been widely believed that HSC numbers are determined by the niche size alone 1-5 . However, the vast excess of the number of niche cells over that of HSCs raises questions about this model. We initially established a mathematical model of niche availability and occupancy, which predicted that HSC numbers are restricted at both systemic and local levels. To address this question experimentally, we developed a femoral bone transplantation system, enabling us to increase the number of available HSC niches. We found that the addition of niches does not alter total HSC numbers in the body, regardless of whether the endogenous (host) niche is intact or defective, suggesting that HSC numbers are limited at the systemic level. Additionally, HSC numbers in transplanted wild-type femurs did not increase beyond physiological levels when HSCs were mobilized from defective endogenous niches to the periphery, indicating that HSC numbers are also constrained at the local level. Our study demonstrates that HSC numbers are not solely determined by niche availability, thereby rewriting the long-standing model for the regulation of HSC numbers.
Collapse
|
34
|
Abe S, Asahi T, Hara T, Cui G, Shimba A, Tani-Ichi S, Yamada K, Miyazaki K, Miyachi H, Kitano S, Nakamura N, Kikuta J, Vandenbon A, Miyazaki M, Yamada R, Ohteki T, Ishii M, Sexl V, Nagasawa T, Ikuta K. Hematopoietic cell-derived IL-15 supports NK cell development in scattered and clustered localization within the bone marrow. Cell Rep 2023; 42:113127. [PMID: 37729919 DOI: 10.1016/j.celrep.2023.113127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 07/10/2023] [Accepted: 08/28/2023] [Indexed: 09/22/2023] Open
Abstract
Natural killer (NK) cells are innate immune cells critical for protective immune responses against infection and cancer. Although NK cells differentiate in the bone marrow (BM) in an interleukin-15 (IL-15)-dependent manner, the cellular source of IL-15 remains elusive. Using NK cell reporter mice, we show that NK cells are localized in the BM in scattered and clustered manners. NK cell clusters overlap with monocyte and dendritic cell accumulations, whereas scattered NK cells require CXCR4 signaling. Using cell-specific IL-15-deficient mice, we show that hematopoietic cells, but not stromal cells, support NK cell development in the BM through IL-15. In particular, IL-15 produced by monocytes and dendritic cells appears to contribute to NK cell development. These results demonstrate that hematopoietic cells are the IL-15 niche for NK cell development in the BM and that BM NK cells are present in scattered and clustered compartments by different mechanisms, suggesting their distinct functions in the immune response.
Collapse
Affiliation(s)
- Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takuma Asahi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takahiro Hara
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Akihiro Shimba
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Shizue Tani-Ichi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Kohei Yamada
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuko Miyazaki
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Hitoshi Miyachi
- Reproductive Engineering Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Satsuki Kitano
- Reproductive Engineering Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Naotoshi Nakamura
- Interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, WPI Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Alexis Vandenbon
- Laboratory of Tissue Homeostasis, Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Masaki Miyazaki
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Ryo Yamada
- Statistical Genetics, Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Toshiaki Ohteki
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, WPI Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Takashi Nagasawa
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
35
|
Li X, Lozovatsky L, Tommasini SM, Fretz J, Finberg KE. Bone marrow sinusoidal endothelial cells are a site of Fgf23 upregulation in a mouse model of iron deficiency anemia. Blood Adv 2023; 7:5156-5171. [PMID: 37417950 PMCID: PMC10480544 DOI: 10.1182/bloodadvances.2022009524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/08/2023] Open
Abstract
Iron deficiency is a potent stimulator of fibroblast growth factor 23 (FGF23), a hormonal regulator of phosphate and vitamin D metabolism, that is classically thought to be produced by bone-embedded osteocytes. Here, we show that iron-deficient transmembrane serine protease 6 knockout (Tmprss6-/-) mice exhibit elevated circulating FGF23 and Fgf23 messenger RNA (mRNA) upregulation in the bone marrow (BM) but not the cortical bone. To clarify sites of Fgf23 promoter activity in Tmprss6-/- mice, we introduced a heterozygous enhanced green fluorescent protein (eGFP) reporter allele at the endogenous Fgf23 locus. Heterozygous Fgf23 disruption did not alter the severity of systemic iron deficiency or anemia in the Tmprss6-/- mice. Tmprss6-/-Fgf23+/eGFP mice showed green fluorescence in the vascular regions of BM sections and showed a subset of BM endothelial cells that were GFPbright by flow cytometry. Mining of transcriptomic data sets from mice with normal iron balance revealed higher Fgf23 mRNA in BM sinusoidal endothelial cells (BM-SECs) than that in other BM endothelial cell populations. Anti-GFP immunohistochemistry of fixed BM sections from Tmprss6-/-Fgf23+/eGFP mice revealed GFP expression in BM-SECs, which was more intense than in nonanemic controls. In addition, in mice with intact Tmprss6 alleles, Fgf23-eGFP reporter expression increased in BM-SECs following large-volume phlebotomy and also following erythropoietin treatment both ex vivo and in vivo. Collectively, our results identified BM-SECs as a novel site for Fgf23 upregulation in both acute and chronic anemia. Given the elevated serum erythropoietin in both anemic models, our findings raise the possibility that erythropoietin may act directly on BM-SECs to promote FGF23 production during anemia.
Collapse
Affiliation(s)
- Xiuqi Li
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | | | - Steven M. Tommasini
- Department of Orthopaedics & Rehabilitation, Yale School of Medicine, New Haven, CT
| | - Jackie Fretz
- Department of Orthopaedics & Rehabilitation, Yale School of Medicine, New Haven, CT
| | | |
Collapse
|
36
|
Xu R, Li N, Shi B, Li Z, Han J, Sun J, Yallowitz A, Bok S, Xiao S, Wu Z, Chen Y, Xu Y, Qin T, Lin Z, Zheng H, Shen R, Greenblatt M. Schnurri-3 inhibition rescues skeletal fragility and vascular skeletal stem cell niche pathology in a mouse model of osteogenesis imperfecta. RESEARCH SQUARE 2023:rs.3.rs-3153957. [PMID: 37546916 PMCID: PMC10402191 DOI: 10.21203/rs.3.rs-3153957/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Osteogenesis imperfecta (OI) is a disorder of low bone mass and increased fracture risk due to a range of genetic variants that prominently include mutations in genes encoding type collagen. While it is well known that OI reflects defects in the activity of bone-forming osteoblasts, it is currently unclear whether OI also reflects defects in the many other cell types comprising bone, including defects in skeletal vascular endothelium or the skeletal stem cell populations that give rise to osteoblasts and whether correcting these broader defects could have therapeutic utility. Here, we find that numbers of skeletal stem cells (SSCs) and skeletal arterial endothelial cells (AECs) are augmented in Col1a2oim/oim mice, a well-studied animal model of moderate to severe OI, suggesting that disruption of a vascular SSC niche is a feature of OI pathogenesis. Moreover, crossing Col1a2oim/oim mice to mice lacking a negative regulator of skeletal angiogenesis and bone formation, Schnurri 3 (SHN3), not only corrected the SSC and AEC phenotypes but moreover robustly corrected the bone mass and spontaneous fracture phenotypes. As this finding suggested a strong therapeutic utility of SHN3 inhibition for the treatment of OI, a bone-targeting AAV was used to mediate Shn3 knockdown, rescuing the Col1a2oim/oim phenotype and providing therapeutic proof-of-concept for targeting SHN3 for the treatment of OI. Overall, this work both provides proof-of-concept for inhibition of the SHN3 pathway and more broadly addressing defects in the stem/osteoprogentior niche as is a strategy to treat OI.
Collapse
Affiliation(s)
- Ren Xu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University
| | | | | | - Zan Li
- First Affiliated Hospital of Zhejiang University
| | | | - Jun Sun
- Weill Cornell Medicine, Cornell University
| | | | - Seoyeon Bok
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Shuang Xiao
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen
| | - Zouxing Wu
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen
| | | | - Yan Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Tian Qin
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Zhiming Lin
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen
| | - Haiping Zheng
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen
| | | | | |
Collapse
|
37
|
Herd CL, Mellet J, Mashingaidze T, Durandt C, Pepper MS. Consequences of HIV infection in the bone marrow niche. Front Immunol 2023; 14:1163012. [PMID: 37497228 PMCID: PMC10366613 DOI: 10.3389/fimmu.2023.1163012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023] Open
Abstract
Dysregulation of the bone marrow niche resulting from the direct and indirect effects of HIV infection contributes to haematological abnormalities observed in HIV patients. The bone marrow niche is a complex, multicellular environment which functions primarily in the maintenance of haematopoietic stem/progenitor cells (HSPCs). These adult stem cells are responsible for replacing blood and immune cells over the course of a lifetime. Cells of the bone marrow niche support HSPCs and help to orchestrate the quiescence, self-renewal and differentiation of HSPCs through chemical and molecular signals and cell-cell interactions. This narrative review discusses the HIV-associated dysregulation of the bone marrow niche, as well as the susceptibility of HSPCs to infection by HIV.
Collapse
|
38
|
Hagedorn EJ, Perlin JR, Freeman RJ, Wattrus SJ, Han T, Mao C, Kim JW, Fernández-Maestre I, Daily ML, D'Amato C, Fairchild MJ, Riquelme R, Li B, Ragoonanan DAVE, Enkhbayar K, Henault EL, Wang HG, Redfield SE, Collins SH, Lichtig A, Yang S, Zhou Y, Kunar B, Gomez-Salinero JM, Dinh TT, Pan J, Holler K, Feldman HA, Butcher EC, van Oudenaarden A, Rafii S, Junker JP, Zon LI. Transcription factor induction of vascular blood stem cell niches in vivo. Dev Cell 2023; 58:1037-1051.e4. [PMID: 37119815 PMCID: PMC10330626 DOI: 10.1016/j.devcel.2023.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/08/2023] [Accepted: 04/07/2023] [Indexed: 05/01/2023]
Abstract
The hematopoietic niche is a supportive microenvironment composed of distinct cell types, including specialized vascular endothelial cells that directly interact with hematopoietic stem and progenitor cells (HSPCs). The molecular factors that specify niche endothelial cells and orchestrate HSPC homeostasis remain largely unknown. Using multi-dimensional gene expression and chromatin accessibility analyses in zebrafish, we define a conserved gene expression signature and cis-regulatory landscape that are unique to sinusoidal endothelial cells in the HSPC niche. Using enhancer mutagenesis and transcription factor overexpression, we elucidate a transcriptional code that involves members of the Ets, Sox, and nuclear hormone receptor families and is sufficient to induce ectopic niche endothelial cells that associate with mesenchymal stromal cells and support the recruitment, maintenance, and division of HSPCs in vivo. These studies set forth an approach for generating synthetic HSPC niches, in vitro or in vivo, and for effective therapies to modulate the endogenous niche.
Collapse
Affiliation(s)
- Elliott J Hagedorn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA; Section of Hematology and Medical Oncology and Center for Regenerative Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Julie R Perlin
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Rebecca J Freeman
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Samuel J Wattrus
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Tianxiao Han
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Clara Mao
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Ji Wook Kim
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Inés Fernández-Maestre
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Madeleine L Daily
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Christopher D'Amato
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Michael J Fairchild
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Raquel Riquelme
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Brian Li
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Dana A V E Ragoonanan
- Section of Hematology and Medical Oncology and Center for Regenerative Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Khaliun Enkhbayar
- Section of Hematology and Medical Oncology and Center for Regenerative Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Emily L Henault
- Section of Hematology and Medical Oncology and Center for Regenerative Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Helen G Wang
- Section of Hematology and Medical Oncology and Center for Regenerative Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Shelby E Redfield
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Samantha H Collins
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Asher Lichtig
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Song Yang
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Yi Zhou
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Balvir Kunar
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jesus Maria Gomez-Salinero
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Thanh T Dinh
- Veterans Affairs Palo Alto Health Care System, The Palo Alto Veterans Institute for Research and the Department of Pathology, Stanford University, Stanford, CA, USA
| | - Junliang Pan
- Veterans Affairs Palo Alto Health Care System, The Palo Alto Veterans Institute for Research and the Department of Pathology, Stanford University, Stanford, CA, USA
| | - Karoline Holler
- Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Henry A Feldman
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, MA, USA
| | - Eugene C Butcher
- Veterans Affairs Palo Alto Health Care System, The Palo Alto Veterans Institute for Research and the Department of Pathology, Stanford University, Stanford, CA, USA
| | - Alexander van Oudenaarden
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Shahin Rafii
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - J Philipp Junker
- Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA.
| |
Collapse
|
39
|
Streef TJ, Groeneveld EJ, van Herwaarden T, Hjortnaes J, Goumans MJ, Smits AM. Single-cell analysis of human fetal epicardium reveals its cellular composition and identifies CRIP1 as a modulator of EMT. Stem Cell Reports 2023:S2213-6711(23)00229-1. [PMID: 37390825 PMCID: PMC10362506 DOI: 10.1016/j.stemcr.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 07/02/2023] Open
Abstract
The epicardium plays an essential role in cardiogenesis by providing cardiac cell types and paracrine cues to the developing myocardium. The human adult epicardium is quiescent, but recapitulation of developmental features may contribute to adult cardiac repair. The cell fate of epicardial cells is proposed to be determined by the developmental persistence of specific subpopulations. Reports on this epicardial heterogeneity have been inconsistent, and data regarding the human developing epicardium are scarce. Here we specifically isolated human fetal epicardium and used single-cell RNA sequencing to define its composition and to identify regulators of developmental processes. Few specific subpopulations were observed, but a clear distinction between epithelial and mesenchymal cells was present, resulting in novel population-specific markers. Additionally, we identified CRIP1 as a previously unknown regulator involved in epicardial epithelial-to-mesenchymal transition. Overall, our human fetal epicardial cell-enriched dataset provides an excellent platform to study the developing epicardium in great detail.
Collapse
Affiliation(s)
- Thomas J Streef
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Esmee J Groeneveld
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tessa van Herwaarden
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jesper Hjortnaes
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Marie José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anke M Smits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
40
|
Zhang H, Liesveld JL, Calvi LM, Lipe BC, Xing L, Becker MW, Schwarz EM, Yeh SCA. The roles of bone remodeling in normal hematopoiesis and age-related hematological malignancies. Bone Res 2023; 11:15. [PMID: 36918531 PMCID: PMC10014945 DOI: 10.1038/s41413-023-00249-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/24/2022] [Accepted: 01/26/2023] [Indexed: 03/16/2023] Open
Abstract
Prior research establishing that bone interacts in coordination with the bone marrow microenvironment (BMME) to regulate hematopoietic homeostasis was largely based on analyses of individual bone-associated cell populations. Recent advances in intravital imaging has suggested that the expansion of hematopoietic stem cells (HSCs) and acute myeloid leukemia cells is restricted to bone marrow microdomains during a distinct stage of bone remodeling. These findings indicate that dynamic bone remodeling likely imposes additional heterogeneity within the BMME to yield differential clonal responses. A holistic understanding of the role of bone remodeling in regulating the stem cell niche and how these interactions are altered in age-related hematological malignancies will be critical to the development of novel interventions. To advance this understanding, herein, we provide a synopsis of the cellular and molecular constituents that participate in bone turnover and their known connections to the hematopoietic compartment. Specifically, we elaborate on the coupling between bone remodeling and the BMME in homeostasis and age-related hematological malignancies and after treatment with bone-targeting approaches. We then discuss unresolved questions and ambiguities that remain in the field.
Collapse
Affiliation(s)
- Hengwei Zhang
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA.
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Jane L Liesveld
- Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, Division of Hematology/Oncology and Bone Marrow Transplantation Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Laura M Calvi
- Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, Division of Endocrinology/Metabolism, University of Rochester Medical Center, Rochester, NY, USA
| | - Brea C Lipe
- Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, Division of Hematology/Oncology and Bone Marrow Transplantation Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Lianping Xing
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael W Becker
- Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, Division of Hematology/Oncology and Bone Marrow Transplantation Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, Division of Allergy/Immunology/Rheumatology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Shu-Chi A Yeh
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA.
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
- Department of Physiology/Pharmacology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
41
|
Kara N, Xue Y, Zhao Z, Murphy MM, Comazzetto S, Lesser A, Du L, Morrison SJ. Endothelial and Leptin Receptor + cells promote the maintenance of stem cells and hematopoiesis in early postnatal murine bone marrow. Dev Cell 2023; 58:348-360.e6. [PMID: 36868235 PMCID: PMC10035381 DOI: 10.1016/j.devcel.2023.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 12/08/2022] [Accepted: 02/06/2023] [Indexed: 03/05/2023]
Abstract
Mammalian hematopoietic stem cells (HSCs) colonize the bone marrow during late fetal development, and this becomes the major site of hematopoiesis after birth. However, little is known about the early postnatal bone marrow niche. We performed single-cell RNA sequencing of mouse bone marrow stromal cells at 4 days, 14 days, and 8 weeks after birth. Leptin-receptor-expressing (LepR+) stromal cells and endothelial cells increased in frequency during this period and changed their properties. At all postnatal stages, LepR+ cells and endothelial cells expressed the highest stem cell factor (Scf) levels in the bone marrow. LepR+ cells expressed the highest Cxcl12 levels. In early postnatal bone marrow, SCF from LepR+/Prx1+ stromal cells promoted myeloid and erythroid progenitor maintenance, while SCF from endothelial cells promoted HSC maintenance. Membrane-bound SCF in endothelial cells contributed to HSC maintenance. LepR+ cells and endothelial cells are thus important niche components in early postnatal bone marrow.
Collapse
Affiliation(s)
- Nergis Kara
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuanyuan Xue
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhiyu Zhao
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Malea M Murphy
- Department of Medical Physiology, Texas A&M School of Medicine, Bryan, TX 77807, USA
| | - Stefano Comazzetto
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashley Lesser
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Liming Du
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sean J Morrison
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
42
|
Klotho improves cardiac fibrosis, inflammatory cytokines, ferroptosis, and oxidative stress in mice with myocardial infarction. J Physiol Biochem 2023:10.1007/s13105-023-00945-5. [PMID: 36701072 DOI: 10.1007/s13105-023-00945-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023]
Abstract
The anti-aging protein Klotho has been associated with cardiovascular health protection. Nevertheless, the protective mechanism remains unknown. The present study is aimed at exploring the effect of Klotho on cardiac remodeling and its potential mechanism in mice with myocardial infarction (MI). We used left anterior coronary artery descending ligation to develop an MI model for in vivo analyses. In contrast, H9C2 cells and cardiac fibroblasts were used to establish the oxygen-glucose deprivation (OGD) model in in vitro analyses. In vivo and in vitro models were treated with Klotho. Compound C, an AMPK signaling inhibitor, was used to determine whether Klotho's effects are mediated through the AMPK/mTOR signaling pathway. Echocardiography, Masson trichrome staining, immunofluorescence, immunohistochemistry, real-time polymerase chain reaction (RT-PCR), and western blot were used to detect the related indicators. The findings of the in vivo model indicate that Klotho treatment improved the mice's cardiac function, reduced cardiac fibrosis, and attenuated myocardial inflammatory factors, ferroptosis, and oxidative stress. The results of the in vitro model were in line with the findings of in vivo modeling. An AMPK inhibitor, Compound C, reversed all these effects. In conclusion, Klotho potentially improves cardiac remodeling in MI mice by regulating AMPK/mTOR signaling, demonstrating Klotho as an effective MI therapeutic agent.
Collapse
|
43
|
Pinho S, Zhao M. Hematopoietic Stem Cells and Their Bone Marrow Niches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:17-28. [PMID: 38228956 PMCID: PMC10881178 DOI: 10.1007/978-981-99-7471-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hematopoietic stem cells (HSCs) are maintained in the bone marrow microenvironment, also known as the niche, that regulates their proliferation, self-renewal, and differentiation. In this chapter, we will introduce the history of HSC niche research and review the interdependencies between HSCs and their niches. We will further highlight recent advances in our understanding of HSC heterogeneity with regard to HSC subpopulations and their interacting cellular and molecular bone marrow niche constituents.
Collapse
Affiliation(s)
- Sandra Pinho
- Department of Pharmacology & Regenerative Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| | - Meng Zhao
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
44
|
Moggio A, Schunkert H, Kessler T, Sager HB. Quo Vadis? Immunodynamics of Myeloid Cells after Myocardial Infarction. Int J Mol Sci 2022; 23:15814. [PMID: 36555456 PMCID: PMC9779515 DOI: 10.3390/ijms232415814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Myocardial infarction (MI), a major contributor to worldwide morbidity and mortality, is caused by a lack of blood flow to the heart. Affected heart tissue becomes ischemic due to deficiency of blood perfusion and oxygen delivery. In case sufficient blood flow cannot be timely restored, cardiac injury with necrosis occurs. The ischemic/necrotic area induces a systemic inflammatory response and hundreds of thousands of leukocytes are recruited from the blood to the injured heart. The blood pool of leukocytes is rapidly depleted and urgent re-supply of these cells is needed. Myeloid cells are generated in the bone marrow (BM) and spleen, released into the blood, travel to sites of need, extravasate and accumulate inside tissues to accomplish various functions. In this review we focus on the "leukocyte supply chain" and will separately evaluate different myeloid cell compartments (BM, spleen, blood, heart) in steady state and after MI. Moreover, we highlight the local and systemic kinetics of extracellular factors, chemokines and danger signals involved in the regulation of production/generation, release, transportation, uptake, and activation of myeloid cells during the inflammatory phase of MI.
Collapse
Affiliation(s)
- Aldo Moggio
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
45
|
Cruz LJ, Rezaei S, Grosveld F, Philipsen S, Eich C. Nanoparticles targeting hematopoietic stem and progenitor cells: Multimodal carriers for the treatment of hematological diseases. Front Genome Ed 2022; 4:1030285. [PMID: 36407494 PMCID: PMC9666682 DOI: 10.3389/fgeed.2022.1030285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/10/2022] [Indexed: 10/03/2023] Open
Abstract
Modern-day hematopoietic stem cell (HSC) therapies, such as gene therapy, modify autologous HSCs prior to re-infusion into myelo-conditioned patients and hold great promise for treatment of hematological disorders. While this approach has been successful in numerous clinical trials, it relies on transplantation of ex vivo modified patient HSCs, which presents several limitations. It is a costly and time-consuming procedure, which includes only few patients so far, and ex vivo culturing negatively impacts on the viability and stem cell-properties of HSCs. If viral vectors are used, this carries the additional risk of insertional mutagenesis. A therapy delivered to HSCs in vivo, with minimal disturbance of the HSC niche, could offer great opportunities for novel treatments that aim to reverse disease symptoms for hematopoietic disorders and could bring safe, effective and affordable genetic therapies to all parts of the world. However, substantial unmet needs exist with respect to the in vivo delivery of therapeutics to HSCs. In the last decade, in particular with the development of gene editing technologies such as CRISPR/Cas9, nanoparticles (NPs) have become an emerging platform to facilitate the manipulation of cells and organs. By employing surface modification strategies, different types of NPs can be designed to target specific tissues and cell types in vivo. HSCs are particularly difficult to target due to the lack of unique cell surface markers that can be utilized for cell-specific delivery of therapeutics, and their shielded localization in the bone marrow (BM). Recent advances in NP technology and genetic engineering have resulted in the development of advanced nanocarriers that can deliver therapeutics and imaging agents to hematopoietic stem- and progenitor cells (HSPCs) in the BM niche. In this review we provide a comprehensive overview of NP-based approaches targeting HSPCs to control and monitor HSPC activity in vitro and in vivo, and we discuss the potential of NPs for the treatment of malignant and non-malignant hematological disorders, with a specific focus on the delivery of gene editing tools.
Collapse
Affiliation(s)
- Luis J. Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Somayeh Rezaei
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Frank Grosveld
- Erasmus University Medical Center, Department of Cell Biology, Rotterdam, Netherlands
| | - Sjaak Philipsen
- Erasmus University Medical Center, Department of Cell Biology, Rotterdam, Netherlands
| | - Christina Eich
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
46
|
Abstract
Lifestyle factors are modifiable behavioral factors that have a significant impact on health and longevity. Diet-induced obesity and physical activity/exercise are two prevalent lifestyle factors that have strong relationships to overall health. The mechanisms linking obesity to negative health outcomes and the mechanisms linking increased participation in physical activity/exercise to positive health outcomes are beginning to be elucidated. Chronic inflammation, due in part to overproduction of myeloid cells from hematopoietic stem cells (HSCs) in the bone marrow, is an established mechanism responsible for the negative health effects of obesity. Recent work has shown that exercise training can reverse the aberrant myelopoiesis present in obesity in part by restoring the bone marrow microenvironment. Specifically, exercise training reduces marrow adipose tissue, increases HSC retention factor expression, and reduces pro-inflammatory cytokine levels in the bone marrow. Other, novel mechanistic factors responsible for these exercise-induced effects, including intercellular communication using extracellular vesicles (EVs), is beginning to be explored. This review will summarize the recent literature describing the effects of exercise on hematopoiesis in individuals with obesity and introduce the potential contribution of EVs to this process.
Collapse
|
47
|
Hirouchi T. COMPARISON OF THE PROLIFERATIVE RESPONSES OF HEMATOPOIETIC STEM CELLS EXPOSED TO LOW DOSE RATE RADIATION IN VIVO AND EX VIVO. RADIATION PROTECTION DOSIMETRY 2022; 198:1025-1029. [PMID: 36083736 DOI: 10.1093/rpd/ncac042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/07/2022] [Accepted: 03/06/2021] [Indexed: 06/15/2023]
Abstract
The hematopoietic stem cells (HSCs) are sensitive to radiation. Chronic exposure to low dose rate (LDR) radiation at 20 mGy/day results in a decrease in the number of HSCs and an increase of leukemia. In this study, the proliferative capacities of ex vivo HSCs, exposed to 20 mGy/day of gamma-rays for 20 days, were compared with those of in vivo HSCs from similarly whole-body-irradiated mice. Radiation suppressed the growth of the ex vivo HSCs after Day 16 of irradiation and until Day 7 post-exposure. Almost all types of cells, particularly multipotent progenitors, common myeloid progenitors, granulocytes and macrophages, were significantly reduced in number at Day 20 of irradiation and Day 7 post-exposure in culture. HSCs and multipotent progenitors irradiated in vivo, however, decreased transiently and recovered by Day 7 post-exposure. These findings suggest that the microenvironment in vivo protects HSCs from the effects of LDR radiation.
Collapse
|
48
|
Peci F, Dekker L, Pagliaro A, van Boxtel R, Nierkens S, Belderbos M. The cellular composition and function of the bone marrow niche after allogeneic hematopoietic cell transplantation. Bone Marrow Transplant 2022; 57:1357-1364. [PMID: 35690693 PMCID: PMC9187885 DOI: 10.1038/s41409-022-01728-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 04/29/2022] [Accepted: 05/26/2022] [Indexed: 11/09/2022]
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is a potentially curative therapy for patients with a variety of malignant and non-malignant diseases. Despite its life-saving potential, HCT is associated with significant morbidity and mortality. Reciprocal interactions between hematopoietic stem cells (HSCs) and their surrounding bone marrow (BM) niche regulate HSC function during homeostatic hematopoiesis as well as regeneration. However, current pre-HCT conditioning regimens, which consist of high-dose chemotherapy and/or irradiation, cause substantial short- and long-term toxicity to the BM niche. This damage may negatively affect HSC function, impair hematopoietic regeneration after HCT and predispose to HCT-related morbidity and mortality. In this review, we summarize current knowledge on the cellular composition of the human BM niche after HCT. We describe how pre-HCT conditioning affects the cell types in the niche, including endothelial cells, mesenchymal stromal cells, osteoblasts, adipocytes, and neurons. Finally, we discuss therapeutic strategies to prevent or repair conditioning-induced niche damage, which may promote hematopoietic recovery and improve HCT outcome.
Collapse
Affiliation(s)
- Flavia Peci
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Linde Dekker
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Anna Pagliaro
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mirjam Belderbos
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
49
|
Fujino T, Asada S, Goyama S, Kitamura T. Mechanisms involved in hematopoietic stem cell aging. Cell Mol Life Sci 2022; 79:473. [PMID: 35941268 PMCID: PMC11072869 DOI: 10.1007/s00018-022-04356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
Hematopoietic stem cells (HSCs) undergo progressive functional decline over time due to both internal and external stressors, leading to aging of the hematopoietic system. A comprehensive understanding of the molecular mechanisms underlying HSC aging will be valuable in developing novel therapies for HSC rejuvenation and to prevent the onset of several age-associated diseases and hematological malignancies. This review considers the general causes of HSC aging that range from cell-intrinsic factors to cell-extrinsic factors. In particular, epigenetics and inflammation have been implicated in the linkage of HSC aging, clonality, and oncogenesis. The challenges in clarifying mechanisms of HSC aging have accelerated the development of therapeutic interventions to rejuvenate HSCs, the major goal of aging research; these details are also discussed in this review.
Collapse
Affiliation(s)
- Takeshi Fujino
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Shuhei Asada
- The Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, 1628666, Japan
| | - Susumu Goyama
- Division of Molecular Oncology Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 1088639, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
50
|
Miao R, Chun H, Feng X, Gomes AC, Choi J, Pereira JP. Competition between hematopoietic stem and progenitor cells controls hematopoietic stem cell compartment size. Nat Commun 2022; 13:4611. [PMID: 35941168 PMCID: PMC9360400 DOI: 10.1038/s41467-022-32228-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 07/21/2022] [Indexed: 11/14/2022] Open
Abstract
Cellular competition for limiting hematopoietic factors is a physiologically regulated but poorly understood process. Here, we studied this phenomenon by hampering hematopoietic progenitor access to Leptin receptor+ mesenchymal stem/progenitor cells (MSPCs) and endothelial cells (ECs). We show that HSC numbers increase by 2-fold when multipotent and lineage-restricted progenitors fail to respond to CXCL12 produced by MSPCs and ECs. HSCs are qualitatively normal, and HSC expansion only occurs when early hematopoietic progenitors but not differentiated hematopoietic cells lack CXCR4. Furthermore, the MSPC and EC transcriptomic heterogeneity is stable, suggesting that it is impervious to major changes in hematopoietic progenitor interactions. Instead, HSC expansion correlates with increased availability of membrane-bound stem cell factor (mSCF) on MSPCs and ECs presumably due to reduced consumption by cKit-expressing hematopoietic progenitors. These studies suggest that an intricate homeostatic balance between HSCs and proximal hematopoietic progenitors is regulated by cell competition for limited amounts of mSCF. Hematopoietic stem cells (HSCs) rely on a combination of paracrine signals produced by their niche, including SCF. Here the authors show that HSCs and hematopoietic progenitors compete for limited amounts of membrane-bound SCF.
Collapse
Affiliation(s)
- Runfeng Miao
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06519, USA
| | - Harim Chun
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Xing Feng
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06519, USA
| | - Ana Cordeiro Gomes
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06519, USA.,i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Jungmin Choi
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea. .,Department of Genetics, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06519, USA.
| | - João P Pereira
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06519, USA.
| |
Collapse
|