1
|
Xue D, Zou H, Qiu Y, Lv W, Madden MD, Xu M, Lian X, Pulliam C, Older EA, Hou L, Campbell A, de Rond T, Awakawa T, Yuan C, Moore BS, Li J. Discovery of acylsulfenic acid-featuring natural product sulfenicin and characterization of its biosynthesis. Nat Chem 2025:10.1038/s41557-025-01833-9. [PMID: 40394187 DOI: 10.1038/s41557-025-01833-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 04/14/2025] [Indexed: 05/22/2025]
Abstract
Life's organic molecules are built with diverse functional groups that enable various importance biological functions. As such, the discovery of unique functional groups in nature can expand our understanding of the natural world. Here we report the genome-aided discovery of sulfenicin, a polyketide-non-ribosomal peptide hybrid natural product from a marine Streptomyces bacterium bearing a unique acylsulfenic acid functionality. Through a series of heterologous biosynthesis, functional genetics and enzymatic reconstitution experiments, we show that this previously described synthetic functional group is biologically assembled by a set of enzymes from both primary and secondary metabolism, including a flavin-dependent S-hydroxylase that hydroxylates the sulfur atom of a thiocarboxylic acid. Although public databases so far include no parallel for the sulfenicin biosynthetic gene cluster, enzymes catalysing the production of acylsulfenic acid are widely distributed in bacterial genomes, implying that this labile functional group may similarly have a broad distribution among specialized metabolites.
Collapse
Affiliation(s)
- Dan Xue
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Hongbin Zou
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, USA
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yanping Qiu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Wei Lv
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Michael D Madden
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Mingming Xu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Xiaoying Lian
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Conor Pulliam
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Ethan A Older
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Lukuan Hou
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Andrew Campbell
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Tristan de Rond
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, USA
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Takayoshi Awakawa
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, USA
- RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Chunhua Yuan
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, USA
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA.
| | - Jie Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
2
|
Kakumu Y, Chaudhri AA, Helfrich EJN. The role and mechanisms of canonical and non-canonical tailoring enzymes in bacterial terpenoid biosynthesis. Nat Prod Rep 2025; 42:501-539. [PMID: 39895377 DOI: 10.1039/d4np00048j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Covering: up to April 2024Terpenoids represent the largest and structurally most diverse class of natural products. According to textbook knowledge, this diversity arises from a two-step biosynthetic process: first, terpene cyclases generate a vast array of mono- and polycyclic hydrocarbon scaffolds with multiple stereocenters from a limited set of achiral precursors, a process extensively studied over the past two decades. Subsequently, tailoring enzymes further modify these complex scaffolds through regio- and stereocontrolled oxidation and other functionalization reactions, a topic of increasing interest in recent years. The resulting highly functionalized terpenoids exhibit a broad spectrum of unique biological activities, making them promising candidates for drug development. Recent advances in genome sequencing technologies along with the development and application of sophisticated genome mining tools have revealed bacteria as a largely untapped resource for the discovery of complex terpenoids. Functional characterization of a limited number of bacterial terpenoid biosynthetic pathways, combined with in-depth mechanistic studies of key enzymes, has begun to reveal the versatility of bacterial enzymatic processes involved in terpenoid modification. In this review, we examine the various tailoring reactions leading to complex bacterial terpenoids. We first discuss canonical terpene-modifying enzymes, that catalyze the functionalization of unactivated C-H bonds, incorporation of diverse functional groups, and oxidative and non-oxidative rearrangements. We then explore non-canonical terpene-modifying enzymes that facilitate oxidative rearrangement, cyclization, isomerization, and dimerization reactions. The increasing number of characterized tailoring enzymes that participate in terpene hydrocarbon scaffold fomation, rather than merely decorating pre-formed scaffolds suggests that a re-evaluation of the traditional two-phase model for terpenoid biosynthesis might be warranted. Finally, we address the potential and challenges of mining bacterial genomes to identify terpene biosynthetic gene clusters and expand the bacterial terpene biosynthetic and chemical space.
Collapse
Affiliation(s)
- Yuya Kakumu
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany.
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Ayesha Ahmed Chaudhri
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany.
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Eric J N Helfrich
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany.
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| |
Collapse
|
3
|
Hasebe F, Adachi K, Maruyama C, Hamano Y. Discovery of a novel methionine biosynthetic route via O-phospho-l-homoserine. Appl Environ Microbiol 2024; 90:e0124724. [PMID: 39311576 PMCID: PMC11497804 DOI: 10.1128/aem.01247-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/01/2024] [Indexed: 10/25/2024] Open
Abstract
Methionine (Met), a sulfur-containing amino acid, is essential for the underlying biological processes in living organisms. In addition to its importance as a starting building block for peptide chain elongation in protein biosynthesis, Met is a direct precursor of S-adenosyl-l-methionine, an indispensable methyl donor molecule in primary and secondary metabolism. Streptomyces bacteria are well known to produce diverse secondary metabolites, but many strains lack canonical Met pathway genes for l-homocysteine, a direct precursor of Met in bacteria, plants, and archaea. Here, we report the identification of a novel gene (metM) responsible for the Met biosynthesis in Streptomyces strains and demonstrate the catalytic function of the gene product, MetM. We further identified the metO gene, a downstream gene of metM, and showed that it encodes a sulfur-carrier protein (SCP). In in vitro analysis, MetO was found to play an important role in a sulfur donor by forming a thiocarboxylated SCP. Together with MetO (thiocarboxylate), MetM directly converted O-phospho-l-homoserine to l-homocysteine. O-Phospho-l-homoserine is also known as an intermediate for threonine biosynthesis in bacteria and plants, and MetM shares sequence homology with threonine synthase. Our findings thus revealed that MetM seizes O-phospho-l-homoserine from the threonine biosynthetic pathway and uses it as an intermediate of the Met biosynthesis to generate the sulfur-containing amino acid. Importantly, this MetM/MetO pathway is highly conserved in Streptomyces bacteria and distributed in other bacteria and archaea.IMPORTANCEMethionine (Met) is a sulfur-containing proteinogenic amino acid. Moreover, Met is a direct precursor of S-adenosyl-l-methionine, an indispensable molecule for expanding the structural diversity of natural products. Because Met and its derivatives benefit humans, the knowledge of Met biosynthesis is important as a basis for improving their fermentation. Streptomyces bacteria are well known to produce diverse and valuable natural products, but many strains lack canonical Met pathway genes. Here, we identified a novel l-homocysteine synthase (MetM) in Streptomyces and demonstrated that it converts O-phospho-L-homoserine to l-homocysteine using a thiocarboxylated sulfur-carrier protein as a sulfur donor. Since the metM is distributed in other bacteria and archaea, our pioneering study contributes to understanding Met biosynthesis in these organisms.
Collapse
Affiliation(s)
- Fumihito Hasebe
- Department of Bioscience, Fukui Prefectural University, Fukui, Japan
- Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, Eiheiji-cho, Fukui, Japan
| | - Kazuya Adachi
- Department of Bioscience, Fukui Prefectural University, Fukui, Japan
| | - Chitose Maruyama
- Department of Bioscience, Fukui Prefectural University, Fukui, Japan
- Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, Eiheiji-cho, Fukui, Japan
| | - Yoshimitsu Hamano
- Department of Bioscience, Fukui Prefectural University, Fukui, Japan
- Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, Eiheiji-cho, Fukui, Japan
| |
Collapse
|
4
|
Xue D, Zou H, Lv W, Madden MD, Lian X, Xu M, Pulliam C, Older EA, Hou L, Campbell A, de Rond T, Awakawa T, Yuan C, Moore BS, Li J. Discovery and Biosynthesis of Sulfenicin and Its New-to-Nature Acylsulfenic Acid Functional Group. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618611. [PMID: 39464084 PMCID: PMC11507894 DOI: 10.1101/2024.10.16.618611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Life's organic molecules are built with diverse functional groups that enable biology by fine tuning intimate connections through time and space. As such, the discovery of new-to-nature functional groups can expand our understanding of the natural world and motivate new applications in biotechnology and biomedicine. Herein we report the genome-aided discovery of sulfenicin, a novel polyketide-nonribosomal peptide hybrid natural product from a marine Streptomyces bacterium bearing a unique acylsulfenic acid functionality. Through a series of heterologous biosynthesis, functional genetics, and enzymatic reconstitution experiments, we show that this previously described synthetic functional group is biologically assembled by a set of enzymes from both primary and secondary metabolism, including a novel flavin-dependent S -hydroxylase that hydroxylates a thiocarboxylic acid's sulfur atom. While the sulfenicin biosynthetic gene cluster is presently without parallel in public databases, acylsulfenic acid-encoding enzymes are widely distributed in bacterial genomes, implying that this labile functional group may similarly have a broad distribution among specialized metabolites.
Collapse
|
5
|
Tu JL, Huang B. Titanium in photocatalytic organic transformations: current applications and future developments. Org Biomol Chem 2024; 22:6650-6664. [PMID: 39118484 DOI: 10.1039/d4ob01152j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Titanium, as an important transition metal, has garnered extensive attention in both industry and academia due to its excellent mechanical properties, corrosion resistance, and unique reactivity in organic synthesis. In the field of organic photocatalysis, titanium-based compounds such as titanium dioxide (TiO2), titanocenes (Cp2TiCl2, CpTiCl3), titanium tetrachloride (TiCl4), tetrakis(isopropoxy)titanium (Ti(OiPr)4), and chiral titanium complexes have demonstrated distinct reactivity and selectivity. This review focuses on the roles of these titanium compounds in photocatalytic organic reactions, and highlights the reaction pathways such as photo-induced single-electron transfer (SET) and ligand-to-metal charge transfer (LMCT). By systematically surveying the latest advancements in titanium-involved organic photocatalysis, this review aims to provide references for further research and technological innovation within this fast-developing field.
Collapse
Affiliation(s)
- Jia-Lin Tu
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519085, China.
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Binbin Huang
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519085, China.
| |
Collapse
|
6
|
Boukouvala S, Kontomina E, Olbasalis I, Patriarcheas D, Tzimotoudis D, Arvaniti K, Manolias A, Tsatiri MA, Basdani D, Zekkas S. Insights into the genomic and functional divergence of NAT gene family to serve microbial secondary metabolism. Sci Rep 2024; 14:14905. [PMID: 38942826 PMCID: PMC11213898 DOI: 10.1038/s41598-024-65342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024] Open
Abstract
Microbial NAT enzymes, which employ acyl-CoA to acylate aromatic amines and hydrazines, have been well-studied for their role in xenobiotic metabolism. Some homologues have also been linked to secondary metabolism, but this function of NAT enzymes is not as well-known. For this comparative study, we surveyed sequenced microbial genomes to update the list of formally annotated NAT genes, adding over 4000 new sequences (mainly bacterial, but also archaeal, fungal and protist) and portraying a broad but not universal distribution of NATs in the microbiocosmos. Localization of NAT sequences within microbial gene clusters was not a rare finding, and this association was evident across all main types of biosynthetic gene clusters (BGCs) implicated in secondary metabolism. Interrogation of the MIBiG database for experimentally characterized clusters with NAT genes further supports that secondary metabolism must be a major function for microbial NAT enzymes and should not be overlooked by researchers in the field. We also show that NAT sequences can be associated with bacterial plasmids potentially involved in horizontal gene transfer. Combined, our computational predictions and MIBiG literature findings reveal the extraordinary functional diversification of microbial NAT genes, prompting further research into their role in predicted BGCs with as yet uncharacterized function.
Collapse
Affiliation(s)
- Sotiria Boukouvala
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece.
| | - Evanthia Kontomina
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Ioannis Olbasalis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dionysios Patriarcheas
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dimosthenis Tzimotoudis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Konstantina Arvaniti
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Aggelos Manolias
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Maria-Aggeliki Tsatiri
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dimitra Basdani
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Sokratis Zekkas
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| |
Collapse
|
7
|
Yang Q, Tian J, Chen S, Yang Z, Wang Z, Xu HM, Dong LB. Discovery of sesquiterpenoids from an actinomycete Crossiella cryophila through genome mining and heterologous expression. Bioorg Chem 2024; 146:107308. [PMID: 38531151 DOI: 10.1016/j.bioorg.2024.107308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
Genome mining of the Actinomycete Crossiella cryophila facilitated the discovery of a minimal terpenoid biosynthetic gene cluster of cry consisting of a class I terpene cyclase CryA and a CYP450 monooxygenase CryB. Heterologous expression of cry allowed the isolation and characterization of two new sesquiterpenoids, ent-viridiflorol (1) and cryophilain (2). Notably, cryophilain (2) possesses a 5/7/3-fused tricyclic skeleton bearing a distinctive bridgehead hydroxy group. The combined in vivo and in vitro experiments revealed that CryA, the first ent-viridiflorol terpene cyclase, catalyzes farnesyl diphosphate to form the 5/7/3 sesquiterpene core scaffold and P450 CryB serves as a tailoring enzyme responsible for installing a hydroxy group at the bridgehead carbon.
Collapse
Affiliation(s)
- Qian Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jupeng Tian
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Shungen Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ziyi Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zengyuan Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hui-Min Xu
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing 211198, China
| | - Liao-Bin Dong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
8
|
Ahmed M, Malhotra SS, Yadav O, Monika, Saini C, Sharma N, Gupta MK, Mohapatra RK, Ansari A. DFT and TDDFT exploration on electronic transitions and bonding aspect of DPA and PTDC ligated transition metal complexes. J Mol Model 2024; 30:122. [PMID: 38570356 DOI: 10.1007/s00894-024-05912-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
CONTEXT In this study, we have investigated the structure, reactivity, bonding, and electronic transitions of DPA and PDTC along with their Ni-Zn complexes using DFT/TD-DFT methods. The energy gap between the frontier orbitals was computed to understand the reactivity pattern of the ligands and metal complexes. From the energies of FMO's, the global reactivity descriptors such as electron affinity, ionization potential, hardness (η), softness (S), chemical potential (μ), electronegativity (χ), and electrophilicity index (ω) have been calculated. The complexes show a strong NLO properties due to easily polarization as indicated by the narrow HOMO-LUMO gap. The polarizability and hyperpolarizabilities of the complexes indicate that they are good candidates for NLO materials. Molecular electrostatic potential (MEP) maps identified electrophilic and nucleophilic sites on the surfaces of the complexes. TDDFT and NBO analyses provided insights into electronic transitions, bonding, and stabilizing interactions within the studied complexes. DPA and PDTC exhibited larger HOMO-LUMO gaps and more negative electrostatic potentials compared to their metal complexes suggesting the higher reactivity. Ligands (DPA and PDTC) had absorption spectra in the range of 250 nm to 285 nm while their complexes spanned 250 nm to 870 nm. These bands offer valuable information on electronic transitions, charge transfer and optical behavior. This work enhances our understanding of the electronic structure and optical properties of these complexes. METHODS Gaussian16 program was used for the optimization of all the compounds. B3LYP functional in combination with basis sets, such as LanL2DZ for Zn, Ni and Cu while 6-311G** for other atoms like C, H, O, N, and S was used. Natural bond orbital (NBO) analysis is carried out to find out how the filled orbital of one sub-system interacts with the empty orbital of another sub-system. The ORCA software is used for computing spectral features along with the zeroth order regular approximation method (ZORA) to observe its relativistic effects. TD-DFT study is carried out to calculate the excitation energy by using B3LYP functional.
Collapse
Affiliation(s)
- Mukhtar Ahmed
- Department of Chemistry, Central University of Haryana, Mahendergarh, 123031, India
| | - Sumit Sahil Malhotra
- Department of Chemistry, Central University of Haryana, Mahendergarh, 123031, India
| | - Oval Yadav
- Department of Chemistry, Central University of Haryana, Mahendergarh, 123031, India
| | - Monika
- Department of Chemistry, Central University of Haryana, Mahendergarh, 123031, India
| | - Charu Saini
- Department of Chemistry, Central University of Haryana, Mahendergarh, 123031, India
| | - Neha Sharma
- Life Science, Dyal Singh College, University of Delhi, Delhi, 110003, India
| | - Manoj Kumar Gupta
- Department of Chemistry, Central University of Haryana, Mahendergarh, 123031, India
| | - Ranjan Kumar Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, 758002, India
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, Mahendergarh, 123031, India.
| |
Collapse
|
9
|
Abstract
Covering: up to July 2023Terpene cyclases (TCs) catalyze some of the most complicated reactions in nature and are responsible for creating the skeletons of more than 95 000 terpenoid natural products. The canonical TCs are divided into two classes according to their structures, functions, and mechanisms. The class II TCs mediate acid-base-initiated cyclization reactions of isoprenoid diphosphates, terpenes without diphosphates (e.g., squalene or oxidosqualene), and prenyl moieties on meroterpenes. The past twenty years witnessed the emergence of many class II TCs, their reactions and their roles in biosynthesis. Class II TCs often act as one of the first steps in the biosynthesis of biologically active natural products including the gibberellin family of phytohormones and fungal meroterpenoids. Due to their mechanisms and biocatalytic potential, TCs elicit fervent attention in the biosynthetic and organic communities and provide great enthusiasm for enzyme engineering to construct novel and bioactive molecules. To engineer and expand the structural diversities of terpenoids, it is imperative to fully understand how these enzymes generate, precisely control, and quench the reactive carbocation intermediates. In this review, we summarize class II TCs from nature, including sesquiterpene, diterpene, triterpene, and meroterpenoid cyclases as well as noncanonical class II TCs and inspect their sequences, structures, mechanisms, and structure-guided engineering studies.
Collapse
Affiliation(s)
- Xingming Pan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7011, USA.
| | - Liao-Bin Dong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
10
|
Buedenbender L, Ageitos L, Lages MA, Platas-Iglesias C, Balado M, Lemos ML, Rodríguez J, Jiménez C. O-versus S-Metal Coordination of the Thiocarboxylate Group: An NMR Study of the Two Tautomeric Forms of the Ga(III)-Photoxenobactin E Complex. Inorg Chem 2024; 63:4176-4184. [PMID: 38387064 PMCID: PMC10915793 DOI: 10.1021/acs.inorgchem.3c04076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
Photoxenobactin E (1) is a natural product with an unusual thiocarboxylic acid terminus recently isolated from an entomopathogenic bacterium. The biosynthetic gene cluster associated with photoxenobactin E, and other reported derivatives, is very similar to that of piscibactin, the siderophore responsible for the iron uptake among bacteria of the Vibrionaceae family, including potential human pathogens. Here, the reisolation of 1 from the fish pathogen Vibrio anguillarum RV22 cultured under iron deprivation, its ability to chelate Ga(III), and the full NMR spectroscopic characterization of the Ga(III)-photoxenobactin E complex are presented. Our results show that Ga(III)-photoxenobactin E in solution exists in a thiol-thione tautomeric equilibrium, where Ga(III) is coordinated through the sulfur (thiol form) or oxygen (thione form) atoms of the thiocarboxylate group. This report represents the first NMR study of the chemical exchange between the thiol and thione forms associated with thiocarboxylate-Ga(III) coordination, including the kinetics of the interconversion process associated with this tautomeric exchange. These findings show significant implications for ligand design as they illustrate the potential of the thiocarboxylate group as a versatile donor for hard metal ions such as Ga(III).
Collapse
Affiliation(s)
- Larissa Buedenbender
- CICA
− Centro Interdisciplinar de Química e Bioloxía
e Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Lucía Ageitos
- CICA
− Centro Interdisciplinar de Química e Bioloxía
e Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Marta A. Lages
- Departamento
de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Carlos Platas-Iglesias
- CICA
− Centro Interdisciplinar de Química e Bioloxía
e Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Miguel Balado
- Departamento
de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Manuel L. Lemos
- Departamento
de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Jaime Rodríguez
- CICA
− Centro Interdisciplinar de Química e Bioloxía
e Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Carlos Jiménez
- CICA
− Centro Interdisciplinar de Química e Bioloxía
e Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
11
|
Chen S, Yang Q, Zhang X, Wang Z, Xu HM, Dong LB. Discovery of Diverse Sesquiterpenoids from Crossiella cryophila through Genome Mining and NMR Tracking. JOURNAL OF NATURAL PRODUCTS 2024; 87:195-206. [PMID: 38266176 DOI: 10.1021/acs.jnatprod.3c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Terpenoids, the largest and most structurally diverse natural product family, are predominantly found in fungi and plants, with bacterial terpenoids forming a minor fraction. Here, we established an efficient platform that integrates genome mining and NMR-tracking for prioritizing strains and tracking bacterial terpenoids. By employing this platform, we selected Crossiella cryophila for a comprehensive investigation of its capacity for terpenoid production, resulting in the characterization of 15 sesquiterpenoids. These compounds comprise nine new sesquiterpenoids (1-9), along with six known analogs (10-15), which are categorized into five distinctive carbon skeletons: bicyclogermacrane, maaliane, cadinane, eudesmane, and nor-eudesmane. Their chemical structures were determined through a combination of spectroscopic analysis, single-crystal X-ray diffraction, and quantum chemical calculations. Notably, the absolute configurations of compounds 1, 2, 5-7, 9, and 13-15 were determined via single-crystal X-ray diffraction analyses. The selected compounds were evaluated for their anticancer, antimicrobial, and anti-inflammatory bioactivities; however, none of these compounds displayed any significant bioactivity. This study enriches the repertoire of bacterial terpenoids, offers a practical process for prioritizing strains for bacterial terpenoids discovery, and establishes a foundation for exploring terpenoid biosynthesis.
Collapse
Affiliation(s)
- Shungen Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qian Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaowei Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zengyuan Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hui-Min Xu
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing 211198, China
| | - Liao-Bin Dong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
12
|
Anni D, Amika Mbema JC, Malloum A, Conradie J. Hydration of [Formula: see text]aminobenzoic acid: structures and non-covalent bondings of aminobenzoic acid-water clusters. J Mol Model 2024; 30:38. [PMID: 38214749 PMCID: PMC10786749 DOI: 10.1007/s00894-023-05810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
CONTEXT Micro-hydration of the aminobenzoic acid is essential to understand its interaction with surrounding water molecules. Understanding the micro-hydration of the aminobenzoic acid is also essential to study its remediation from wastewater. Therefore, we explored the potential energy surfaces (PESs) of the para-aminobenzoic acid-water clusters, ABW[Formula: see text], [Formula: see text], to study the microsolvation of the aminobenzoic acid in water. In addition, we performed a quantum theory of atoms in molecules (QTAIM) analysis to identify the nature of non-covalent bondings in the aminobenzoic acid-water clusters. Furthermore, temperature effects on the stability of the located isomers have been examined. The located structures have been used to calculate the hydration free energy and the hydration enthalpy of the aminobenzoic acid using the cluster continuum solvation model. The hydration free energy and the hydration enthalpy of the aminobenzoic acid at room temperature are evaluated to be -7.0 kcal/mol and -18.1 kcal/mol, respectively. The hydration enthalpy is in perfect agreement with a previous experimental estimate. Besides, temperature effects on the calculated hydration enthalpy and free energy are reported. Finally, we calculated the gas phase binding energies of the most stable structures of the ABW[Formula: see text] clusters using twelve functionals of density functional theory (DFT), including empirical dispersion. The DFT functionals are benchmarked against the DLPNO-CCSD(T)/CBS. We have found that the three most suitable DFT functionals are classified in the following order: PW6B95D3 > MN15 > [Formula: see text]B97XD. Therefore, the PW6B95D3 functional is recommended for further study of the aminobenzoic acid-water clusters and similar systems. METHODS The exploration started with classical molecular dynamics simulations followed by complete optimization at the PW6B95D3/def2-TZVP level of theory. Optimizations are performed using Gaussian 16 suite of codes. QTAIM analysis is performed using the AIMAll program.
Collapse
Affiliation(s)
- Diane Anni
- Department of Physics, Faculty of Science, University of Maroua, PO BOX 46, Maroua, Cameroon
| | - Jean Claude Amika Mbema
- Department of Physics, Faculty of Science, University of Maroua, PO BOX 46, Maroua, Cameroon
| | - Alhadji Malloum
- Department of Physics, Faculty of Science, University of Maroua, PO BOX 46, Maroua, Cameroon.
- Department of Chemistry, University of the Free State, PO BOX 339, Bloemfontein, 9300, South Africa.
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, PO BOX 339, Bloemfontein, 9300, South Africa
- Department of Chemistry, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway
| |
Collapse
|
13
|
Fluegel LL, Deng MR, Su P, Kalkreuter E, Yang D, Rudolf JD, Dong LB, Shen B. Development of platensimycin, platencin, and platensilin overproducers by biosynthetic pathway engineering and fermentation medium optimization. J Ind Microbiol Biotechnol 2024; 51:kuae003. [PMID: 38262768 PMCID: PMC10847714 DOI: 10.1093/jimb/kuae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/22/2024] [Indexed: 01/25/2024]
Abstract
The platensimycin (PTM), platencin (PTN), and platensilin (PTL) family of natural products continues to inspire the discovery of new chemistry, enzymology, and medicine. Engineered production of this emerging family of natural products, however, remains laborious due to the lack of practical systems to manipulate their biosynthesis in the native-producing Streptomyces platensis species. Here we report solving this technology gap by implementing a CRISPR-Cas9 system in S. platensis CB00739 to develop an expedient method to manipulate the PTM, PTN, and PTL biosynthetic machinery in vivo. We showcase the utility of this technology by constructing designer recombinant strains S. platensis SB12051, SB12052, and SB12053, which, upon fermentation in the optimized PTM-MS medium, produced PTM, PTN, and PTL with the highest titers at 836 mg L-1, 791 mg L-1, and 40 mg L-1, respectively. Comparative analysis of these resultant recombinant strains also revealed distinct chemistries, catalyzed by PtmT1 and PtmT3, two diterpene synthases that nature has evolved for PTM, PTN, and PTL biosynthesis. The ΔptmR1/ΔptmT1/ΔptmT3 triple mutant strain S. platensis SB12054 could be envisaged as a platform strain to engineer diterpenoid biosynthesis by introducing varying ent-copalyl diphosphate-acting diterpene synthases, taking advantage of its clean metabolite background, ability to support diterpene biosynthesis in high titers, and the promiscuous tailoring biosynthetic machinery. ONE-SENTENCE SUMMARY Implementation of a CRISPR-Cas9 system in Streptomyces platensis CB00739 enabled the construction of a suite of designer recombinant strains for the overproduction of platensimycin, platencin, and platensilin, discovery of new diterpene synthase chemistries, and development of platform strains for future diterpenoid biosynthesis engineering.
Collapse
Affiliation(s)
- Lucas L Fluegel
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, FL 33458, USA
| | - Ming-Rong Deng
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Ping Su
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Edward Kalkreuter
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Dong Yang
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
- Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Jeffrey D Rudolf
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Liao-Bin Dong
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Ben Shen
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, FL 33458, USA
- Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| |
Collapse
|
14
|
Steele AD, Kiefer AF, Shen B. The many facets of sulfur incorporation in natural product biosynthesis. Curr Opin Chem Biol 2023; 76:102366. [PMID: 37451204 PMCID: PMC10527158 DOI: 10.1016/j.cbpa.2023.102366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
Sulfur-containing natural products (S-containing NPs) exhibit diverse chemical structures and biosynthetic machineries. Unraveling the intricate chemistry of S-incorporation requires innovative and multidisciplinary approaches. In this review, we surveyed the landscape of S-containing NP biosynthetic machineries, classified the S-incorporation chemistry into four distinct classes, and highlighted each of the four classes with representative examples from recent studies. All highlighted chemistry has been correlated to the genes encoding the biosynthetic machineries of the S-containing NPs, which open new opportunities to discover S-containing NPs through genome mining. These examples should inspire the community to explore uncharted territories in NP research, promoting further advancements in both novel S-containing NP discovery and S-incorporation chemistry.
Collapse
Affiliation(s)
- Andrew D Steele
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, United States
| | - Alexander F Kiefer
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, United States
| | - Ben Shen
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, United States; Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, United States; Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, United States; Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, FL 33458, United States.
| |
Collapse
|
15
|
Chatterjee S, Hausinger RP. Sulfur incorporation into biomolecules: recent advances. Crit Rev Biochem Mol Biol 2022; 57:461-476. [PMID: 36403141 PMCID: PMC10192010 DOI: 10.1080/10409238.2022.2141678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/05/2022] [Accepted: 10/26/2022] [Indexed: 11/21/2022]
Abstract
Sulfur is an essential element for a variety of cellular constituents in all living organisms and adds considerable functionality to a wide range of biomolecules. The pathways for incorporating sulfur into central metabolites of the cell such as cysteine, methionine, cystathionine, and homocysteine have long been established. Furthermore, the importance of persulfide intermediates during the biosynthesis of thionucleotide-containing tRNAs, iron-sulfur clusters, thiamin diphosphate, and the molybdenum cofactor are well known. This review briefly surveys these topics while emphasizing more recent aspects of sulfur metabolism that involve unconventional biosynthetic pathways. Sacrificial sulfur transfers from protein cysteinyl side chains to precursors of thiamin and the nickel-pincer nucleotide (NPN) cofactor are described. Newer aspects of synthesis for lipoic acid, biotin, and other compounds are summarized, focusing on the requisite iron-sulfur cluster destruction. Sulfur transfers by using a noncore sulfide ligand bound to a [4Fe-4S] cluster are highlighted for generating certain thioamides and for alternative biosynthetic pathways of thionucleotides and the NPN cofactor. Thioamide formation by activating an amide oxygen atom via phosphorylation also is illustrated. The discussion of these topics stresses the chemical reaction mechanisms of the transformations and generally avoids comments on the gene/protein nomenclature or the sources of the enzymes. This work sets the stage for future efforts to decipher the diverse mechanisms of sulfur incorporation into biological molecules.
Collapse
Affiliation(s)
- Shramana Chatterjee
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Robert P. Hausinger
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
16
|
Asamizu S, Pramana AAC, Kawai SJ, Arakawa Y, Onaka H. Comparative Metabolomics Reveals a Bifunctional Antibacterial Conjugate from Combined-Culture of Streptomyces hygroscopicus HOK021 and Tsukamurella pulmonis TP-B0596. ACS Chem Biol 2022; 17:2664-2672. [PMID: 36074093 DOI: 10.1021/acschembio.2c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
To investigate the potential for secondary metabolite biosynthesis by Streptomyces species, we employed a coculture method to discover natural bioactive products and identified specific antibacterial activity from a combined-culture of Streptomyces hygroscopicus HOK021 and Tsukamurella pulmonis TP-B0596. Molecular networking using ultrahigh performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS/MS) data revealed a specific clade of metabolites in this combined-culture that were not detected in both monocultures. Using the chemical profiles, a previously unidentified conjugate between FabF inhibitor and catechol-type siderophore was successfully identified and named harundomycin A. Harundomycin A was a conjugate between the 2,4-dihydroxy-3-aminobenzoate moiety of platensimycin and N,N'-bis(2,3-dihydroxybenzoyl)-O-seryl-cysteine (bisDHBA-Ser-Cys) with a thioester linkage. Along with the production of harundomycin A, platensimycin, its thiocarboxylic acid form thioplatensimycin, enterobactin, and its degradation product N,N'-bis(2,3-dihydroxybenzoyl)-O-l-seryl-dehydroalanine (bisDHBA-Ser-Dha) were also induced in the combined-culture. Genomic data of S. hygroscopicus HOK021 and T. pulmonis TP-B0596 indicated that strain HOK021 possessed biosynthetic gene clusters for both platensimycin and enterobactin, and thereby revealed that T. pulmonis stimulates HOK021 and acts as an inducer of both of these metabolites. Although the harundomycin A was modified by bulky bisDHBA-Ser-Cys, responsible for the binding to the target molecule FabF, it showed a similar antibacterial spectrum to platensimycin, including against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci, suggesting that the pharmacophore is platensimycin. Additionally, Chrome Azurol S assay showed that harundomycin A possesses ferric iron-chelating activity comparable to that of enterobactin. Our study demonstrated the transformation of existing natural products to bifunctional molecules driven by bacterial interaction.
Collapse
Affiliation(s)
- Shumpei Asamizu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Abrory Agus Cahya Pramana
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Sung-Jin Kawai
- New Field Pioneering Division, Toyota Boshoku Corporation, 1-1 Toyoda, Kariya, Aichi 448-8651, Japan
| | - Yoshichika Arakawa
- Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | - Hiroyasu Onaka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
17
|
Zhang X, Xu X, You C, Yang C, Guo J, Sang M, Geng C, Cheng F, Du L, Shen Y, Wang S, Lan H, Yang F, Li Y, Tang Y, Zhang Y, Bian X, Li S, Zhang W. Biosynthesis of Chuangxinmycin Featuring a Deubiquitinase‐like Sulfurtransferase. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xingwang Zhang
- State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao Shandong 266237 China
| | - Xiaokun Xu
- State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Cai You
- State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Chaofan Yang
- State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Jiawei Guo
- State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Moli Sang
- State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Ce Geng
- Shandong Provincial Key Laboratory of Synthetic Biology CAS Key Laboratory of Biofuels Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao Shandong 266101 China
| | - Fangyuan Cheng
- State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Lei Du
- State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences Shandong University Jinan Shandong 250012 China
| | - Sheng Wang
- Tencent AI Lab Shenzhen Guangdong 518063 China
| | - Haidong Lan
- Tencent AI Lab Shenzhen Guangdong 518063 China
| | - Fan Yang
- Research Center for Marine Drugs State Key Laboratory of Oncogenes and Related Genes Department of Pharmacy Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Yuezhong Li
- State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Ya‐Jie Tang
- State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
- Helmholtz International Lab for Anti-Infectives Shandong University-Helmholtz Institute of Biotechnology Shandong University Qingdao Shandong 266237 China
| | - Xiaoying Bian
- State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
- Helmholtz International Lab for Anti-Infectives Shandong University-Helmholtz Institute of Biotechnology Shandong University Qingdao Shandong 266237 China
| | - Shengying Li
- State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao Shandong 266237 China
| | - Wei Zhang
- State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| |
Collapse
|
18
|
Zhang X, Xu X, You C, Yang C, Guo J, Sang M, Geng C, Cheng F, Du L, Shen Y, Wang S, Lan H, Yang F, Li Y, Tang YJ, Zhang Y, Bian X, Li S, Zhang W. Biosynthesis of Chuangxinmycin Featuring a Deubiquitinase-like Sulfurtransferase. Angew Chem Int Ed Engl 2021; 60:24418-24423. [PMID: 34498345 DOI: 10.1002/anie.202107745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/20/2021] [Indexed: 11/11/2022]
Abstract
The knowledge on sulfur incorporation mechanism involved in sulfur-containing molecule biosynthesis remains limited. Chuangxinmycin is a sulfur-containing antibiotic with a unique thiopyrano[4,3,2-cd]indole (TPI) skeleton and selective inhibitory activity against bacterial tryptophanyl-tRNA synthetase. Despite the previously reported biosynthetic gene clusters and the recent functional characterization of a P450 enzyme responsible for C-S bond formation, the enzymatic mechanism for sulfur incorporation remains unknown. Here, we resolve this central biosynthetic problem by in vitro biochemical characterization of the key enzymes and reconstitute the TPI skeleton in a one-pot enzymatic reaction. We reveal that the JAMM/MPN+ protein Cxm3 functions as a deubiquitinase-like sulfurtransferase to catalyze a non-classical sulfur-transfer reaction by interacting with the ubiquitin-like sulfur carrier protein Cxm4GG. This finding adds a new mechanism for sulfurtransferase in nature.
Collapse
Affiliation(s)
- Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China
| | - Xiaokun Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Cai You
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Chaofan Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Jiawei Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Moli Sang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Ce Geng
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Fangyuan Cheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Lei Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Sheng Wang
- Tencent AI Lab, Shenzhen, Guangdong, 518063, China
| | - Haidong Lan
- Tencent AI Lab, Shenzhen, Guangdong, 518063, China
| | - Fan Yang
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuezhong Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.,Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xiaoying Bian
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.,Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
19
|
Abstract
Covering: up to mid-2020 Terpenoids, also called isoprenoids, are the largest and most structurally diverse family of natural products. Found in all domains of life, there are over 80 000 known compounds. The majority of characterized terpenoids, which include some of the most well known, pharmaceutically relevant, and commercially valuable natural products, are produced by plants and fungi. Comparatively, terpenoids of bacterial origin are rare. This is counter-intuitive to the fact that recent microbial genomics revealed that almost all bacteria have the biosynthetic potential to create the C5 building blocks necessary for terpenoid biosynthesis. In this review, we catalogue terpenoids produced by bacteria. We collected 1062 natural products, consisting of both primary and secondary metabolites, and classified them into two major families and 55 distinct subfamilies. To highlight the structural and chemical space of bacterial terpenoids, we discuss their structures, biosynthesis, and biological activities. Although the bacterial terpenome is relatively small, it presents a fascinating dichotomy for future research. Similarities between bacterial and non-bacterial terpenoids and their biosynthetic pathways provides alternative model systems for detailed characterization while the abundance of novel skeletons, biosynthetic pathways, and bioactivies presents new opportunities for drug discovery, genome mining, and enzymology.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Tyler A Alsup
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Zining Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
20
|
Liu A, Si Y, Dong SH, Mahanta N, Penkala HN, Nair SK, Mitchell DA. Functional elucidation of TfuA in peptide backbone thioamidation. Nat Chem Biol 2021; 17:585-592. [PMID: 33707784 PMCID: PMC8084935 DOI: 10.1038/s41589-021-00771-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 02/11/2021] [Indexed: 01/31/2023]
Abstract
YcaO enzymes catalyze several post-translational modifications on peptide substrates, including thioamidation, which substitutes an amide oxygen with sulfur. Most predicted thioamide-forming YcaO enzymes are encoded adjacent to TfuA, which when present, is required for thioamidation. While activation of the peptide amide backbone is well established for YcaO enzymes, the function of TfuA has remained enigmatic. Here we characterize the TfuA protein involved in methyl-coenzyme M reductase thioamidation and demonstrate that TfuA catalyzes the hydrolysis of thiocarboxylated ThiS (ThiS-COSH), a proteinaceous sulfur donor, and enhances the affinity of YcaO toward the thioamidation substrate. We also report a crystal structure of a TfuA, which displays a new protein fold. Our structural and mutational analyses of TfuA have uncovered conserved binding interfaces with YcaO and ThiS in addition to revealing a hydrolase-like active site featuring a Ser-Lys catalytic pair.
Collapse
Affiliation(s)
- Andi Liu
- Department of Microbiology, University of Illinois, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Yuanyuan Si
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
- Department of Chemistry, University of Illinois, Urbana, IL, USA
| | - Shi-Hui Dong
- Department of Biochemistry, University of Illinois, Urbana, IL, USA
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Nilkamal Mahanta
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
- Department of Chemistry, University of Illinois, Urbana, IL, USA
- Department of Chemistry, Indian Institute of Technology Dharwad, Karnataka, India
| | - Haley N Penkala
- Department of Microbiology, University of Illinois, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Satish K Nair
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
- Department of Chemistry, University of Illinois, Urbana, IL, USA
- Department of Biochemistry, University of Illinois, Urbana, IL, USA
| | - Douglas A Mitchell
- Department of Microbiology, University of Illinois, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA.
- Department of Chemistry, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
21
|
Cao M, Zheng C, Yang D, Kalkreuter E, Adhikari A, Liu YC, Rateb ME, Shen B. Cryptic Sulfur Incorporation in Thioangucycline Biosynthesis. Angew Chem Int Ed Engl 2021; 60:7140-7147. [PMID: 33465268 PMCID: PMC7969429 DOI: 10.1002/anie.202015570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/30/2020] [Indexed: 12/16/2022]
Abstract
Sulfur incorporation into natural products is a critical area of biosynthetic studies. Recently, a subset of sulfur-containing angucyclines has been discovered, and yet, the sulfur incorporation step is poorly understood. In this work, a series of thioether-bridged angucyclines were discovered, and a cryptic epoxide Michael acceptor intermediate was revealed en route to thioangucyclines (TACs) A and B. However, systematic gene deletion of the biosynthetic gene cluster (BGC) by CRISPR/Cas9 could not identify any gene responsible for the conversion of the epoxide intermediate to TACs. Instead, a series of in vitro and in vivo experiments conclusively showed that the conversion is the result of two non-enzymatic steps, possibly mediated by endogenous hydrogen sulfide. Therefore, the TACs are proposed to derive from a detoxification process. These results are expected to contribute to the study of both angucyclines and the utilization of inorganic sulfur in natural product biosynthesis.
Collapse
Affiliation(s)
| | | | - Dong Yang
- Department of Chemistry, Department of Molecular Medicine, Natural Products Discovery Center at Scripps Research, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Edward Kalkreuter
- Department of Chemistry, Department of Molecular Medicine, Natural Products Discovery Center at Scripps Research, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Ajeeth Adhikari
- Department of Chemistry, Department of Molecular Medicine, Natural Products Discovery Center at Scripps Research, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Yu-Chen Liu
- Department of Chemistry, Department of Molecular Medicine, Natural Products Discovery Center at Scripps Research, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Mostafa E. Rateb
- Department of Chemistry, Department of Molecular Medicine, Natural Products Discovery Center at Scripps Research, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Ben Shen
- Department of Chemistry, Department of Molecular Medicine, Natural Products Discovery Center at Scripps Research, The Scripps Research Institute, Jupiter, Florida 33458, United States
| |
Collapse
|
22
|
Cao M, Zheng C, Yang D, Kalkreuter E, Adhikari A, Liu Y, Rateb ME, Shen B. Cryptic Sulfur Incorporation in Thioangucycline Biosynthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mingming Cao
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| | - Chengjian Zheng
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| | - Dong Yang
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| | - Edward Kalkreuter
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| | - Ajeeth Adhikari
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| | - Yu‐Chen Liu
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| | - Mostafa E. Rateb
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| | - Ben Shen
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| |
Collapse
|
23
|
Li Y, Weng X, Deng Y, Pan J, Zhu S, Wen Z, Yuan Y, Li S, Shen B, Duan Y, Huang Y. Semisynthesis and Biological Evaluation of Platencin Thioether Derivatives: Dual FabF and FabH Inhibitors against MRSA. ACS Med Chem Lett 2021; 12:433-442. [PMID: 33738071 DOI: 10.1021/acsmedchemlett.0c00653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/08/2021] [Indexed: 12/28/2022] Open
Abstract
The discovery and clinical use of multitarget monotherapeutic antibiotics is regarded as a promising approach to reduce the development of antibiotic resistance. Platencin (PTN), a potent natural antibiotic initially isolated from a soil actinomycete, targets both FabH and FabF, the initiation and elongation condensing enzymes for bacterial fatty acid biosynthesis. However, its further clinical development has been hampered by poor pharmacokinetics. Herein we report the semisynthesis and biological evaluation of platencin derivatives 1-15 with potent antibacterial activity against methicillin-resistant Staphylococcus aureus in vitro. Some of these PTN analogues showed similar yet distinct interactions with FabH and FabF, as shown by molecular docking, differential scanning fluorometry, and isothermal titration calorimetry. Compounds 3, 8, 10, and 14 were further evaluated in a mouse peritonitis model, among which 8 showed in vivo antibacterial activity comparable to that of PTN. Our results suggest that semisynthetic modification of PTN is a rapid route to obtain active PTN derivatives that might be further developed as promising antibiotics against drug-resistant major pathogens.
Collapse
Affiliation(s)
- Yuling Li
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
| | - Xiang Weng
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
| | - Youchao Deng
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
| | - Jian Pan
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
| | - Saibin Zhu
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
| | - Zhongqing Wen
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
| | - Yanqiu Yuan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shaowen Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ben Shen
- Departments of Chemistry and Molecular Medicine and Natural Product Discovery Center at Scripps Research, Scripps Research, Jupiter, Florida 33458, United States
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410011, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, China
| |
Collapse
|
24
|
Zheng CJ, Kalkreuter E, Fan BY, Liu YC, Dong LB, Shen B. PtmC Catalyzes the Final Step of Thioplatensimycin, Thioplatencin, and Thioplatensilin Biosynthesis and Expands the Scope of Arylamine N-Acetyltransferases. ACS Chem Biol 2021; 16:96-105. [PMID: 33314918 DOI: 10.1021/acschembio.0c00773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The members of the arylamine N-acetyltransferase (NAT) family of enzymes are important for their many roles in xenobiotic detoxification in bacteria and humans. However, very little is known about their roles outside of detoxification or their specificities for acyl donors larger than acetyl-CoA. Herein, we report the detailed study of PtmC, an unusual NAT homologue encoded in the biosynthetic gene cluster for thioplatensimycin, thioplatencin, and a newly reported scaffold, thioplatensilin, thioacid-containing diterpenoids and highly potent inhibitors of bacterial and mammalian fatty acid synthases. As the final enzyme of the pathway, PtmC is responsible for the selection of a thioacid arylamine over its cognate carboxylic acid and coupling to at least three large, 17-carbon ketolide-CoA substrates. Therefore, this study uses a combined approach of enzymology and molecular modeling to reveal how PtmC has evolved from the canonical NAT scaffold into a key part of a natural combinatorial biosynthetic pathway. Additionally, genome mining has revealed the presence of other related NATs located within natural product biosynthetic gene clusters. Thus, findings from this study are expected to expand our knowledge of how enzymes evolve for expanded substrate diversity and enable additional predictions about the activities of NATs involved in natural product biosynthesis and xenobiotic detoxification.
Collapse
|
25
|
Pan C, Kuranaga T, Liu C, Lu S, Shinzato N, Kakeya H. Thioamycolamides A-E, Sulfur-Containing Cycliclipopeptides Produced by the Rare Actinomycete Amycolatopsis sp. Org Lett 2020; 22:3014-3017. [PMID: 32239955 DOI: 10.1021/acs.orglett.0c00776] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of novel sulfur-containing cycliclipopeptides named thioamycolamides A-E, with thiazoline, thioether rings, and fatty acid moieties, were identified from the culture broth of the rare actinomycete Amycolatopsis sp. 26-4. The planar structural elucidation was accomplished by HRMS and 1D/2D NMR spectroscopic data analyses. The absolute configurations were unambiguously determined by Marfey's method, CD spectroscopy, and synthesis of partial structures. Moreover, their growth inhibitory activities against human tumor cell lines were investigated.
Collapse
Affiliation(s)
- Chengqian Pan
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Takefumi Kuranaga
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Chao Liu
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Shan Lu
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Naoya Shinzato
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
26
|
Dong LB, Liu YC, Cepeda AJ, Kalkreuter E, Deng MR, Rudolf JD, Chang C, Joachimiak A, Phillips GN, Shen B. Characterization and Crystal Structure of a Nonheme Diiron Monooxygenase Involved in Platensimycin and Platencin Biosynthesis. J Am Chem Soc 2019; 141:12406-12412. [PMID: 31291107 DOI: 10.1021/jacs.9b06183] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nonheme diiron monooxygenases make up a rapidly growing family of oxygenases that are rarely identified in secondary metabolism. Herein, we report the in vivo, in vitro, and structural characterizations of a nonheme diiron monooxygenase, PtmU3, that installs a C-5 β-hydroxyl group in the unified biosynthesis of platensimycin and platencin, two highly functionalized diterpenoids that act as potent and selective inhibitors of bacterial and mammalian fatty acid synthases. This hydroxylation sets the stage for the subsequent A-ring cleavage step key to the unique diterpene-derived scaffolds of platensimycin and platencin. PtmU3 adopts an unprecedented triosephosphate isomerase (TIM) barrel structural fold for this class of enzymes and possesses a noncanonical diiron active site architecture with a saturated six-coordinate iron center lacking a μ-oxo bridge. This study reveals the first member of a previously unidentified superfamily of TIM-barrel-fold enzymes for metal-dependent dioxygen activation, with the majority predicted to act on CoA-linked substrates, thus expanding our knowledge of nature's repertoire of nonheme diiron monooxygenases and TIM-barrel-fold enzymes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Changsoo Chang
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - George N Phillips
- Department of Biosciences , Rice University , Houston , Texas 77030 , United States
| | | |
Collapse
|
27
|
Qiu L, Wen Z, Li Y, Tian K, Deng Y, Shen B, Duan Y, Huang Y. Stereoselective functionalization of platensimycin and platencin by sulfa-Michael/aldol reactions. Org Biomol Chem 2019; 17:4261-4272. [PMID: 30816397 DOI: 10.1039/c9ob00324j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bioinspired sulfa-Michael/aldol cascade reactions have been developed for the semisynthesis of sulfur-containing heterocyclic derivatives of platensimycin and platencin, with three newly formed contiguous stereogenic centers. Density functional theory calculations revealed the mechanism for the stereochemistry control. This method was used in a synthesis of a platensimycin thiophene analogue with potent antibacterial activities against Staphylococcus aureus.
Collapse
Affiliation(s)
- Lin Qiu
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Dong LB, Zhang X, Rudolf JD, Deng MR, Kalkreuter E, Cepeda AJ, Renata H, Shen B. Cryptic and Stereospecific Hydroxylation, Oxidation, and Reduction in Platensimycin and Platencin Biosynthesis. J Am Chem Soc 2019; 141:4043-4050. [PMID: 30735041 DOI: 10.1021/jacs.8b13452] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Platensimycin (PTM) and platencin (PTN) are highly functionalized bacterial diterpenoids of ent-kauranol and ent-atiserene biosynthetic origin. C7 oxidation in the B-ring plays a key biosynthetic role in generating structural complexity known for ent-kaurane and ent-atisane derived diterpenoids. While all three oxidation patterns, α-hydroxyl, β-hydroxyl, and ketone, at C7 are seen in both the ent-kaurane and ent-atisane derived diterpenoids, their biosynthetic origins remain largely unknown. We previously established that PTM and PTN are produced by a single biosynthetic machinery, featuring cryptic C7 oxidations at the B-rings that transform the ent-kauranol and ent-atiserene derived precursors into the characteristic PTM and PTN scaffolds. Here, we report a three-enzyme cascade affording C7 α-hydroxylation in PTM and PTN biosynthesis. Combining in vitro and in vivo studies, we show that PtmO3 and PtmO6 are two functionally redundant α-ketoglutarate-dependent dioxygenases that generate a cryptic C7 β-hydroxyl on each of the ent-kauranol and ent-atiserene scaffolds, and PtmO8 and PtmO1, a pair of NAD+/NADPH-dependent dehydrogenases, subsequently work in concert to invert the C7 β-hydroxyl to α-hydroxyl via a C7 ketone intermediate. PtmO3 and PtmO6 represent the first dedicated C7 β-hydroxylases characterized to date and, together with PtmO8 and PtmO1, provide an account for the biosynthetic origins of all three C7 oxidation patterns that may shed light on other B-ring modifications in bacterial, plant, and fungal diterpenoid biosynthesis. Given their unprecedented activities in C7 oxidations, PtmO3, PtmO6, PtmO8, and PtmO1 enrich the growing toolbox of novel enzymes that could be exploited as biocatalysts to rapidly access complex diterpenoid natural products.
Collapse
|
29
|
Tian K, Deng Y, Qiu L, Zhu X, Shen B, Duan Y, Huang Y. Semisynthesis and Biological Evaluation of Platensimycin Analogues with Varying Aminobenzoic Acids. ChemistrySelect 2018; 3:12625-12629. [PMID: 32232122 PMCID: PMC7105086 DOI: 10.1002/slct.201802475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/19/2018] [Indexed: 11/06/2022]
Abstract
Platensimycin (PTM) is an excellent natural product drug lead against various gram-positive pathogens, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. In this study, twenty PTM derivatives with varying aminobenzoic acids were semisynthesized. In contrast to all the previous reported inactive aminobenzaote analogues, a few of them showed moderate antibacterial activities against S. aureus. Our study suggested that modification of the conserved aminobenzoic acid remains a viable approach to diversify the PTM scaffold.
Collapse
Affiliation(s)
- Kai Tian
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013 (China)
| | - Youchao Deng
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013 (China)
| | - Lin Qiu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013 (China)
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013 (China)
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410205 (China)
| | - Ben Shen
- Departments of Chemistry and Molecular Medicine, and Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, FL 33458 (USA)
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013 (China)
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410205 (China)
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410205 (China)
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013 (China)
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410205 (China)
| |
Collapse
|