1
|
Lu Y, Chen A, Liao M, Tao R, Wen S, Zhang S, Li C. Development of a microRNA-Based age estimation model using whole-blood microRNA expression profiling. Noncoding RNA Res 2025; 12:81-91. [PMID: 40144340 PMCID: PMC11938159 DOI: 10.1016/j.ncrna.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Age estimation is a critical aspect of human identification. Traditional methods, reliant on morphological examinations, are often suitable for living subjects. However, there are relatively few studies on age estimation based on biological samples, such as blood. Recent advancements have concentrated on DNA methylation for forensic age prediction. However, to explore further possibilities, this study investigated microRNAs (miRNAs) as alternative molecular markers for age estimation. Peripheral blood samples from 127 healthy individuals were analyzed for miRNA expression using small RNA sequencing. Lasso regression selected 103 candidate miRNAs, and Shapley additive explanations (SHAP) analysis identified 38 key miRNAs significant for age prediction. Five machine learning models were developed, with the elastic net model achieving the best performance (MAE of 4.08 years) on the testing set, surpassing current miRNA age estimation results. Additionally, we observed significant changes in the expression levels of miRNAs in healthy individuals aged 48-52 years. This study demonstrated the potential of blood miRNA biomarkers in age prediction and provides a set of miRNA markers for developing more accurate age prediction methods.
Collapse
Affiliation(s)
- Yanfang Lu
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, 030009, China
- Institute of Forensic Science, Fudan University, Shanghai, 200032, China
| | - Anqi Chen
- Institute of Forensic Science, Fudan University, Shanghai, 200032, China
| | - Mengxiao Liao
- Institute of Forensic Science, Fudan University, Shanghai, 200032, China
| | - Ruiyang Tao
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, 200063, China
| | - Shubo Wen
- Institute of Forensic Science, Fudan University, Shanghai, 200032, China
| | - Suhua Zhang
- Institute of Forensic Science, Fudan University, Shanghai, 200032, China
| | - Chengtao Li
- Institute of Forensic Science, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, 200063, China
| |
Collapse
|
2
|
Meng F, He J, Zhang X, Lyu W, Wei R, Wang S, Du Z, Wang H, Bi J, Hua X, Zhang C, Guan Y, Lyu G, Tian XL, Zhang L, Xie W, Tao W. Histone Lactylation Antagonizes Senescence and Skeletal Muscle Aging by Modulating Aging-Related Pathways. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2412747. [PMID: 40388671 DOI: 10.1002/advs.202412747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 04/11/2025] [Indexed: 05/21/2025]
Abstract
Epigenetic alterations are among the prominent drivers of cellular senescence and/or aging, intricately orchestrating gene expression programs during these processes. This study shows that histone lactylation, plays a pivotal role in counteracting senescence and mitigating dysfunctions of skeletal muscle in aged mice. Mechanistically, histone lactylation and lactyl-CoA levels markedly decrease during cellular senescence but are restored under hypoxic conditions primarily due to elevated glycolytic activity. The enrichment of histone lactylation at promoters is essential for sustaining the expression of genes involved in the cell cycle and DNA repair pathways. Furthermore, the modulation of enzymes crucial for histone lactylation, leads to reduced histone lactylation and accelerated cellular senescence. Consistently, the suppression of glycolysis and the depletion of histone lactylation are also observed during skeletal muscle aging. Modulating the enzymes can also lead to the loss of histone lactylation in skeletal muscle, downregulating DNA repair and proteostasis pathways and accelerating muscle aging. Running exercise increases histone lactylation, which in turn upregulate key genes in the DNA repair and proteostasis pathways. This study highlights the significant roles of histone lactylation in modulating cellular senescence as well as muscle aging, providing a promising avenue for antiaging intervention via metabolic manipulation.
Collapse
Affiliation(s)
- Fanju Meng
- The State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jianuo He
- The State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xuebin Zhang
- The State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Wencong Lyu
- The State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ran Wei
- The State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Shiyi Wang
- The State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhehao Du
- The State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Haochen Wang
- The State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jinlong Bi
- The State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xueyang Hua
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Chao Zhang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yiting Guan
- Zhanjiang Institute of Clinical Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524045, China
| | - Guoliang Lyu
- The State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiao-Li Tian
- Department of Human Population Genetics, Human Aging Research Institute (HARI) and School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Lijun Zhang
- The State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Wenbing Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Tao
- The State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
3
|
Fan Y, Zheng Y, Zhang Y, Xu G, Liu C, Hu J, Ji Q, Zhang S, Fang S, Lei J, Li LZ, Wang X, Xu X, Wang C, Wang S, Ma S, Song M, Jiang W, Zhu J, Feng Y, Wang J, Yang Y, Zhu G, Tian XL, Zhang H, Song W, Yang J, Yao Y, Liu GH, Qu J, Zhang W. ARID5A orchestrates cardiac aging and inflammation through MAVS mRNA stabilization. NATURE CARDIOVASCULAR RESEARCH 2025; 4:602-623. [PMID: 40301689 DOI: 10.1038/s44161-025-00635-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/10/2025] [Indexed: 05/01/2025]
Abstract
Elucidating the regulatory mechanisms of human cardiac aging remains a great challenge. Here, using human heart tissues from 74 individuals ranging from young (≤35 years) to old (≥65 years), we provide an overview of the histological, cellular and molecular alterations underpinning the aging of human hearts. We decoded aging-related gene expression changes at single-cell resolution and identified increased inflammation as the key event, driven by upregulation of ARID5A, an RNA-binding protein. ARID5A epi-transcriptionally regulated Mitochondrial Antiviral Signaling Protein (MAVS) mRNA stability, leading to NF-κB and TBK1 activation, amplifying aging and inflammation phenotypes. The application of gene therapy using lentiviral vectors encoding shRNA targeting ARID5A into the myocardium not only mitigated the inflammatory and aging phenotypes but also bolstered cardiac function in aged mice. Altogether, our study provides a valuable resource and advances our understanding of cardiac aging mechanisms by deciphering the ARID5A-MAVS axis in post-transcriptional regulation.
Collapse
Affiliation(s)
- Yanling Fan
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yandong Zheng
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiyuan Zhang
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Gang Xu
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, China
| | - Chun Liu
- Department of Physiology and Medicine, Cardiovascular Center, Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jianli Hu
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianzhao Ji
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuo Zhang
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuaiqi Fang
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinghui Lei
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lan-Zhu Li
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xing Wang
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xi Xu
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, China
| | - Cui Wang
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Si Wang
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shuai Ma
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Aging Biomarker Consortium, Beijing, China
| | - Moshi Song
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Wenjian Jiang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Junming Zhu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yijia Feng
- Oujiang Laboratory, Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, The First-affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiangang Wang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ying Yang
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guodong Zhu
- Institute of Gerontology, Guangzhou Geriatric Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute and School of Life Science, Nanchang University and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Hongjia Zhang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Weihong Song
- Oujiang Laboratory, Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, The First-affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiayin Yang
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, China
| | - Yan Yao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Guang-Hui Liu
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Jing Qu
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Weiqi Zhang
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| |
Collapse
|
4
|
Dykxhoorn DM, Da Fonseca Ferreira A, Gomez K, Shi J, Zhu S, Zhang L, Wang H, Wei J, Zhang Q, Macon CJ, Hare JM, Marzouka GR, Wang L, Dong C. MicroRNA-29c-3p and -126a Contribute to the Decreased Angiogenic Potential of Aging Endothelial Progenitor Cells. Int J Mol Sci 2025; 26:4259. [PMID: 40362495 PMCID: PMC12072698 DOI: 10.3390/ijms26094259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/22/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
EPCs play important roles in the maintenance of vascular repair and health. Aging is associated with both reduced numbers and functional impairment of EPCs, leading to diminished angiogenic capacity, impaired cardiac repair, and increased risk for cardiovascular disease (CVD). The molecular mechanisms that govern EPC function in cardiovascular health are not fully understood, but there is increasing evidence that microRNAs (miRNAs) play key roles in modulating EPC functionality, endothelial homeostasis, and vascular repair. We aimed to determine how aging alters endothelial progenitor (EPC) health and functionality by altering key miRNA-mRNA pathways. To identify key miRNA-mRNA pathways contributing to diminished EPC functionality associated with aging, microRNA and mRNA profiling were conducted in EPCs from young and aged C57BL/6 mice. We identified a complex aging-associated regulatory network involving two miRNAs-miR-29c-3p and -126a-that acted in tandem to impair vascular endothelial growth factor signaling through targeting Klf2 and Spred1, respectively. The modulation of components of the miR-29c-3p-Klf2-miR-126a-Spred-1-Vegf signaling pathway altered EPC self-renewal capacity, vascular tube formation, and migration in vitro, as well as cardiac repair in vivo. The miR-29c-3p-Klf2-miR-126a-Spred1-Vegf signaling axis plays a critical role in regulating the aging-associated deficits in EPC-mediated vascular repair and CVD risk.
Collapse
Affiliation(s)
- Derek M. Dykxhoorn
- John T. Macdonald Foundation Department of Human Genetics and, the John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (D.M.D.)
| | - Andrea Da Fonseca Ferreira
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.D.F.F.)
| | - Karenn Gomez
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.D.F.F.)
| | - Jianjun Shi
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.D.F.F.)
| | - Shoukang Zhu
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.D.F.F.)
| | - Lukun Zhang
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.D.F.F.)
| | - Huilan Wang
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.D.F.F.)
| | - Jianqin Wei
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.D.F.F.)
| | - Qianhuan Zhang
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.D.F.F.)
| | - Conrad J. Macon
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.D.F.F.)
| | - Joshua M. Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.D.F.F.)
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - George R. Marzouka
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Liyong Wang
- John T. Macdonald Foundation Department of Human Genetics and, the John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (D.M.D.)
| | - Chunming Dong
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.D.F.F.)
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
5
|
Agrawal N, Afzal M, Almalki WH, Ballal S, Sharma GC, Krithiga T, Panigrahi R, Saini S, Ali H, Goyal K, Rana M, Abida Khan. Longevity mechanisms in cardiac aging: exploring calcium dysregulation and senescence. Biogerontology 2025; 26:94. [PMID: 40259024 DOI: 10.1007/s10522-025-10229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 03/20/2025] [Indexed: 04/23/2025]
Abstract
Cardiac aging is a multistep process that results in a loss of various structural and functional heart abilities, increasing the risk of heart disease. Since its remarkable discovery in the early 1800s, when limestone is heated, calcium's importance has been defined in numerous ways. It can help stiffen shells and bones, function as a reducing agent in chemical reactions, and play a central role in cellular signalling. The movement of calcium ions in and out of cells and between those is referred to as calcium signalling. It influences the binding of the ligand, enzyme activity, electrochemical gradients, and other cellular processes. Calcium signalling is critical for both contraction and relaxation under the sliding filament model of heart muscle. However, with age, the heart undergoes changes that lead to increases in cardiac dysfunction, such as myocardial fibrosis, decreased cardiomyocyte function, and noxious disturbances in calcium homeostasis. Additionally, when cardiac tissues age, cellular senescence, a state of irreversible cell cycle arrest, accumulates and begins to exacerbate tissue inflammation and fibrosis. This review explores the most recent discoveries regarding the role of senescent cell accumulation and calcium signalling perturbances in cardiac aging. Additionally, new treatment strategies are used to reduce aged-related heart dysfunction by targeting senescent cells and modulating calcium homeostasis.
Collapse
Affiliation(s)
- Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - T Krithiga
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rajashree Panigrahi
- Department of Microbiology IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Suman Saini
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Abida Khan
- Center For Health Research, Northern Border University, Arar 73213, Saudi Arabia
| |
Collapse
|
6
|
Alrumaihi F, Al-Doaiss AA, Ullah F, Alwanian WM, Alharbi HO, Alassaf FA, Alfifi SM, Alshabrmi FM, Aba Alkhay FF, Alatawi EA. Histone modifications as molecular drivers of cardiac aging: Metabolic alterations, epigenetic mechanisms, and emerging therapeutic strategies. Curr Probl Cardiol 2025; 50:103056. [PMID: 40246000 DOI: 10.1016/j.cpcardiol.2025.103056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Cardiac aging represents a complex pathophysiological process characterized by progressive metabolic recombination and functional dedifferentiation of cardiac cellular components. Despite advancements in cardiovascular medicine, a critical research gap persists in understanding the precise epigenetic mechanisms that drive age-related cardiac dysfunction. This comprehensive review elucidates the pivotal role of histone modifications-including methylation, acetylation, and phosphorylation-in orchestrating the molecular landscape of cardiac aging. Significant gaps remain in our understanding of site-specific histone modification impacts on cardiac function, the intricate crosstalk between different histone marks, and their integration with metabolic alterations that characterize the aging myocardium. Current evidence reveals a dynamic epigenetic signature in aged cardiac tissue, typically featuring increased transcriptional activation markers alongside decreased repressive marks, though context-dependent variations exist. This review explores how histone modifications influence critical pathways governing mitochondrial dysfunction, DNA damage repair, inflammation, and fibrosis in aging hearts. Innovative therapeutic approaches targeting specific histone-modifying enzymes promise to mitigate age-related cardiac deterioration, potentially revolutionizing treatment paradigms for cardiovascular diseases in aging populations. Addressing these knowledge gaps requires multidimensional approaches that integrate epigenomics with functional assessment of cardiac performance.
Collapse
Affiliation(s)
- Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amin A Al-Doaiss
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Faqir Ullah
- Department of Pharmacy, IQRA University Chak Shehzad Campus, Islamabad.
| | - Wanian M Alwanian
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hajed Obaid Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Fai Abdullah Alassaf
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Somayah Mohammad Alfifi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Fahad M Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Faris F Aba Alkhay
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Eid A Alatawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| |
Collapse
|
7
|
Gill SK, Gomer RH. Translational Regulators in Pulmonary Fibrosis: MicroRNAs, Long Non-Coding RNAs, and Transcript Modifications. Cells 2025; 14:536. [PMID: 40214489 PMCID: PMC11988943 DOI: 10.3390/cells14070536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Fibrosing disorders including idiopathic pulmonary fibrosis (IPF) are progressive irreversible diseases, often with poor prognoses, characterized by the accumulation of excessive scar tissue and extracellular matrix. Translational regulation has emerged as a critical aspect of gene expression control, and the dysregulation of key effectors is associated with disease pathogenesis. This review examines the current literature on translational regulators in IPF, focusing on microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and RNA transcript modifications including alternative polyadenylation and chemical modification. Some of these translational regulators potentiate fibrosis, and some of the regulators inhibit fibrosis. In IPF, some of the profibrotic regulators are upregulated, and some of the antifibrotic regulators are downregulated. Correcting these defects in IPF-associated translational regulators could be an intriguing avenue for therapeutics.
Collapse
Affiliation(s)
| | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
8
|
Ji Y, Chen Z, Cai J. Roles and mechanisms of histone methylation in vascular aging and related diseases. Clin Epigenetics 2025; 17:35. [PMID: 39988699 PMCID: PMC11849368 DOI: 10.1186/s13148-025-01842-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/14/2025] [Indexed: 02/25/2025] Open
Abstract
The global aging trend has posed significant challenges, rendering healthcare for older adults a crucial focus in medical research. Among the numerous health concerns related to aging, vascular aging and dysfunction are important risk factors and underlying causes of age-related diseases. Histone methylation and demethylation, which are involved in gene expression and cellular senescence, are closely associated with the occurrence and development of vascular aging. Consequently, this review aimed to identify the role of histone methylation in the pathogenesis of vascular aging and its potential for treating age-related vascular diseases and provided new insights into therapeutic strategies targeting the vascular system.
Collapse
Affiliation(s)
- Yufei Ji
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Peking Union Medical College, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhenzhen Chen
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Jun Cai
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Peking Union Medical College, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China.
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
Dou Y, Zhang Y, Liu Y, Sun X, Liu X, Li B, Yang Q. Role of macrophage in intervertebral disc degeneration. Bone Res 2025; 13:15. [PMID: 39848963 PMCID: PMC11758090 DOI: 10.1038/s41413-024-00397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Intervertebral disc degeneration is a degenerative disease where inflammation and immune responses play significant roles. Macrophages, as key immune cells, critically regulate inflammation through polarization into different phenotypes. In recent years, the role of macrophages in inflammation-related degenerative diseases, such as intervertebral disc degeneration, has been increasingly recognized. Macrophages construct the inflammatory microenvironment of the intervertebral disc and are involved in regulating intervertebral disc cell activities, extracellular matrix metabolism, intervertebral disc vascularization, and innervation, profoundly influencing the progression of disc degeneration. To gain a deeper understanding of the inflammatory microenvironment of intervertebral disc degeneration, this review will summarize the role of macrophages in the pathological process of intervertebral disc degeneration, analyze the regulatory mechanisms involving macrophages, and review therapeutic strategies targeting macrophage modulation for the treatment of intervertebral disc degeneration. These insights will be valuable for the treatment and research directions of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Yiming Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, 300070, China
| | - Yang Liu
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Xinyu Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Bin Li
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215007, China.
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China.
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
10
|
Castro C, Delwarde C, Shi Y, Roh J. Geroscience in heart failure: the search for therapeutic targets in the shared pathobiology of human aging and heart failure. THE JOURNAL OF CARDIOVASCULAR AGING 2025; 5:10.20517/jca.2024.15. [PMID: 40297496 PMCID: PMC12036312 DOI: 10.20517/jca.2024.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Age is a major risk factor for heart failure, but one that has been historically viewed as non-modifiable. Emerging evidence suggests that the biology of aging is malleable, and can potentially be intervened upon to treat age-associated chronic diseases, such as heart failure. While aging biology represents a new frontier for therapeutic target discovery in heart failure, the challenges of translating Geroscience research to the clinic are multifold. In this review, we propose a strategy that prioritizes initial target discovery in human biology. We review the rationale for starting with human omics, which has generated important insights into the shared (patho)biology of human aging and heart failure. We then discuss how this knowledge can be leveraged to identify the mechanisms of aging biology most relevant to heart failure. Lastly, we provide examples of how this human-first Geroscience approach, when paired with rigorous functional assessments in preclinical models, is leading to early-stage clinical development of gerotherapeutic approaches for heart failure.
Collapse
Affiliation(s)
- Claire Castro
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Constance Delwarde
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Yanxi Shi
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jason Roh
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
He Y, Dai MS, Tao LY, Gu X, Wang H, Liu P. Pericarpium Trichosanthis Inhibits TGF-β1-Smad3 Pathway-Induced Cardiac Fibrosis in Heart Failure Rats via Upregulation of microRNA-29b. J Gene Med 2025; 27:e70003. [PMID: 39800345 DOI: 10.1002/jgm.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/25/2024] [Accepted: 11/16/2024] [Indexed: 05/02/2025] Open
Abstract
Cardiac dysfunction and adverse consequences induced by cardiac fibrosis have been well documented. However, the cardiac fibrosis pathway in chronic heart failure (CHF) remains unclear, and it is therefore necessary to conduct further research for the sake of developing more effective therapeutic strategies for CHF. Some recent studies suggest that Pericarpium Trichosanthis (PT) may help improve the progression of fibrotic diseases. To validate this possibility, we conducted an experiment to evaluate the effect of PT on cardiac fibrosis and explore the hidden mechanism. In the experiment, we induced cardiac fibrosis in rats by left anterior descending (LAD) coronary artery ligation. The findings revealed that PT reduced myocardial fibrosis and increased cardiac activity in CHF rats receiving LAD ligation. In addition, the TGF-β1 level was decreased, and the miR-29b expression was increased in CHF rats after PT treatment. Our in vitro experiment also demonstrated that PT treatment suppressed fibroblast activation and collagen synthesis in cardiac fibroblasts stimulated by TGF-β1, and at the same time decreased the TGF-β1 level and increased the miR-29b expression. We further verified that this action was correlated with the TGF-β/Smad3 signaling pathway. We also observe that miR-29b could suppress the TGF-β1 expression, and the suppression of miR-29b weakened the anti-fibrotic effect of PT. This suggests that PT could cure cardiac fibrosis and dysfunction both in vitro and in vivo via the TGF-β/Smad3 signaling pathway, while miR-29b may participate in this action.
Collapse
Affiliation(s)
- Yue He
- Shanghai University of Traditional Chinese Medicine, Shanghai Eighth People's Hospital, Shanghai, China
| | - Meng-Shi Dai
- Department of Geriatrics, Huashan Hospital, Fudan University, Shanghai, China
| | - Li-Yu Tao
- Shanghai University of Traditional Chinese Medicine, Shuguang Hospital, Shanghai, China
| | - Xinsheng Gu
- Department of Cardiology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Hao Wang
- Experimental Teaching Center of Basic Medicine, Fudan University, Shanghai, China
| | - Ping Liu
- Shanghai University of Traditional Chinese Medicine, Longhua Hospital, Shanghai, China
| |
Collapse
|
12
|
Qiu Y, Xu Q, Xie P, He C, Li Q, Yao X, Mao Y, Wu X, Zhang T. Epigenetic modifications and emerging therapeutic targets in cardiovascular aging and diseases. Pharmacol Res 2025; 211:107546. [PMID: 39674563 DOI: 10.1016/j.phrs.2024.107546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
The complex mechanisms underlying the development of cardiovascular diseases remain not fully elucidated. Epigenetics, which modulates gene expression without DNA sequence changes, is shedding light on these mechanisms and their heritable effects. This review focus on epigenetic regulation in cardiovascular aging and diseases, detailing specific epigenetic enzymes such as DNA methyltransferases (DNMTs), histone acetyltransferases (HATs), and histone deacetylases (HDACs), which serve as writers or erasers that modify the epigenetic landscape. We also discuss the readers of these modifications, such as the 5-methylcytosine binding domain proteins, and the erasers ten-eleven translocation (TET) proteins. The emerging role of RNA methylation, particularly N6-methyladenosine (m6A), in cardiovascular pathogenesis is also discussed. We summarize potential therapeutic targets, such as key enzymes and their inhibitors, including DNMT inhibitors like 5-azacytidine and decitabine, HDAC inhibitors like belinostat and givinotide, some of which have been approved by the FDA for various malignancies, suggesting their potential in treating cardiovascular diseases. Furthermore, we highlight the role of novel histone modifications and their associated enzymes, which are emerging as potential therapeutic targets in cardiovascular diseases. Thus, by incorporating the recent studies involving patients with cardiovascular aging and diseases, we aim to provide a more detailed and updated review that reflects the advancements in the field of epigenetic modification in cardiovascular diseases.
Collapse
Affiliation(s)
- Yurou Qiu
- GMU-GIBH Joint School of Life Sciences, Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, The Sixth School of Clinical Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Qing Xu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Peichen Xie
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Chenshuang He
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Qiuchan Li
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Xin Yao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Yang Mao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Xiaoqian Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| | - Tiejun Zhang
- GMU-GIBH Joint School of Life Sciences, Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, The Sixth School of Clinical Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
13
|
Yousef A, Fang L, Heidari M, Kranrod J, Seubert JM. The role of CYP-sEH derived lipid mediators in regulating mitochondrial biology and cellular senescence: implications for the aging heart. Front Pharmacol 2024; 15:1486717. [PMID: 39703395 PMCID: PMC11655241 DOI: 10.3389/fphar.2024.1486717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/28/2024] [Indexed: 12/21/2024] Open
Abstract
Cellular senescence is a condition characterized by stable, irreversible cell cycle arrest linked to the aging process. The accumulation of senescent cells in the cardiac muscle can contribute to various cardiovascular diseases (CVD). Telomere shortening, epigenetic modifications, DNA damage, mitochondrial dysfunction, and oxidative stress are known contributors to the onset of cellular senescence in the heart. The link between mitochondrial processes and cellular senescence contributed to the age-related decline in cardiac function. These include changes in mitochondrial functions and behaviours that arise from various factors, including impaired dynamics, dysregulated biogenesis, mitophagy, mitochondrial DNA (mtDNA), reduced respiratory capacity, and mitochondrial structural changes. Thus, regulation of mitochondrial biology has a role in cellular senescence and cardiac function in aging hearts. Targeting senescent cells may provide a novel therapeutic approach for treating and preventing CVD associated with aging. CYP epoxygenases metabolize N-3 and N-6 polyunsaturated fatty acids (PUFA) into epoxylipids that are readily hydrolyzed to diol products by soluble epoxide hydrolase (sEH). Increasing epoxylipids levels or inhibition of sEH has demonstrated protective effects in the aging heart. Evidence suggests they may play a role in cellular senescence by regulating mitochondria, thus reducing adverse effects of aging in the heart. In this review, we discuss how mitochondria induce cellular senescence and how epoxylipids affect the senescence process in the aged heart.
Collapse
Affiliation(s)
- Ala Yousef
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Liye Fang
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mobina Heidari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Joshua Kranrod
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - John M. Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
14
|
Wong YS, Mançanares AC, Navarrete F, Poblete P, Mendez-Pérez L, Cabezas J, Riadi G, Rodríguez-Alvarez L, Castro FO. Extracellular vesicles secreted by equine adipose mesenchymal stem cells preconditioned with transforming growth factor β-1 are enriched in anti-fibrotic miRNAs and inhibit the expression of fibrotic genes in an in vitro system of endometrial stromal cells fibrosis. Vet Q 2024; 44:1-11. [PMID: 39086189 PMCID: PMC11295685 DOI: 10.1080/01652176.2024.2384906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/27/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
Mare endometrosis is a major reproductive problem associated with low fertility and is characterized by persistent inflammation, TGFβ-1 signaling, and consequently, extracellular matrix deposition, which compromises endometrial glands. Mesenchymal stem cell-based products (MSCs), such as extracellular vesicles (EVs), have gained attention due to the regulatory effects exerted by their miRNA cargo. Here, we evaluated the impact of preconditioning equine adipose mesenchymal stem cells with TGFβ-1 for short or long periods on the anti-fibrotic properties of secreted extracellular vesicles. MSCs were isolated from six healthy horses and exposed to TGFβ-1 for 4, 24, and 0 h. The expression of anti-fibrotic and pro-fibrotic miRNAs and mRNAs in treated cells and miRNAs in the cargo of secreted extracellular vesicles was measured. The resulting EVs were added for 48 h to endometrial stromal cells previously induced to a fibrotic status. The expression of anti-fibrotic and pro-fibrotic genes and miRNAs was evaluated in said cells using qPCR and next-generation sequencing. Preconditioning MSCs with TGFβ-1 for 4 h enriched the anti-fibrotic miRNAs (mir29c, mir145, and mir200) in cells and EVs. Conversely, preconditioning the cells for 24 h leads to a pro-fibrotic phenotype overexpressing mir192 and mir433. This finding might have implications for developing an EV-based protocol to treat endometrial fibrosis in mares.
Collapse
Affiliation(s)
- Yat Sen Wong
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Ana Carolina Mançanares
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Felipe Navarrete
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Pamela Poblete
- Ph.D. Program on Veterinary Sciences, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Lídice Mendez-Pérez
- Ph.D. Program on Veterinary Sciences, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Joel Cabezas
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Gonzalo Riadi
- Center for Bioinformatics Simulation and Modeling (CBSM), Universidad de Talca, Talca, Chile
| | | | - Fidel Ovidio Castro
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| |
Collapse
|
15
|
Zhao Q, Huang Y, Fu N, Cui C, Peng X, Kang H, Xiao J, Ke G. Podocyte senescence: from molecular mechanisms to therapeutics. Ren Fail 2024; 46:2398712. [PMID: 39248407 PMCID: PMC11385655 DOI: 10.1080/0886022x.2024.2398712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
As an important component of the glomerular filtration membrane, the state of the podocytes is closely related to kidney function, they are also key cells involved in aging and play a central role in the damage caused by renal aging. Therefore, understanding the aging process of podocytes will allow us to understand their susceptibility to injury and identify targeted protective mechanisms. In fact, the process of physiological aging itself can induce podocyte senescence. Pathological stresses, such as oxidative stress, mitochondrial damage, secretion of senescence-associated secretory phenotype, reduced autophagy, oncogene activation, altered transcription factors, DNA damage response, and other factors, play a crucial role in inducing premature senescence and accelerating aging. Senescence-associated-β-galactosidase (SA-β-gal) is a marker of aging, and β-hydroxybutyric acid treatment can reduce SA-β-gal activity to alleviate cellular senescence and damage. In addition, CCAAT/enhancer-binding protein-α, transforming growth factor-β signaling, glycogen synthase kinase-3β, cycle-dependent kinase, programmed cell death protein 1, and plasminogen activator inhibitor-1 are closely related to aging. The absence or elevation of these factors can affect aging through different mechanisms. Podocyte injury is not an independent process, and injured podocytes interact with the surrounding epithelial cells or other kidney cells to mediate the injury or loss of podocytes. In this review, we discuss the manifestations, molecular mechanisms, biomarkers, and therapeutic drugs for podocyte senescence. We included elamipretide, lithium, calorie restriction, rapamycin; and emerging treatment strategies, such as gene and immune therapies. More importantly, we summarize how podocyte interact with other kidney cells.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongzhang Huang
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ningying Fu
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Caixia Cui
- Department of Nephrology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Xuan Peng
- Department of Nephrology, Affiliated Hospital/Clinical Medical College of Chengdu University, Chengdu, China
| | - Haiyan Kang
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jie Xiao
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guibao Ke
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
16
|
Esser H, Kilpatrick AM, Man TY, Aird R, Rodrigo-Torres D, Buch ML, Boulter L, Walmsley S, Oniscu GC, Schneeberger S, Ferreira-Gonzalez S, Forbes SJ. Primary cilia as a targetable node between biliary injury, senescence and regeneration in liver transplantation. J Hepatol 2024; 81:1005-1022. [PMID: 38879173 DOI: 10.1016/j.jhep.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/05/2024] [Accepted: 06/01/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND & AIMS Biliary complications are a major cause of morbidity and mortality in liver transplantation. Up to 25% of patients that develop biliary complications require additional surgical procedures, re-transplantation or die in the absence of a suitable regraft. Here, we investigate the role of the primary cilium, a highly specialised sensory organelle, in biliary injury leading to post-transplant biliary complications. METHODS Human biopsies were used to study the structure and function of primary cilia in liver transplant recipients that develop biliary complications (n = 7) in comparison with recipients without biliary complications (n = 12). To study the biological effects of the primary cilia during transplantation, we generated murine models that recapitulate liver procurement and cold storage, and assessed the elimination of the primary cilia in biliary epithelial cells in the K19CreERTKif3afl/fl mouse model. To explore the molecular mechanisms responsible for the observed phenotypes we used in vitro models of ischemia, cellular senescence and primary cilia ablation. Finally, we used pharmacological and genetic approaches to target cellular senescence and the primary cilia, both in mouse models and discarded human donor livers. RESULTS Prolonged ischemic periods before transplantation result in ciliary shortening and cellular senescence, an irreversible cell cycle arrest that blocks regeneration. Our results indicate that primary cilia damage results in biliary injury and a loss of regenerative potential. Senescence negatively impacts primary cilia structure and triggers a negative feedback loop that further impairs regeneration. Finally, we explore how targeted interventions for cellular senescence and/or the stabilisation of the primary cilia improve biliary regeneration following ischemic injury. CONCLUSIONS Primary cilia play an essential role in biliary regeneration and we demonstrate that senolytics and cilia-stabilising treatments provide a potential therapeutic opportunity to reduce the rate of biliary complications and improve clinical outcomes in liver transplantation. IMPACT AND IMPLICATIONS Up to 25% of liver transplants result in biliary complications, leading to additional surgery, retransplants, or death. We found that the incidence of biliary complications is increased by damage to the primary cilium, an antenna that protrudes from the cell and is key to regeneration. Here, we show that treatments that preserve the primary cilia during the transplant process provide a potential solution to reduce the rates of biliary complications.
Collapse
Affiliation(s)
- Hannah Esser
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK; Department of Visceral, Transplant and Thoracic Surgery, OrganLife Laboratory, Centre of Operative Medicine, Innsbruck Medical University. Anichstrasse 35, 6020 Innsbruck, Austria
| | - Alastair Morris Kilpatrick
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Tak Yung Man
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Rhona Aird
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Daniel Rodrigo-Torres
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Madita Lina Buch
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK; Department of Visceral, Transplant and Thoracic Surgery, OrganLife Laboratory, Centre of Operative Medicine, Innsbruck Medical University. Anichstrasse 35, 6020 Innsbruck, Austria
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh; Edinburgh EH4 2XU, UK
| | - Sarah Walmsley
- Centre for Inflammation Research (CIR), University of Edinburgh. The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Gabriel Corneliu Oniscu
- Edinburgh Transplant Centre, Royal Infirmary of Edinburgh; 51 Little France Crescent, Edinburgh EH16 4SA, UK; Division of Transplantation, CLINTEC, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Stefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, OrganLife Laboratory, Centre of Operative Medicine, Innsbruck Medical University. Anichstrasse 35, 6020 Innsbruck, Austria
| | - Sofia Ferreira-Gonzalez
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK; Centre for Inflammation Research (CIR), University of Edinburgh. The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - Stuart John Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
17
|
He S, Yan L, Yuan C, Li W, Wu T, Chen S, Li N, Wu M, Jiang J. The role of cardiomyocyte senescence in cardiovascular diseases: A molecular biology update. Eur J Pharmacol 2024; 983:176961. [PMID: 39209099 DOI: 10.1016/j.ejphar.2024.176961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, and advanced age is a main contributor to the prevalence of CVD. Cellular senescence is an irreversible state of cell cycle arrest that occurs in old age or after cells encounter various stresses. Senescent cells not only result in the reduction of cellular function, but also produce senescence-associated secretory phenotype (SASP) to affect surrounding cells and tissue microenvironment. There is increasing evidence that the gradual accumulation of senescent cardiomyocytes is causally involved in the decline of cardiovascular system function. To highlight the role of senescent cardiomyocytes in the pathophysiology of age-related CVD, we first introduced that senescent cardiomyoyctes can be identified by structural changes and several senescence-associated biomarkers. We subsequently provided a comprehensive summary of existing knowledge, outlining the compelling evidence on the relationship between senescent cardiomyocytes and age-related CVD phenotypes. In addition, we discussed that the significant therapeutic potential represented by the prevention of accelerated senescent cardiomyocytes, and the current status of some existing geroprotectors in the prevention and treatment of age-related CVD. Together, the review summarized the role of cardiomyocyte senescence in CVD, and explored the molecular knowledge of senescent cardiomyocytes and their potential clinical significance in developing senescent-based therapies, thereby providing important insights into their biology and potential therapeutic exploration.
Collapse
Affiliation(s)
- Shuangyi He
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Li Yan
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Department of Pharmacy, Wuhan Asia General Hospital, Wuhan, 430056, China
| | - Chao Yuan
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Wenxuan Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Tian Wu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Suya Chen
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Niansheng Li
- Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410078, China
| | - Meiting Wu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Department of Nephrology, Institute of Nephrology, 2nd Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
| | - Junlin Jiang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410078, China.
| |
Collapse
|
18
|
Schoettler FI, Fatehi Hassanabad A, Jadli AS, Patel VB, Fedak PWM. Exploring the role of pericardial miRNAs and exosomes in modulating cardiac fibrosis. Cardiovasc Pathol 2024; 73:107671. [PMID: 38906439 DOI: 10.1016/j.carpath.2024.107671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/26/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
The potential of the pericardial space as a therapeutic delivery tool for cardiac fibrosis and heart failure (HF) treatment has yet to be elucidated. Recently, miRNAs and exosomes have been discovered to be present in human pericardial fluid (PF). Novel studies have shown characteristic human PF miRNA compositions associated with cardiac diseases and higher miRNA expressions in PF compared to peripheral blood. Five key studies found differentially expressed miRNAs in HF, angina pectoris, aortic stenosis, ventricular tachycardia, and congenital heart diseases with either atrial fibrillation or sinus rhythm. As miRNA-based therapeutics for cardiac fibrosis and HF showed promising results in several in vivo studies for multiple miRNAs, we hypothesize a potential role of miRNA-based therapeutics delivered through the pericardial cavity. This is underlined by the favorable results of the first phase 1b clinical trial in this emerging field. Presenting the first human miRNA antisense drug trial, inhibition of miR-132 by intravenous administration of a novel antisense oligonucleotide, CDR132L, established efficacy in reducing miR-132 in plasma samples in a dose-dependent manner. We screened the literature, provided an overview of the miRNAs and exosomes present in PF, and drew a connection to those miRNAs previously elucidated in cardiac fibrosis and HF. Further, we speculate about clinical implications and potential delivery methods.
Collapse
Affiliation(s)
- Friederike I Schoettler
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ali Fatehi Hassanabad
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Sciences, Section of Cardiac Surgery, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anshul S Jadli
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vaibhav B Patel
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul W M Fedak
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Sciences, Section of Cardiac Surgery, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
19
|
Qi H, Wu Y, Zhang W, Yu N, Lu X, Liu J. The syntaxin-binding protein STXBP5 regulates progerin expression. Sci Rep 2024; 14:23376. [PMID: 39379476 PMCID: PMC11461833 DOI: 10.1038/s41598-024-74621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
Hutchinson-Gilfor progeria syndrome (HGPS) is caused by a mutation in Lamin A resulting in the production of a protein called progerin. The accumulation of progerin induces inflammation, cellular senescence and activation of the P53 pathway. In this study, through public dataset analysis, we identified Syntaxin Binding Protein 5 (STXBP5) as an influencing factor of progerin expression. STXBP5 overexpression accelerated the onset of senescence, while STXBP5 deletion suppressed progerin expression, delayed senility, and decreased the expression of senescence-related factors. STXBP5 and progerin have synergistic effects and a protein-protein interaction. Through bioinformatics analysis, we found that STXBP5 affects ageing-related signalling pathways such as the mitogen-activated protein kinase (MAPK) pathway, the hippo pathway and the interleukin 17 (IL17) signalling pathway in progerin-expressing cells. In addition, STXBP5 overexpression induced changes in transposable elements (TEs), such as the human endogenous retrovirus H internal coding sequence (HERVH-int) changes. Our protein coimmunoprecipitation (Co-IP) results indicated that STXBP5 bound directly to progerin. Therefore, decreasing STXBP5 expression is a potential new therapeutic strategy for treating ageing-related phenotypes in patients with HGPS.
Collapse
Affiliation(s)
- Hongqian Qi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
- College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Yingying Wu
- College of Artificial Intelligence, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin, 300350, China
| | - Weiyu Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853-2703, USA
| | - Ningbo Yu
- College of Artificial Intelligence, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin, 300350, China
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Jinchao Liu
- College of Artificial Intelligence, Nankai University, Tianjin, 300350, China.
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
20
|
Salminen A. Inhibitory immune checkpoints suppress the surveillance of senescent cells promoting their accumulation with aging and in age-related diseases. Biogerontology 2024; 25:749-773. [PMID: 38954358 PMCID: PMC11374851 DOI: 10.1007/s10522-024-10114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The accumulation of pro-inflammatory senescent cells within tissues is a common hallmark of the aging process and many age-related diseases. This modification has been called the senescence-associated secretory phenotype (SASP) and observed in cultured cells and in cells isolated from aged tissues. Currently, there is a debate whether the accumulation of senescent cells within tissues should be attributed to increased generation of senescent cells or to a defect in their elimination from aging tissues. Emerging studies have revealed that senescent cells display an increased expression of several inhibitory immune checkpoint ligands, especially those of the programmed cell death protein-1 (PD-1) ligand-1 (PD-L1) proteins. It is known that the PD-L1 ligands, especially those of cancer cells, target the PD-1 receptor of cytotoxic CD8+ T and natural killer (NK) cells disturbing their functions, e.g., evoking a decline in their cytotoxic activity and promoting their exhaustion and even apoptosis. An increase in the level of the PD-L1 protein in senescent cells was able to suppress their immune surveillance and inhibit their elimination by cytotoxic CD8+ T and NK cells. Senescent cells are known to express ligands for several inhibitory immune checkpoint receptors, i.e., PD-1, LILRB4, NKG2A, TIM-3, and SIRPα receptors. Here, I will briefly describe those pathways and examine whether these inhibitory checkpoints could be involved in the immune evasion of senescent cells with aging and age-related diseases. It seems plausible that an enhanced inhibitory checkpoint signaling can prevent the elimination of senescent cells from tissues and thus promote the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
21
|
Ding Z, Ma G, Zhou B, Cheng S, Tang W, Han Y, Chen L, Pang W, Chen Y, Yang D, Cao H. Targeting miR-29 mitigates skeletal senescence and bolsters therapeutic potential of mesenchymal stromal cells. Cell Rep Med 2024; 5:101665. [PMID: 39168101 PMCID: PMC11384963 DOI: 10.1016/j.xcrm.2024.101665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/07/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024]
Abstract
Mesenchymal stromal cell (MSC) senescence is a key factor in skeletal aging, affecting the potential of MSC applications. Identifying targets to prevent MSC and skeletal senescence is crucial. Here, we report increased miR-29 expression in bone tissues of aged mice, osteoporotic patients, and senescent MSCs. Genetic overexpression of miR-29 in Prx1-positive MSCs significantly accelerates skeletal senescence, reducing cortical bone thickness and trabecular bone mass, while increasing femur cross-sectional area, bone marrow adiposity, p53, and senescence-associated secretory phenotype (SASP) levels. Mechanistically, miR-29 promotes senescence by upregulating p53 via targeting Kindlin-2 mRNA. miR-29 knockdown in BMSCs impedes skeletal senescence, enhances bone mass, and accelerates calvarial defect regeneration, also reducing lipopolysaccharide (LPS)-induced organ injuries and mortality. Thus, our findings underscore miR-29 as a promising therapeutic target for senescence-related skeletal diseases and acute inflammation-induced organ damage.
Collapse
Affiliation(s)
- Zhen Ding
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guixing Ma
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Bo Zhou
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siyuan Cheng
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wanze Tang
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yingying Han
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Litong Chen
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei Pang
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yangshan Chen
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dazhi Yang
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
22
|
Izadi M, Sadri N, Abdi A, Serajian S, Jalalei D, Tahmasebi S. Epigenetic biomarkers in aging and longevity: Current and future application. Life Sci 2024; 351:122842. [PMID: 38879158 DOI: 10.1016/j.lfs.2024.122842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
The aging process has been one of the most necessary research fields in the current century, and knowing different theories of aging and the role of different genetic, epigenetic, molecular, and environmental modulating factors in increasing the knowledge of aging mechanisms and developing appropriate diagnostic, therapeutic, and preventive ways would be helpful. One of the most conserved signs of aging is epigenetic changes, including DNA methylation, histone modifications, chromatin remodeling, noncoding RNAs, and extracellular RNAs. Numerous biological processes and hallmarks are vital in aging development, but epigenomic alterations are especially notable because of their importance in gene regulation and cellular identity. The mounting evidence points to a possible interaction between age-related epigenomic alterations and other aging hallmarks, like genome instability. To extend a healthy lifespan and possibly reverse some facets of aging and aging-related diseases, it will be crucial to comprehend global and locus-specific epigenomic modifications and recognize corresponding regulators of health and longevity. In the current study, we will aim to discuss the role of epigenomic mechanisms in aging and the most recent developments in epigenetic diagnostic biomarkers, which have the potential to focus efforts on reversing the destructive signs of aging and extending the lifespan.
Collapse
Affiliation(s)
- Mehran Izadi
- Department of Infectious and Tropical Diseases, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
| | - Nariman Sadri
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Abdi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Sahar Serajian
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Dorsa Jalalei
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Li J, Zou Y, Kantapan J, Su H, Wang L, Dechsupa N. TGF‑β/Smad signaling in chronic kidney disease: Exploring post‑translational regulatory perspectives (Review). Mol Med Rep 2024; 30:143. [PMID: 38904198 PMCID: PMC11208996 DOI: 10.3892/mmr.2024.13267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
The TGF‑β/Smad signaling pathway plays a pivotal role in the onset of glomerular and tubulointerstitial fibrosis in chronic kidney disease (CKD). The present review delves into the intricate post‑translational modulation of this pathway and its implications in CKD. Specifically, the impact of the TGF‑β/Smad pathway on various biological processes was investigated, encompassing not only renal tubular epithelial cell apoptosis, inflammation, myofibroblast activation and cellular aging, but also its role in autophagy. Various post‑translational modifications (PTMs), including phosphorylation and ubiquitination, play a crucial role in modulating the intensity and persistence of the TGF‑β/Smad signaling pathway. They also dictate the functionality, stability and interactions of the TGF‑β/Smad components. The present review sheds light on recent findings regarding the impact of PTMs on TGF‑β receptors and Smads within the CKD landscape. In summary, a deeper insight into the post‑translational intricacies of TGF‑β/Smad signaling offers avenues for innovative therapeutic interventions to mitigate CKD progression. Ongoing research in this domain holds the potential to unveil powerful antifibrotic treatments, aiming to preserve renal integrity and function in patients with CKD.
Collapse
Affiliation(s)
- Jianchun Li
- Department of Radiologic Technology, Molecular Imaging and Therapy Research Unit, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yuanxia Zou
- Department of Radiologic Technology, Molecular Imaging and Therapy Research Unit, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jiraporn Kantapan
- Department of Radiologic Technology, Molecular Imaging and Therapy Research Unit, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Hongwei Su
- Department of Urology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Nathupakorn Dechsupa
- Department of Radiologic Technology, Molecular Imaging and Therapy Research Unit, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
24
|
Liu J, Qu L, Wang F, Mei Z, Wu X, Wang B, Liu H, He L. A study on the anti-senescent effects of flavones derived from Prinsepia utilis Royle seed residue. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118021. [PMID: 38492793 DOI: 10.1016/j.jep.2024.118021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Prinsepia utilis Royle, also known as the Anas fruit, is a unique perennial woody oil plant from Yunnan Province, China. In the ancient texts of Dongba sutras and Yunnan Southern Materia Medica, it has been documented that the local Naxi, Tibetan, and Mosuo communities extensively utilize the root and leaf fruits of green thorns for various purposes. These include treating mild-to-moderate specific dermatitis, moisturising the skin, providing protection against UV damage, aiding childbirth in pregnant women, safeguarding stomach health, reducing the risk of arteriosclerosis, and delaying aging. AIM OF THE STUDY In this study, leftover residues from oil extraction were efficiently reused, and flavonoids were identified during subsequent extraction and separation processes. The anti-senescent effects of flavonoids in P. utilis Royle have not been systematically studied. Therefore, the objective of this study was to explore the anti-senescent properties of the flavonoids obtained from P. utilis Royle. METHODS First, HPLC and other analytical techniques were used to identify the components of the P. utilis Royle flavonoid (PURF). Next, DPPH, hydroxyl radicals, superoxide anion O2-, collagenase, and elastase were initially detected using in vitro biochemical assays. To examine its antioxidant properties, a zebrafish model was used, and to confirm its anti-senescent effects, a d-galactose-induced mouse aging model was employed. The anti-senescent mechanism of PURF was examined using a natural senescence HFF model. Furthermore, the anti-senescent target was confirmed using a 3D full T-Skin™ model. RESULTS In vitro biochemical assays demonstrated that flavones exhibited potent antioxidant activity and anti-senescent potential by inhibiting DPPH, hydroxyl radicals, superoxide anion O2-, collagenase, and elastase. It significantly enhanced the antioxidant effect on zebrafish while suppressing ROS and inflammatory injury, up-regulating COL1A1, COL3A1, AMPK, and mTOR gene expression and down-regulating MMP-9, TGF-β, p21, and p16 gene expression suggesting its potential anti-senescent ability. Findings from the D-galactose-induced aging mouse model showed that PURF greatly increased SOD levels, while simultaneously decreasing HYP and MDA levels. In addition, when PURF was given to the HFF cell and 3D full T-Skin™ model, consistent trends were observed in gene and protein expression, with up-regulation of COL1A1, COL3A1, AMPK, and mTOR genes and down-regulation of TGF-β, MMP-1, MMP-9, p21, and p16 genes. Therefore, these preliminary findings indicate that flavones can modulate AMPK/mTOR/TGF-β signalling pathways to exert its influence. CONCLUSION The kernel residue of natural P. utilis Royle oil extracted from Yunnan province was previously considered agricultural waste, but we successfully extracted and isolated its flavonoid components. Our preliminary studies demonstrated its potential as an environmentally friendly anti-senescent raw material.
Collapse
Affiliation(s)
- Junxi Liu
- Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai, 201702, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, 650106, China
| | - Liping Qu
- Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai, 201702, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, 650106, China
| | - Feifei Wang
- Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai, 201702, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, 650106, China
| | - Zaoju Mei
- Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai, 201702, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, 650106, China
| | - Xinlang Wu
- Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai, 201702, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, 650106, China
| | - Bo Wang
- Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai, 201702, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, 650106, China
| | - Haiyang Liu
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, China
| | - Li He
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, China.
| |
Collapse
|
25
|
Azam HMH, Rößling RI, Geithe C, Khan MM, Dinter F, Hanack K, Prüß H, Husse B, Roggenbuck D, Schierack P, Rödiger S. MicroRNA biomarkers as next-generation diagnostic tools for neurodegenerative diseases: a comprehensive review. Front Mol Neurosci 2024; 17:1386735. [PMID: 38883980 PMCID: PMC11177777 DOI: 10.3389/fnmol.2024.1386735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by abnormalities within neurons of the brain or spinal cord that gradually lose function, eventually leading to cell death. Upon examination of affected tissue, pathological changes reveal a loss of synapses, misfolded proteins, and activation of immune cells-all indicative of disease progression-before severe clinical symptoms become apparent. Early detection of NDs is crucial for potentially administering targeted medications that may delay disease advancement. Given their complex pathophysiological features and diverse clinical symptoms, there is a pressing need for sensitive and effective diagnostic methods for NDs. Biomarkers such as microRNAs (miRNAs) have been identified as potential tools for detecting these diseases. We explore the pivotal role of miRNAs in the context of NDs, focusing on Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Huntington's disease, and Amyotrophic Lateral Sclerosis. The review delves into the intricate relationship between aging and NDs, highlighting structural and functional alterations in the aging brain and their implications for disease development. It elucidates how miRNAs and RNA-binding proteins are implicated in the pathogenesis of NDs and underscores the importance of investigating their expression and function in aging. Significantly, miRNAs exert substantial influence on post-translational modifications (PTMs), impacting not just the nervous system but a wide array of tissues and cell types as well. Specific miRNAs have been found to target proteins involved in ubiquitination or de-ubiquitination processes, which play a significant role in regulating protein function and stability. We discuss the link between miRNA, PTM, and NDs. Additionally, the review discusses the significance of miRNAs as biomarkers for early disease detection, offering insights into diagnostic strategies.
Collapse
Affiliation(s)
- Hafiz Muhammad Husnain Azam
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Rosa Ilse Rößling
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Geithe
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| | - Muhammad Moman Khan
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Franziska Dinter
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- PolyAn GmbH, Berlin, Germany
| | - Katja Hanack
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Harald Prüß
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Husse
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Dirk Roggenbuck
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Peter Schierack
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Stefan Rödiger
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| |
Collapse
|
26
|
Zhai P, Sadoshima J. Cardiomyocyte senescence and the potential therapeutic role of senolytics in the heart. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:18. [PMID: 39119147 PMCID: PMC11309366 DOI: 10.20517/jca.2024.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Cellular senescence in cardiomyocytes, characterized by cell cycle arrest, resistance to apoptosis, and the senescence-associated secretory phenotype, occurs during aging and in response to various stresses, such as hypoxia/reoxygenation, ischemia/reperfusion, myocardial infarction (MI), pressure overload, doxorubicin treatment, angiotensin II, diabetes, and thoracic irradiation. Senescence in the heart has both beneficial and detrimental effects. Premature senescence of myofibroblasts has salutary effects during MI and pressure overload. On the other hand, persistent activation of senescence in cardiomyocytes precipitates cardiac dysfunction and adverse remodeling through paracrine mechanisms during MI, myocardial ischemia/reperfusion, aging, and doxorubicin-induced cardiomyopathy. Given the adverse roles of senescence in many conditions, specific removal of senescent cells, i.e., senolysis, is of great interest. Senolysis can be achieved using senolytic drugs (such as Navitoclax, Dasatinib, and Quercetin), pharmacogenetic approaches (including INK-ATTAC and AP20187, p16-3MR and Ganciclovir, p16 ablation, and p16-LOX-ATTAC and Cre), and immunogenetic interventions (CAR T cells or senolytic vaccination). In order to enhance the specificity and decrease the off-target effects of senolytic approaches, investigation into the mechanisms through which cardiomyocytes develop and/or maintain the senescent state is needed.
Collapse
Affiliation(s)
- Peiyong Zhai
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
27
|
Yang B, Lin Y, Huang Y, Shen YQ, Chen Q. Thioredoxin (Trx): A redox target and modulator of cellular senescence and aging-related diseases. Redox Biol 2024; 70:103032. [PMID: 38232457 PMCID: PMC10827563 DOI: 10.1016/j.redox.2024.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Thioredoxin (Trx) is a compact redox-regulatory protein that modulates cellular redox state by reducing oxidized proteins. Trx exhibits dual functionality as an antioxidant and a cofactor for diverse enzymes and transcription factors, thereby exerting influence over their activity and function. Trx has emerged as a pivotal biomarker for various diseases, particularly those associated with oxidative stress, inflammation, and aging. Recent clinical investigations have underscored the significance of Trx in disease diagnosis, treatment, and mechanistic elucidation. Despite its paramount importance, the intricate interplay between Trx and cellular senescence-a condition characterized by irreversible growth arrest induced by multiple aging stimuli-remains inadequately understood. In this review, our objective is to present a comprehensive and up-to-date overview of the structure and function of Trx, its involvement in redox signaling pathways and cellular senescence, its association with aging and age-related diseases, as well as its potential as a therapeutic target. Our review aims to elucidate the novel and extensive role of Trx in senescence while highlighting its implications for aging and age-related diseases.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
28
|
Zhou L, Zhai G, Tian G. CRIF1 attenuates doxorubicin-mediated mitochondrial dysfunction and myocardial senescence via regulating PXDN. Aging (Albany NY) 2024; 16:5567-5580. [PMID: 38517371 PMCID: PMC11006484 DOI: 10.18632/aging.205664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/03/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND CR6-interacting factor 1 (CRIF1), a multifunctional protein that affects mitochondrial function and cell senescence, plays a regulatory role in heart-related diseases. However, whether CRIF1 participates in myocardial senescence by regulating mitochondrial function remains unclear. METHODS Doxorubicin (DOX)-induced C57BL/6 mice to construct mouse myocardial senescence model, and the myocardial function indicators including lactate dehydrogenase (LDH) and Creatine kinase isoform MB (CK-MB) were assessed. The expression of CRIF1 was detected by western blot. Myocardial pathological changes were examined by transthoracic echocardiography and haematoxylin and eosin (H&E) staining. Cell senescence was detected by SA-β-gal staining. JC-1 staining was used to detect mitochondrial membrane potential. Biochemical kits were used to examine oxidative stress-related factors. Additionally, AC16 cardiomyocytes were treated with DOX to mimic the cellular senescence model in vitro. Cell activity was detected by cell counting kit-8 (CCK-8) assay. Co-immunoprecipitation (CO-IP) was used to verify the relationship between CRIF1 and peroxidasin (PXDN). RESULTS The CRIF1 expression was significantly decreased in DOX-induced senescent mice and AC16 cells. Overexpression of CRIF1 significantly ameliorated DOX-induced myocardial dysfunction and myocardial senescence. Additionally, CRIF1 overexpression attenuated DOX-induced oxidative stress and myocardial mitochondrial dysfunction. Consistently, CRIF1 overexpression also inhibited DOX-induced oxidative stress and senescence in AC16 cells. Moreover, CRIF1 was verified to bind to PXDN and inhibited PXDN expression. The inhibitory effects of CRIF1 overexpression on DOX-induced oxidative stress and senescence in AC16 cells were partly abolished by PXDN expression. CONCLUSIONS CRIF1 plays a protective role against DOX-caused mitochondrial dysfunction and myocardial senescence partly through downregulating PXDN.
Collapse
Affiliation(s)
- Lina Zhou
- Department of Geriatrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning, China
| | - Guilan Zhai
- Department of Geriatrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning, China
| | - Ge Tian
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning, China
| |
Collapse
|
29
|
Zhang T, Ma R, Li Z, Liu T, Yang S, Li N, Wang D. Nur77 alleviates cardiac fibrosis by upregulating GSK-3β transcription during aging. Eur J Pharmacol 2024; 965:176290. [PMID: 38158109 DOI: 10.1016/j.ejphar.2023.176290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 11/23/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Cardiac fibrosis is associated with aging, for which no targeted therapies are available. With aging, the levels of nerve growth factor-induced gene B (Nur77) are reduced during cardiac remodelling; however, its role in cardiac fibrosis in aging remains unclear. Here, we found that Nur77 knockout increased cardiac structure abnormalities, systolic and diastolic dysfunction, cardiac hypertrophy, and fibrotic marker expression in 15-month-old mice. Furthermore, Nur77 deficiency induced collagen type I (Col-1) and α-smooth muscle actin overproduction in transforming growth factor beta (TGF-β) treated H9c2 cells, whereas Nur77 overexpression attenuated this effect. Nur77 deficiency in vivo and in vitro downregulated glycogen synthase kinase (GSK)-3β expression and increased β-catenin activity, while its overexpression increased GSK-3β expression. GSK-3β knockdown counteracted the anti-fibrotic effect of Nur77 on TGF-β-treated H9c2 cells. Chromatin immunoprecipitation and luciferase reporter assay results suggested GSK-3β as the direct target of Nur77. Our findings suggest that Nur77 directly initiates GSK-3β transcription and age-related cardiac fibrosis partly through the GSK-3β/β-catenin pathway. This study proposes a novel mechanism for Nur77 regulating cardiac fibrosis and suggests Nur77 as a target for the prevention and treatment of aging-associated cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
- Tiantian Zhang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Ruzhe Ma
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Zhichi Li
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Tingting Liu
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Sijia Yang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Na Li
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Difei Wang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
30
|
Wu Z, Zhang W, Qu J, Liu GH. Emerging epigenetic insights into aging mechanisms and interventions. Trends Pharmacol Sci 2024; 45:157-172. [PMID: 38216430 DOI: 10.1016/j.tips.2023.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Epigenetic dysregulation emerges as a critical hallmark and driving force of aging. Although still an evolving field with much to explore, it has rapidly gained significance by providing valuable insights into the mechanisms of aging and potential therapeutic opportunities for age-related diseases. Recent years have witnessed remarkable strides in our understanding of the epigenetic landscape of aging, encompassing pivotal elements, such as DNA methylation, histone modifications, RNA modifications, and noncoding (nc) RNAs. Here, we review the latest discoveries that shed light on new epigenetic mechanisms and critical targets for predicting and intervening in aging and related disorders. Furthermore, we explore burgeoning interventions and exemplary clinical trials explicitly designed to foster healthy aging, while contemplating the potential ramifications of epigenetic influences.
Collapse
Affiliation(s)
- Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
31
|
Paine PT, Rechsteiner C, Morandini F, Desdín-Micó G, Mrabti C, Parras A, Haghani A, Brooke R, Horvath S, Seluanov A, Gorbunova V, Ocampo A. Initiation phase cellular reprogramming ameliorates DNA damage in the ERCC1 mouse model of premature aging. FRONTIERS IN AGING 2024; 4:1323194. [PMID: 38322248 PMCID: PMC10844398 DOI: 10.3389/fragi.2023.1323194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024]
Abstract
Unlike aged somatic cells, which exhibit a decline in molecular fidelity and eventually reach a state of replicative senescence, pluripotent stem cells can indefinitely replenish themselves while retaining full homeostatic capacity. The conferment of beneficial-pluripotency related traits via in vivo partial cellular reprogramming in vivo partial reprogramming significantly extends lifespan and restores aging phenotypes in mouse models. Although the phases of cellular reprogramming are well characterized, details of the rejuvenation processes are poorly defined. To understand whether cellular reprogramming can ameliorate DNA damage, we created a reprogrammable accelerated aging mouse model with an ERCC1 mutation. Importantly, using enhanced partial reprogramming by combining small molecules with the Yamanaka factors, we observed potent reversion of DNA damage, significant upregulation of multiple DNA damage repair processes, and restoration of the epigenetic clock. In addition, we present evidence that pharmacological inhibition of ALK5 and ALK2 receptors in the TGFb pathway are able to phenocopy some benefits including epigenetic clock restoration suggesting a role in the mechanism of rejuvenation by partial reprogramming.
Collapse
Affiliation(s)
- Patrick Treat Paine
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Center for Virology and Vaccine Research, Harvard Medical School, Boston, MA, United States
| | | | - Francesco Morandini
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Gabriela Desdín-Micó
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Calida Mrabti
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Alberto Parras
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- EPITERNA SA, Vaud, Switzerland
| | | | - Robert Brooke
- Epigenetic Clock Development Foundation, Torrance, CA, United States
| | - Steve Horvath
- Altos Labs, San Diego, CA, United States
- Epigenetic Clock Development Foundation, Torrance, CA, United States
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, United States
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, United States
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Alejandro Ocampo
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- EPITERNA SA, Vaud, Switzerland
| |
Collapse
|
32
|
Liu Z, Wang W, Xia Y, Gao Y, Wang Z, Li M, Presicce GA, An L, Du F. Overcoming the H4K20me3 epigenetic barrier improves somatic cell nuclear transfer reprogramming efficiency in mice. Cell Prolif 2024; 57:e13519. [PMID: 37322828 PMCID: PMC10771106 DOI: 10.1111/cpr.13519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Epigenetic reprogramming during fertilization and somatic cell nuclear transfer (NT) is required for cell plasticity and competent development. Here, we characterize the epigenetic modification pattern of H4K20me3, a repressive histone signature in heterochromatin, during fertilization and NT reprogramming. Importantly, the dynamic H4K20me3 signature identified during preimplantation development in fertilized embryos differed from NT and parthenogenetic activation (PA) embryos. In fertilized embryos, only maternal pronuclei carried the canonical H4K20me3 peripheral nucleolar ring-like signature. H4K20me3 disappeared at the 2-cell stage and reappeared in fertilized embryos at the 8-cell stage and in NT and PA embryos at the 4-cell stage. H4K20me3 intensity in 4-cell, 8-cell, and morula stages of fertilized embryos was significantly lower than in NT and PA embryos, suggesting aberrant regulation of H4K20me3 in PA and NT embryos. Indeed, RNA expression of the H4K20 methyltransferase Suv4-20h2 in 4-cell fertilized embryos was significantly lower than NT embryos. Knockdown of Suv4-20h2 in NT embryos rescued the H4K20me3 pattern similar to fertilized embryos. Compared to control NT embryos, knockdown of Suv4-20h2 in NT embryos improved blastocyst development ratios (11.1% vs. 30.5%) and full-term cloning efficiencies (0.8% vs. 5.9%). Upregulation of reprogramming factors, including Kdm4b, Kdm4d, Kdm6a, and Kdm6b, as well as ZGA-related factors, including Dux, Zscan4, and Hmgpi, was observed with Suv4-20h2 knockdown in NT embryos. Collectively, these are the first findings to demonstrate that H4K20me3 is an epigenetic barrier of NT reprogramming and begin to unravel the epigenetic mechanisms of H4K20 trimethylation in cell plasticity during natural reproduction and NT reprogramming in mice.
Collapse
Affiliation(s)
- Zhihui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Weiguo Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Yuhan Xia
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Yuan Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Zhisong Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Mingyang Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | | | - Liyou An
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and TechnologyXinjiang UniversityUrumqiChina
| | - Fuliang Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| |
Collapse
|
33
|
Cao Y, Wen H, Leng C, Feng S. MiR-29a mediates the apoptotic effects of TNF-α on endothelial cells through inhibiting PI3K/AKT/BCL-2 axis. J Biochem Mol Toxicol 2024; 38:e23598. [PMID: 38047396 DOI: 10.1002/jbt.23598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 09/04/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Endothelial cell apoptosis driven by inflammation (TNF-α) plays a critical role in the pathogenesis of atherosclerosis, but the exact molecular mechanisms are not clearly elucidated. MicroRNA (miR)-29 families (a/b/c) take important roles in pathophysiological processes of atherosclerosis, also the underlying mechanisms have not been fully clarified. The aims are to explore whether or not miR-29 families mediate the apoptotic effects of TNF-α on endothelial cells and uncover the underlying molecular mechanisms. In this study, MTT assay and flow cytometer analysis were employed respectively to determine the proliferation and apoptosis of human umbilical vascular endothelial cells (HUVECs) under TNF-α exposure. Real-time quantitative PCR and western blot were performed to detect the levels of target RNAs and proteins/their phosphorylation in HUVECs. TNF-α could inhibit HUVEC proliferation and induce HUVEC apoptosis in a positive dose- and time-dependent manner, with a similar way of miR-29a upregulation, but no effects on miR-29b/c. Upregulation of miR-29a with its mimics enhanced the apoptotic effect of TNF-α on HUVECs, but downregulation of miR-29a using anti-miR-29a blocked up its apoptotic effect. MiR-29a inhibited the expression of PI3Kp85α and Bcl-2 and blocked up the signal transduction of PI3K/AKT/Bcl-2 axis to mediate the apoptotic effect of TNF-α on HUVECs. Mediating the inflammation-driven endothelial cell apoptosis is an important biology mechanism by which miR-29a promotes atherosclerosis and its complications. MiR-29a will be a potential diagnostic and therapeutic target for atherosclerotic cardiovascular diseases; it is worthwhile to further study.
Collapse
Affiliation(s)
- Yunchang Cao
- Department of Molecular Biology, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, China
| | - Hongbo Wen
- Department of Biochemistry and Molecular Biology, Hengyang Medicine School, University of South China, Hengyang, China
| | - Chaoqun Leng
- Department of Biochemistry and Molecular Biology, Hengyang Medicine School, University of South China, Hengyang, China
| | - Shaolong Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin, China
| |
Collapse
|
34
|
Gao J, Wang H, Shen J, Liu X, Zhu X, Huang C, Li G, Sun Y, Liu Z, Sun YE, Liu H. Mutual regulation between GDF11 and TET2 prevents senescence of mesenchymal stem cells. J Cell Physiol 2023; 238:2827-2840. [PMID: 37801347 DOI: 10.1002/jcp.31132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023]
Abstract
Growth differentiation factor 11 (GDF11) is a putative systemic rejuvenation factor. In this study, we characterized the mechanism by which GDF11 reversed aging of mesenchymal stem cells (MSCs). In culture, aged MSCs proliferate slower and are positive for senescence markers senescence-associated β-galactosidase and P16ink4a . They have shortened telomeres, decreased GDF11 expression, and reduced osteogenic potential. GDF11 can block MSC aging in vitro and reverse age-dependent bone loss in vivo. The antiaging effect of GDF11 is via activation of the Smad2/3-PI3K-AKT-mTOR pathway. Unexpectedly, GDF11 also upregulated a DNA demethylase Tet2, which served as a key mediator for GDF11 to autoregulate itself via demethylation of the GDF11 promoter. Mutation of Tet2 facilitates MSC aging by blocking GDF11 expression. Mutagenesis of Tet2-regulated CpG sites also blocks GDF11 expression, leading to MSC aging. Together, a novel mutual regulatory relationship between GDF11 and an epigenetic factor Tet2 unveiled their antiaging roles.
Collapse
Affiliation(s)
- Jiaming Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hao Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junyan Shen
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaojing Liu
- Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoqi Zhu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ce Huang
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gongchen Li
- Department of Implantology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
| | - Yao Sun
- Department of Implantology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
| | - Zhongmin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Eve Sun
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Implantology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
- Department of Psychiatry and Biobehavioral Sciences, UCLA Medical School, Los Angeles, California, USA
| | - Hailiang Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Li D, Li Y, Ding H, Wang Y, Xie Y, Zhang X. Cellular Senescence in Cardiovascular Diseases: From Pathogenesis to Therapeutic Challenges. J Cardiovasc Dev Dis 2023; 10:439. [PMID: 37887886 PMCID: PMC10607269 DOI: 10.3390/jcdd10100439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
Cellular senescence (CS), classically considered a stable cell cycle withdrawal, is hallmarked by a progressive decrease in cell growth, differentiation, and biological activities. Senescent cells (SNCs) display a complicated senescence-associated secretory phenotype (SASP), encompassing a variety of pro-inflammatory factors that exert influence on the biology of both the cell and surrounding tissue. Among global mortality causes, cardiovascular diseases (CVDs) stand out, significantly impacting the living quality and functional abilities of patients. Recent data suggest the accumulation of SNCs in aged or diseased cardiovascular systems, suggesting their potential role in impairing cardiovascular function. CS operates as a double-edged sword: while it can stimulate the restoration of organs under physiological conditions, it can also participate in organ and tissue dysfunction and pave the way for multiple chronic diseases under pathological states. This review explores the mechanisms that underlie CS and delves into the distinctive features that characterize SNCs. Furthermore, we describe the involvement of SNCs in the progression of CVDs. Finally, the study provides a summary of emerging interventions that either promote or suppress senescence and discusses their therapeutic potential in CVDs.
Collapse
Affiliation(s)
- Dan Li
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou 730030, China; (D.L.); (H.D.); (Y.W.); (Y.X.)
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China;
| | - Hong Ding
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou 730030, China; (D.L.); (H.D.); (Y.W.); (Y.X.)
| | - Yuqin Wang
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou 730030, China; (D.L.); (H.D.); (Y.W.); (Y.X.)
| | - Yafei Xie
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou 730030, China; (D.L.); (H.D.); (Y.W.); (Y.X.)
| | - Xiaowei Zhang
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou 730030, China; (D.L.); (H.D.); (Y.W.); (Y.X.)
| |
Collapse
|
36
|
Zhang XJ, Han XW, Jiang YH, Wang YL, He XL, Liu DH, Huang J, Liu HH, Ye TC, Li SJ, Li ZR, Dong XM, Wu HY, Long WJ, Ni SH, Lu L, Yang ZQ. Impact of inflammation and anti-inflammatory modalities on diabetic cardiomyopathy healing: From fundamental research to therapy. Int Immunopharmacol 2023; 123:110747. [PMID: 37586299 DOI: 10.1016/j.intimp.2023.110747] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/18/2023] [Accepted: 07/29/2023] [Indexed: 08/18/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a prevalent cardiovascular complication of diabetes mellitus, characterized by high morbidity and mortality rates worldwide. However, treatment options for DCM remain limited. For decades, a substantial body of evidence has suggested that the inflammatory response plays a pivotal role in the development and progression of DCM. Notably, DCM is closely associated with alterations in inflammatory cells, exerting direct effects on major resident cells such as cardiomyocytes, vascular endothelial cells, and fibroblasts. These cellular changes subsequently contribute to the development of DCM. This article comprehensively analyzes cellular, animal, and human studies to summarize the latest insights into the impact of inflammation on DCM. Furthermore, the potential therapeutic effects of current anti-inflammatory drugs in the management of DCM are also taken into consideration. The ultimate goal of this work is to consolidate the existing literature on the inflammatory processes underlying DCM, providing clinicians with the necessary knowledge and tools to adopt a more efficient and evidence-based approach to managing this condition.
Collapse
Affiliation(s)
- Xiao-Jiao Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xiao-Wei Han
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Yan-Hui Jiang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Ya-Le Wang
- Shanghai University of Traditional Chinese Medicine, 1200 Cai lun Road, Pudong New District, Shanghai 201203, China; Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, 16 Xian tong Road, Luo hu District, Shenzhen, Guangdong 518004, China
| | - Xing-Ling He
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Dong-Hua Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Jie Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Hao-Hui Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Tao-Chun Ye
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Si-Jing Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Zi-Ru Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xiao-Ming Dong
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Hong-Yan Wu
- Shanghai University of Traditional Chinese Medicine, 1200 Cai lun Road, Pudong New District, Shanghai 201203, China; Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, 16 Xian tong Road, Luo hu District, Shenzhen, Guangdong 518004, China.
| | - Wen-Jie Long
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Shi-Hao Ni
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Zhong-Qi Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| |
Collapse
|
37
|
Aging Biomarker Consortium, Zhang W, Che Y, Tang X, Chen S, Song M, Wang L, Sun AJ, Chen HZ, Xu M, Wang M, Pu J, Li Z, Xiao J, Cao CM, Zhang Y, Lu Y, Zhao Y, Wang YJ, Zhang C, Shen T, Zhang W, Tao L, Qu J, Tang YD, Liu GH, Pei G, Li J, Cao F. A biomarker framework for cardiac aging: the Aging Biomarker Consortium consensus statement. LIFE MEDICINE 2023; 2:lnad035. [PMID: 39872891 PMCID: PMC11749273 DOI: 10.1093/lifemedi/lnad035] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 09/26/2023] [Indexed: 01/30/2025]
Abstract
Cardiac aging constitutes a significant risk factor for cardiovascular diseases prevalent among the elderly population. Urgent attention is required to prioritize preventive and management strategies for age-related cardiovascular conditions to safeguard the well-being of elderly individuals. In response to this critical challenge, the Aging Biomarker Consortium (ABC) of China has formulated an expert consensus on cardiac aging biomarkers. This consensus draws upon the latest scientific literature and clinical expertise to provide a comprehensive assessment of biomarkers associated with cardiac aging. Furthermore, it presents a standardized methodology for characterizing biomarkers across three dimensions: functional, structural, and humoral. The functional dimension encompasses a broad spectrum of markers that reflect diastolic and systolic functions, sinus node pacing, neuroendocrine secretion, coronary microcirculation, and cardiac metabolism. The structural domain emphasizes imaging markers relevant to concentric cardiac remodeling, coronary artery calcification, and epicardial fat deposition. The humoral aspect underscores various systemic (N) and heart-specific (X) markers, including endocrine hormones, cytokines, and other plasma metabolites. The ABC's primary objective is to establish a robust foundation for assessing cardiac aging, thereby furnishing a dependable reference for clinical applications and future research endeavors. This aims to contribute significantly to the enhancement of cardiovascular health and overall well-being among elderly individuals.
Collapse
Affiliation(s)
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing 100853, China
| | - Yang Che
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Siqi Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Ai-Jun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200433, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200433, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200433, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hou-Zao Chen
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Ming Xu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jun Pu
- State Key Laboratory for Oncogenes and Related Genes, Department of Cardiology, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Zijian Li
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Junjie Xiao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Chun-Mei Cao
- Laboratory of Cardiovascular Science, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Capital Institute of Pediatrics, Beijing 100020, China
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, School of Basic Medical Sciences, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Yao Lu
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yingxin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400042, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing 400016, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, Xi’an 710032, China
| | - Jing Qu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Da Tang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200070, China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing 100853, China
| |
Collapse
|
38
|
Ren LL, Miao H, Wang YN, Liu F, Li P, Zhao YY. TGF-β as A Master Regulator of Aging-Associated Tissue Fibrosis. Aging Dis 2023; 14:1633-1650. [PMID: 37196129 PMCID: PMC10529747 DOI: 10.14336/ad.2023.0222] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/22/2023] [Indexed: 05/19/2023] Open
Abstract
Fibrosis is the abnormal accumulation of extracellular matrix proteins such as collagen and fibronectin. Aging, injury, infections, and inflammation can cause different types of tissue fibrosis. Numerous clinical investigations have shown a correlation between the degree of liver and pulmonary fibrosis in patients and telomere length and mitochondrial DNA content, both of which are signs of aging. Aging involves the gradual loss of tissue function over time, which results in the loss of homeostasis and, ultimately, an organism's fitness. A major feature of aging is the accumulation of senescent cells. Senescent cells abnormally and continuously accumulate in the late stages of life, contributing to age-related fibrosis and tissue deterioration, among other aging characteristics. Furthermore, aging generates chronic inflammation, which results in fibrosis and decreases organ function. This finding suggests that fibrosis and aging are closely related. The transforming growth factor-beta (TGF-β) superfamily plays a crucial role in the physiological and pathological processes of aging, immune regulation, atherosclerosis, and tissue fibrosis. In this review, the functions of TGF-β in normal organs, aging, and fibrotic tissues is discussed: TGF-β signalling is altered with age and is an indicator of pathology associated with tissue fibrosis. In addition, this review discusses the potential targeting of noncoding.
Collapse
Affiliation(s)
- Li-Li Ren
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Yan-Ni Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Fei Liu
- Department of Urology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, Department of Nephrology, China-Japan Friendship Hospital, Beijing, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
39
|
Jiang Y, Wang Z, Hu J, Wang W, Zhang N, Gao L. Core fucosylation regulates alveolar epithelial cells senescence through activating of transforming growth factor-β pathway in pulmonary fibrosis. Aging (Albany NY) 2023; 15:9572-9589. [PMID: 37724903 PMCID: PMC10564423 DOI: 10.18632/aging.205036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF), a fatal disorder associated with aging, has a terrible prognosis. However, the potential causes of IPF remain a riddle. In this study, we designed to explore whether the modification of the core fucosylation (CF) can ameliorate pulmonary fibrosis by targeting alveolar epithelial cells (AECs) senescence. First, we verified that cellular senescence occurs in the bleomycin-induced lung fibrosis mice models and CF modifications accompanying senescent AECs in pulmonary fibrosis. Next, both gain- and loss- of function research on CF were performed to elucidate its role in promoting AECs senescence and triggering pulmonary fibrosis in vitro. Notably, using alveolar epithelial cell-specific FUT8 conditional knockout mouse models, however, inhibition of cellular senescence by deleting the FUT8 gene could attenuate pulmonary fibrosis in vivo. Finally, blocking the CF modification of transforming growth factor -β type I receptor (TGF-βR I) could reduce the activation of downstream transforming growth factor -β (TGF-β) pathways in AECs senescence both in vivo and in vitro. This study reveals that CF is a crucial interventional target for the treatment of pulmonary fibrosis. Blocking CF modification contributes importantly to inhibiting AECs senescence resulting in pulmonary fibrosis lessen.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhongzhen Wang
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinying Hu
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Wang
- Department of Nephrology, Affiliated Xinhua Hospital of Dalian University, Dalian, China
| | - Na Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lili Gao
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
40
|
Riesco MF, Valcarce DG, Sellés-Egea A, Esteve-Codina A, Herráez MP, Robles V. miR-29a Is Downregulated in Progenies Derived from Chronically Stressed Males. Int J Mol Sci 2023; 24:14107. [PMID: 37762407 PMCID: PMC10531283 DOI: 10.3390/ijms241814107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Recent research has provided compelling evidence demonstrating that paternal exposure to different stressors can influence their offspring's phenotypes. We hypothesized that paternal stress can negatively impact the progeny, altering different miRs and triggering different physiological alterations that could compromise offspring development. To investigate this, we exposed zebrafish male siblings to a chronic stress protocol for 21 days. We performed RNA-sequencing (RNA-seq) analyses to identify differentially expressed small noncoding RNAs in 7-day postfertilization (dpf) larvae derived from paternally stressed males crossed with control females compared with the control progeny. We found a single miRNA differentially expressed-miR-29a-which was validated in larva and was also tested in the sperm, testicles, and brain of the stressed progenitors. We observed a vertical transmission of chronic stress to the unexposed larvae, reporting novel consequences of paternally inherited chronic stress at a molecular level. The deregulation of mi-R29a in those larvae could affect relevant biological processes affecting development, morphogenesis, or neurogenesis, among others. Additionally, these disruptions were associated with reduced rates of survival and hatching in the affected offspring.
Collapse
Affiliation(s)
- Marta F. Riesco
- INDEGSAL, Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - David G. Valcarce
- INDEGSAL, Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Alba Sellés-Egea
- INDEGSAL, Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Department of Medicine and Health Sciences, Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - María Paz Herráez
- INDEGSAL, Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Vanesa Robles
- INDEGSAL, Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
41
|
Hao Y, Li B, Huber SA, Liu W. Bibliometric analysis of trends in cardiac aging research over the past 20 years. Medicine (Baltimore) 2023; 102:e34870. [PMID: 37653740 PMCID: PMC10470686 DOI: 10.1097/md.0000000000034870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND In recent years, many studies have addressed cardiac aging and related diseases. This study aims to understand the research trend of cardiac aging and find new hot issues. METHODS We searched the web of science core collection database for articles published between 2003 and 2022 on the topic of "cardiac aging." Complete information including keywords, publication year, journal title, country, organization, and author were extracted for analysis. The VOS viewer software was used to generate network maps of keywords, countries, institutions, and author relationships for visual network analysis. RESULTS A total of 1002 papers were analyzed in the study. Overall, the number of annual publications on cardiac aging has increased since 2009, and new hot topics are emerging. The top 3 countries with the most publications were the United States (471 articles), China (209 articles) and Italy (101 articles). The University of Washington published the most papers (35 articles). The cluster analysis with author as the keyword found that the connections among different scholars are scattered and clustered in a small range. Network analysis based on keyword co-occurrence and year of publication identified relevant features and trends in cardiac aging research. According to the results of cluster analysis, all the articles are divided into 4 topics: "mechanisms of cardiac aging", "prevention and treatment of cardiac aging", "characteristics of cardiac aging", and "others." In recent years, the mechanism and treatment of cardiac aging have attracted the most attention. In both studies, animal models are used more often than in human populations. Mitochondrial dysfunction, autophagy and mitochondrial autophagy are hotspots in current research. CONCLUSION In this study, bibliometric analysis was used to analyze the research trend of cardiac aging in the past 20 years. The mechanism and treatment of cardiac aging are the most concerned contents. Mitochondrial dysfunction, autophagy and mitophagy are the focus of future research on cardiac aging.
Collapse
Affiliation(s)
- Yan Hao
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Harbin Medical University, Harbin, Heilongjiang, China
| | - Bohan Li
- Harbin Medical University, Harbin, Heilongjiang, China
| | - Sally A. Huber
- Department of Pathology and Laboratory Medicine, University of Vermont, Colchester, VT
| | - Wei Liu
- Harbin Medical University, Harbin, Heilongjiang, China
- Department of Geriatric Cardiovascular Division, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
42
|
Pan CC, Maeso-Díaz R, Lewis TR, Xiang K, Tan L, Liang Y, Wang L, Yang F, Yin T, Wang C, Du K, Huang D, Oh SH, Wang E, Lim BJW, Chong M, Alexander PB, Yao X, Arshavsky VY, Li QJ, Diehl AM, Wang XF. Antagonizing the irreversible thrombomodulin-initiated proteolytic signaling alleviates age-related liver fibrosis via senescent cell killing. Cell Res 2023; 33:516-532. [PMID: 37169907 PMCID: PMC10313785 DOI: 10.1038/s41422-023-00820-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Cellular senescence is a stress-induced, stable cell cycle arrest phenotype which generates a pro-inflammatory microenvironment, leading to chronic inflammation and age-associated diseases. Determining the fundamental molecular pathways driving senescence instead of apoptosis could enable the identification of senolytic agents to restore tissue homeostasis. Here, we identify thrombomodulin (THBD) signaling as a key molecular determinant of the senescent cell fate. Although normally restricted to endothelial cells, THBD is rapidly upregulated and maintained throughout all phases of the senescence program in aged mammalian tissues and in senescent cell models. Mechanistically, THBD activates a proteolytic feed-forward signaling pathway by stabilizing a multi-protein complex in early endosomes, thus forming a molecular basis for the irreversibility of the senescence program and ensuring senescent cell viability. Therapeutically, THBD signaling depletion or inhibition using vorapaxar, an FDA-approved drug, effectively ablates senescent cells and restores tissue homeostasis in liver fibrosis models. Collectively, these results uncover proteolytic THBD signaling as a conserved pro-survival pathway essential for senescent cell viability, thus providing a pharmacologically exploitable senolytic target for senescence-associated diseases.
Collapse
Affiliation(s)
- Christopher C Pan
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Raquel Maeso-Díaz
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Tylor R Lewis
- Division of Ophthalmology, Department of Medicine, Duke University, Durham, NC, USA
| | - Kun Xiang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Lianmei Tan
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Yaosi Liang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Fengrui Yang
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Tao Yin
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Calvin Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Kuo Du
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - De Huang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Seh Hoon Oh
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Ergang Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | | | - Mengyang Chong
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Peter B Alexander
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Xuebiao Yao
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Vadim Y Arshavsky
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
- Division of Ophthalmology, Department of Medicine, Duke University, Durham, NC, USA
| | - Qi-Jing Li
- Department of Immunology, Duke University, Durham, NC, USA
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
43
|
Huang X, Zhao Y, Wei M, Zhuge R, Zheng X. hCINAP alleviates senescence by regulating MDM2 via p14ARF and the HDAC1/CoREST complex. J Mol Cell Biol 2023; 15:mjad015. [PMID: 36881716 PMCID: PMC10476552 DOI: 10.1093/jmcb/mjad015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/05/2022] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Cellular senescence is a major process affected by multiple signals and coordinated by a complex signal response network. Identification of novel regulators of cellular senescence and elucidation of their molecular mechanisms will aid in the discovery of new treatment strategies for aging-related diseases. In the present study, we identified human coilin-interacting nuclear ATPase protein (hCINAP) as a negative regulator of aging. Depletion of cCINAP significantly shortened the lifespan of Caenorhabditis elegans and accelerated primary cell aging. Moreover, mCINAP deletion markedly promoted organismal aging and stimulated senescence-associated secretory phenotype in the skeletal muscle and liver from mouse models of radiation-induced senescence. Mechanistically, hCINAP functions through regulating MDM2 status by distinct mechanisms. On the one hand, hCINAP decreases p53 stability by attenuating the interaction between p14ARF and MDM2; on the other hand, hCINAP promotes MDM2 transcription via inhibiting the deacetylation of H3K9ac in the MDM2 promoter by hindering the HDAC1/CoREST complex integrity. Collectively, our data demonstrate that hCINAP is a negative regulator of aging and provide insight into the molecular mechanisms underlying the aging process.
Collapse
Affiliation(s)
- Xinping Huang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yan Zhao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Min Wei
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ruipeng Zhuge
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaofeng Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
44
|
Lee SH, Yang JH, Park UH, Choi H, Kim YS, Yoon BE, Han HJ, Kim HT, Um SJ, Kim EJ. SIRT1 ubiquitination is regulated by opposing activities of APC/C-Cdh1 and AROS during stress-induced premature senescence. Exp Mol Med 2023; 55:1232-1246. [PMID: 37258580 PMCID: PMC10318011 DOI: 10.1038/s12276-023-01012-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 06/02/2023] Open
Abstract
SIRT1, a member of the mammalian sirtuin family, is a nicotinamide adenosine dinucleotide (NAD)-dependent deacetylase with key roles in aging-related diseases and cellular senescence. However, the mechanism by which SIRT1 protein homeostasis is controlled under senescent conditions remains elusive. Here, we revealed that SIRT1 protein is significantly downregulated due to ubiquitin-mediated proteasomal degradation during stress-induced premature senescence (SIPS) and that SIRT1 physically associates with anaphase-promoting complex/cyclosome (APC/C), a multisubunit E3 ubiquitin ligase. Ubiquitin-dependent SIRT1 degradation is stimulated by the APC/C coactivator Cdh1 and not by the coactivator Cdc20. We found that Cdh1 depletion impaired the SIPS-promoted downregulation of SIRT1 expression and reduced cellular senescence, likely through SIRT1-driven p53 inactivation. In contrast, AROS, a SIRT1 activator, reversed the SIRT1 degradation induced by diverse stressors and antagonized Cdh1 function through competitive interactions with SIRT1. Furthermore, our data indicate opposite roles for Cdh1 and AROS in the epigenetic regulation of the senescence-associated secretory phenotype genes IL-6 and IL-8. Finally, we demonstrated that pinosylvin restores downregulated AROS (and SIRT1) expression levels in bleomycin-induced mouse pulmonary senescent tissue while repressing bleomycin-promoted Cdh1 expression. Overall, our study provides the first evidence of the reciprocal regulation of SIRT1 stability by APC/C-Cdh1 and AROS during stress-induced premature senescence, and our findings suggest pinosylvin as a potential senolytic agent for pulmonary fibrosis.
Collapse
Affiliation(s)
- Sang Hyup Lee
- Department of Molecular Biology, Dankook University, Cheonan, 31116, Korea
| | - Ji-Hye Yang
- Department of Molecular Biology, Dankook University, Cheonan, 31116, Korea
| | - Ui-Hyun Park
- Department of Integrative Bioscience and Biotechnology/Institute of Bioscience, Sejong University, Seoul, 143-747, Korea
| | - Hanbyeul Choi
- Department of Molecular Biology, Dankook University, Cheonan, 31116, Korea
| | - Yoo Sung Kim
- Department of Molecular Biology, Dankook University, Cheonan, 31116, Korea
| | - Bo-Eun Yoon
- Department of Molecular Biology, Dankook University, Cheonan, 31116, Korea
| | - Hye-Jeong Han
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, 31151, Cheonan-si, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, 31151, Cheonan-si, Republic of Korea
| | - Hyun-Taek Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, 31151, Cheonan-si, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, 31151, Cheonan-si, Republic of Korea
| | - Soo-Jong Um
- Department of Integrative Bioscience and Biotechnology/Institute of Bioscience, Sejong University, Seoul, 143-747, Korea.
| | - Eun-Joo Kim
- Department of Molecular Biology, Dankook University, Cheonan, 31116, Korea.
| |
Collapse
|
45
|
Chałubińska-Fendler J, Nowicka Z, Dróżdż I, Graczyk Ł, Piotrowski G, Tomasik B, Spych M, Fijuth J, Papis-Ubych A, Kędzierawski P, Kozono D, Fendler W. Radiation-induced circulating microRNAs linked to echocardiography parameters after radiotherapy. Front Oncol 2023; 13:1150979. [PMID: 37274244 PMCID: PMC10232985 DOI: 10.3389/fonc.2023.1150979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Patients treated with radiotherapy to the chest region are at risk of cardiac sequelae, however, identification of those with greatest risk of complications remains difficult. Here, we sought to determine whether short-term changes in circulating miRNA expression are related to measures of cardiac dysfunction in follow-up. Materials and methods Two parallel patient cohorts were enrolled and followed up for 3 years after completion of RT to treat left-sided breast cancer. In the primary group (N=28) we used a a panel of 752 miRNAs to identify miRNAs associated with radiation and cardiac indices at follow up. In the second, independent cohort (N=56) we validated those candidate miRNAs with a targeted qPCR panel. In both cohorts. serum samples were collected before RT, 24h after the last dose and 1 month after RT; cardiac echocardiography was performed 2.5-3 year after RT. Results Seven miRNAs in the primary group showed marked changes in serum miRNAs immediately after RT compared to baseline and associations with cardiopulmonary dose-volume histogram metrics. Among those miRNAs: miR-15b-5p, miR-22-3p, miR-424-5p and miR-451a were confirmed to show significant decrease of expression 24 hours post-RT in the validation cohort. Moreover, miR-29c, miR-451 and miR-424 were correlated with the end-diastolic diameter of the left ventricle, which was also confirmed in multivariable analysis adjusting for RT-associated factors. Conclusion We identified a subset of circulating miRNAs predictive for cardiac function impairment in patients treated for left-sided breast cancer, although longer clinical observation could determine if these can be used to predict major clinical endpoints.
Collapse
Affiliation(s)
| | - Zuzanna Nowicka
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
| | - Izabela Dróżdż
- Department of Clinical Genetics, Medical University of Łódź, Łódź, Poland
| | - Łukasz Graczyk
- Department of Radiation Oncology, Oncology Center of Radom, Radom, Poland
- Department of Teleradiotherapy, Regional Cancer Centre, Copernicus Memorial Hospital of Łódź, Łódź, Poland
| | - Grzegorz Piotrowski
- Cardiooncology Department, Medical University of Lodz, Łódź, Poland
- Cardiology Department, Nicolaus Copernicus Memorial Hospital, Łódź, Poland
| | - Bartłomiej Tomasik
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
- Department of Oncology and Radiotherapy, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Spych
- Department of Radiotherapy, Chair of Oncology, Medical University of Łódź, Łódź, Poland
| | - Jacek Fijuth
- Department of Teleradiotherapy, Regional Cancer Centre, Copernicus Memorial Hospital of Łódź, Łódź, Poland
- Department of Radiotherapy, Chair of Oncology, Medical University of Łódź, Łódź, Poland
| | - Anna Papis-Ubych
- Department of Teleradiotherapy, Regional Cancer Centre, Copernicus Memorial Hospital of Łódź, Łódź, Poland
| | | | - David Kozono
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
46
|
Liu Z, Liang Q, Ren Y, Guo C, Ge X, Wang L, Cheng Q, Luo P, Zhang Y, Han X. Immunosenescence: molecular mechanisms and diseases. Signal Transduct Target Ther 2023; 8:200. [PMID: 37179335 PMCID: PMC10182360 DOI: 10.1038/s41392-023-01451-2] [Citation(s) in RCA: 282] [Impact Index Per Article: 141.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/24/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Infection susceptibility, poor vaccination efficacy, age-related disease onset, and neoplasms are linked to innate and adaptive immune dysfunction that accompanies aging (known as immunosenescence). During aging, organisms tend to develop a characteristic inflammatory state that expresses high levels of pro-inflammatory markers, termed inflammaging. This chronic inflammation is a typical phenomenon linked to immunosenescence and it is considered the major risk factor for age-related diseases. Thymic involution, naïve/memory cell ratio imbalance, dysregulated metabolism, and epigenetic alterations are striking features of immunosenescence. Disturbed T-cell pools and chronic antigen stimulation mediate premature senescence of immune cells, and senescent immune cells develop a proinflammatory senescence-associated secretory phenotype that exacerbates inflammaging. Although the underlying molecular mechanisms remain to be addressed, it is well documented that senescent T cells and inflammaging might be major driving forces in immunosenescence. Potential counteractive measures will be discussed, including intervention of cellular senescence and metabolic-epigenetic axes to mitigate immunosenescence. In recent years, immunosenescence has attracted increasing attention for its role in tumor development. As a result of the limited participation of elderly patients, the impact of immunosenescence on cancer immunotherapy is unclear. Despite some surprising results from clinical trials and drugs, it is necessary to investigate the role of immunosenescence in cancer and other age-related diseases.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China
| | - Qimeng Liang
- Nephrology Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 4500052, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Xiaoyong Ge
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
47
|
Abstract
Epigenetic alterations during ageing are manifested with altered gene expression linking it to lifespan regulation, genetic instability, and diseases. Diet and epigenetic modifiers exert a profound effect on the lifespan of an organism by modulating the epigenetic marks. However, our understanding of the multifactorial nature of the epigenetic process during ageing and the onset of disease conditions as well as its reversal by epidrugs, diet, or environmental factors is still mystifying. This review covers the key findings in epigenetics related to ageing and age-related diseases. Further, it holds a discussion about the epigenetic clocks and their implications in various age-related disease conditions including cancer. Although, epigenetics is a reversible process how fast the epigenetic alterations can revert to normal is an intriguing question. Therefore, this paper touches on the possibility of utilizing nutrition and MSCs secretome to accelerate the epigenetic reversal and emphasizes the identification of new therapeutic epigenetic modifiers to counter epigenetic alteration during ageing.
Collapse
Affiliation(s)
- Shikha Sharma
- Institute for Stem Cell Science and Regenerative Medicine, 429164, Bangalore, India;
| | - Ramesh Bhonde
- Dr D Y Patil Vidyapeeth University, 121766, Pune, Maharashtra, India;
| |
Collapse
|
48
|
Papadimitriou MA, Panoutsopoulou K, Pilala KM, Scorilas A, Avgeris M. Epi-miRNAs: Modern mediators of methylation status in human cancers. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1735. [PMID: 35580998 DOI: 10.1002/wrna.1735] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023]
Abstract
Methylation of the fundamental macromolecules, DNA/RNA, and proteins, is remarkably abundant, evolutionarily conserved, and functionally significant in cellular homeostasis and normal tissue/organism development. Disrupted methylation imprinting is strongly linked to loss of the physiological equilibrium and numerous human pathologies, and most importantly to carcinogenesis, tumor heterogeneity, and cancer progression. Mounting recent evidence has documented the active implication of miRNAs in the orchestration of the multicomponent cellular methylation machineries and the deregulation of methylation profile in the epigenetic, epitranscriptomic, and epiproteomic levels during cancer onset and progression. The elucidation of such regulatory networks between the miRNome and the cellular methylation machineries has led to the emergence of a novel subclass of miRNAs, namely "epi-miRNAs" or "epi-miRs." Herein, we have summarized the existing knowledge on the functional role of epi-miRs in the methylation dynamic landscape of human cancers and their clinical utility in modern cancer diagnostics and tailored therapeutics. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.,Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| |
Collapse
|
49
|
Sweeney M, Cook SA, Gil J. Therapeutic opportunities for senolysis in cardiovascular disease. FEBS J 2023; 290:1235-1255. [PMID: 35015342 PMCID: PMC10952275 DOI: 10.1111/febs.16351] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022]
Abstract
Cellular senescence within the cardiovascular system has, until recently, been understudied and unappreciated as a factor in the development of age-related cardiovascular diseases such as heart failure, myocardial infarction and atherosclerosis. This is in part due to challenges with defining senescence within post-mitotic cells such as cardiomyocytes. However, recent evidence has demonstrated senescent-like changes, including a senescence-associated secretory phenotype (SASP), in cardiomyocytes in response to ageing and cell stress. Other replicating cells, including fibroblasts and vascular smooth muscle cells, within the cardiovascular system have also been shown to undergo senescence and contribute to disease pathogenesis. These findings coupled with the emergence of senolytic therapies, to target and eliminate senescent cells, have provided fascinating new avenues for management of several age-related cardiovascular diseases with high prevalence. In this review, we discuss the role of senescent cells within the cardiovascular system and highlight the contribution of senescence cells to common cardiovascular diseases. We discuss the emerging role for senolytics in cardiovascular disease management while highlighting important aspects of senescence biology which must be clarified before the potential of senolytics can be fully realized.
Collapse
Affiliation(s)
- Mark Sweeney
- MRC London Institute of Medical Sciences (LMS)LondonUK
- Institute of Clinical Sciences (ICS)Faculty of MedicineImperial College LondonUK
- Wellcome Trust / National Institute of Health Research 4i Clinical Research FellowLondonUK
| | - Stuart A. Cook
- MRC London Institute of Medical Sciences (LMS)LondonUK
- Institute of Clinical Sciences (ICS)Faculty of MedicineImperial College LondonUK
| | - Jesús Gil
- MRC London Institute of Medical Sciences (LMS)LondonUK
- Institute of Clinical Sciences (ICS)Faculty of MedicineImperial College LondonUK
| |
Collapse
|
50
|
IDH2 Deficiency Promotes Endothelial Senescence by Eliciting miR-34b/c-Mediated Suppression of Mitophagy and Increased ROS Production. Antioxidants (Basel) 2023; 12:antiox12030585. [PMID: 36978833 PMCID: PMC10045915 DOI: 10.3390/antiox12030585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Endothelial senescence impairs vascular function and thus is a primary event of age-related vasculature diseases. Isocitrate dehydrogenase 2 (IDH2) plays an important role in inducing alpha-ketoglutarate (α-KG) production and preserving mitochondrial function. However, the mechanism and regulation of IDH2 in endothelial senescence have not been elucidated. We demonstrated that downregulation of IDH2 induced accumulation of miR-34b/c, which impaired mitophagy and elevated mitochondrial reactive oxygen species (ROS) levels by inhibiting mitophagy-related markers (PTEN-induced putative kinase 1 (PINK1), Parkin, LC-II/LC3-I, and p62) and attenuating Sirtuin deacetylation 3 (Sirt3) expression. The mitochondrial dysfunction induced by IDH2 deficiency disrupted cell homeostasis and the cell cycle and led to endothelial senescence. However, miR-34b/c inhibition or α-KG supplementation restored Sirt3, PINK1, Parkin, LC-II/LC3-I, p62, and mitochondrial ROS levels, subsequently alleviating endothelial senescence. We showed that IDH2 played a crucial role in regulating endothelial senescence via induction of miR-34b/c in endothelial cells.
Collapse
|