1
|
George JV, Hornburg KJ, Merrill A, Marvin E, Conrad K, Welle K, Gelein R, Chalupa D, Graham U, Oberdörster G, Johnson GA, Cory-Slechta DA, Sobolewski M. Brain iron accumulation in neurodegenerative disorders: Does air pollution play a role? Part Fibre Toxicol 2025; 22:9. [PMID: 40312348 PMCID: PMC12046710 DOI: 10.1186/s12989-025-00622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/23/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Both excess brain Fe and air pollution (AP) exposures are associated with increased risk for multiple neurodegenerative disorders. Fe is a redox-active metal that is abundant in AP and even further elevated in U.S. subway systems. Exposures to AP and associated contaminants, such as Fe, are lifelong and could therefore contribute to elevated brain Fe observed in neurodegenerative diseases, particularly via nasal olfactory uptake of ultrafine particle AP. These studies tested the hypotheses that exogenously generated Fe oxide nanoparticles could reach the brain following inhalational exposures and produce neurotoxic effects consistent with neurodegenerative diseases and disorders in adult C57/Bl6J mice exposed by inhalation to Fe nanoparticles at a concentration similar to those found in underground subway systems (~ 150 µg/m3) for 20 days. Olfactory bulb sections and exposure chamber TEM grids were analyzed for Fe speciation. Measures included brain volumetric and diffusivity changes; levels of striatal and cerebellar neurotransmitters and trans-sulfuration markers; quantification of frontal cortical and hippocampal Aβ42, total tau, and phosphorylated tau; and behavioral alterations in locomotor activity and memory. RESULTS Particle speciation confirmed similarity of Fe oxides (mostly magnetite) found on chamber TEM grids and in olfactory bulb. Alzheimer's disease (AD) like characteristics were seen in Fe-exposed females including increased olfactory bulb diffusivity, impaired memory, and increased accumulation of total and phosphorylated tau, with total hippocampal tau levels significantly correlated with increased errors in the radial arm maze. Fe-exposed males showed increased volume of the substantia nigra pars compacta, a region critical to the motor impairments seen in Parkinson's disease (PD), in conjunction with reduced volume of the trigeminal nerve and optic tract and chiasm. CONCLUSIONS Inhaled Fe oxide nanoparticles appeared to lead to olfactory bulb uptake. Further, these exposures reproduced characteristic features of neurodegenerative diseases in a sex-dependent manner, with females evidencing features similar to those seen in AD and effects in regions in males associated with PD. As such, prolonged inhaled Fe exposure via AP should be considered as a source of elevated brain Fe with aging, and as a risk factor for neurodegenerative diseases. The bases for dichotomous sex effects of inhaled Fe nanoparticles is as of yet unclear. Also as of yet unknown is how duration of such Fe exposures affect outcome, and/or whether exposures to inhaled Fe during early brain development enhances vulnerability to subsequent Fe exposures. Collectively, these findings suggest that regulation of air Fe levels, particularly in enclosed areas like subway stations, may have broad public health protective effects.
Collapse
Affiliation(s)
- Jithin V George
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Kathryn J Hornburg
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Alyssa Merrill
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Elena Marvin
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Katherine Conrad
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Kevin Welle
- Mass Spectrometry Core, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Robert Gelein
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - David Chalupa
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Uschi Graham
- Faraday Energy, Coldstream Research Park, Lexington, KY, 40511, USA
| | - Günter Oberdörster
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - G Allan Johnson
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
2
|
Sunami R, Nakamoto T, Cohen N, Kobayashi T, Yamamoto K. Exploring the effects of olfactory VR on visuospatial memory and cognitive processing in older adults. Sci Rep 2025; 15:10805. [PMID: 40155673 PMCID: PMC11953428 DOI: 10.1038/s41598-025-94693-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
This study examined the effects of Olfactory Virtual Reality (VR) Gaming on cognitive performance in older adults. A VR game environment ("Interactive Smellscape") was created to enable this, and 30 participants aged 63-90 years completed both VR gaming sessions and cognitive assessments, conducted with a 6-day interval between the two sessions. Significant improvements were observed in spatial tasks of Japanese characters and words, with notable enhancements specifically in visuospatial rotation performance and word-location recall accuracy. However, no significant changes were detected in olfactory identification or other general cognitive tasks. These findings suggest potential cognitive benefits of incorporating VR and olfactory stimuli into interventions for older populations, particularly for tasks requiring attention and spatial processing. The results further underscore the importance of task-specific designs to maximize the utility of multisensory VR systems for cognitive rehabilitation.
Collapse
Affiliation(s)
- Ryota Sunami
- School of Engineering, Institute of Science Tokyo, Yokohama, Japan
| | - Takamichi Nakamoto
- School of Engineering, Institute of Science Tokyo, Yokohama, Japan.
- Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Japan.
| | - Nathan Cohen
- Central Saint Martins, University of the Arts London, London, UK
| | | | - Kohsuke Yamamoto
- Faculty of Science and Engineering, Hosei University, Koganei, Japan
| |
Collapse
|
3
|
Moss SE, McCurdy ES, Thomas NN, Gulick D, Poff AM, D'Agostino DP. Olfaction-based learned preference assessment without the use of motivational fear or motivational weight loss. Front Behav Neurosci 2025; 19:1521751. [PMID: 40013118 PMCID: PMC11861198 DOI: 10.3389/fnbeh.2025.1521751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
Introduction Reliable assessments of learning ability in preclinical models are essential for studying neurodegenerative, developmental, and inflammatory disorders. However, many inbred strains of mice present background pathologies that interfere with traditional learning tests. The C57BL/6 J mouse, a widely used laboratory strain, sporadically develops auditory and visual impairments that complicate interpretation. In this study, we establish an olfaction-based learned preference protocol designed to evaluate learning ability independent of fear responses, motivational weight loss, or visual cues in C57BL/6 J mice. Methods and results Leveraging the species' natural preference for sweet flavors, we tested different sweeteners and confirmed their passive preference for sucrose was more robust than for saccharin or sucralose. We then trained mice to associate either lemon or rose scents with a sucrose paste reward, and tested whether they demonstrated a learned preference for the sucrose-associated scent over the neutral scent. Mice developed an appetitive olfactory preference for sucrose as a reward, in the absence of motivational weight loss, as measured by time spent exploring a three-chamber association box with access to both scents. We assessed whether this protocol discriminated learning deficit induced by lipopolysaccharide (LPS) administration. Conclusion We conclude that this protocol is a viable tool for assessing learning abilities in preclinical models with auditory or visual deficits, motor impairments, or an inability to tolerate motivational weight loss.
Collapse
Affiliation(s)
- Sara E. Moss
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| | - Ekaterina S. McCurdy
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| | - Natalya N. Thomas
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| | - Danielle Gulick
- Molecular Medicine, University of South Florida, Tampa, FL, United States
| | - Angela M. Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| | - Dominic P. D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
4
|
Perrone S, Beretta V, Tataranno ML, Tan S, Shi Z, Scarpa E, Dell'Orto V, Ravenda S, Petrolini C, Brambilla MM, Palanza P, Gitto E, Nonnis-Marzano F. Olfactory testing in infants with perinatal asphyxia: Enhancing encephalopathy risk stratification for future health outcomes. Neurosci Biobehav Rev 2025; 169:106029. [PMID: 39875082 DOI: 10.1016/j.neubiorev.2025.106029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/07/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
Perinatal asphyxia (PA) is a leading cause of neonatal morbidity and mortality, often resulting in long-term neurodevelopmental challenges. Despite advancements in perinatal care, predicting long-term outcomes remains difficult. Early diagnosis is essential for timely interventions to reduce brain injury, with tools such as Magnetic Resonance Imaging, brain ultrasound, and emerging biomarkers playing a possible key role. Olfaction, one of the earliest senses to develop, may provide valuable insights into long-term neurodevelopmental outcomes following PA due to its intricate neural connections with regions responsible for memory, emotion, and homeostasis. Newborns demonstrate early olfactory abilities, such as recognizing maternal odors, which are vital for bonding, feeding, and emotional regulation. These responses are processed by a network of brain regions, including the olfactory bulb (OB), piriform cortex, amygdala, and orbitofrontal cortex. Hypoxic injury to these regions, particularly the OB, may disrupt olfactory processing in infants with PA, potentially affecting their cognitive and social development. Investigating the relationship between olfactory system development and perinatal brain injury could lead to innovative diagnostic and therapeutic approaches. Further research, including clinical and animal studies, is necessary to fully explore the potential of olfactory assessments in predicting outcomes after PA. This educational review explores and discusses the potential of olfaction as a predictor of long-term outcomes and a tool for risk stratification following PA, opening new pathways for interventions and improved care.
Collapse
Affiliation(s)
- Serafina Perrone
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Parma 43121, Italy.
| | - Virginia Beretta
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Parma 43121, Italy
| | - Maria Luisa Tataranno
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht 3584 EA, the Netherlands
| | - Sidhartha Tan
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhongjie Shi
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Elena Scarpa
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Parma 43121, Italy
| | - Valentina Dell'Orto
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Parma 43121, Italy
| | - Sebastiano Ravenda
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Viale delle Scienze 11, Parma 43125, Italy
| | - Chiara Petrolini
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Parma 43121, Italy
| | - Maria Maddalena Brambilla
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Parma 43121, Italy
| | - Paola Palanza
- Unit of Behavioral Biology, Department of Neuroscience, University of Parma, Viale delle Scienze 11/A, Parma 43125, Italy
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina 98125, Italy
| | - Francesco Nonnis-Marzano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Viale delle Scienze 11, Parma 43125, Italy
| |
Collapse
|
5
|
Bandiera B, Natale F, Rinaudo M, Sollazzo R, Spinelli M, Fusco S, Grassi C. Olfactory stimulation with multiple odorants prevents stress-induced cognitive and psychological alterations. Brain Commun 2024; 6:fcae390. [PMID: 39564126 PMCID: PMC11574619 DOI: 10.1093/braincomms/fcae390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/02/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
Acute and chronic stress markedly affects behavior by triggering sympathetic nervous system activation and several hypothalamus-pituitary-adrenal-dependent responses. Brain regions of the limbic system are responsible for the regulation of stress response, and different reports have demonstrated that their activity can be influenced by olfactory stimuli. Here we report that, in mice exposed to acute restraint stress, olfactory stimulation employing a combination of three odorants, i.e. vanillin, limonene and green odor (trans-2-hexenal and cis-3-hexenol) decreased anxiety behavior, assessed in the elevated plus maze, and halted recognition and spatial memory deficits, as appraised in two different object recognition tasks. Of note, when applied singularly, the same odorants were unable to block the detrimental effects of stress. We also found that the multiple odorants stimulation prevented the development of depressive symptoms assessed by the sucrose splash test and forced swim test in an experimental model of depression, i.e. mice exposed to a chronic unpredictable stress paradigm, and reduced interleukin 1β levels in the prefrontal cortex of depressed mice. Collectively, our data indicate that olfactory stimulation counteracts the detrimental effects of acute and chronic stress on mood regulation and cognitive functions, thus representing a potential tool for the treatment of stress-induced disorders.
Collapse
Affiliation(s)
- Bruno Bandiera
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Francesca Natale
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome 00168, Italy
- Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Rome 00168, Italy
| | - Marco Rinaudo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome 00168, Italy
- Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Rome 00168, Italy
| | - Raimondo Sollazzo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Matteo Spinelli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome 00168, Italy
- Department of Biomedical Sciences, Università degli studi di Sassari, Sassari 07100, Italy
| | - Salvatore Fusco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome 00168, Italy
- Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Rome 00168, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome 00168, Italy
- Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Rome 00168, Italy
| |
Collapse
|
6
|
Cai H, Xiao H, Tong C, Dong X, Chen S, Xu F. Influence of odor environments on cognitive efficiency: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174642. [PMID: 38992380 DOI: 10.1016/j.scitotenv.2024.174642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/29/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Cognitive efficiency, characterized by the rapid and accurate processing of information, significantly enhances work and learning outcomes. This efficiency manifests in improved time management, decision-making, learning capabilities, and creativity. While the influence of thermal, acoustic, and lighting conditions on cognitive performance has been extensively studied, the role of olfactory stimuli remains underexplored. Olfactory perception, distinguished by its intensity, speed of perception, and the breadth of stimuli, plays a pivotal role in cognitive efficiency. This review investigates the mechanisms through which odor environments influence cognitive performance. We analyze how odor environments can affect cognitive efficiency through two different scenarios (work and sleep) and pathways (direct and indirect effects). Current research, which mainly focuses on the interplay between odors, emotional responses, and cognitive efficiency through both subjective and objective measures, is thoroughly analyzed. We highlight existing research gaps and suggest future directions for investigating the influence of odor environments on cognitive efficiency. This review aims to establish a theoretical basis for managing and leveraging odor environments in workplace settings.
Collapse
Affiliation(s)
- Hao Cai
- Department of HVAC, College of Urban Construction, Nanjing Tech University, Nanjing 210009, PR China
| | - Hanlin Xiao
- Department of HVAC, College of Urban Construction, Nanjing Tech University, Nanjing 210009, PR China
| | - Chengxin Tong
- Department of HVAC, College of Urban Construction, Nanjing Tech University, Nanjing 210009, PR China
| | - Xian Dong
- Army Engineering University of PLA, Nanjing 210007, China.
| | - Shilong Chen
- Department of HVAC, College of Urban Construction, Nanjing Tech University, Nanjing 210009, PR China
| | - Feng Xu
- Department of HVAC, College of Urban Construction, Nanjing Tech University, Nanjing 210009, PR China
| |
Collapse
|
7
|
Biane JS, Ladow MA, Fan A, Choi HS, Zhou LZ, Hassan S, Apodaca-Montano DL, Kwon AO, Bratsch-Prince JX, Kheirbek MA. Representations of stimulus meaning in the hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618280. [PMID: 39464010 PMCID: PMC11507678 DOI: 10.1101/2024.10.14.618280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The ability to discriminate and categorize the meaning of environmental stimuli and respond accordingly is essential for survival. The ventral hippocampus (vHPC) controls emotional and motivated behaviors in response to environmental cues and is hypothesized to do so in part by deciphering the positive or negative quality of these cues. Yet, what features of the environment are represented in the activity patterns of vCA1 neurons, and whether the positive or negative meaning of a stimulus is present at this stage, remains unclear. Here, using 2-photon calcium imaging across six different experimental paradigms, we consistently found that vCA1 ensembles encode the identity, sensory features, and intensity of learned and innately salient stimuli, but not their overall valence. These results offer a reappraisal of vCA1 function, wherein information corresponding to individual stimulus features and their behavioral saliency predominates, while valence-related information is attached elsewhere.
Collapse
Affiliation(s)
- Jeremy S. Biane
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Max A. Ladow
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Austin Fan
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Hye Sun Choi
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Lexi Zichen Zhou
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Shazreh Hassan
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel L. Apodaca-Montano
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew O. Kwon
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Joshua X. Bratsch-Prince
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Mazen A. Kheirbek
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences and Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
8
|
Chen J, Liu Y, Song Y, Liang H, Zhu G, Zhang B, Liao L, Luo J, Yang M, Su D. Neuro-stimulating effect of Citri Reticulata Pericarpium Viride essential oil through regulating Glu/NMDAR on olfactory bulb to improve anxiety-like behavior. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118332. [PMID: 38735421 DOI: 10.1016/j.jep.2024.118332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Citri Reticulata Pericarpium Viride (also known Qing-Pi or QP) is a plant in the Rutaceae family, QP is a traditional Qi-regulating medicine in Chinese medicine that is compatible with other Chinese medicine components and has extensive clinical practice in treating anxiety and depression. Reports on the pharmacological effects of QP have demonstrated its neuroprotective effects and antioxidant capacities. Numerous pharmacological benefits of QP are attributed to its antioxidant abilities. Anxiety disorders are a broadly defined category of mental illnesses. Oxidative stress and an imbalance in the antioxidant defense system are typical pathological features of these disorders. AIM OF THE STUDY The aim of this study was to evaluate the effects of QP essential oil on anxiety using animal models and investigate the underlying neurobiological mechanisms. MATERIALS AND METHODS This study aimed to develop an animal model of anxiety using chronic restraint stress and investigate the effects of inhalation of Citri Reticulata Pericarpium Viride essential oil on anxiety-like behavior, olfactory function, and olfactory bulb neurogenesis in mice with anxiety. RESULTS The results showed that long-term chronic restraint stimulation caused a decrease in olfactory function, significant anxiety-like behavior, and a notable reduction in the number of neurons in the olfactory bulb. However, inhalation of Citri Reticulata Pericarpium Viride essential oil reversed these effects, improving the olfactory function, neuro-stimulating effect, alleviating anxiety-like behavior, and regulating theta (4-12Hz) oscillation in the hippocampus DG area. These effects were associated with changes in the expression levels of glutamate receptor NMDAR and NeuN in olfactory bulb. CONCLUSIONS The study revealed that mice with anxiety induced by chronic restraint stress exhibited significant olfactory dysfunction, providing strong evidence for the causal relationship between anxiety disorders and olfactory dysfunction. Moreover, QP essential oil has the potential to be developed as a therapeutic drug for anxiety disorders, in addition to its role as a complementary anxiolytic.
Collapse
Affiliation(s)
- Jingbin Chen
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Yali Liu
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China; Key Laboratory of Evaluation of the Efficacy and Quality of Anti-inflammatory Traditional Chinese Medicine, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Nanchang Medical College, 1689 Meiling Road, Nanchang, 330006, China
| | - Yonggui Song
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Huihui Liang
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Genhua Zhu
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Bike Zhang
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Liangliang Liao
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Jian Luo
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Ming Yang
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China; Jiangxi Guxiang Jinyun Comprehensive Health Industry Co., Ltd., Nanchang, China
| | - Dan Su
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China.
| |
Collapse
|
9
|
Zhang YJ, Lee JY, Igarashi KM. Circuit dynamics of the olfactory pathway during olfactory learning. Front Neural Circuits 2024; 18:1437575. [PMID: 39036422 PMCID: PMC11258029 DOI: 10.3389/fncir.2024.1437575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
The olfactory system plays crucial roles in perceiving and interacting with their surroundings. Previous studies have deciphered basic odor perceptions, but how information processing in the olfactory system is associated with learning and memory is poorly understood. In this review, we summarize recent studies on the anatomy and functional dynamics of the mouse olfactory learning pathway, focusing on how neuronal circuits in the olfactory bulb (OB) and olfactory cortical areas integrate odor information in learning. We also highlight in vivo evidence for the role of the lateral entorhinal cortex (LEC) in olfactory learning. Altogether, these studies demonstrate that brain regions throughout the olfactory system are critically involved in forming and representing learned knowledge. The role of olfactory areas in learning and memory, and their susceptibility to dysfunction in neurodegenerative diseases, necessitate further research.
Collapse
Affiliation(s)
- Yutian J. Zhang
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, United States
| | - Jason Y. Lee
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, United States
| | - Kei M. Igarashi
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, United States
- Department of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, United States
- Center for Neural Circuit Mapping, School of Medicine, University of California, Irvine, Irvine, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, United States
| |
Collapse
|
10
|
McKissick O, Klimpert N, Ritt JT, Fleischmann A. Odors in space. Front Neural Circuits 2024; 18:1414452. [PMID: 38978957 PMCID: PMC11228174 DOI: 10.3389/fncir.2024.1414452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024] Open
Abstract
As an evolutionarily ancient sense, olfaction is key to learning where to find food, shelter, mates, and important landmarks in an animal's environment. Brain circuitry linking odor and navigation appears to be a well conserved multi-region system among mammals; the anterior olfactory nucleus, piriform cortex, entorhinal cortex, and hippocampus each represent different aspects of olfactory and spatial information. We review recent advances in our understanding of the neural circuits underlying odor-place associations, highlighting key choices of behavioral task design and neural circuit manipulations for investigating learning and memory.
Collapse
Affiliation(s)
- Olivia McKissick
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Nell Klimpert
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Jason T Ritt
- Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Alexander Fleischmann
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, RI, United States
| |
Collapse
|
11
|
Li H, Qian J, Wang Y, Wang J, Mi X, Qu L, Song N, Xie J. Potential convergence of olfactory dysfunction in Parkinson's disease and COVID-19: The role of neuroinflammation. Ageing Res Rev 2024; 97:102288. [PMID: 38580172 DOI: 10.1016/j.arr.2024.102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder that affects 7-10 million individuals worldwide. A common early symptom of PD is olfactory dysfunction (OD), and more than 90% of PD patients suffer from OD. Recent studies have highlighted a high incidence of OD in patients with SARS-CoV-2 infection. This review investigates the potential convergence of OD in PD and COVID-19, particularly focusing on the mechanisms by which neuroinflammation contributes to OD and neurological events. Starting from our fundamental understanding of the olfactory bulb, we summarize the clinical features of OD and pathological features of the olfactory bulb from clinical cases and autopsy reports in PD patients. We then examine SARS-CoV-2-induced olfactory bulb neuropathology and OD and emphasize the SARS-CoV-2-induced neuroinflammatory cascades potentially leading to PD manifestations. By activating microglia and astrocytes, as well as facilitating the aggregation of α-synuclein, SARS-CoV-2 could contribute to the onset or exacerbation of PD. We also discuss the possible contributions of NF-κB, the NLRP3 inflammasome, and the JAK/STAT, p38 MAPK, TLR4, IL-6/JAK2/STAT3 and cGAS-STING signaling pathways. Although olfactory dysfunction in patients with COVID-19 may be reversible, it is challenging to restore OD in patients with PD. With the emergence of new SARS-CoV-2 variants and the recurrence of infections, we call for continued attention to the intersection between PD and SARS-CoV-2 infection, especially from the perspective of OD.
Collapse
Affiliation(s)
- Hui Li
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Junliang Qian
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Youcui Wang
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Juan Wang
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Xiaoqing Mi
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Le Qu
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Ning Song
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China.
| | - Junxia Xie
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China.
| |
Collapse
|
12
|
Pastor A, Bourdin-Kreitz P. Comparing episodic memory outcomes from walking augmented reality and stationary virtual reality encoding experiences. Sci Rep 2024; 14:7580. [PMID: 38555291 PMCID: PMC10981735 DOI: 10.1038/s41598-024-57668-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/11/2024] [Indexed: 04/02/2024] Open
Abstract
Episodic Memory (EM) is the neurocognitive capacity to consciously recollect personally experienced events in specific spatio-temporal contexts. Although the relevance of spatial and temporal information is widely acknowledged in the EM literature, it remains unclear whether and how EM performance and organisation is modulated by self-motion, and by motor- and visually- salient environmental features (EFs) of the encoding environment. This study examines whether and how EM is modulated by locomotion and the EFs encountered in a controlled lifelike learning route within a large-scale building. Twenty-eight healthy participants took part in a museum-tour encoding task implemented in walking Augmented Reality (AR) and stationary Virtual Reality (VR) conditions. EM performance and organisation were assessed immediately and 48-hours after trials using a Remember/Familiar recognition paradigm. Results showed a significant positive modulation effect of locomotion on distinctive EM aspects. Findings highlighted a significant performance enhancement effect of stairway-adjacent locations compared to dead-end and mid-route stimuli-presentation locations. The results of this study may serve as design criteria to facilitate neurocognitive rehabilitative interventions of EM. The underlying technological framework developed for this study represents a novel and ecologically sound method for evaluating EM processes in lifelike situations, allowing researchers a naturalistic perspective into the complex nature of EM.
Collapse
Affiliation(s)
- Alvaro Pastor
- XR-Lab, Research-HUB, Universitat Oberta de Catalunya, Barcelona, Spain
- Computer Science, Multimedia and Telecommunication Department, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Pierre Bourdin-Kreitz
- XR-Lab, Research-HUB, Universitat Oberta de Catalunya, Barcelona, Spain.
- Computer Science, Multimedia and Telecommunication Department, Universitat Oberta de Catalunya, Barcelona, Spain.
| |
Collapse
|
13
|
Bakoyiannis I, Ducourneau EG, N'diaye M, Fermigier A, Ducroix-Crepy C, Bosch-Bouju C, Coutureau E, Trifilieff P, Ferreira G. Obesogenic diet induces circuit-specific memory deficits in mice. eLife 2024; 13:e80388. [PMID: 38436653 PMCID: PMC10911750 DOI: 10.7554/elife.80388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Obesity is associated with neurocognitive dysfunction, including memory deficits. This is particularly worrisome when obesity occurs during adolescence, a maturational period for brain structures critical for cognition. In rodent models, we recently reported that memory impairments induced by obesogenic high-fat diet (HFD) intake during the periadolescent period can be reversed by chemogenetic manipulation of the ventral hippocampus (vHPC). Here, we used an intersectional viral approach in HFD-fed male mice to chemogenetically inactivate specific vHPC efferent pathways to nucleus accumbens (NAc) or medial prefrontal cortex (mPFC) during memory tasks. We first demonstrated that HFD enhanced activation of both pathways after training and that our chemogenetic approach was effective in normalizing this activation. Inactivation of the vHPC-NAc pathway rescued HFD-induced deficits in recognition but not location memory. Conversely, inactivation of the vHPC-mPFC pathway restored location but not recognition memory impairments produced by HFD. Either pathway manipulation did not affect exploration or anxiety-like behaviour. These findings suggest that HFD intake throughout adolescence impairs different types of memory through overactivation of specific hippocampal efferent pathways and that targeting these overactive pathways has therapeutic potential.
Collapse
Affiliation(s)
- Ioannis Bakoyiannis
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077BordeauxFrance
| | - Eva Gunnel Ducourneau
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077BordeauxFrance
| | - Mateo N'diaye
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077BordeauxFrance
| | - Alice Fermigier
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077BordeauxFrance
| | - Celine Ducroix-Crepy
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077BordeauxFrance
| | - Clementine Bosch-Bouju
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077BordeauxFrance
| | | | - Pierre Trifilieff
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077BordeauxFrance
| | - Guillaume Ferreira
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077BordeauxFrance
| |
Collapse
|
14
|
Bakoyiannis I, Ducourneau EG, Parkes SL, Ferreira G. Pathway specific interventions reveal the multiple roles of ventral hippocampus projections in cognitive functions. Rev Neurosci 2023; 34:825-838. [PMID: 37192533 DOI: 10.1515/revneuro-2023-0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/28/2023] [Indexed: 05/18/2023]
Abstract
Since the 1950s study of Scoville and Milner on the case H.M., the hippocampus has attracted neuroscientists' attention. The hippocampus has been traditionally divided into dorsal and ventral parts, each of which projects to different brain structures and mediates various functions. Despite a predominant interest in its dorsal part in animal models, especially regarding episodic-like and spatial cognition, recent data highlight the role of the ventral hippocampus (vHPC), as the main hippocampal output, in cognitive processes. Here, we review recent studies conducted in rodents that have used advanced in vivo functional techniques to specifically monitor and manipulate vHPC efferent pathways and delineate the roles of these specific projections in learning and memory processes. Results highlight that vHPC projections to basal amygdala are implicated in emotional memory, to nucleus accumbens in social memory and instrumental actions and to prefrontal cortex in all the above as well as in object-based memory. Some of these hippocampal projections also modulate feeding and anxiety-like behaviours providing further evidence that the "one pathway-one function" view is outdated and future directions are proposed to better understand the role of hippocampal pathways and shed further light on its connectivity and function.
Collapse
Affiliation(s)
- Ioannis Bakoyiannis
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077 Bordeaux, France
| | - Eva-Gunnel Ducourneau
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077 Bordeaux, France
| | - Shauna L Parkes
- University of Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Guillaume Ferreira
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077 Bordeaux, France
| |
Collapse
|
15
|
Vanrobaeys Y, Mukherjee U, Langmack L, Beyer SE, Bahl E, Lin LC, Michaelson JJ, Abel T, Chatterjee S. Mapping the spatial transcriptomic signature of the hippocampus during memory consolidation. Nat Commun 2023; 14:6100. [PMID: 37773230 PMCID: PMC10541893 DOI: 10.1038/s41467-023-41715-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
Memory consolidation involves discrete patterns of transcriptional events in the hippocampus. Despite the emergence of single-cell transcriptomic profiling techniques, mapping the transcriptomic signature across subregions of the hippocampus has remained challenging. Here, we utilized unbiased spatial sequencing to delineate transcriptome-wide gene expression changes across subregions of the dorsal hippocampus of male mice following learning. We find that each subregion of the hippocampus exhibits distinct yet overlapping transcriptomic signatures. The CA1 region exhibited increased expression of genes related to transcriptional regulation, while the DG showed upregulation of genes associated with protein folding. Importantly, our approach enabled us to define the transcriptomic signature of learning within two less-defined hippocampal subregions, CA1 stratum radiatum, and oriens. We demonstrated that CA1 subregion-specific expression of a transcription factor subfamily has a critical functional role in the consolidation of long-term memory. This work demonstrates the power of spatial molecular approaches to reveal simultaneous transcriptional events across the hippocampus during memory consolidation.
Collapse
Affiliation(s)
- Yann Vanrobaeys
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52242, USA
| | - Utsav Mukherjee
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, 52242, USA
| | - Lucy Langmack
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Biochemistry and Molecular Biology Graduate Program, University of Iowa, Iowa City, IA, USA
| | - Stacy E Beyer
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Ethan Bahl
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Li-Chun Lin
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Jacob J Michaelson
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
| | - Snehajyoti Chatterjee
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
16
|
Brunert D, Quintela RM, Rothermel M. The anterior olfactory nucleus revisited - an emerging role for neuropathological conditions? Prog Neurobiol 2023:102486. [PMID: 37343762 DOI: 10.1016/j.pneurobio.2023.102486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Olfaction is an important sensory modality for many species and greatly influences animal and human behavior. Still, much about olfactory perception remains unknown. The anterior olfactory nucleus is one of the brain's central early olfactory processing areas. Located directly posterior to the olfactory bulb in the olfactory peduncle with extensive in- and output connections and unique cellular composition, it connects olfactory processing centers of the left and right hemispheres. Almost 20 years have passed since the last comprehensive review on the anterior olfactory nucleus has been published and significant advances regarding its anatomy, function, and pathophysiology have been made in the meantime. Here we briefly summarize previous knowledge on the anterior olfactory nucleus, give detailed insights into the progress that has been made in recent years, and map out its emerging importance in translational research of neurological diseases.
Collapse
Affiliation(s)
- Daniela Brunert
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | | | - Markus Rothermel
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany.
| |
Collapse
|
17
|
Cieri F, Cera N, Ritter A, Cordes D, Caldwell JZK. Olfaction and Anxiety Are Differently Associated in Men and Women in Cognitive Physiological and Pathological Aging. J Clin Med 2023; 12:2338. [PMID: 36983338 PMCID: PMC10054317 DOI: 10.3390/jcm12062338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Olfaction impairment in aging is associated with increased anxiety. We explored this association in cognitively healthy controls (HCs), Mild Cognitive Impairment (MCI) and Parkinson's disease (PD) patients. Both olfaction and anxiety have sex differences, therefore we also investigated these variances. OBJECTIVES Investigate the association of olfaction with anxiety in three distinct clinical categories of aging, exploring the potential role of sex. METHODS 117 subjects (29 HCs, 43 MCI, and 45 PD patients) were assessed for olfaction and anxiety. We used regression models to determine whether B-SIT predicted anxiety and whether sex impacted that relationship. RESULTS Lower olfaction was related to greater anxiety traits in all groups (HCs: p = 0.015; MCI: p = 0.001 and PD: p = 0.038), significantly differed by sex. In fact, in HCs, for every unit increase in B-SIT, anxiety traits decreased by 7.63 in men (p = 0.009) and 1.5 in women (p = 0.225). In MCI patients for every unit increase in B-SIT, anxiety traits decreased by 1.19 in men (p = 0.048) and 3.03 in women (p = 0.0036). Finally, in PD patients for every unit increase in B-SIT, anxiety traits decreased by 1.73 in men (p = 0.004) and 0.41 in women (p = 0.3632). DISCUSSION Olfaction and anxiety are correlated in all three distinct diagnostic categories, but differently in men and women.
Collapse
Affiliation(s)
- Filippo Cieri
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
| | - Nicoletta Cera
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, 4200-135 Porto, Portugal
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Aaron Ritter
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
| | - Dietmar Cordes
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
- Department of Brain Health, University of Nevada, Las Vegas, NV 89154, USA
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | | |
Collapse
|
18
|
Langley-Brady DL, Campbell RT, Maihle NJ, Barnes VA, Bratton AR, Zadinsky JK. A Pilot Randomized Controlled Trial Evaluating Essential Oils for Chemotherapy-Induced Peripheral Neuropathy. Pain Manag Nurs 2023; 24:289-298. [PMID: 36693769 DOI: 10.1016/j.pmn.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2022] [Accepted: 12/23/2022] [Indexed: 01/23/2023]
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is a painful, debilitating consequence of cancer treatment affecting up to 60% of patients. Pharmacological approaches to CIPN are often ineffective and cause adverse effects. Essential oils are an underutilized non-pharmacological approach to pain reduction. AIMS To ascertain the efficacy of an essential oil intervention to reduce CIPN. DESIGN A single-blind, pilot randomized controlled trial. METHODS Participants (n = 27) were stratified by baseline pain scores and randomized to intervention (n = 13) and placebo groups (n = 14). Participants topically-applied the essential oil intervention or placebo every eight hours for six weeks. Pain was assessed using the Short-Form-McGill Pain Questionnaire-2 weekly and the Visual Analogue Scale daily. Quality-of-life was assessed using the Quality-of-Life: CIPN-20 and Quality-of-Life Adult Cancer Survivor questionnaires. Data were analyzed in SPSS using generalized estimating equations. RESULTS No significant difference was observed between groups in pain or quality-of-life scores over seven weeks, but improvement was observed in both groups. Participants using the intervention with pain medications showed a significant reduction in pain compared to placebo (p = .001). Educational level (p = .041) and annual income (p = .005) were significant covariates mirroring these social determinates of pain. Older participants felt less negatively about their CIPN (p = .002). Positive placebo effect and spatiotemporal interactions were observed. CONCLUSIONS This pilot study demonstrated that participants adhered to the intervention for six weeks. Essential oils have potential direct and adjuvant pain-reducing effects and should be studied further.
Collapse
Affiliation(s)
| | - Richard T Campbell
- Augusta University, College of Nursing, Augusta, Georgia; University of Illinois at Chicago, Chicago, Illinois
| | - Nita J Maihle
- Augusta University, College of Nursing, Augusta, Georgia; University of Mississippi Medical Center, Jackson, Mississippi
| | | | | | | |
Collapse
|
19
|
Chae H, Banerjee A, Dussauze M, Albeanu DF. Long-range functional loops in the mouse olfactory system and their roles in computing odor identity. Neuron 2022; 110:3970-3985.e7. [PMID: 36174573 PMCID: PMC9742324 DOI: 10.1016/j.neuron.2022.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 07/12/2022] [Accepted: 09/02/2022] [Indexed: 12/15/2022]
Abstract
Elucidating the neural circuits supporting odor identification remains an open challenge. Here, we analyze the contribution of the two output cell types of the mouse olfactory bulb (mitral and tufted cells) to decode odor identity and concentration and its dependence on top-down feedback from their respective major cortical targets: piriform cortex versus anterior olfactory nucleus. We find that tufted cells substantially outperform mitral cells in decoding both odor identity and intensity. Cortical feedback selectively regulates the activity of its dominant bulb projection cell type and implements different computations. Piriform feedback specifically restructures mitral responses, whereas feedback from the anterior olfactory nucleus preferentially controls the gain of tufted representations without altering their odor tuning. Our results identify distinct functional loops involving the mitral and tufted cells and their cortical targets. We suggest that in addition to the canonical mitral-to-piriform pathway, tufted cells and their target regions are ideally positioned to compute odor identity.
Collapse
Affiliation(s)
- Honggoo Chae
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Arkarup Banerjee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Cold Spring Harbor Laboratory School for Biological Sciences, Cold Spring Harbor, NY, USA
| | - Marie Dussauze
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Cold Spring Harbor Laboratory School for Biological Sciences, Cold Spring Harbor, NY, USA
| | - Dinu F Albeanu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Cold Spring Harbor Laboratory School for Biological Sciences, Cold Spring Harbor, NY, USA.
| |
Collapse
|
20
|
Bhattarai JP, Etyemez S, Jaaro-Peled H, Janke E, Leon Tolosa UD, Kamiya A, Gottfried JA, Sawa A, Ma M. Olfactory modulation of the medial prefrontal cortex circuitry: Implications for social cognition. Semin Cell Dev Biol 2022; 129:31-39. [PMID: 33975755 PMCID: PMC8573060 DOI: 10.1016/j.semcdb.2021.03.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
Olfactory dysfunction is manifested in a wide range of neurological and psychiatric diseases, and often emerges prior to the onset of more classical symptoms and signs. From a behavioral perspective, olfactory deficits typically arise in conjunction with impairments of cognition, motivation, memory, and emotion. However, a conceptual framework for explaining the impact of olfactory processing on higher brain functions in health and disease remains lacking. Here we aim to provide circuit-level insights into this question by synthesizing recent advances in olfactory network connectivity with other cortical brain regions such as the prefrontal cortex. We will focus on social cognition as a representative model for exploring and critically evaluating the relationship between olfactory cortices and higher-order cortical regions in rodent models. Although rodents do not recapitulate all dimensions of human social cognition, they have experimentally accessible neural circuits and well-established behavioral tests for social motivation, memory/recognition, and hierarchy, which can be extrapolated to other species including humans. In particular, the medial prefrontal cortex (mPFC) has been recognized as a key brain region in mediating social cognition in both rodents and humans. This review will highlight the underappreciated connectivity, both anatomical and functional, between the olfactory system and mPFC circuitry, which together provide a neural substrate for olfactory modulation of social cognition and social behaviors. We will provide future perspectives on the functional investigation of the olfactory-mPFC circuit in rodent models and discuss how to translate such animal research to human studies.
Collapse
Affiliation(s)
- Janardhan P Bhattarai
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Semra Etyemez
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hanna Jaaro-Peled
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Emma Janke
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Usuy D Leon Tolosa
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Atsushi Kamiya
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jay A Gottfried
- Department of Psychology, University of Pennsylvania, School of Arts and Sciences, Philadelphia, PA 19104, USA; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Akira Sawa
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD 21287, USA; Departments of Neuroscience, Biomedical Engineering, and Genetic Medicine, John Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Hippocampal subfield volumes and olfactory performance: Emerging longitudinal associations over a 5-year interval. Neuropsychologia 2022; 176:108353. [DOI: 10.1016/j.neuropsychologia.2022.108353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022]
|
22
|
The facets of olfactory learning. Curr Opin Neurobiol 2022; 76:102623. [PMID: 35998474 DOI: 10.1016/j.conb.2022.102623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022]
Abstract
Volatile chemicals in the environment provide ethologically important information to many animals. However, how animals learn to use this information is only beginning to be understood. This review highlights recent experimental advances elucidating olfactory learning in rodents, ranging from adaptations to the environment to task-dependent refinement and multisensory associations. The broad range of phenomena, mechanisms, and brain areas involved demonstrate the complex and multifaceted nature of olfactory learning.
Collapse
|
23
|
Stensola T, Stensola H. Understanding Categorical Learning in Neural Circuits Through the Primary Olfactory Cortex. Front Cell Neurosci 2022; 16:920334. [PMID: 35813505 PMCID: PMC9263292 DOI: 10.3389/fncel.2022.920334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022] Open
Abstract
Knowing which elements in the environment are associated with various opportunities and dangers is advantageous. A major role of mammalian sensory systems is to provide information about the identity of such elements which can then be used for adaptive action planning by the animal. Identity-tuned sensory representations are categorical, invariant to nuances in the sensory stream and depend on associative learning. Although categorical representations are well documented across several sensory modalities, these tend to situate synaptically far from the sensory organs which reduces experimenter control over input-output transformations. The formation of such representations is a fundamental neural computation that remains poorly understood. Odor representations in the primary olfactory cortex have several characteristics that qualify them as categorical and identity-tuned, situated only two synapses away from the sensory epithelium. The formation of categorical representations is likely critically dependent on—and dynamically controlled by—recurrent circuitry within the primary olfactory cortex itself. Experiments suggest that the concerted activity of several neuromodulatory systems plays a decisive role in shaping categorical learning through complex interactions with recurrent activity and plasticity in primary olfactory cortex circuits. In this perspective we discuss missing pieces of the categorical learning puzzle, and why several features of olfaction make it an attractive model system for this challenge.
Collapse
|
24
|
Mu R, Tang S, Han X, Wang H, Yuan D, Zhao J, Long Y, Hong H. A cholinergic medial septum input to medial habenula mediates generalization formation and extinction of visual aversion. Cell Rep 2022; 39:110882. [PMID: 35649349 DOI: 10.1016/j.celrep.2022.110882] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 12/07/2021] [Accepted: 05/06/2022] [Indexed: 12/28/2022] Open
Abstract
Generalization of visual aversion is a critical function of the brain that supports survival, but the underlying neurobiological mechanisms are unclear. We establish a rapid generalization procedure for inducing visual aversion by dynamic stripe images. By using fiber photometry, apoptosis, chemogenetic and optogenetic techniques, and behavioral tests, we find that decreased cholinergic neurons' activity in the medial septum (MS) leads to generalization loss of visual aversion. Strikingly, we identify a projection from MS cholinergic neurons to the medial habenula (MHb) and find that inhibition of the MS→MHb cholinergic circuit disrupts aversion-generalization formation while its continuous activation disrupts subsequent extinction. Further studies show that MS→MHb cholinergic projections modulate the generalization of visual aversion possibly via M1 muscarinic acetylcholine receptors (mAChRs) of downstream neurons coreleasing glutamate and acetylcholine. These findings reveal that the MS→MHb cholinergic circuit is a critical node in aversion-generalization formation and extinction and potentially provides insight into the pathogenesis of affective disorders.
Collapse
Affiliation(s)
- Ronghao Mu
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Susu Tang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaomeng Han
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Hao Wang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Danhua Yuan
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Jiajia Zhao
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Long
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China.
| | - Hao Hong
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
25
|
Olfactory Evaluation in Alzheimer’s Disease Model Mice. Brain Sci 2022; 12:brainsci12050607. [PMID: 35624994 PMCID: PMC9139301 DOI: 10.3390/brainsci12050607] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Olfactory dysfunction is considered a pre-cognitive biomarker of Alzheimer’s disease (AD). Because the olfactory system is highly conserved across species, mouse models corresponding to various AD etiologies have been bred and used in numerous studies on olfactory disorders. The olfactory behavior test is a method required for early olfactory dysfunction detection in AD model mice. Here, we review the olfactory evaluation of AD model mice, focusing on traditional olfactory detection methods, olfactory behavior involving the olfactory cortex, and the results of olfactory behavior in AD model mice, aiming to provide some inspiration for further development of olfactory detection methods in AD model mice.
Collapse
|
26
|
Bang JY, Sunstrum JK, Garand D, Parfitt GM, Woodin M, Inoue W, Kim J. Hippocampal-hypothalamic circuit controls context-dependent innate defensive responses. eLife 2022; 11:74736. [PMID: 35420543 PMCID: PMC9042231 DOI: 10.7554/elife.74736] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Preys use their memory - where they sensed a predatory threat and whether a safe shelter is nearby - to dynamically control their survival instinct to avoid harm and reach safety. However, it remains unknown which brain regions are involved, and how such top-down control of innate behaviour is implemented at the circuit level. Here, using adult male mice, we show that the anterior hypothalamic nucleus (AHN) is best positioned to control this task as an exclusive target of the hippocampus (HPC) within the medial hypothalamic defense system. Selective optogenetic stimulation and inhibition of hippocampal inputs to the AHN revealed that the HPC→AHN pathway not only mediates the contextual memory of predator threats but also controls the goal-directed escape by transmitting information about the surrounding environment. These results reveal a new mechanism for experience-dependent, top-down control of innate defensive behaviours.
Collapse
Affiliation(s)
- Jee Yoon Bang
- Cell and Systems Biology, University of Toronto, Toronto, Canada
| | | | - Danielle Garand
- Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Gustavo Morrone Parfitt
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Melanie Woodin
- Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Wataru Inoue
- Robarts Research Institute, Western University, London, Canada
| | - Junchul Kim
- Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
27
|
Kim S, Nam Y, Kim HS, Jung H, Jeon SG, Hong SB, Moon M. Alteration of Neural Pathways and Its Implications in Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10040845. [PMID: 35453595 PMCID: PMC9025507 DOI: 10.3390/biomedicines10040845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease accompanied by cognitive and behavioral symptoms. These AD-related manifestations result from the alteration of neural circuitry by aggregated forms of amyloid-β (Aβ) and hyperphosphorylated tau, which are neurotoxic. From a neuroscience perspective, identifying neural circuits that integrate various inputs and outputs to determine behaviors can provide insight into the principles of behavior. Therefore, it is crucial to understand the alterations in the neural circuits associated with AD-related behavioral and psychological symptoms. Interestingly, it is well known that the alteration of neural circuitry is prominent in the brains of patients with AD. Here, we selected specific regions in the AD brain that are associated with AD-related behavioral and psychological symptoms, and reviewed studies of healthy and altered efferent pathways to the target regions. Moreover, we propose that specific neural circuits that are altered in the AD brain can be potential targets for AD treatment. Furthermore, we provide therapeutic implications for targeting neuronal circuits through various therapeutic approaches and the appropriate timing of treatment for AD.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Hyeon soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Haram Jung
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Sang Bum Hong
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea
- Correspondence:
| |
Collapse
|
28
|
Mori K, Sakano H. Processing of Odor Information During the Respiratory Cycle in Mice. Front Neural Circuits 2022; 16:861800. [PMID: 35431818 PMCID: PMC9008203 DOI: 10.3389/fncir.2022.861800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
In the mouse olfactory system, odor signals detected in the olfactory epithelium are converted to a topographic map of activated glomeruli in the olfactory bulb. The map information is then conveyed by projection neurons, mitral cells and tufted cells, to various areas in the olfactory cortex. An odor map is transmitted to the anterior olfactory nucleus by tufted cells for odor identification and recollection of associated memory for learned decisions. For instinct decisions, odor information is directly transmitted to the valence regions in the amygdala by specific subsets of mitral cells. Transmission of orthonasal odor signals through these two distinct pathways, innate and learned, are closely related with exhalation and inhalation, respectively. Furthermore, the retronasal/interoceptive and orthonasal/exteroceptive signals are differentially processed during the respiratory cycle, suggesting that these signals are processed in separate areas of the olfactory bulb and olfactory cortex. In this review article, the recent progress is summarized for our understanding of the olfactory circuitry and processing of odor signals during respiration.
Collapse
Affiliation(s)
- Kensaku Mori
- RIKEN Center for Brain Science, WAKO, Saitama, Japan
- *Correspondence: Kensaku Mori,
| | - Hitoshi Sakano
- Department of Brain Function, School of Medical Sciences, University of Fukui, Fukui, Japan
- Hitoshi Sakano,
| |
Collapse
|
29
|
Poo C, Agarwal G, Bonacchi N, Mainen ZF. Spatial maps in piriform cortex during olfactory navigation. Nature 2021; 601:595-599. [PMID: 34937941 DOI: 10.1038/s41586-021-04242-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/12/2021] [Indexed: 11/10/2022]
Abstract
Odours are a fundamental part of the sensory environment used by animals to guide behaviours such as foraging and navigation1,2. Primary olfactory (piriform) cortex is thought to be the main cortical region for encoding odour identity3-8. Here, using neural ensemble recordings in freely moving rats performing an odour-cued spatial choice task, we show that posterior piriform cortex neurons carry a robust spatial representation of the environment. Piriform spatial representations have features of a learned cognitive map, being most prominent near odour ports, stable across behavioural contexts and independent of olfactory drive or reward availability. The accuracy of spatial information carried by individual piriform neurons was predicted by the strength of their functional coupling to the hippocampal theta rhythm. Ensembles of piriform neurons concurrently represented odour identity as well as spatial locations of animals, forming an odour-place map. Our results reveal a function for piriform cortex in spatial cognition and suggest that it is well-suited to form odour-place associations and guide olfactory-cued spatial navigation.
Collapse
Affiliation(s)
- Cindy Poo
- Champalimaud Foundation, Lisbon, Portugal.
| | - Gautam Agarwal
- W. M. Keck Science Center, The Claremont Colleges, Claremont, CA, USA
| | | | | |
Collapse
|
30
|
Yan Y, Aierken A, Wang C, Song D, Ni J, Wang Z, Quan Z, Qing H. A potential biomarker of preclinical Alzheimer's disease: The olfactory dysfunction and its pathogenesis-based neural circuitry impairments. Neurosci Biobehav Rev 2021; 132:857-869. [PMID: 34810025 DOI: 10.1016/j.neubiorev.2021.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/26/2021] [Accepted: 11/07/2021] [Indexed: 01/24/2023]
Abstract
The olfactory dysfunction can signal and act as a potential biomarker of preclinical AD. However, the precise regulatory mechanism of olfactory function on the neural pathogenesis of AD is still unclear. The impairment of neural networks in olfaction system has been shown to be tightly associated with AD. As key brain regions of the olfactory system, the olfactory bulb (OB) and the piriform cortex (PCx) have a profound influence on the olfactory function. Therefore, this review will explore the mechanism of olfactory dysfunction in preclinical AD in the perspective of abnormal neural networks in the OB and PCx and their associated brain regions, especially from two aspects of aberrant oscillations and synaptic plasticity damages, which help better understand the underlying mechanism of olfactory neural network damages related to AD.
Collapse
Affiliation(s)
- Yan Yan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ailikemu Aierken
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Chunjian Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Da Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhe Wang
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
31
|
Olfactory Optogenetics: Light Illuminates the Chemical Sensing Mechanisms of Biological Olfactory Systems. BIOSENSORS-BASEL 2021; 11:bios11090309. [PMID: 34562900 PMCID: PMC8470751 DOI: 10.3390/bios11090309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 01/26/2023]
Abstract
The mammalian olfactory system has an amazing ability to distinguish thousands of odorant molecules at the trace level. Scientists have made great achievements on revealing the olfactory sensing mechanisms in decades; even though many issues need addressing. Optogenetics provides a novel technical approach to solve this dilemma by utilizing light to illuminate specific part of the olfactory system; which can be used in all corners of the olfactory system for revealing the olfactory mechanism. This article reviews the most recent advances in olfactory optogenetics devoted to elucidate the mechanisms of chemical sensing. It thus attempts to introduce olfactory optogenetics according to the structure of the olfactory system. It mainly includes the following aspects: the sensory input from the olfactory epithelium to the olfactory bulb; the influences of the olfactory bulb (OB) neuron activity patterns on olfactory perception; the regulation between the olfactory cortex and the olfactory bulb; and the neuromodulation participating in odor coding by dominating the olfactory bulb. Finally; current challenges and future development trends of olfactory optogenetics are proposed and discussed.
Collapse
|
32
|
Chamero P, Short SM, McIntyre JC, Meeks JP, Rothermel M. Editorial: Bottom-Up and Top-Down: Molecules and Circuits That Underlie Chemosensory Behaviors. Front Cell Neurosci 2021; 15:729791. [PMID: 34483845 PMCID: PMC8414354 DOI: 10.3389/fncel.2021.729791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Pablo Chamero
- CNRS, IFCE, INRAE, Université de Tours, Nouzilly, France
| | - Shaina M. Short
- Neurobiology Department, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Jeremy C. McIntyre
- Department of Neuroscience, Center for Smell and Taste, University of Florida, Gainesville, FL, United States
| | - Julian P. Meeks
- University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Markus Rothermel
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| |
Collapse
|
33
|
Precise localization and dynamic distribution of Japanese encephalitis virus in the rain nuclei of infected mice. PLoS Negl Trop Dis 2021; 15:e0008442. [PMID: 34153060 PMCID: PMC8216507 DOI: 10.1371/journal.pntd.0008442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/27/2021] [Indexed: 11/24/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a pathogen that causes severe vector-borne zoonotic diseases, thereby posing a serious threat to human health. Although JEV is potentially neurotropic, its pathogenesis and distribution in the host have not been fully elucidated. In this study, an infected mouse model was established using a highly virulent P3 strain of JEV. Immunohistochemistry and in situ hybridization, combined with anatomical imaging of the mouse brain, were used to dynamically localize the virus and construct three-dimensional (3D) images. Consequently, onset of mild clinical signs occurred in some mice at 3.5 d post JEV infection, while most mice displayed typical neurological signs at 6 d post-infection (dpi). Moreover, brain pathology revealed typical changes associated with non-suppurative encephalitis, which lasted up to 8 d. The earliest detection of viral antigen was achieved at 3 dpi in the thalamus and medulla oblongata. At 6 dpi, the positive viral antigen signals were mainly distributed in the cerebral cortex, olfactory area, basal ganglia, thalamus, and brainstem regions in mice. At 8 dpi, the antigen signals gradually decreased, and the localization of JEV tended to concentrate in the cerebrum and thalamus, while no viral antigen was detected in the brain at 21 dpi. In this model, the viral antigen was first expressed in the reticular thalamic nucleus (Rt), and the virus content is relatively stable. The expression of the viral antigen in the hippocampal CA2 region, the anterior olfactory nucleus, and the deep mesencephalic nucleus was high and persistent. The 3D images showed that viral signals were mostly concentrated in the parietal cortex, occipital lobe, and hippocampus, near the mid-sagittal plane. In the early stages of infection in mice, a large number of viral antigens were detected in denatured and necrotic neurons, suggesting that JEV directly causes neuronal damage. From the time of its entry, JEV is widely distributed in the central nervous system thereby causing extensive damage. There are many theories regarding the mechanism of entry of the Japanese encephalitis virus (JEV) into the nervous system. The inflammation cascade effect, resulting from the virus entering the central nervous system (CNS), is a major cause of brain injury in JEV patients. In this study, we found that the earliest point at which viral antigen was detected in the brain tissues following peripheral infection of JEV was at 3d. The virus was located in the nerve nuclei of the thalamus and medulla oblongata and, subsequently, viral antigens were found in the anterior olfactory nucleus. At 4 dpi, the virus was extensively distributed in the brain tissue, and at 6 d -8 d the viral antigen was widely distributed and highly concentrated. The viral concentration detected in the ventromedial thalamic nucleus (VM), deep mesencephalic nucleus (DpMe), and motor trigeminal nucleus (Mo5) remained high throughout the experiment. The hypertrophic nerve nuclei of JEV include the early anterior olfactory (AO) nucleus and the late hippocampal CA2 region. In the early stages of viral infection (6 dpi), the changes in viral antigen concentration and mortality rate were consistent. It was hypothesized that this stage represents the activation of viral proliferation and brain inflammation.
Collapse
|
34
|
Fung TKH, Lau BWM, Ngai SPC, Tsang HWH. Therapeutic Effect and Mechanisms of Essential Oils in Mood Disorders: Interaction between the Nervous and Respiratory Systems. Int J Mol Sci 2021; 22:4844. [PMID: 34063646 PMCID: PMC8125361 DOI: 10.3390/ijms22094844] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/05/2023] Open
Abstract
Essential oils (EOs) are extracted from plants and contain active components with therapeutic effects. Evidence shows that various types of EOs have a wide range of health benefits. In our previous studies, the potential of lavender EO for prevention and even treatment of depression and anxiety symptoms was demonstrated. The favourable outcomes may be due to multiple mechanisms, including the regulation of monoamine level, the induction of neurotrophic factor expression, the regulation of the endocrine system and the promotion of neurogenesis. The molecules of EOs may reach the brain and exert an effect through two distinctive pathways, namely, the olfactory system and the respiratory system. After inhalation, the molecules of the EOs would either act directly on the olfactory mucosa or pass into the respiratory tract. These two delivery pathways suggest different underlying mechanisms of action. Different sets of responses would be triggered, such as increased neurogenesis, regulation of hormonal levels, activation of different brain regions, and alteration in blood biochemistry, which would ultimately affect both mood and emotion. In this review, we will discuss the clinical effects of EOs on mood regulation and emotional disturbances as well as the cellular and molecular mechanisms of action. Emphasis will be put on the interaction between the respiratory and central nervous system and the involved potential mechanisms. Further evidence is needed to support the use of EOs in the clinical treatment of mood disturbances. Exploration of the underlying mechanisms may provide insight into the future therapeutic use of EO components treatment of psychiatric and physical symptoms.
Collapse
Affiliation(s)
| | | | | | - Hector W. H. Tsang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China; (T.K.H.F.); (B.W.M.L.); (S.P.C.N.)
| |
Collapse
|
35
|
Masala C, Firinu D, Piras R, Deidda M, Cinetto F, Del Giacco S. Olfactory Function Is Impaired in Patients with Mastocytosis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2021; 9:1359-1364. [PMID: 33059098 DOI: 10.1016/j.jaip.2020.09.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Mastocytosis is a clinically heterogeneous disorder associated with abnormal mast cell accumulation in different organs. No data are available as regards the assessment of olfactory function and its association with mastocytosis. OBJECTIVE The aim of the study was first to investigate odor threshold, discrimination, and identification in patients with mastocytosis compared with age-matched healthy controls (HC), and furthermore, to correlate olfactory function with the other clinical symptoms of mastocytosis. METHODS Eighty-one participants were enrolled: 41 patients with mastocytosis (23 males and 18 females; mean age, 47.95 years; standard deviation [SD], 14.7 years) were compared with 40 HC (23 males and 17 females; mean age, 47.88 years; SD, 14.6 years). Olfactory function among participants was evaluated using the "Sniffin' Sticks" test for odor detection threshold (OT), odor discrimination (OD), and odor identification (OI). RESULTS Patients with systemic mastocytosis showed a significant decrease in the total olfactory function (Threshold-Discrimination-Identification [TDI] score), OT, OD, and OI compared with HC. A significant negative correlation was observed only between TDI score and serum tryptase concentration (μg/L). No correlation was observed between disease duration versus OT, OD, OI, and TDI score. CONCLUSIONS Our results suggest that the olfactory function is impaired in patients compared with HC; a significant negative correlation was found between TDI score and the level of serum tryptase. Olfactory dysfunction in mastocytosis may be considered among the clinical manifestations contributing to the burden of this disease.
Collapse
Affiliation(s)
- Carla Masala
- Department of Biomedical Sciences, Physiology Section, University of Cagliari, Monserrato, Cagliari, Italy
| | - Davide Firinu
- Allergy and Clinical Immunology Unit, Department of Medical Sciences and Public Health, University Hospital "Duilio Casula," Monserrato, Cagliari, Italy
| | - Raffaella Piras
- Department of Biomedical Sciences, Physiology Section, University of Cagliari, Monserrato, Cagliari, Italy
| | - Margherita Deidda
- Allergy and Clinical Immunology Unit, Department of Medical Sciences and Public Health, University Hospital "Duilio Casula," Monserrato, Cagliari, Italy
| | - Francesco Cinetto
- Department of Medicine-DIMED, University of Padova, Padova, Italy; Internal Medicine I, Ca' Foncello Hospital, Treviso, Italy
| | - Stefano Del Giacco
- Allergy and Clinical Immunology Unit, Department of Medical Sciences and Public Health, University Hospital "Duilio Casula," Monserrato, Cagliari, Italy.
| |
Collapse
|
36
|
Hartig R, Wolf D, Schmeisser MJ, Kelsch W. Genetic influences of autism candidate genes on circuit wiring and olfactory decoding. Cell Tissue Res 2021; 383:581-595. [PMID: 33515293 PMCID: PMC7872953 DOI: 10.1007/s00441-020-03390-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022]
Abstract
Olfaction supports a multitude of behaviors vital for social communication and interactions between conspecifics. Intact sensory processing is contingent upon proper circuit wiring. Disturbances in genetic factors controlling circuit assembly and synaptic wiring can lead to neurodevelopmental disorders, such as autism spectrum disorder (ASD), where impaired social interactions and communication are core symptoms. The variability in behavioral phenotype expression is also contingent upon the role environmental factors play in defining genetic expression. Considering the prevailing clinical diagnosis of ASD, research on therapeutic targets for autism is essential. Behavioral impairments may be identified along a range of increasingly complex social tasks. Hence, the assessment of social behavior and communication is progressing towards more ethologically relevant tasks. Garnering a more accurate understanding of social processing deficits in the sensory domain may greatly contribute to the development of therapeutic targets. With that framework, studies have found a viable link between social behaviors, circuit wiring, and altered neuronal coding related to the processing of salient social stimuli. Here, the relationship between social odor processing in rodents and humans is examined in the context of health and ASD, with special consideration for how genetic expression and neuronal connectivity may regulate behavioral phenotypes.
Collapse
Affiliation(s)
- Renée Hartig
- Department of Psychiatry & Psychotherapy, University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany.,Focus Program Translational Neurosciences (FTN), University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany.,Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.,Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany
| | - David Wolf
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Michael J Schmeisser
- Focus Program Translational Neurosciences (FTN), University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany.,Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany
| | - Wolfgang Kelsch
- Department of Psychiatry & Psychotherapy, University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany. .,Focus Program Translational Neurosciences (FTN), University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany. .,Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
37
|
Shinohara K, Yasoshima Y. Inactivation of the ventral hippocampus facilitates the attenuation of odor neophobia in rats. Behav Brain Res 2020; 401:113077. [PMID: 33345825 DOI: 10.1016/j.bbr.2020.113077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 11/20/2022]
Abstract
Food neophobia is a behavior observed in rodents involving reduced consumption of a novel food or drink. In the absence of negative post-ingestive consequences, consumption increases with exposure (attenuation of neophobia), which is seen as an associative safe memory. Olfaction and gustation are sensory modalities essential for the development of a food preference. However, little is known about the neural mechanisms underlying neophobia to a food-related odor stimulus. In the present study, we examined the effect of pharmacological inactivation of the ventral hippocampus (vHPC) on neophobia to orally consumed solutions in rats using muscimol, a gamma aminobutyric acid type A receptor agonist. Two different types of solutions, almond odor (benzaldehyde) and sweet taste (saccharin), were prepared. In the results, microinjections of muscimol into the bilateral vHPC before the first odor and taste exposures did not alter the neophobic reactions of the rats to each stimulus. However, in the second odor, but not taste, exposure, the muscimol-injected rats showed higher consumption in comparison to that observed in the control rats, suggesting that the vHPC inactivation facilitates the attenuation of odor neophobia. On the other hand, intra-vHPC muscimol microinjections after the first odor and taste exposures did not facilitate consumption at the second exposures. These results indicate that neural activations within vHPC during orally consuming a novel odor, but not taste, solution play an inhibitory role in the subsequent attenuation of neophobia.
Collapse
Affiliation(s)
- Keisuke Shinohara
- Division of Behavioral Physiology, Department of Behavioral Sciences, Graduate School of Human Sciences, Osaka University, 1-2 Yamadaoka, Suita, Osaka, Japan
| | - Yasunobu Yasoshima
- Division of Behavioral Physiology, Department of Behavioral Sciences, Graduate School of Human Sciences, Osaka University, 1-2 Yamadaoka, Suita, Osaka, Japan.
| |
Collapse
|
38
|
Huang GD, Jiang LX, Su F, Wang HL, Zhang C, Yu X. A novel paradigm for assessing olfactory working memory capacity in mice. Transl Psychiatry 2020; 10:431. [PMID: 33319773 PMCID: PMC7738675 DOI: 10.1038/s41398-020-01120-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 01/10/2023] Open
Abstract
A decline in working memory (WM) capacity is suggested to be one of the earliest symptoms observed in Alzheimer's disease (AD). Although WM capacity is widely studied in healthy subjects and neuropsychiatric patients, few tasks are developed to measure this variation in rodents. The present study describes a novel olfactory working memory capacity (OWMC) task, which assesses the ability of mice to remember multiple odours. The task was divided into five phases: context adaptation, digging training, rule-learning for non-matching to a single-sample odour (NMSS), rule-learning for non-matching to multiple sample odours (NMMS) and capacity testing. During the capacity-testing phase, the WM capacity (number of odours that the mice could remember) remained stable (average capacity ranged from 6.11 to 7.00) across different testing sessions in C57 mice. As the memory load increased, the average errors of each capacity level increased and the percent correct gradually declined to chance level, which suggested a limited OWMC in C57 mice. Then, we assessed the OWMC of 5 × FAD transgenic mice, an animal model of AD. We found that the performance displayed no significant differences between young adult (3-month-old) 5 × FAD mice and wild-type (WT) mice during the NMSS phase and NMMS phase; however, during the capacity test with increasing load, we found that the OWMC of young adult 5 × FAD mice was significantly decreased compared with WT mice, and the average error was significantly increased while the percent correct was significantly reduced, which indicated an impairment of WM capacity at the early stage of AD in the 5 × FAD mice model. Finally, we found that FOS protein levels in the medial prefrontal cortex and entorhinal cortex after the capacity test were significantly lower in 5 × FAD than WT mice. In conclusion, we developed a novel paradigm to assess the capacity of olfactory WM in mice, and we found that OWMC was impaired in the early stage of AD.
Collapse
Affiliation(s)
- Geng-Di Huang
- Peking University Sixth Hospital, 100191, Beijing, China
- Peking University Institute of Mental Health, 100191, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), 100191, Beijing, China
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
- Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, 100191, Beijing, China
| | - Li-Xin Jiang
- Peking University Sixth Hospital, 100191, Beijing, China
- Peking University Institute of Mental Health, 100191, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), 100191, Beijing, China
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
- Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, 100191, Beijing, China
| | - Feng Su
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100069, Beijing, China
| | - Hua-Li Wang
- Peking University Sixth Hospital, 100191, Beijing, China
- Peking University Institute of Mental Health, 100191, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), 100191, Beijing, China
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
- Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, 100191, Beijing, China
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100069, Beijing, China.
| | - Xin Yu
- Peking University Sixth Hospital, 100191, Beijing, China.
- Peking University Institute of Mental Health, 100191, Beijing, China.
- NHC Key Laboratory of Mental Health (Peking University), 100191, Beijing, China.
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China.
- Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, 100191, Beijing, China.
| |
Collapse
|
39
|
Taxidis J, Pnevmatikakis EA, Dorian CC, Mylavarapu AL, Arora JS, Samadian KD, Hoffberg EA, Golshani P. Differential Emergence and Stability of Sensory and Temporal Representations in Context-Specific Hippocampal Sequences. Neuron 2020; 108:984-998.e9. [PMID: 32949502 PMCID: PMC7736335 DOI: 10.1016/j.neuron.2020.08.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/04/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022]
Abstract
Hippocampal spiking sequences encode external stimuli and spatiotemporal intervals, linking sequential experiences in memory, but the dynamics controlling the emergence and stability of such diverse representations remain unclear. Using two-photon calcium imaging in CA1 while mice performed an olfactory working-memory task, we recorded stimulus-specific sequences of "odor-cells" encoding olfactory stimuli followed by "time-cells" encoding time points in the ensuing delay. Odor-cells were reliably activated and retained stable fields during changes in trial structure and across days. Time-cells exhibited sparse and dynamic fields that remapped in both cases. During task training, but not in untrained task exposure, time-cell ensembles increased in size, whereas odor-cell numbers remained stable. Over days, sequences drifted to new populations with cell activity progressively converging to a field and then diverging from it. Therefore, CA1 employs distinct regimes to encode external cues versus their variable temporal relationships, which may be necessary to construct maps of sequential experiences.
Collapse
MESH Headings
- Action Potentials
- Animals
- CA1 Region, Hippocampal/chemistry
- CA1 Region, Hippocampal/cytology
- CA1 Region, Hippocampal/physiology
- Cues
- Male
- Memory, Short-Term/drug effects
- Memory, Short-Term/physiology
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Fluorescence, Multiphoton/methods
- Odorants
- Smell/drug effects
- Smell/physiology
- Time Factors
Collapse
Affiliation(s)
- Jiannis Taxidis
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| | | | - Conor C Dorian
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Apoorva L Mylavarapu
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jagmeet S Arora
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kian D Samadian
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Emily A Hoffberg
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peyman Golshani
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA; Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; West Los Angeles Veteran Affairs Medical Center, Los Angeles, CA, USA; Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
40
|
Yulug B, Saatci O, Işıklar A, Hanoglu L, Kilic U, Ozansoy M, Cankaya S, Cankaya B, Kilic E. The Association between HbA1c Levels, Olfactory Memory and Cognition in Normal, Pre-Diabetic and Diabetic Persons. Endocr Metab Immune Disord Drug Targets 2020; 20:198-212. [PMID: 31203811 DOI: 10.2174/1871530319666190614121738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/26/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM Recent data have shown that olfactory dysfunction is strongly related to Alzheimer's Disease (AD) that is often preceded by olfactory deficits suggesting that olfactory dysfunction might represent an early indicator of future cognitive in prediabetes. METHODS We have applied to a group of normal (n=15), prediabetic (n=16) and type 2 diabetic outpatients (n=15) olfactory testing, 1.5-T MRI scanner and detailed cognitive evaluation including the standard Mini-Mental State Examination (MMSE) form, Short Blessed Test (SBT), Letter Fluency Test (LFT) and the category fluency test with animal, Fruit and Vegetable Naming (CFT). RESULTS We have shown that Odour Threshold (OT), Discrimination (OD), and Identification (OI) scores and most cognitive test results were significantly different in the prediabetes and diabetes group compared to those in the control group. OD and OT were significantly different between the prediabetes and diabetes group, although the cognitive test results were only significantly different in the prediabetes and diabetes group compared to those in the control group. In evaluating the association between OI, OT, OD scores and specific cognitive tests, we have found, that impaired olfactory identification was the only parameter that correlated significantly with the SBT both in the pre-diabetes and diabetes group. Although spot glucose values were only correlated with OT, HbA1c levels were correlated with OT, OD, and OI, as well as results of the letter fluency test suggesting that HbA1c levels rather than the spot glucose values play a critical role in specific cognitive dysfunction. CONCLUSION To the best of our knowledge, this is the first prospective study to demonstrate a strong association between olfactory dysfunction and specific memory impairment in a population with prediabetes and diabetes suggesting that impaired olfactory identification might play an important role as a specific predictor of memory decline.
Collapse
Affiliation(s)
- Burak Yulug
- Department of Neurology, Alanya AlaaddinKeykubat University, Antalya/Alanya, Turkey.,Istanbul Medipol University, Restorative and Regenerative Medicine Center, Istanbul, Turkey
| | - Ozlem Saatci
- Department of Otorhinolaryngology, Istanbul Sancaktepe, Education and Research Hospital, Istanbul, Turkey
| | - Aysun Işıklar
- Department of Internal Medicine, Istanbul Sancaktepe, Education and Research Hospital, Istanbul, Turkey
| | - Lutfu Hanoglu
- Department of Neurology, Istanbul Medipol University, Istanbul, Turkey
| | - Ulkan Kilic
- Department of Medical Biology, University of Health Sciences, Faculty of Medicine, Istanbul, Turkey
| | - Mehmet Ozansoy
- Istanbul Medipol University, Restorative and Regenerative Medicine Center, Istanbul, Turkey
| | - Seyda Cankaya
- Department of Neurology, Alanya AlaaddinKeykubat University, Antalya/Alanya, Turkey
| | - Baris Cankaya
- Department of Anesthesiology and Reanimation, Marmara University Pendik Education and Research Hospital, Istanbul, Turkey
| | - Ertugrul Kilic
- Istanbul Medipol University, Restorative and Regenerative Medicine Center, Istanbul, Turkey.,Department of Physiology, Istanbul Medipol University, International School of Medicine, Istanbul, Turkey
| |
Collapse
|
41
|
Dynamic Impairment of Olfactory Behavior and Signaling Mediated by an Olfactory Corticofugal System. J Neurosci 2020; 40:7269-7285. [PMID: 32817250 DOI: 10.1523/jneurosci.2667-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 06/30/2020] [Accepted: 07/05/2020] [Indexed: 01/16/2023] Open
Abstract
Processing of olfactory information is modulated by centrifugal projections from cortical areas, yet their behavioral relevance and underlying neural mechanisms remain unclear in most cases. The anterior olfactory nucleus (AON) is part of the olfactory cortex, and its extensive connections to multiple upstream and downstream brain centers place it in a prime position to modulate early sensory information in the olfactory system. Here, we show that optogenetic activation of AON neurons in awake male and female mice was not perceived as an odorant equivalent cue. However, AON activation during odorant presentation reliably suppressed behavioral odor responses. This AON-mediated effect was fast and constant across odors and concentrations. Likewise, activation of glutamatergic AON projections to the olfactory bulb (OB) transiently inhibited the excitability of mitral/tufted cells (MTCs) that relay olfactory input to the cortex. Single-unit MTC recordings revealed that optogenetic activation of glutamatergic AON terminals in the OB transiently decreased sensory-evoked MTC spiking, regardless of the strength or polarity of the sensory response. The reduction in MTC firing during optogenetic stimulation was confirmed in recordings in awake mice. These findings suggest that glutamatergic AON projections to the OB impede early olfactory signaling by inhibiting OB output neurons, thereby dynamically gating sensory throughput to the cortex.SIGNIFICANCE STATEMENT The anterior olfactory nucleus (AON) as an olfactory information processing area sends extensive projections to multiple brain centers, but the behavioral consequences of its activation have been scarcely investigated. Using behavioral tests in combination with optogenetic manipulation, we show that, in contrast to what has been suggested previously, the AON does not seem to form odor percepts but instead suppresses behavioral odor responses across odorants and concentrations. Furthermore, this study shows that AON activation inhibits olfactory bulb output neurons in both anesthetized as well as awake mice, pointing to a potential mechanism by which the olfactory cortex can actively and dynamically gate sensory throughput to higher brain centers.
Collapse
|
42
|
Levinson M, Kolenda JP, Alexandrou GJ, Escanilla O, Cleland TA, Smith DM, Linster C. Context-dependent odor learning requires the anterior olfactory nucleus. Behav Neurosci 2020; 134:332-343. [PMID: 32378908 PMCID: PMC8710084 DOI: 10.1037/bne0000371] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Learning to associate the context in which a stimulus occurs is an important aspect of animal learning. We propose that the association of an olfactory stimulus with its multisensory context is mediated by projections from ventral hippocampus (vHC) networks to the anterior olfactory nucleus (AON). Using a contextually cued olfactory discrimination task, rats were trained to associate 2 olfactory stimuli with different responses depending on visuospatial context. Temporary lesions of the AON or vHC impaired performance on this task. In contrast, such lesions did not impair performance on a noncontextual olfactory discrimination task. Moreover, vHC lesions also impaired performance on an analogous contextually cued texture discrimination task, whereas AON lesions affected only olfactory contextual associations. We describe a distinct role for the AON in olfactory processing and conclude that early olfactory networks such as the olfactory bulb and AON function as multimodal integration networks rather than processing olfactory signals exclusively. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Max Levinson
- Dept. of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853
| | - Jacob P. Kolenda
- Dept. of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853
| | | | - Olga Escanilla
- Dept. of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853
| | | | - David M. Smith
- Dept. of Psychology, Cornell University, Ithaca, NY 14853
| | - Christiane Linster
- Dept. of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853
| |
Collapse
|
43
|
Quaranta A, d’Ingeo S, Siniscalchi M. Odour-Evoked Memory in Dogs: Do Odours Help to Retrieve Memories of Food Location? Animals (Basel) 2020; 10:ani10081249. [PMID: 32717898 PMCID: PMC7460434 DOI: 10.3390/ani10081249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 01/11/2023] Open
Abstract
Simple Summary The ability of odors to evoke past memories has been widely reported in humans. Although olfaction is generally considered as the most important sense in dogs, little is known about its relationship with memory in this species. To investigate this issue, we trained dogs to memorize the location of five rewards while a specific odor (i.e., vanilla) was dispersed in the environment. After 24 h delay, dogs were divided in three groups, which performed two trials of the same spatial task in different conditions. The first group received a control odor (i.e., apple) in the first trial and the vanilla odor in the second trial; vice versa, the second group was exposed to the vanilla odor in the first test and to the apple odor in the second one. The third group, instead, performed the tests with no odors. We found that the exposure to vanilla odor significantly improved dogs’ performance in the spatial task, suggesting that the odor aided dogs to recall specific and detailed memories originally formed in its presence. Abstract The ability of odors to spontaneously trigger specific memories has been widely demonstrated in humans. Although increasing evidence support the role of olfaction on dogs’ emotions and cognitive processes, very little research has been conducted on its relationship with memory in this species. The present study aimed at investigating the role of olfaction in the recall of detailed memories originally formed in the presence of a specific odor (i.e., vanilla). To test this, three groups of participants were trained with the same spatial learning task while a specific odor (i.e., vanilla) was dispersed in the testing room. Subjects were then divided in three experimental groups and after 24 h delay, they were presented with the same spatial task. The first group (Group 1) performed the task in the presence of a novel odor (i.e., control), whereas the second (Group 2) and the third group (Group 3) carried out the test in the presence of the vanilla odor and no odor (Group 3), respectively. After a brief delay, the test was presented again to the three groups of dogs: subjects of Group 1 were now tested in the presence of the vanilla odor, whereas the Group 2 was tested with the control odor. The Group 3 received no odor in both tests. A significant improvement of dogs’ performance was registered in the control-vanilla odors condition (Group 1), suggesting that the exposure to the odor presented at the encoding time would prompt the recall of spatial memories in dogs.
Collapse
|
44
|
Chase BA, Markopoulou K. Olfactory Dysfunction in Familial and Sporadic Parkinson's Disease. Front Neurol 2020; 11:447. [PMID: 32547477 PMCID: PMC7273509 DOI: 10.3389/fneur.2020.00447] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/27/2020] [Indexed: 12/26/2022] Open
Abstract
This minireview discusses our current understanding of the olfactory dysfunction that is frequently observed in sporadic and familial forms of Parkinson's disease and parkinsonian syndromes. We review the salient characteristics of olfactory dysfunction in these conditions, discussing its prevalence and characteristics, how neuronal processes and circuits are altered in Parkinson's disease, and what is assessed by clinically used measures of olfactory function. We highlight how studies of monogenic Parkinson's disease and investigations in ethnically diverse populations have contributed to understanding the mechanisms underlying olfactory dysfunction. Furthermore, we discuss how imaging and system-level approaches have been used to understand the pathogenesis of olfactory dysfunction. We discuss the challenging, remaining gaps in understanding the basis of olfactory dysfunction in neurodegeneration. We propose that insights could be obtained by following longitudinal cohorts with familial forms of Parkinson's disease using a combination of approaches: a multifaceted longitudinal assessment of olfactory function during disease progression is essential to identify not only how dysfunction arises, but also to address its relationship to motor and non-motor Parkinson's disease symptoms. An assessment of cohorts having monogenic forms of Parkinson's disease, available within the Genetic Epidemiology of Parkinson's Disease (GEoPD), as well as other international consortia, will have heuristic value in addressing the complexity of olfactory dysfunction in the context of the neurodegenerative process. This will inform our understanding of Parkinson's disease as a multisystem disorder and facilitate the more effective use of olfactory dysfunction assessment in identifying prodromal Parkinson's disease and understanding disease progression.
Collapse
Affiliation(s)
- Bruce A. Chase
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Katerina Markopoulou
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, United States
- Department of Neurology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
45
|
Lane G, Zhou G, Noto T, Zelano C. Assessment of direct knowledge of the human olfactory system. Exp Neurol 2020; 329:113304. [PMID: 32278646 DOI: 10.1016/j.expneurol.2020.113304] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/13/2020] [Accepted: 04/08/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Gregory Lane
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA.
| | - Guangyu Zhou
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA.
| | - Torben Noto
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Christina Zelano
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA
| |
Collapse
|
46
|
Kontaris I, East BS, Wilson DA. Behavioral and Neurobiological Convergence of Odor, Mood and Emotion: A Review. Front Behav Neurosci 2020; 14:35. [PMID: 32210776 PMCID: PMC7076187 DOI: 10.3389/fnbeh.2020.00035] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
The affective state is the combination of emotion and mood, with mood reflecting a running average of sequential emotional events together with an underlying internal affective state. There is now extensive evidence that odors can overtly or subliminally modulate mood and emotion. Relying primarily on neurobiological literature, here we review what is known about how odors can affect emotions/moods and how emotions/moods may affect odor perception. We take the approach that form can provide insight into function by reviewing major brain regions and neural circuits underlying emotion and mood, and then reviewing the olfactory pathway in the context of that emotion/mood network. We highlight the extensive neuroanatomical opportunities for odor-emotion/mood convergence, as well as functional data demonstrating reciprocal interactions between these processes. Finally, we explore how the odor- emotion/mood interplay is, or could be, used in medical and/or commercial applications.
Collapse
Affiliation(s)
- Ioannis Kontaris
- Givaudan UK Limited, Health and Well-being Centre of Excellence, Ashford, United Kingdom
| | - Brett S East
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NC, United States.,Child and Adolescent Psychiatry, NYU School of Medicine, New York University, New York, NY, United States
| | - Donald A Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NC, United States.,Child and Adolescent Psychiatry, NYU School of Medicine, New York University, New York, NY, United States
| |
Collapse
|
47
|
Aqrabawi AJ, Kim JC. Olfactory memory representations are stored in the anterior olfactory nucleus. Nat Commun 2020; 11:1246. [PMID: 32144256 PMCID: PMC7060254 DOI: 10.1038/s41467-020-15032-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 02/15/2020] [Indexed: 11/26/2022] Open
Abstract
The anterior olfactory nucleus (AON) is the initial recipient of odour information from the olfactory bulb, and the target of dense innervation conveying spatiotemporal cues from the hippocampus. We hypothesized that the AON detects the coincidence of these inputs, generating patterns of activity reflective of episodic odour engrams. Using activity-dependent tagging combined with neural manipulation techniques, we reveal that contextually-relevant odour engrams are stored within the AON and that their activity is necessary and sufficient for the behavioural expression of odour memory. Our findings offer a new model for studying the mechanisms underlying memory representations. Odours are powerful stimuli used by most organisms to guide behaviour. Here, the authors identify populations of neurons within the anterior olfactory nucleus (AON) which are necessary and sufficient for the behavioural expression of odour memory.
Collapse
Affiliation(s)
- Afif J Aqrabawi
- Department of Cell and Systems Biology, University of Toronto, Toronto, M5S 3G5, Canada. .,Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Jun Chul Kim
- Department of Cell and Systems Biology, University of Toronto, Toronto, M5S 3G5, Canada. .,Department of Psychology, University of Toronto, Toronto, ON, M5S 3G3, Canada.
| |
Collapse
|
48
|
Collins LN, Brunjes PC. The mouse olfactory peduncle 4: Development of synapses, perineuronal nets, and capillaries. J Comp Neurol 2020; 528:637-649. [PMID: 31571216 PMCID: PMC6944759 DOI: 10.1002/cne.24778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 11/09/2022]
Abstract
Olfaction is critical for survival in neonatal mammals. However, little is known about the neural substrate for this ability as few studies of synaptic development in several olfactory processing regions have been reported. Odor information detected in the nasal cavity is first processed by the olfactory bulb and then sent via the lateral olfactory tract to a series of olfactory cortical areas. The first of these, the anterior olfactory nucleus pars principalis (AONpP), is a simple, two layered cortex with an outer plexiform and inner cell zone (Layers 1 and 2, respectively). Five sets of studies examined age-related changes in the AONpP. First, immunocytochemistry for glutamatergic (VGlut1 and VGlut2) and GABAergic (VGAT) synapses demonstrated that overall synaptic patterns remained uniform with age. The second set quantified synaptic development with electron microscopy and found different developmental patterns between Layers 1 and 2. As many of the interhemispheric connections in the olfactory system arise from AONpP, the third set examined the development of crossed projections using anterograde tracers and electron microscopy to explore the maturation of this pathway. A fourth study examined ontogenetic changes in immunostaining for the proteoglycans aggrecan and brevican, markers of mesh-like extracellular structures known as perineuronal nets whose maturation is associated with the end of early critical periods of synaptogenesis. A final study found no age-related changes in the density of vasculature in the peduncle from P5 to P30. This work is among the first to examine early postnatal changes in this initial cortical region of the olfactory system.
Collapse
Affiliation(s)
- Lindsay N. Collins
- Department Psychology, University of Virginia, Charlottesville, Virginia 22904 USA
| | - Peter C. Brunjes
- Department Psychology, University of Virginia, Charlottesville, Virginia 22904 USA
| |
Collapse
|
49
|
Gallegos CE, Bartos M, Gumilar F, Raisman-Vozari R, Minetti A, Baier CJ. Intranasal glyphosate-based herbicide administration alters the redox balance and the cholinergic system in the mouse brain. Neurotoxicology 2020; 77:205-215. [PMID: 31991143 DOI: 10.1016/j.neuro.2020.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 01/01/2023]
Abstract
Pesticide exposure is associated with cognitive and psychomotor disorders. Glyphosate-based herbicides (GlyBH) are among the most used agrochemicals, and inhalation of GlyBH sprays may arise from frequent aerial pulverizations. Previously, we described that intranasal (IN) administration of GlyBH in mice decreases locomotor activity, increases anxiety, and impairs recognition memory. Then, the aim of the present study was to investigate the mechanisms involved in GlyBH neurotoxicity after IN administration. Adult male CF-1 mice were exposed to GlyBH IN administration (equivalent to 50 mg/kg/day of Gly acid, 3 days a week, during 4 weeks). Total thiol content and the activity of the enzymes catalase, acetylcholinesterase and transaminases were evaluated in different brain areas. In addition, markers of the cholinergic and the nigrostriatal pathways, as well as of astrocytes were evaluated by fluorescence microscopy in coronal brain sections. The brain areas chosen for analysis were those seen to be affected in our previous study. GlyBH IN administration impaired the redox balance of the brain and modified the activities of enzymes involved in cholinergic and glutamatergic pathways. Moreover, GlyBH treatment decreased the number of cholinergic neurons in the medial septum as well as the expression of the α7-acetylcholine receptor in the hippocampus. Also, the number of astrocytes increased in the anterior olfactory nucleus of the exposed mice. Taken together, these disturbances may contribute to the neurobehavioural impairments reported previously by us after IN GlyBH administration in mice.
Collapse
Affiliation(s)
- Cristina Eugenia Gallegos
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur-CONICET, San Juan 670, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - Mariana Bartos
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur-CONICET, San Juan 670, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - Fernanda Gumilar
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur-CONICET, San Juan 670, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - Rita Raisman-Vozari
- INSERM UMR 1127, CNRS UMR 7225, UPMC, ThérapeutiqueExpérimentale de la Neurodégénérescence, Hôpital de la Salpetrière-ICM (Institut du cerveau et de la moelleépinière), Paris, France
| | - Alejandra Minetti
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur-CONICET, San Juan 670, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - Carlos Javier Baier
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur-CONICET, San Juan 670, 8000 Bahía Blanca, Buenos Aires, Argentina.
| |
Collapse
|
50
|
Pro-neurogenic effect of fluoxetine in the olfactory bulb is concomitant to improvements in social memory and depressive-like behavior of socially isolated mice. Transl Psychiatry 2020; 10:33. [PMID: 32066672 PMCID: PMC7026434 DOI: 10.1038/s41398-020-0701-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023] Open
Abstract
Although loneliness is a human experience, it can be estimated in laboratory animals deprived from physical contact with conspecifics. Rodents under social isolation (SI) tend to develop emotional distress and cognitive impairment. However, it is still to be determined whether those conditions present a common neural mechanism. Here, we conducted a series of behavioral, morphological, and neurochemical analyses in adult mice that underwent to 1 week of SI. We observed that SI mice display a depressive-like state that can be prevented by enriched environment, and the antidepressants fluoxetine (FLX) and desipramine (DES). Interestingly, chronic administration of FLX, but not DES, was able to counteract the deleterious effect of SI on social memory. We also analyzed cell proliferation, neurogenesis, and astrogenesis after the treatment with antidepressants. Our results showed that the olfactory bulb (OB) was the neurogenic niche with the highest increase in neurogenesis after the treatment with FLX. Considering that after FLX treatment social memory was rescued and depressive-like behavior decreased, we propose neurogenesis in the OB as a possible mechanism to unify the FLX ability to counteract the deleterious effect of SI.
Collapse
|