1
|
Tiwari S, Gupta RK, Agarwal S, Diwakar A, Bind AK, Dubey PK. Association of intronic variants (Apal and Bsml) of vitamin D receptor gene with uterine leiomyoma among North Indian women. Gene 2025; 959:149519. [PMID: 40273960 DOI: 10.1016/j.gene.2025.149519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 04/12/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Understanding the genetic factors involved in the Uterine Leiomyoma (UL) development is crucial for exploring the complexities of UL disorders. This study aimed to examine genetic association between UL incidence and intronic polymorphisms of vitamin D receptor gene in north Indian population. METHODOLOGY Total 200 subjects (100 healthy women and 100 with uterine leiomyomas) of age- and gender-matched control subjects, were genotyped for BsmI (rs1544410) and ApaI (rs7975232) polymorphisms in the VDR gene using TETRA ARMS PCR, followed by Sanger sequencing validation. Levels of VDR mRNA and vitamin D were also assessed through quantitative real-time PCR and ELISA respectively. The association of these variants with leiomyomas was analyzed, along with clinico-pathological (obesity) association. RESULTS ApaI revealed a significant association with UL, especially for the TG genotype (OR = 2.38; 95 % CI, 1.26---4.51; p = 0.003). In a similar manner, ApaI is associated with an increased risk for UL with all three genetic models. Comparing VDR ApaI polymorphism between obese and non-obese patients revealed that AC genotype was significantly (OR = 3.71; 95 % CI, 1.53--9.11; p = 0.002) associated with a reduced risk of UL in non-obese patients. The expression of VDR mRNA was two times lower in patients with UL (p < 0.001), along with decreased serum vitamin D levels (p < 0.001). A significant association was also observed between VDR ApaI variant with reduced mRNA expression, vitamin D level and obesity. However, no associations were observed amongBsm1VDR genotypes and ULs. CONCLUSION This study found significant association between the VDR intronic ApaI polymorphism (rs7975232) and the incidence of UL. This VDR variant showed significant association with reduced VDR mRNA expression and serum vitamin D levels in UL patients. However, no significant association was observed between BsmI VDR polymorphism (rs1544410) and UL in North Indian women.
Collapse
Affiliation(s)
- Sonal Tiwari
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi 221005 Uttar Pradesh, India
| | - Rakesh K Gupta
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi 221005 Uttar Pradesh, India
| | - Sakshi Agarwal
- Department of Obstetrics and Gynecology, Institute of Medical Science, Banaras Hindu University, Varanasi 221005 Uttar Pradesh, India
| | - Amita Diwakar
- Department of Obstetrics and Gynecology, Institute of Medical Science, Banaras Hindu University, Varanasi 221005 Uttar Pradesh, India
| | - Arun K Bind
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi 221005 Uttar Pradesh, India
| | - Pawan K Dubey
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi 221005 Uttar Pradesh, India.
| |
Collapse
|
2
|
Venkatesh SS, Wittemans LBL, Palmer DS, Baya NA, Ferreira T, Hill B, Lassen FH, Parker MJ, Reibe S, Elhakeem A, Banasik K, Bruun MT, Erikstrup C, Aagard Jensen B, Juul A, Mikkelsen C, Nielsen HS, Ostrowski SR, Pedersen OB, Rohde PD, Sørensen E, Ullum H, Westergaard D, Haraldsson A, Holm H, Jonsdottir I, Olafsson I, Steingrimsdottir T, Steinthorsdottir V, Thorleifsson G, Figueredo J, Karjalainen MK, Pasanen A, Jacobs BM, Kalantzis G, Hubers N, Lippincott M, Fraser A, Lawlor DA, Timpson NJ, Nyegaard M, Stefansson K, Magi R, Laivuori H, van Heel DA, Boomsma DI, Balasubramanian R, Seminara SB, Chan YM, Laisk T, Lindgren CM. Genome-wide analyses identify 25 infertility loci and relationships with reproductive traits across the allele frequency spectrum. Nat Genet 2025:10.1038/s41588-025-02156-8. [PMID: 40229599 DOI: 10.1038/s41588-025-02156-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/07/2025] [Indexed: 04/16/2025]
Abstract
Genome-wide association studies (GWASs) may help inform the etiology of infertility. Here, we perform GWAS meta-analyses across seven cohorts in up to 42,629 cases and 740,619 controls and identify 25 genetic risk loci for male and female infertility. We additionally identify up to 269 genetic loci associated with follicle-stimulating hormone, luteinizing hormone, estradiol and testosterone through sex-specific GWAS meta-analyses (n = 6,095-246,862). Exome sequencing analyses reveal that women carrying testosterone-lowering rare variants in some genes are at risk of infertility. However, we find no local or genome-wide genetic correlation between female infertility and reproductive hormones. While infertility is genetically correlated with endometriosis and polycystic ovary syndrome, we find limited genetic overlap between infertility and obesity. Finally, we show that the evolutionary persistence of infertility-risk alleles may be explained by directional selection. Taken together, we provide a comprehensive view of the genetic determinants of infertility across multiple diagnostic criteria.
Collapse
Affiliation(s)
- Samvida S Venkatesh
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Laura B L Wittemans
- Novo Nordisk Research Centre Oxford, Oxford, UK
- Nuffield Department of Women's and Reproductive Health, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Duncan S Palmer
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Nikolas A Baya
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Teresa Ferreira
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Barney Hill
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Frederik Heymann Lassen
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Melody J Parker
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Saskia Reibe
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Ahmed Elhakeem
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Copenhagen, Denmark
| | - Mie T Bruun
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - Bitten Aagard Jensen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Anders Juul
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Christina Mikkelsen
- Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, Copenhagen University, Copenhagen, Denmark
| | - Henriette S Nielsen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Obstetrics and Gynecology, The Fertility Clinic, Hvidovre University Hospital, Copenhagen, Denmark
| | - Sisse R Ostrowski
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Ole B Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital-Køge, Køge, Denmark
| | - Palle Duun Rohde
- Genomic Medicine, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | | | - David Westergaard
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Copenhagen, Denmark
| | - Asgeir Haraldsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Children's Hospital Iceland, Landspitali University Hospital, Reykjavik, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | - Ingileif Jonsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspitali University Hospital, Reykjavik, Iceland
| | - Thora Steingrimsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Obstetrics and Gynecology, Landspitali University Hospital, Reykjavik, Iceland
| | | | | | - Jessica Figueredo
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Minna K Karjalainen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Northern Finland Birth Cohorts, Arctic Biobank, Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Anu Pasanen
- Research Unit of Clinical Medicine, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Benjamin M Jacobs
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University London, London, UK
| | | | - Nikki Hubers
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Institute, Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, The Netherlands
| | - Margaret Lippincott
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Abigail Fraser
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Mette Nyegaard
- Genomic Medicine, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Statens Serum Institut, Copenhagen, Denmark
| | - Kari Stefansson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | - Reedik Magi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Hannele Laivuori
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital, The Wellbeing Services County of Pirkanmaa, Tampere, Finland
- Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Dorret I Boomsma
- Amsterdam Reproduction and Development Institute, Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, The Netherlands
| | - Ravikumar Balasubramanian
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Stephanie B Seminara
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yee-Ming Chan
- Harvard Medical School, Boston, MA, USA
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Triin Laisk
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Cecilia M Lindgren
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Nuffield Department of Women's and Reproductive Health, Medical Sciences Division, University of Oxford, Oxford, UK.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
3
|
Aninye IO, Chew S, Goulmamine S. 2025 SWHR Women's Health Research Agenda: Prioritizing Uterine Fibroids, Lupus, and Metabolism. J Womens Health (Larchmt) 2025; 34:443-450. [PMID: 39878628 DOI: 10.1089/jwh.2024.1146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Women face unique and multifaceted challenges throughout their lifespans, shaped by biological, societal, and health care-related factors. These challenges have led to gender disparities in disease burden, access to care, and representation in medical research, underscoring the need to increase targeted investments in women's health. Historically, research on diseases that disproportionately affect women has been underfunded, hindering progress in closing gender health gaps. In March 2024, the President of the United States signed an Executive Order on Women's Health Research and Innovation, signaling a new commitment by the federal government to prioritize women's health research and address these disparities. The Society for Women's Health Research (SWHR) has consistently led the charge to identify research gaps and advocate for evidence-based initiatives to improve the health and well-being of women. In celebration of its 35th anniversary, SWHR introduces a 2025 Women's Health Research Agenda, which outlines key priorities in the areas of uterine health, autoimmune disease, and cardiometabolic health. This agenda serves as a strategic roadmap for stakeholders to engage with critical areas of women's health, fostering collaboration and accelerating research to address the unmet needs of women across the lifespan.
Collapse
Affiliation(s)
- Irene O Aninye
- Society for Women's Health Research, Washington, DC, USA
| | - Sarah Chew
- Society for Women's Health Research, Washington, DC, USA
| | | |
Collapse
|
4
|
Kim J, Williams A, Noh H, Jasper EA, Jones SH, Jaworski JA, Shuey MM, Ruiz-Narváez EA, Wise LA, Palmer JR, Connolly J, Keaton JM, Denny JC, Khan A, Abbass MA, Rasmussen-Torvik LJ, Kottyan LC, Madhivanan P, Krupp K, Wei WQ, Edwards TL, Velez Edwards DR, Hellwege JN. Genome-wide meta-analysis identifies novel risk loci for uterine fibroids within and across multiple ancestry groups. Nat Commun 2025; 16:2273. [PMID: 40050615 PMCID: PMC11885530 DOI: 10.1038/s41467-025-57483-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 02/12/2025] [Indexed: 03/09/2025] Open
Abstract
Uterine leiomyomata or fibroids are highly heritable, common, and benign tumors of the uterus with poorly understood etiology. Previous GWAS have reported 72 associated genes but included limited numbers of non-European individuals. Here, we identify 11 novel genes associated with fibroids across multi-ancestry and ancestry-stratified GWAS analyses. We replicate a known fibroid GWAS gene in African ancestry individuals and estimate the SNP-based heritability of fibroids in African ancestry populations as 15.9%. Using genetically predicted gene expression and colocalization analyses, we identify 46 novel genes associated with fibroids. These genes are significantly enriched in cancer, cell death and survival, reproductive system disease, and cellular growth and proliferation networks. We also find that increased predicted expression of HEATR3 in uterine tissue is associated with fibroids across ancestry strata. Overall, we report genetic variants associated with fibroids coupled with functional and gene pathway enrichment analyses.
Collapse
Affiliation(s)
- Jeewoo Kim
- Division of Quantitative and Clinical Sciences, Department of Obstetrics & Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Ariel Williams
- Center for Precision Health Research, National Human Genome Research Institute, National Institute of Health, Bethesda, MD, USA
| | - Hannah Noh
- Tufts University Medical School Graduate Programs, Boston, MA, USA
- Medicine, Health and Society, Vanderbilt University, Nashville, TN, USA
| | - Elizabeth A Jasper
- Division of Quantitative and Clinical Sciences, Department of Obstetrics & Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah H Jones
- Institute for Medicine and Public Health, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James A Jaworski
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Megan M Shuey
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Edward A Ruiz-Narváez
- Department of Nutritional Sciences University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Julie R Palmer
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - John Connolly
- Center for Applied Genomics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jacob M Keaton
- Center for Precision Health Research, National Human Genome Research Institute, National Institute of Health, Bethesda, MD, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua C Denny
- Center for Precision Health Research, National Human Genome Research Institute, National Institute of Health, Bethesda, MD, USA
- All of Us Research Program, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Atlas Khan
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Mohammad A Abbass
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Department of Pediatrics, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH, USA
| | - Purnima Madhivanan
- University of Arizona Comprehensive Cancer Center, Tucson, AZ, USA
- Department of Health Promotion Sciences, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
- Public Health Research Institute of India, Mysuru, India
- Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Karl Krupp
- University of Arizona Comprehensive Cancer Center, Tucson, AZ, USA
- Public Health Research Institute of India, Mysuru, India
- Public Health Practice, Policy, & Translational Research Department, Mel & Enid Zuckerman College of Public Health, Phoenix, AZ, USA
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Digna R Velez Edwards
- Division of Quantitative and Clinical Sciences, Department of Obstetrics & Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA.
- Institute for Medicine and Public Health, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Jacklyn N Hellwege
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
5
|
Jokinen V, Taira A, Kolterud Å, Ahlgren I, Palin K, Katainen R, Räisänen M, Kaasinen E, Ilves S, Raitila A, Kopp Kallner H, Siili E, Bützow R, Heikinheimo O, Pasanen A, Karhu A, Välimäki N, Aaltonen LA. Activation of FGFR genes by genetic and epigenetic alterations in uterine leiomyomas. BJC REPORTS 2025; 3:9. [PMID: 40016412 PMCID: PMC11868550 DOI: 10.1038/s44276-025-00127-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/15/2025] [Accepted: 02/08/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Fibroblast growth factor 1-4 (FGFR1-4) are well-known oncogenic drivers in many cancer types. Here, we studied the role of FGFRs in uterine leiomyoma (UL) that is a benign neoplasm arising from the myometrium and the most common tumour in women. Although ULs can be classified to molecular subtypes based on genetic drivers, potential secondary drivers are not well characterised. METHODS We performed mutation analysis of RNA-sequencing data of ULs, followed by screening of FGFR alterations in our Finnish (n = 2677) and Swedish (n = 372) UL collections, utilising Sanger-, next-generation and Nanopore sequencing and SNP array data. The role of FGFR genes in UL predisposition was examined by GWAS. RESULTS We identified FGFR activation in a subset of ULs on both genetic and epigenetic levels. In addition to single-nucleotide mutations in FGFR1/2, we detected an FGFR2-ERC1 fusion gene, FGFR1 gains and hypomethylation of regulatory regions of FGFR2/3. FGFR alterations were enriched in molecularly similar HMGA2, HMGA1 and PLAG1 UL subtypes. We also unveil a UL predisposing variant upstream of FGFR4 associated with increased expression in both normal myometrium and ULs. CONCLUSIONS Our results establish the role of FGFR signalling in the genesis of UL.
Collapse
Affiliation(s)
- Vilja Jokinen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Aurora Taira
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Åsa Kolterud
- Department of Medicine Huddinge, Division of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Isa Ahlgren
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Kimmo Palin
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Riku Katainen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Maritta Räisänen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Eevi Kaasinen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Sini Ilves
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Anniina Raitila
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Helena Kopp Kallner
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
- Department of Obstetrics and Gynecology, Danderyd Hospital, Stockholm, Sweden
| | - Emma Siili
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ralf Bützow
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Oskari Heikinheimo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Annukka Pasanen
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Auli Karhu
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Niko Välimäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland.
- Department of Medicine Huddinge, Division of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
6
|
Liu S, Guan Y, Lin S, Wu P, Zhang Q, Chu T, Dong R. Risk of Cervical Carcinoma After Unfavorable Behavior and High Genetic Risk in the UK Biobank: A Prospective Nested Case-Control Study. Biomedicines 2025; 13:464. [PMID: 40002877 PMCID: PMC11853234 DOI: 10.3390/biomedicines13020464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Previous studies have established a general understanding of the association between risky sexual behavior, genetic risk, and cervical carcinoma. However, these studies were conducted several years ago and lack systematic analysis using high-quality and population-based data. Methods: We conducted a prospective nested case-control study to identify risky behaviors and developed a behavior score. Combining the behavior score and genetic risk, we evaluated the effect of sexual and reproductive behavior and PRS on cervical carcinoma through the developed conditional logistic regression models. Results: We verified increased carcinoma risk in individuals with early sexual intercourse (OR: 1.41 [95% CI 1.09 to 1.83], p = 0.0083), non-monogamous sexual partners (OR: 3.13 [95% CI 2.15 to 4.57], p < 0.0001), three or more live births (OR: 1.44 [95% CI 1.12 to 1.84], p = 0.0040), and high PRS (polygenic risk score) (top 25% of PRS, OR: 1.58 [95% CI 1.15 to 2.16], p = 0.0044). The unfavorable sexual and reproductive behavior score we developed was linked to a 151% increased risk (OR: 2.51 [95% CI 1.79 to 3.52], p < 0.0001) after adjusting for PRS. Women with both unfavorable behavior and high genetic risk had a 5.5-fold increased cervical carcinoma risk (OR: 5.45 [95% CI 2.72 to 10.95], p < 0.0001) compared to individuals with favorable behavior and low genetic risk. Conclusions: Unfavorable sexual and reproductive behavior increases the risk of cervical carcinoma, especially in those with a high genetic risk. These findings encourage us to adhere to a healthy sexual and reproductive pattern.
Collapse
Affiliation(s)
- Shiyi Liu
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (S.L.); (S.L.); (P.W.)
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yunlong Guan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China;
| | - Shitong Lin
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (S.L.); (S.L.); (P.W.)
| | - Peng Wu
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (S.L.); (S.L.); (P.W.)
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250000, China;
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan 250000, China
| | - Tian Chu
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ruifen Dong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250000, China;
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan 250000, China
| |
Collapse
|
7
|
Khamaiseh S, Äyräväinen A, Arffman M, Reinikka S, Mehine M, Härkki P, Bützow R, Pasanen A, Vahteristo P. Clinical and molecular risk factors for repeat interventions due to symptomatic uterine leiomyomas. Am J Obstet Gynecol 2025; 232:110.e1-110.e23. [PMID: 39094728 DOI: 10.1016/j.ajog.2024.06.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Repeat leiomyoma occurrence or even reintervention is common after myomectomy. Little is known about the factors related to repeat interventions. OBJECTIVE This study aimed to determine the frequency of leiomyoma-related reintervention after an initial laparoscopic or abdominal myomectomy and to analyze both clinical and molecular risk factors for reinterventions. Another objective was to define the frequency of clonally related tumors from repeat operations. STUDY DESIGN This retrospective cohort study included 234 women who had undergone laparoscopic or abdominal myomectomy in 2009 to 2014. Information on repeat leiomyoma-related interventions as well as on other clinical factors was collected from medical records after a median follow-up time of 11.4 years (range 7.9-13.8 years) after the index procedure. The effect of clinical risk factors on the risk of reintervention was analyzed by the Kaplan-Meier estimator and the Cox proportional hazards model. For molecular analyses, we examined the mutation profiles of 133 formalin-fixed paraffin-embedded leiomyoma samples from 33 patients with repeat operations. We screened the tumors for the 3 primary leiomyoma driver alterations-mediator complex subunit 12 mutations, high mobility group AT-hook 2 overexpression, and fumarate hydratase-deficiency-utilizing Sanger sequencing and immunohistochemistry. To further assess the clonal relationship of the tumors, we executed whole-exome sequencing for 52 leiomyomas from 21 patients who exhibited the same driver alteration in tumors obtained from multiple procedures. RESULTS Reintervention rate at 11.4 years after myomectomy was 20% (46/234). Number of leiomyomas removed at the index myomectomy was a risk factor (hazard ratio 1.21; 95% confidence interval 1.09-1.34). Age at index myomectomy (hazard ratio 0.94; 95% confidence interval 0.89-0.99) and postoperative parity (hazard ratio 0.23; 95% confidence interval 0.09-0.60) were protective factors. Molecular characterization of tumors from index and nonindex operations confirmed a clonal relationship of the tumors in 3/33 (9%) patients. None of the leiomyomas harboring a mediator complex subunit 12 mutation-the most common leiomyoma driver-were confirmed clonally related. Fumarate hydratase-deficiency was detected in repeat leiomyomas from 3/33 (9%) patients. All these patients harbored a germline fumarate hydratase mutation, which is distinctive for the hereditary leiomyomatosis and renal cell cancer syndrome. Finally, we identified 3 (3/33; 9%) patients with 2 tumors each displaying somatic mutations in a recently identified novel leiomyoma driver gene, YEATS domain-containing protein 4. All YEATS domain-containing protein 4 mutations were different and thus the tumors were not clonally related. CONCLUSION Our study shows that reintervention is common after surgical myomectomy. Uterine leiomyomas typically develop independently, but some share a clonal origin. Repeat leiomyoma occurrence may be due to genetic predisposition, such as a germline fumarate hydratase mutation. Distinct somatic YEATS domain-containing protein 4 mutations identified in multiple leiomyomas from the same patient indicate a possible role for YEATS domain-containing protein 4 in repeat leiomyomas.
Collapse
Affiliation(s)
- Sara Khamaiseh
- Applied Tumor Genomics Research Program, University of Helsinki, Helsinki, Finland; Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Anna Äyräväinen
- Applied Tumor Genomics Research Program, University of Helsinki, Helsinki, Finland; Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Maare Arffman
- Applied Tumor Genomics Research Program, University of Helsinki, Helsinki, Finland; Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Siiri Reinikka
- Applied Tumor Genomics Research Program, University of Helsinki, Helsinki, Finland; Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Miika Mehine
- Applied Tumor Genomics Research Program, University of Helsinki, Helsinki, Finland; Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Päivi Härkki
- Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Ralf Bützow
- Applied Tumor Genomics Research Program, University of Helsinki, Helsinki, Finland; Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland; Department of Pathology, University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Annukka Pasanen
- Applied Tumor Genomics Research Program, University of Helsinki, Helsinki, Finland; Department of Pathology, University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Pia Vahteristo
- Applied Tumor Genomics Research Program, University of Helsinki, Helsinki, Finland; Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| |
Collapse
|
8
|
Ponomareva L, Kobzeva K, Bushueva O. GWAS-Significant Loci and Uterine Fibroids Risk: Analysis of Associations, Gene-Gene and Gene-Environmental Interactions. Front Biosci (Schol Ed) 2024; 16:24. [PMID: 39736018 DOI: 10.31083/j.fbs1604024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Uterine fibroids (UF) is the most common benign tumour of the female reproductive system. We investigated the joint contribution of genome-wide association studies (GWAS)-significant loci and environment-associated risk factors to the UF risk, along with epistatic interactions between single nucleotide polymorphisms (SNPs). METHODS DNA samples from 737 hospitalised patients with UF and 451 controls were genotyped using probe-based PCR for seven common GWAS SNPs: rs117245733 LINC00598, rs547025 SIRT3, rs2456181 ZNF346, rs7907606 STN1, SLK, rs58415480 SYNE1, rs7986407 FOXO1, and rs72709458 TERT. RESULTS We observed an association between rs547025 SIRT3 and the decreased risk of UF in overall group (effect allele C, odds ratio (OR) = 0.61, 95% confidence interval (CI) = 0.43-0.866, p = 0.005). SNP rs547025 exhibits protective effects against UF exclusively in patients with normal fruit and vegetable intake (OR = 0.39, 95% CI = 0.21-0.75, p = 0.002), no history of spontaneous abortions (OR = 0.48, 95% CI = 0.33-0.70, p = 0.0001), no pelvic inflammatory diseases (PID) in anamnesis (OR = 0.55, 95% CI = 0.38-0.80, p = 0.0016), and in smokers (OR = 0.20, 95% CI = 0.06-0.65, p = 0.006). In addition, rs7907606 STN1, SLK was associated with the risk of UF in patients without a history of pelvic inflammatory diseases (PID) (OR = 1.34, 95% CI = 1.03-1.74, p = 0.028). SNPs rs547025 SIRT3 and rs7907606 STN1, SLK, displayed the strongest mono-effects (0.71% and 0.52% contribution to UF entropy) and were characterized by the most pronounced gene-gene (G×G) effects when interacting with each other (0.60% contribution to entropy). The interaction Medical abortion×rs547025 SIRT3 served as the base for all the best gene-environment (G×E) models. Medical abortions have the most pronounced mono-effect (1.15% contribution to the entropy of UF), exceeding the mono-effects of SNPs involved in the most significant G×E-models (0.01%-0.49% contribution to entropy) and spontaneous abortions (0.48% of UF entropy) and exceeding the effects of G×E interactions (0.05-0.46% of UF entropy). CONCLUSIONS Bioinformatics analysis showed that GWAS SNPs are involved in the molecular mechanisms of UF mainly through the regulation of vasculogenesis, cell proliferation, apoptosis, DNA damage, inflammation, hypoxia, steroid hormone metabolism, cell signaling, organ formation.
Collapse
Affiliation(s)
- Liubov Ponomareva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Department of Obstetrics and Gynecology, Institute of Continuing Education, Kursk State Medical University, 305041 Kursk, Russia
| | - Ksenia Kobzeva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Olga Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 305041 Kursk, Russia
| |
Collapse
|
9
|
Benonisdottir S, Straub VJ, Kong A, Mills MC. Genetics of female and male reproductive traits and their relationship with health, longevity and consequences for offspring. NATURE AGING 2024; 4:1745-1759. [PMID: 39672892 DOI: 10.1038/s43587-024-00733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/26/2024] [Indexed: 12/15/2024]
Abstract
Substantial shifts in reproductive behaviors have recently taken place in many high-income countries including earlier age at menarche, advanced age at childbearing, rising childlessness and a lower number of children. As reproduction shifts to later ages, genetic factors may become increasingly important. Although monogenic genetic effects are known, the genetics underlying human reproductive traits are complex, with both causal effects and statistical bias often confounded by socioeconomic factors. Here, we review genome-wide association studies (GWASs) of 44 reproductive traits of both female and male individuals from 2007 to early 2024, examining reproductive behavior, reproductive lifespan and aging, infertility and hormonal concentration. Using the GWAS Catalog as a basis, from 159 relevant studies, we isolate 37 genes that harbor association signals for four or more reproductive traits, more than half of which are linked to rare Mendelian disorders, including ten genes linked to reproductive-related disorders: FSHB, MCM8, DNAH2, WNT4, ESR1, IGSF1, THRB, BRWD1, CYP19A1 and PTPRF. We also review the relationship of reproductive genetics to related health and behavioral traits, aging and longevity and the effect of parental age on offspring outcomes as well as reflecting on limitations, open questions and challenges in this fast-moving field.
Collapse
Affiliation(s)
- Stefania Benonisdottir
- Leverhulme Centre for Demographic Science, Nuffield Department of Population Health, University of Oxford and Nuffield College, Oxford, UK
- Institute of Physical Science, University of Iceland, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Vincent J Straub
- Leverhulme Centre for Demographic Science, Nuffield Department of Population Health, University of Oxford and Nuffield College, Oxford, UK
| | - Augustine Kong
- Leverhulme Centre for Demographic Science, Nuffield Department of Population Health, University of Oxford and Nuffield College, Oxford, UK
| | - Melinda C Mills
- Leverhulme Centre for Demographic Science, Nuffield Department of Population Health, University of Oxford and Nuffield College, Oxford, UK.
- Department of Genetics, University Medical Centre Groningen, Groningen, the Netherlands.
- Department of Economics, Econometrics and Finance, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
10
|
Ivarsdottir EV, Gudmundsson J, Tragante V, Sveinbjornsson G, Kristmundsdottir S, Stacey SN, Halldorsson GH, Magnusson MI, Oddsson A, Walters GB, Sigurdsson A, Saevarsdottir S, Beyter D, Thorleifsson G, Halldorsson BV, Melsted P, Stefansson H, Jonsdottir I, Sørensen E, Pedersen OB, Erikstrup C, Bøgsted M, Pøhl M, Røder A, Stroomberg HV, Gögenur I, Hillingsø J, Bojesen SE, Lassen U, Høgdall E, Ullum H, Brunak S, Ostrowski SR, Sonderby IE, Frei O, Djurovic S, Havdahl A, Moller P, Dominguez-Valentin M, Haavik J, Andreassen OA, Hovig E, Agnarsson BA, Hilmarsson R, Johannsson OT, Valdimarsson T, Jonsson S, Moller PH, Olafsson JH, Sigurgeirsson B, Jonasson JG, Tryggvason G, Holm H, Sulem P, Rafnar T, Gudbjartsson DF, Stefansson K. Gene-based burden tests of rare germline variants identify six cancer susceptibility genes. Nat Genet 2024; 56:2422-2433. [PMID: 39472694 DOI: 10.1038/s41588-024-01966-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/30/2024] [Indexed: 11/10/2024]
Abstract
Discovery of cancer risk variants in the sequence of the germline genome can shed light on carcinogenesis. Here we describe gene burden association analyses, aggregating rare missense and loss of function variants, at 22 cancer sites, including 130,991 cancer cases and 733,486 controls from Iceland, Norway and the United Kingdom. We identified four genes associated with increased cancer risk; the pro-apoptotic BIK for prostate cancer, the autophagy involved ATG12 for colorectal cancer, TG for thyroid cancer and CMTR2 for both lung cancer and cutaneous melanoma. Further, we found genes with rare variants that associate with decreased risk of cancer; AURKB for any cancer, irrespective of site, and PPP1R15A for breast cancer, suggesting that inhibition of PPP1R15A may be a preventive strategy for breast cancer. Our findings pinpoint several new cancer risk genes and emphasize autophagy, apoptosis and cell stress response as a focus point for developing new therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Saedis Saevarsdottir
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | | | | | - Bjarni V Halldorsson
- deCODE genetics/Amgen, Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | - Pall Melsted
- deCODE genetics/Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Ingileif Jonsdottir
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landspitali University Hospital, Reykjavik, Iceland
| | - Erik Sørensen
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ole B Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Koege, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin Bøgsted
- Center for Clinical Data Science, Aalborg University and Aalborg University Hospital, Aalborg, Denmark
| | - Mette Pøhl
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Røder
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Urology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Hein Vincent Stroomberg
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Urology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ismail Gögenur
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Jens Hillingsø
- Department of Transplantation, Digestive Diseases and General Surgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Stig E Bojesen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Lassen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Estrid Høgdall
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ida Elken Sonderby
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Oleksandr Frei
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Informatics, Centre for Bioinformatics, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Alexandra Havdahl
- Center for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Psychology, PROMENTA Research Center, University of Oslo, Oslo, Norway
| | - Pal Moller
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Mev Dominguez-Valentin
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Bergen Center of Brain Plasticity, Haukeland University Hospital, Bergen, Norway
| | - Ole A Andreassen
- Division of Mental Health and Addiction, Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Eivind Hovig
- Department of Informatics, Centre for Bioinformatics, University of Oslo, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Bjarni A Agnarsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
| | - Rafn Hilmarsson
- Department of General Surgery, Landspitali University Hospital, Reykjavik, Iceland
| | | | - Trausti Valdimarsson
- The Medical Center, Glaesibae, Reykjavik, Iceland
- Department of Medicine, West Iceland Healthcare Centre, Akranes, Iceland
| | - Steinn Jonsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | - Pall H Moller
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of General Surgery, Landspitali University Hospital, Reykjavik, Iceland
| | - Jon H Olafsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Dermatology Oncology, Landspitali University Hospital, Reykjavik, Iceland
| | - Bardur Sigurgeirsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Dermatology Oncology, Landspitali University Hospital, Reykjavik, Iceland
| | - Jon G Jonasson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
| | - Geir Tryggvason
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Otorhinolaryngology, Landspitali University Hospital, Reykjavik, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen, Reykjavik, Iceland
| | | | | | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
11
|
Sinkala M, Retshabile G, Mpangase PT, Bamba S, Goita MK, Nembaware V, Elsheikh SSM, Heckmann J, Esoh K, Matshaba M, Adebamowo CA, Adebamowo SN, Amih OE, Wonkam A, Ramsay M, Mulder N. Mapping Epigenetic Gene Variant Dynamics: Comparative Analysis of Frequency, Functional Impact and Trait Associations in African and European Populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.11.24311816. [PMID: 39185519 PMCID: PMC11343269 DOI: 10.1101/2024.08.11.24311816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Epigenetic modifications influence gene expression levels, impact organismal traits, and play a role in the development of diseases. Therefore, variants in genes involved in epigenetic processes are likely to be important in disease susceptibility, and the frequency of variants may vary between populations with African and European ancestries. Here, we analyse an integrated dataset to define the frequencies, associated traits, and functional impact of epigenetic gene variants among individuals of African and European ancestry represented in the UK Biobank. We find that the frequencies of 88.4% of epigenetic gene variants significantly differ between these groups. Furthermore, we find that the variants are associated with many traits and diseases, and some of these associations may be population-specific owing to allele frequency differences. Additionally, we observe that variants associated with traits are significantly enriched for quantitative trait loci that affect DNA methylation, chromatin accessibility, and gene expression. We find that methylation quantitative trait loci account for 71.2% of the variants influencing gene expression. Moreover, variants linked to biomarker traits exhibit high correlation. We therefore conclude that epigenetic gene variants associated with traits tend to differ in their allele frequencies among African and European populations and are enriched for QTLs.
Collapse
Affiliation(s)
- Musalula Sinkala
- Division of Computational Biology, Department of Integrative Biomedical Sciences and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Gaone Retshabile
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Phelelani T Mpangase
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Salia Bamba
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
| | - Modibo K Goita
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
| | - Vicky Nembaware
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Samar S M Elsheikh
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jeannine Heckmann
- Neurology Research Group, Neurosciences Institute, University of Cape Town, Cape Town, South Africa
| | - Kevin Esoh
- McKusick-Nathans Institute & Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205
| | - Mogomotsi Matshaba
- Botswana-Baylor Children's Clinical Centre of Excellence, Gaborone, Botswana
- Department of Pediatrics, Section of Retrovirology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Clement A Adebamowo
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201
- Institute of Human Virology, Abuja, Nigeria
| | - Sally N Adebamowo
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201
- Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Ofon Elvis Amih
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Buea, Buea, Cameroon
- Molecular Parasitology & Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Ambroise Wonkam
- McKusick-Nathans Institute & Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205
| | - Michele Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicola Mulder
- Division of Computational Biology, Department of Integrative Biomedical Sciences and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- University of Cape Town, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, CIDRI Africa
| |
Collapse
|
12
|
Ramaiyer MS, Saad E, Kurt I, Borahay MA. Genetic Mechanisms Driving Uterine Leiomyoma Pathobiology, Epidemiology, and Treatment. Genes (Basel) 2024; 15:558. [PMID: 38790186 PMCID: PMC11121260 DOI: 10.3390/genes15050558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Uterine leiomyomas (ULs) are the most common benign tumor of the uterus. They can be associated with symptoms including abnormal uterine bleeding, pelvic pain, urinary frequency, and pregnancy complications. Despite the high prevalence of UL, its underlying pathophysiology mechanisms have historically been poorly understood. Several mechanisms of pathogenesis have been suggested, implicating various genes, growth factors, cytokines, chemokines, and microRNA aberrations. The purpose of this study is to summarize the current research on the relationship of genetics with UL. Specifically, we performed a literature review of published studies to identify how genetic aberrations drive pathophysiology, epidemiology, and therapeutic approaches of UL. With regards to pathophysiology, research has identified MED12 mutations, HMGA2 overexpression, fumarate hydratase deficiency, and cytogenetic abnormalities as contributors to the development of UL. Additionally, epigenetic modifications, such as histone acetylation and DNA methylation, have been identified as contributing to UL tumorigenesis. Specifically, UL stem cells have been found to contain a unique DNA methylation pattern compared to more differentiated UL cells, suggesting that DNA methylation has a role in tumorigenesis. On a population level, genome-wide association studies (GWASs) and epidemiologic analyses have identified 23 genetic loci associated with younger age at menarche and UL growth. Additionally, various GWASs have investigated genetic loci as potential drivers of racial disparities in UL incidence. For example, decreased expression of Cytohesin 4 in African Americans has been associated with increased UL risk. Recent studies have investigated various therapeutic options, including ten-eleven translocation proteins mediating DNA methylation, adenovirus vectors for drug delivery, and "suicide gene therapy" to induce apoptosis. Overall, improved understanding of the genetic and epigenetic drivers of UL on an individual and population level can propel the discovery of novel therapeutic options.
Collapse
Affiliation(s)
| | - Eslam Saad
- Department of Gynecology and Obstetrics, Johns Hopkins University, 720 Rutland Ave, Baltimore, MD 21205, USA; (E.S.); (I.K.)
| | - Irem Kurt
- Department of Gynecology and Obstetrics, Johns Hopkins University, 720 Rutland Ave, Baltimore, MD 21205, USA; (E.S.); (I.K.)
- Faculty of Medicine, Selcuk University, 42000 Konya, Turkey
| | - Mostafa A. Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University, 720 Rutland Ave, Baltimore, MD 21205, USA; (E.S.); (I.K.)
| |
Collapse
|
13
|
Venkatesh SS, Wittemans LBL, Palmer DS, Baya NA, Ferreira T, Hill B, Lassen FH, Parker MJ, Reibe S, Elhakeem A, Banasik K, Bruun MT, Erikstrup C, Jensen BA, Juul A, Mikkelsen C, Nielsen HS, Ostrowski SR, Pedersen OB, Rohde PD, Sorensen E, Ullum H, Westergaard D, Haraldsson A, Holm H, Jonsdottir I, Olafsson I, Steingrimsdottir T, Steinthorsdottir V, Thorleifsson G, Figueredo J, Karjalainen MK, Pasanen A, Jacobs BM, Hubers N, Lippincott M, Fraser A, Lawlor DA, Timpson NJ, Nyegaard M, Stefansson K, Magi R, Laivuori H, van Heel DA, Boomsma DI, Balasubramanian R, Seminara SB, Chan YM, Laisk T, Lindgren CM. Genome-wide analyses identify 21 infertility loci and over 400 reproductive hormone loci across the allele frequency spectrum. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.19.24304530. [PMID: 38562841 PMCID: PMC10984039 DOI: 10.1101/2024.03.19.24304530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Genome-wide association studies (GWASs) may help inform treatments for infertility, whose causes remain unknown in many cases. Here we present GWAS meta-analyses across six cohorts for male and female infertility in up to 41,200 cases and 687,005 controls. We identified 21 genetic risk loci for infertility (P≤5E-08), of which 12 have not been reported for any reproductive condition. We found positive genetic correlations between endometriosis and all-cause female infertility (r g=0.585, P=8.98E-14), and between polycystic ovary syndrome and anovulatory infertility (r g=0.403, P=2.16E-03). The evolutionary persistence of female infertility-risk alleles in EBAG9 may be explained by recent directional selection. We additionally identified up to 269 genetic loci associated with follicle-stimulating hormone (FSH), luteinising hormone, oestradiol, and testosterone through sex-specific GWAS meta-analyses (N=6,095-246,862). While hormone-associated variants near FSHB and ARL14EP colocalised with signals for anovulatory infertility, we found no r g between female infertility and reproductive hormones (P>0.05). Exome sequencing analyses in the UK Biobank (N=197,340) revealed that women carrying testosterone-lowering rare variants in GPC2 were at higher risk of infertility (OR=2.63, P=1.25E-03). Taken together, our results suggest that while individual genes associated with hormone regulation may be relevant for fertility, there is limited genetic evidence for correlation between reproductive hormones and infertility at the population level. We provide the first comprehensive view of the genetic architecture of infertility across multiple diagnostic criteria in men and women, and characterise its relationship to other health conditions.
Collapse
Affiliation(s)
- Samvida S Venkatesh
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Laura B L Wittemans
- Novo Nordisk Research Centre Oxford, Oxford, United Kingdom
- Nuffield Department of Women's and Reproductive Health, Medical Sciences Division, University of Oxford, United Kingdom
| | - Duncan S Palmer
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Nikolas A Baya
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Teresa Ferreira
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
| | - Barney Hill
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Frederik Heymann Lassen
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Melody J Parker
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Saskia Reibe
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Ahmed Elhakeem
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Copenhagen, Denmark
| | - Mie T Bruun
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - Bitten A Jensen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Anders Juul
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen; Copenhagen, Denmark
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Christina Mikkelsen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, Copenhagen University, Copenhagen, Denmark
| | - Henriette S Nielsen
- Department of Obstetrics and Gynecology, The Fertility Clinic, Hvidovre University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole B Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Kge, Denmark
| | - Palle D Rohde
- Genomic Medicine, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Erik Sorensen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - David Westergaard
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Copenhagen, Denmark
| | - Asgeir Haraldsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Children's Hospital Iceland, Landspitali University Hospital, Reykjavik, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
| | - Ingileif Jonsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
| | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspitali University Hospital, Reykjavik, Iceland
| | - Thora Steingrimsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Obstetrics and Gynecology, Landspitali University Hospital, Reykjavik, Iceland
| | | | | | - Jessica Figueredo
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Minna K Karjalainen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Finland
- Northern Finland Birth Cohorts, Arctic Biobank, Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Anu Pasanen
- Research Unit of Clinical Medicine, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Benjamin M Jacobs
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University London, London, EC1M 6BQ, United Kingdom
| | - Nikki Hubers
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Institute, Amsterdam, The Netherlands
| | - Margaret Lippincott
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Abigail Fraser
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Mette Nyegaard
- Genomic Medicine, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Kari Stefansson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
| | - Reedik Magi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Hannele Laivuori
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital, Finland
- Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Finland
| | - David A van Heel
- Blizard Institute, Queen Mary University London, London, E1 2AT, United Kingdom
| | - Dorret I Boomsma
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Institute, Amsterdam, The Netherlands
| | - Ravikumar Balasubramanian
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephanie B Seminara
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yee-Ming Chan
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Triin Laisk
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Cecilia M Lindgren
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
- Nuffield Department of Women's and Reproductive Health, Medical Sciences Division, University of Oxford, United Kingdom
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| |
Collapse
|
14
|
Barnes DR, Tyrer JP, Dennis J, Leslie G, Bolla MK, Lush M, Aeilts AM, Aittomäki K, Andrieu N, Andrulis IL, Anton-Culver H, Arason A, Arun BK, Balmaña J, Bandera EV, Barkardottir RB, Berger LP, de Gonzalez AB, Berthet P, Białkowska K, Bjørge L, Blanco AM, Blok MJ, Bobolis KA, Bogdanova NV, Brenton JD, Butz H, Buys SS, Caligo MA, Campbell I, Castillo C, Claes KB, Colonna SV, Cook LS, Daly MB, Dansonka-Mieszkowska A, de la Hoya M, deFazio A, DePersia A, Ding YC, Domchek SM, Dörk T, Einbeigi Z, Engel C, Evans DG, Foretova L, Fortner RT, Fostira F, Foti MC, Friedman E, Frone MN, Ganz PA, Gentry-Maharaj A, Glendon G, Godwin AK, González-Neira A, Greene MH, Gronwald J, Guerrieri-Gonzaga A, Hamann U, Hansen TV, Harris HR, Hauke J, Heitz F, Hogervorst FB, Hooning MJ, Hopper JL, Huff CD, Huntsman DG, Imyanitov EN, Izatt L, Jakubowska A, James PA, Janavicius R, John EM, Kar S, Karlan BY, Kennedy CJ, Kiemeney LA, Konstantopoulou I, Kupryjanczyk J, Laitman Y, Lavie O, Lawrenson K, Lester J, Lesueur F, Lopez-Pleguezuelos C, Mai PL, Manoukian S, May T, McNeish IA, Menon U, Milne RL, Modugno F, Mongiovi JM, Montagna M, Moysich KB, Neuhausen SL, Nielsen FC, Noguès C, et alBarnes DR, Tyrer JP, Dennis J, Leslie G, Bolla MK, Lush M, Aeilts AM, Aittomäki K, Andrieu N, Andrulis IL, Anton-Culver H, Arason A, Arun BK, Balmaña J, Bandera EV, Barkardottir RB, Berger LP, de Gonzalez AB, Berthet P, Białkowska K, Bjørge L, Blanco AM, Blok MJ, Bobolis KA, Bogdanova NV, Brenton JD, Butz H, Buys SS, Caligo MA, Campbell I, Castillo C, Claes KB, Colonna SV, Cook LS, Daly MB, Dansonka-Mieszkowska A, de la Hoya M, deFazio A, DePersia A, Ding YC, Domchek SM, Dörk T, Einbeigi Z, Engel C, Evans DG, Foretova L, Fortner RT, Fostira F, Foti MC, Friedman E, Frone MN, Ganz PA, Gentry-Maharaj A, Glendon G, Godwin AK, González-Neira A, Greene MH, Gronwald J, Guerrieri-Gonzaga A, Hamann U, Hansen TV, Harris HR, Hauke J, Heitz F, Hogervorst FB, Hooning MJ, Hopper JL, Huff CD, Huntsman DG, Imyanitov EN, Izatt L, Jakubowska A, James PA, Janavicius R, John EM, Kar S, Karlan BY, Kennedy CJ, Kiemeney LA, Konstantopoulou I, Kupryjanczyk J, Laitman Y, Lavie O, Lawrenson K, Lester J, Lesueur F, Lopez-Pleguezuelos C, Mai PL, Manoukian S, May T, McNeish IA, Menon U, Milne RL, Modugno F, Mongiovi JM, Montagna M, Moysich KB, Neuhausen SL, Nielsen FC, Noguès C, Oláh E, Olopade OI, Osorio A, Papi L, Pathak H, Pearce CL, Pedersen IS, Peixoto A, Pejovic T, Peng PC, Peshkin BN, Peterlongo P, Powell CB, Prokofyeva D, Pujana MA, Radice P, Rashid MU, Rennert G, Richenberg G, Sandler DP, Sasamoto N, Setiawan VW, Sharma P, Sieh W, Singer CF, Snape K, Sokolenko AP, Soucy P, Southey MC, Stoppa-Lyonnet D, Sutphen R, Sutter C, Teixeira MR, Terry KL, Thomsen LCV, Tischkowitz M, Toland AE, Van Gorp T, Vega A, Velez Edwards DR, Webb PM, Weitzel JN, Wentzensen N, Whittemore AS, Winham SJ, Wu AH, Yadav S, Yu Y, Ziogas A, Berchuck A, Couch FJ, Goode EL, Goodman MT, Monteiro AN, Offit K, Ramus SJ, Risch HA, Schildkraut JM, Thomassen M, Simard J, Easton DF, Jones MR, Chenevix-Trench G, Gayther SA, Antoniou AC, Pharoah PD. Large-scale genome-wide association study of 398,238 women unveils seven novel loci associated with high-grade serous epithelial ovarian cancer risk. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.29.24303243. [PMID: 38496424 PMCID: PMC10942532 DOI: 10.1101/2024.02.29.24303243] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background Nineteen genomic regions have been associated with high-grade serous ovarian cancer (HGSOC). We used data from the Ovarian Cancer Association Consortium (OCAC), Consortium of Investigators of Modifiers of BRCA1/BRCA2 (CIMBA), UK Biobank (UKBB), and FinnGen to identify novel HGSOC susceptibility loci and develop polygenic scores (PGS). Methods We analyzed >22 million variants for 398,238 women. Associations were assessed separately by consortium and meta-analysed. OCAC and CIMBA data were used to develop PGS which were trained on FinnGen data and validated in UKBB and BioBank Japan. Results Eight novel variants were associated with HGSOC risk. An interesting discovery biologically was finding that TP53 3'-UTR SNP rs78378222 was associated with HGSOC (per T allele relative risk (RR)=1.44, 95%CI:1.28-1.62, P=1.76×10-9). The optimal PGS included 64,518 variants and was associated with an odds ratio of 1.46 (95%CI:1.37-1.54) per standard deviation in the UKBB validation (AUROC curve=0.61, 95%CI:0.59-0.62). Conclusions This study represents the largest GWAS for HGSOC to date. The results highlight that improvements in imputation reference panels and increased sample sizes can identify HGSOC associated variants that previously went undetected, resulting in improved PGS. The use of updated PGS in cancer risk prediction algorithms will then improve personalized risk prediction for HGSOC.
Collapse
Affiliation(s)
- Daniel R. Barnes
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jonathan P. Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Goska Leslie
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Manjeet K. Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Amber M. Aeilts
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University, Columbus, OH, USA
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Nadine Andrieu
- Inserm U900, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
- PSL Research University, Paris, France
| | - Irene L. Andrulis
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Hoda Anton-Culver
- Department of Epidemiology, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Adalgeir Arason
- Department of Pathology, Landspitali - the National University Hospital of Iceland, Reykjavik, Iceland
- BMC (Biomedical Centre), Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Banu K. Arun
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Department of Medical Oncology, University Hospital of Vall d’Hebron, Barcelona, Spain
| | - Elisa V. Bandera
- Cancer Prevention and Control Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Rosa B. Barkardottir
- Department of Pathology, Landspitali - the National University Hospital of Iceland, Reykjavik, Iceland
- BMC (Biomedical Centre), Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Lieke P.V. Berger
- University Medical Center Groningen, Department of Genetics, University of Groningen, Groningen, The Netherlands
| | | | - Pascaline Berthet
- Département de Biopathologie, Centre François Baclesse, Caen, France
| | - Katarzyna Białkowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Line Bjørge
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Amie M. Blanco
- Cancer Genetics and Prevention Program, University of California San Francisco, San Francisco, CA, USA
| | - Marinus J. Blok
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Kristie A. Bobolis
- City of Hope Clinical Cancer Genetics Community Research Network, Duarte, CA, USA
| | - Natalia V. Bogdanova
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
| | - James D. Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Henriett Butz
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
- National Tumour Biology Laboratory, National Institute of Oncology, Budapest, Hungary
- Department of Oncology Biobank, National Institute of Oncology, Budapest, Hungary
| | - Saundra S. Buys
- Department of Medicine, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, UT, USA
| | | | - Ian Campbell
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Carmen Castillo
- Hereditary Cancer Program, IDIBELL (Bellvitge Biomedical Research Institute), Catalan Institute of Oncology, Barcelona, Spain
| | - Kathleen B.M. Claes
- Centre for Medical Genetics, Ghent University, Gent, Belgium
- Department of Biomolecular Medicine, University of Ghent, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | | | - EMBRACE Collaborators
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Sarah V. Colonna
- Department of Internal Medicine, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, UT, USA
| | - Linda S. Cook
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, CO, USA
| | - Mary B. Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Agnieszka Dansonka-Mieszkowska
- Department of Pathology and Laboratory Medicine, Institute of Oncology and Maria Sklodowska-Curie Cancer Center, Warsaw, Poland
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Anna deFazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, New South Wales, Australia
| | - Allison DePersia
- Center for Medical Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- The University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Yuan Chun Ding
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Susan M. Domchek
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Zakaria Einbeigi
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - D. Gareth Evans
- Genomic Medicine, Division of Evolution and Genomic Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester Universities Foundation Trust, St. Mary’s Hospital, Manchester, UK
- Genomic Medicine, North West Genomics hub, Manchester Academic Health Science Centre, Manchester Universities Foundation Trust, St. Mary’s Hospital, Manchester, UK
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Renée T. Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | | | - Eitan Friedman
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
- The Susanne Levy Gertner Oncogenetics Unit, Chaim Sheba Medical Center, Ramat Gan, Israel
- Assuta Medical Center, Tel-Aviv, Israel
| | - Megan N. Frone
- National Cancer Institute, Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA
| | - Patricia A. Ganz
- Schools of Medicine and Public Health, Division of Cancer Prevention & Control Research, Jonsson Comprehensive Cancer Centre, UCLA, Los Angeles, CA, USA
| | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, University College London, London, UK
| | - Gord Glendon
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anna González-Neira
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre, Madrid, Spain
- Spanish Network on Rare Diseases, Madrid, Spain
| | - Mark H. Greene
- National Cancer Institute, Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA
| | - Jacek Gronwald
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Aliana Guerrieri-Gonzaga
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas v.O. Hansen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Holly R. Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Jan Hauke
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Florian Heitz
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Essen, Germany
| | - Frans B.L. Hogervorst
- Family Cancer Clinic, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Maartje J. Hooning
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Chad D Huff
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David G. Huntsman
- British Columbia’s Ovarian Cancer Research (OVCARE) Program, BC Cancer, Vancouver General Hospital, and University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Evgeny N. Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg, Russia
| | - kConFab Investigators
- Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Louise Izatt
- Clinical Genetics, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Paul A. James
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Center and the Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Ramunas Janavicius
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Hematology, Oncology and Transfusion Medicine Center, Oncogenetics Unit, Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Esther M. John
- Department of Epidemiology & Population Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine (Oncology), Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Siddhartha Kar
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Beth Y. Karlan
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
- Women’s Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Catherine J. Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Irene Konstantopoulou
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - Jolanta Kupryjanczyk
- Department of Pathology and Laboratory Medicine, Institute of Oncology and Maria Sklodowska-Curie Cancer Center, Warsaw, Poland
| | - Yael Laitman
- The Susanne Levy Gertner Oncogenetics Unit, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Ofer Lavie
- Technion-Israel Institute of Technology, Haifa, Israel
- Carmel Medical Center, Haifa, Israel
| | - Kate Lawrenson
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Women’s Cancer Program at the Samuel Oschin Cancer Institute Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jenny Lester
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
- Women’s Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Fabienne Lesueur
- Inserm U900, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
- PSL Research University, Paris, France
| | - Carlos Lopez-Pleguezuelos
- Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
- Escola de Doutoramento Internacional, Universidade de Santiago, Santiago de Compostela, Spain
| | - Phuong L. Mai
- Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Taymaa May
- Princess Margaret Cancer Center, Toronto, Canada
| | - Iain A. McNeish
- Division of Cancer and Ovarian Cancer Action Research Centre, Department Surgery & Cancer, Imperial College London, London, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Usha Menon
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, University College London, London, UK
| | - Roger L. Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Francesmary Modugno
- Womens Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jennifer M. Mongiovi
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marco Montagna
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | | | - Susan L. Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Finn C. Nielsen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Catherine Noguès
- Département d’Anticipation et de Suivi des Cancers, Oncogénétique Clinique, Institut Paoli-Calmettes, Marseille, France
- Aix Marseille Université, INSERM, IRD, SESSTIM, Marseille, France
| | - Edit Oláh
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | | | - Ana Osorio
- Spanish Network on Rare Diseases, Madrid, Spain
- Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Madrid, Spain
| | - Laura Papi
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, Medical Genetics Unit, University of Florence, Florence, Italy
| | - Harsh Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Celeste L. Pearce
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Inge S. Pedersen
- Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Ana Peixoto
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
| | - Tanja Pejovic
- Department of Obstetrics & Gynecology, Providence Medical Center, Medford, OR, USA
- Providence Cancer Center, Medford, OR, USA
| | - Pei-Chen Peng
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Beth N. Peshkin
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- Jess and Mildred Fisher Center for Hereditary Cancer and Clinical Genomics Research, Georgetown University, Washington, DC, USA
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM - the FIRC Institute of Molecular Oncology, Milan, Italy
| | - C. Bethan Powell
- Hereditary Cancer Program, Kaiser Permanente Northern California, San Francisco, CA, USA
| | | | - Miquel Angel Pujana
- ProCURE, IDIBELL (Bellvitge Biomedical Research Institute), Catalan Institute of Oncology, Barcelona, Spain
- ProCURE, IDIBGI (Girona Biomedical Research Institute), Catalan Institute of Oncology, Girona, Spain
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Muhammad U. Rashid
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Lahore, Pakistan
| | - Gad Rennert
- Technion-Israel Institute of Technology, Haifa, Israel
- The Association for Promotion of Research in Precision Medicine, Haifa, Israel
| | - George Richenberg
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Rockville, MD, USA
| | - Naoko Sasamoto
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Veronica W. Setiawan
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Priyanka Sharma
- Department of Internal Medicine, Division of Medical Oncology, University of Kansas Medical Center, Westwood, KS, USA
| | - Weiva Sieh
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian F. Singer
- Dept of OB/GYN and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Katie Snape
- Medical Genetics Unit, St George’s, University of London, London, UK
| | - Anna P. Sokolenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg, Russia
| | - Penny Soucy
- Genomics Center, Centre Hospitalier Universitaire de Québec – Université Laval Research Center, Québec City, QC, Canada
| | - Melissa C. Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Department of Clinical Pathology, Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, East Melbourne, Victoria, Australia
| | - Dominique Stoppa-Lyonnet
- Genetics Department, Institut Curie, Paris, France
- Unité INSERM U830, Paris, France
- Université Paris Cité, Paris, France
| | - Rebecca Sutphen
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Christian Sutter
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Manuel R. Teixeira
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Kathryn L. Terry
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Liv Cecilie V. Thomsen
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Medical Birth Registry of Norway, Norwegian Institute of Public Health, Norway
| | - Marc Tischkowitz
- Program in Cancer Genetics, Departments of Human Genetics and Oncology, McGill University, Montréal, QC, Canada
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Amanda E. Toland
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University, Columbus, OH, USA
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Toon Van Gorp
- Division of Gynecologic Oncology, University Hospital Leuven, Leuven, Belgium
- Leuven Cancer Institute, University of Leuven, Leuven, Belgium
| | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Digna R. Velez Edwards
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Penelope M. Webb
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Alice S. Whittemore
- Department of Epidemiology & Population Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Stacey J. Winham
- Department of Quantitative Health Sciences, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Anna H. Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Yao Yu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Argyrios Ziogas
- Department of Epidemiology, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Andrew Berchuck
- Department of Gynecologic Oncology, Duke University Hospital, Durham, NC, USA
| | - Fergus J. Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ellen L. Goode
- Department of Quantitative Health Sciences, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Marc T. Goodman
- Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alvaro N. Monteiro
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kenneth Offit
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- AnaNeo Therapeutics, New York, NY, USA
| | - Susan J. Ramus
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia
| | - Harvey A. Risch
- Chronic Disease Epidemiology, Yale School of Medicine, New Haven, CT, USA
| | | | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Clinical Genome Center, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec – Université Laval Research Center, Québec City, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Michelle R. Jones
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Simon A. Gayther
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Antonis C. Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Paul D.P. Pharoah
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
15
|
Pavličev M, McDonough-Goldstein CE, Zupan AM, Muglia L, Hu YC, Kong F, Monangi N, Dagdas G, Zupančič N, Maziarz J, Sinner D, Zhang G, Wagner G, Muglia L. A common allele increases endometrial Wnt4 expression, with antagonistic implications for pregnancy, reproductive cancers, and endometriosis. Nat Commun 2024; 15:1152. [PMID: 38346980 PMCID: PMC10861470 DOI: 10.1038/s41467-024-45338-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/20/2024] [Indexed: 02/15/2024] Open
Abstract
The common human SNP rs3820282 is associated with multiple phenotypes including gestational length and likelihood of endometriosis and cancer, presenting a paradigmatic pleiotropic variant. Deleterious pleiotropic mutations cause the co-occurrence of disorders either within individuals, or across population. When adverse and advantageous effects are combined, pleiotropy can maintain high population frequencies of deleterious alleles. To reveal the causal molecular mechanisms of this pleiotropic SNP, we introduced this substitution into the mouse genome by CRISPR/Cas 9. Previous work showed that rs3820282 introduces a high-affinity estrogen receptor alpha-binding site at the Wnt4 locus. Here, we show that this mutation upregulates Wnt4 transcription in endometrial stroma, following the preovulatory estrogen peak. Effects on uterine transcription include downregulation of epithelial proliferation and induction of progesterone-regulated pro-implantation genes. We propose that these changes increase uterine permissiveness to embryo invasion, whereas they decrease resistance to invasion by cancer and endometriotic foci in other estrogen-responsive tissues.
Collapse
Affiliation(s)
- Mihaela Pavličev
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria.
- Complexity Science Hub, Vienna, Austria.
| | | | | | - Lisa Muglia
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yueh-Chiang Hu
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Fansheng Kong
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nagendra Monangi
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gülay Dagdas
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Nina Zupančič
- University Medical Center Ljubljana, Department of Cardiovascular Surgery, Ljubljana, Slovenia
| | - Jamie Maziarz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Debora Sinner
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ge Zhang
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Günter Wagner
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Yale Systems Biology Institute, Yale University, West Haven, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, USA
| | - Louis Muglia
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Burroughs Wellcome Fund, Research Triangle Park, NC, Durham, USA
| |
Collapse
|
16
|
Buyukcelebi K, Duval AJ, Abdula F, Elkafas H, Seker-Polat F, Adli M. Integrating leiomyoma genetics, epigenomics, and single-cell transcriptomics reveals causal genetic variants, genes, and cell types. Nat Commun 2024; 15:1169. [PMID: 38326302 PMCID: PMC10850163 DOI: 10.1038/s41467-024-45382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
Uterine fibroids (UF), that can disrupt normal uterine function and cause significant physical and psychological health problems, are observed in nearly 70% of women of reproductive age. Although heritable genetics is a significant risk factor, specific genetic variations and gene targets causally associated with UF are poorly understood. Here, we performed a meta-analysis on existing fibroid genome-wide association studies (GWAS) and integrated the identified risk loci and potentially causal single nucleotide polymorphisms (SNPs) with epigenomics, transcriptomics, 3D chromatin organization from diverse cell types as well as primary UF patient's samples. This integrative analysis identifies 24 UF-associated risk loci that potentially target 394 genes, of which 168 are differentially expressed in UF tumors. Critically, integrating this data with single-cell gene expression data from UF patients reveales the causal cell types with aberrant expression of these target genes. Lastly, CRISPR-based epigenetic repression (dCas9-KRAB) or activation (dCas9-p300) in a UF disease-relevant cell type further refines and narrows down the potential gene targets. Our findings and the methodological approach indicate the effectiveness of integrating multi-omics data with locus-specific epigenetic editing approaches for identifying gene- and celt type-targets of disease-relevant risk loci.
Collapse
Affiliation(s)
- Kadir Buyukcelebi
- Department of Obstetrics and Gynecology, Robert Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Alexander J Duval
- Department of Obstetrics and Gynecology, Robert Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Fatih Abdula
- Department of Obstetrics and Gynecology, Robert Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Hoda Elkafas
- Department of Obstetrics and Gynecology, Robert Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Fidan Seker-Polat
- Department of Obstetrics and Gynecology, Robert Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Mazhar Adli
- Department of Obstetrics and Gynecology, Robert Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA.
| |
Collapse
|
17
|
Mulugeta A, Lumsden AL, Madakkatel I, Stacey D, Lee SH, Mäenpää J, Oehler MK, Hyppönen E. Phenome-wide association study of ovarian cancer identifies common comorbidities and reveals shared genetics with complex diseases and biomarkers. Cancer Med 2024; 13:e7051. [PMID: 38457211 PMCID: PMC10923028 DOI: 10.1002/cam4.7051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Ovarian cancer (OC) is commonly diagnosed among older women who have comorbidities. This hypothesis-free phenome-wide association study (PheWAS) aimed to identify comorbidities associated with OC, as well as traits that share a genetic architecture with OC. METHODS We used data from 181,203 white British female UK Biobank participants and analysed OC and OC subtype-specific genetic risk scores (OC-GRS) for an association with 889 diseases and 43 other traits. We conducted PheWAS and colocalization analyses for individual variants to identify evidence for shared genetic architecture. RESULTS The OC-GRS was associated with 10 diseases, and the clear cell OC-GRS was associated with five diseases at the FDR threshold (p = 5.6 × 10-4 ). Mendelian randomizaiton analysis (MR) provided robust evidence for the association of OC with higher risk of "secondary malignant neoplasm of digestive systems" (OR 1.64, 95% CI 1.33, 2.02), "ascites" (1.48, 95% CI 1.17, 1.86), "chronic airway obstruction" (1.17, 95% CI 1.07, 1.29), and "abnormal findings on examination of the lung" (1.51, 95% CI 1.22, 1.87). Analyses of lung spirometry measures provided further support for compromised respiratory function. PheWAS on individual OC variants identified five genetic variants associated with other diseases, and seven variants associated with biomarkers (all, p ≤ 4.5 × 10-8 ). Colocalization analysis identified rs4449583 (from TERT locus) as the shared causal variant for OC and seborrheic keratosis. CONCLUSIONS OC is associated with digestive and respiratory comorbidities. Several variants affecting OC risk were associated with other diseases and biomarkers, with this study identifying a novel genetic locus shared between OC and skin conditions.
Collapse
Affiliation(s)
- Anwar Mulugeta
- Australian Centre for Precision Health, Unit of Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- South Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
- Department of Pharmacology and Clinical Pharmacy, College of Health ScienceAddis Ababa UniversityAddis AbabaEthiopia
| | - Amanda L. Lumsden
- Australian Centre for Precision Health, Unit of Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- South Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
| | - Iqbal Madakkatel
- Australian Centre for Precision Health, Unit of Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- South Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
| | - David Stacey
- Australian Centre for Precision Health, Unit of Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- South Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
| | - S. Hong Lee
- Australian Centre for Precision Health, Unit of Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- South Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
- UniSA Allied Health & Human PerformanceUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Johanna Mäenpää
- Faculty of Medicine and Medical TechnologyTampere UniversityTampereFinland
- Cancer Centre, Tampere University and University HospitalTampereFinland
| | - Martin K. Oehler
- Department of Gynaecological OncologyRoyal Adelaide HospitalAdelaideSouth AustraliaAustralia
- Adelaide Medical School, Robinson Research Institute, University of AdelaideAdelaideSouth AustraliaAustralia
| | - Elina Hyppönen
- Australian Centre for Precision Health, Unit of Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- South Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
| |
Collapse
|
18
|
Vieira IA, Viola GD, Pezzi EH, Kowalski TW, Fernandes BV, Andreis TF, Bom N, Sonnenstrahl G, Rocha YMDA, Corrêa BDS, Donatti LM, Sant’Anna GDS, Corleta HVE, Brum IS, Rosset C, Vianna FSL, Macedo GS, Palmero EI, Ashton-Prolla P. Exploring the frequency of a TP53 polyadenylation signal variant in tumor DNA from patients diagnosed with lung adenocarcinomas, sarcomas and uterine leiomyomas. Genet Mol Biol 2024; 46:e20230133. [PMID: 38252059 PMCID: PMC10802224 DOI: 10.1590/1678-4685-gmb-2023-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/16/2023] [Indexed: 01/23/2024] Open
Abstract
The TP53 3'UTR variant rs78378222 A>C has been detected in different tumor types as a somatic alteration that reduces p53 expression through modification of polyadenylation and miRNA regulation. Its prevalence is not yet known in all tumors. Herein, we examine tumor tissue prevalence of rs7837822 in Brazilian cohorts of patients from south and southeast regions diagnosed with lung adenocarcinoma (LUAD, n=586), sarcoma (SARC, n=188) and uterine leiomyoma (ULM, n=41). The minor allele (C) was identified in heterozygosity in 6/586 LUAD tumors (prevalence = 1.02 %) and none of the SARC and ULM samples. Additionally, next generation sequencing analysis revealed that all variant-positive tumors (n=4) with sample availability had additional pathogenic or likely pathogenic somatic variants in the TP53 coding regions. Among them, 3/4 (75 %) had the same pathogenic or likely pathogenic sequence variant (allele frequency <0.05 in tumor DNA) namely c.751A>C (p.Ile251Leu). Our results indicate a low somatic prevalence of rs78378222 in LUAD, ULM and SARC tumors from Brazilian patients, which suggests that no further analysis of this variant in the specific studied regions of Brazil is warranted. However, these findings should not exclude tumor molecular testing of this TP53 3'UTR functional variant for different populations.
Collapse
Affiliation(s)
- Igor Araujo Vieira
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade do Vale do Rio dos Sinos (UNISINOS), Escola de Saúde, São Leopoldo, RS, Brazil
| | - Guilherme Danielski Viola
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
| | - Eduarda Heidrich Pezzi
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
| | - Thayne Woycinck Kowalski
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul (UFRGS), Laboratório de Genética Médica e Populacional, Porto Alegre, RS, Brazil
- Instituto Nacional de Genética Médica Populacional (INAGEMP), Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Serviço de Genética Médica, Sistema Nacional de Informações sobre Agentes Teratogênicos (SIAT), Porto Alegre, RS, Brazil
- Complexo de Ensino Superior de Cachoeirinha (CESUCA), Cachoeirinha, RS, Brazil
| | - Bruna Vieira Fernandes
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
| | - Tiago Finger Andreis
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
| | - Natascha Bom
- Universidade do Vale do Rio dos Sinos (UNISINOS), Curso de Graduação em Biomedicina, São Leopoldo, RS, Brazil
| | - Giulianna Sonnenstrahl
- Universidade do Vale do Rio dos Sinos (UNISINOS), Curso de Graduação em Biomedicina, São Leopoldo, RS, Brazil
| | - Yasminne Marinho de Araújo Rocha
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
| | - Bruno da Silveira Corrêa
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
| | - Luiza Mezzomo Donatti
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Fisiologia, Laboratório de Biologia Molecular Endócrino e Tumoral, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Porto Alegre, RS, Brazil
| | - Gabriela dos Santos Sant’Anna
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Fisiologia, Laboratório de Biologia Molecular Endócrino e Tumoral, Porto Alegre, RS, Brazil
| | - Helena von Eye Corleta
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Fisiologia, Laboratório de Biologia Molecular Endócrino e Tumoral, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Serviço de Ginecologia e Obstetrícia, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Ginecologia e Obstetrícia, Porto Alegre, RS, Brazil
| | - Ilma Simoni Brum
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Fisiologia, Laboratório de Biologia Molecular Endócrino e Tumoral, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Porto Alegre, RS, Brazil
| | - Clévia Rosset
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Ciências Médicas: Medicina (PPGCM), Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Unidade de Pesquisa Laboratorial (UPL), Porto Alegre, RS, Brazil
| | - Fernanda Sales Luiz Vianna
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul (UFRGS), Laboratório de Genética Médica e Populacional, Porto Alegre, RS, Brazil
- Instituto Nacional de Genética Médica Populacional (INAGEMP), Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Serviço de Genética Médica, Sistema Nacional de Informações sobre Agentes Teratogênicos (SIAT), Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Ciências Médicas: Medicina (PPGCM), Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Imunobiologia e Imunogenética, Porto Alegre, RS, Brazil
| | - Gabriel S. Macedo
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Programa de Medicina Personalizada, Porto Alegre, RS, Brazil
| | - Edenir Inez Palmero
- Instituto Nacional de Câncer (INCA), Departamento de Genética, Rio de Janeiro, RJ, Brazil
- Hospital de Câncer de Barretos, Centro de Pesquisa em Oncologia Molecular, Barretos, SP, Brazil
| | - Patricia Ashton-Prolla
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Ciências Médicas: Medicina (PPGCM), Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Programa de Medicina Personalizada, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre, Serviço de Genética Médica, Porto Alegre, RS, Brazil
| |
Collapse
|
19
|
Kuznetsova MV, Tonoyan NM, Trubnikova EV, Zelensky DV, Svirepova KA, Adamyan LV, Trofimov DY, Sukhikh GT. Novel Approaches to Possible Targeted Therapies and Prophylaxis of Uterine Fibroids. Diseases 2023; 11:156. [PMID: 37987267 PMCID: PMC10660464 DOI: 10.3390/diseases11040156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Uterine leiomyomas are the most common benign tumors in women of childbearing age. They may lead to problems of conception or complications during the gestational period. The methods of treatment include surgical (myomectomy and hysterectomy, embolization of arteries) and therapeutic treatment (ulipristal acetate, leuprolide acetate, cetrorelix, goserelin, mifepristone). Both approaches are efficient but incompatible with pregnancy planning. Therefore, there is a call for medical practice to develop therapeutical means of preventing leiomyoma onset in patients planning on becoming pregnant. Based on the analysis of GWAS data on the search for mononucleotide polymorphisms associated with the risk of leiomyoma, in meta-transcriptomic and meta-methylomic studies, target proteins have been proposed. Prospective therapeutic treatments of leiomyoma may be based on chemical compounds, humanized recombinant antibodies, vaccines based on markers of the uterine leiomyoma cells that are absent in the adult organism, or DNA and RNA preparations. Three different nosological forms of the disease associated with driver mutations in the MED12, HMGA2, and FH genes should be considered when developing or prescribing drugs. For example, synthetic inhibitors and vaccines based on matrix metalloproteinases MMP11 and MMP16 are expected to be effective only for the prevention of the occurrence of MED12-dependent nodules.
Collapse
Affiliation(s)
- Maria V. Kuznetsova
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia; (M.V.K.); (N.M.T.); (K.A.S.); (L.V.A.); (D.Y.T.); (G.T.S.)
| | - Narine M. Tonoyan
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia; (M.V.K.); (N.M.T.); (K.A.S.); (L.V.A.); (D.Y.T.); (G.T.S.)
| | | | | | - Ksenia A. Svirepova
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia; (M.V.K.); (N.M.T.); (K.A.S.); (L.V.A.); (D.Y.T.); (G.T.S.)
| | - Leila V. Adamyan
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia; (M.V.K.); (N.M.T.); (K.A.S.); (L.V.A.); (D.Y.T.); (G.T.S.)
| | - Dmitry Y. Trofimov
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia; (M.V.K.); (N.M.T.); (K.A.S.); (L.V.A.); (D.Y.T.); (G.T.S.)
| | - Gennady T. Sukhikh
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia; (M.V.K.); (N.M.T.); (K.A.S.); (L.V.A.); (D.Y.T.); (G.T.S.)
| |
Collapse
|
20
|
Edwards TL, Greene CA, Piekos JA, Hellwege JN, Hampton G, Jasper EA, Velez Edwards DR. Challenges and Opportunities for Data Science in Women's Health. Annu Rev Biomed Data Sci 2023; 6:23-45. [PMID: 37040736 PMCID: PMC10877578 DOI: 10.1146/annurev-biodatasci-020722-105958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The intersection of women's health and data science is a field of research that has historically trailed other fields, but more recently it has gained momentum. This growth is being driven not only by new investigators who are moving into this area but also by the significant opportunities that have emerged in new methodologies, resources, and technologies in data science. Here, we describe some of the resources and methods being used by women's health researchers today to meet challenges in biomedical data science. We also describe the opportunities and limitations of applying these approaches to advance women's health outcomes and the future of the field, with emphasis on repurposing existing methodologies for women's health.
Collapse
Affiliation(s)
- Todd L Edwards
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
| | - Catherine A Greene
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jacqueline A Piekos
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jacklyn N Hellwege
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Gabrielle Hampton
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
| | - Elizabeth A Jasper
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Precision Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Digna R Velez Edwards
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
21
|
DeBoy EA, Tassia MG, Schratz KE, Yan SM, Cosner ZL, McNally EJ, Gable DL, Xiang Z, Lombard DB, Antonarakis ES, Gocke CD, McCoy RC, Armanios M. Familial Clonal Hematopoiesis in a Long Telomere Syndrome. N Engl J Med 2023; 388:2422-2433. [PMID: 37140166 PMCID: PMC10501156 DOI: 10.1056/nejmoa2300503] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND Telomere shortening is a well-characterized cellular aging mechanism, and short telomere syndromes cause age-related disease. However, whether long telomere length is advantageous is poorly understood. METHODS We examined the clinical and molecular features of aging and cancer in persons carrying heterozygous loss-of-function mutations in the telomere-related gene POT1 and noncarrier relatives. RESULTS A total of 17 POT1 mutation carriers and 21 noncarrier relatives were initially included in the study, and a validation cohort of 6 additional mutation carriers was subsequently recruited. A majority of the POT1 mutation carriers with telomere length evaluated (9 of 13) had long telomeres (>99th percentile). POT1 mutation carriers had a range of benign and malignant neoplasms involving epithelial, mesenchymal, and neuronal tissues in addition to B- and T-cell lymphoma and myeloid cancers. Five of 18 POT1 mutation carriers (28%) had T-cell clonality, and 8 of 12 (67%) had clonal hematopoiesis of indeterminate potential. A predisposition to clonal hematopoiesis had an autosomal dominant pattern of inheritance, as well as penetrance that increased with age; somatic DNMT3A and JAK2 hotspot mutations were common. These and other somatic driver mutations probably arose in the first decades of life, and their lineages secondarily accumulated a higher mutation burden characterized by a clocklike signature. Successive generations showed genetic anticipation (i.e., an increasingly early onset of disease). In contrast to noncarrier relatives, who had the typical telomere shortening with age, POT1 mutation carriers maintained telomere length over the course of 2 years. CONCLUSIONS POT1 mutations associated with long telomere length conferred a predisposition to a familial clonal hematopoiesis syndrome that was associated with a range of benign and malignant solid neoplasms. The risk of these phenotypes was mediated by extended cellular longevity and by the capacity to maintain telomeres over time. (Funded by the National Institutes of Health and others.).
Collapse
Affiliation(s)
- Emily A DeBoy
- From the Departments of Oncology (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., E.S.A., C.D.G., M.A.), Pathology (C.D.G., M.A.), and Genetic Medicine (M.A.), the Medical Scientist Training Program (E.A.D.), the Telomere Center (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., M.A.), and Sidney Kimmel Comprehensive Cancer Center (K.E.S., E.S.A., C.D.G., M.A.), Johns Hopkins University School of Medicine, and the Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University (M.G.T., S.M.Y., R.C.M.) - both in Baltimore; the Child Neurology Residency Program, Boston Children's Hospital, Boston (D.L.G.); the Department of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami (D.B.L.); and the Division of Hematology, Oncology, and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis (E.S.A.)
| | - Michael G Tassia
- From the Departments of Oncology (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., E.S.A., C.D.G., M.A.), Pathology (C.D.G., M.A.), and Genetic Medicine (M.A.), the Medical Scientist Training Program (E.A.D.), the Telomere Center (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., M.A.), and Sidney Kimmel Comprehensive Cancer Center (K.E.S., E.S.A., C.D.G., M.A.), Johns Hopkins University School of Medicine, and the Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University (M.G.T., S.M.Y., R.C.M.) - both in Baltimore; the Child Neurology Residency Program, Boston Children's Hospital, Boston (D.L.G.); the Department of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami (D.B.L.); and the Division of Hematology, Oncology, and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis (E.S.A.)
| | - Kristen E Schratz
- From the Departments of Oncology (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., E.S.A., C.D.G., M.A.), Pathology (C.D.G., M.A.), and Genetic Medicine (M.A.), the Medical Scientist Training Program (E.A.D.), the Telomere Center (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., M.A.), and Sidney Kimmel Comprehensive Cancer Center (K.E.S., E.S.A., C.D.G., M.A.), Johns Hopkins University School of Medicine, and the Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University (M.G.T., S.M.Y., R.C.M.) - both in Baltimore; the Child Neurology Residency Program, Boston Children's Hospital, Boston (D.L.G.); the Department of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami (D.B.L.); and the Division of Hematology, Oncology, and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis (E.S.A.)
| | - Stephanie M Yan
- From the Departments of Oncology (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., E.S.A., C.D.G., M.A.), Pathology (C.D.G., M.A.), and Genetic Medicine (M.A.), the Medical Scientist Training Program (E.A.D.), the Telomere Center (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., M.A.), and Sidney Kimmel Comprehensive Cancer Center (K.E.S., E.S.A., C.D.G., M.A.), Johns Hopkins University School of Medicine, and the Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University (M.G.T., S.M.Y., R.C.M.) - both in Baltimore; the Child Neurology Residency Program, Boston Children's Hospital, Boston (D.L.G.); the Department of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami (D.B.L.); and the Division of Hematology, Oncology, and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis (E.S.A.)
| | - Zoe L Cosner
- From the Departments of Oncology (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., E.S.A., C.D.G., M.A.), Pathology (C.D.G., M.A.), and Genetic Medicine (M.A.), the Medical Scientist Training Program (E.A.D.), the Telomere Center (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., M.A.), and Sidney Kimmel Comprehensive Cancer Center (K.E.S., E.S.A., C.D.G., M.A.), Johns Hopkins University School of Medicine, and the Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University (M.G.T., S.M.Y., R.C.M.) - both in Baltimore; the Child Neurology Residency Program, Boston Children's Hospital, Boston (D.L.G.); the Department of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami (D.B.L.); and the Division of Hematology, Oncology, and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis (E.S.A.)
| | - Emily J McNally
- From the Departments of Oncology (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., E.S.A., C.D.G., M.A.), Pathology (C.D.G., M.A.), and Genetic Medicine (M.A.), the Medical Scientist Training Program (E.A.D.), the Telomere Center (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., M.A.), and Sidney Kimmel Comprehensive Cancer Center (K.E.S., E.S.A., C.D.G., M.A.), Johns Hopkins University School of Medicine, and the Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University (M.G.T., S.M.Y., R.C.M.) - both in Baltimore; the Child Neurology Residency Program, Boston Children's Hospital, Boston (D.L.G.); the Department of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami (D.B.L.); and the Division of Hematology, Oncology, and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis (E.S.A.)
| | - Dustin L Gable
- From the Departments of Oncology (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., E.S.A., C.D.G., M.A.), Pathology (C.D.G., M.A.), and Genetic Medicine (M.A.), the Medical Scientist Training Program (E.A.D.), the Telomere Center (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., M.A.), and Sidney Kimmel Comprehensive Cancer Center (K.E.S., E.S.A., C.D.G., M.A.), Johns Hopkins University School of Medicine, and the Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University (M.G.T., S.M.Y., R.C.M.) - both in Baltimore; the Child Neurology Residency Program, Boston Children's Hospital, Boston (D.L.G.); the Department of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami (D.B.L.); and the Division of Hematology, Oncology, and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis (E.S.A.)
| | - Zhimin Xiang
- From the Departments of Oncology (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., E.S.A., C.D.G., M.A.), Pathology (C.D.G., M.A.), and Genetic Medicine (M.A.), the Medical Scientist Training Program (E.A.D.), the Telomere Center (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., M.A.), and Sidney Kimmel Comprehensive Cancer Center (K.E.S., E.S.A., C.D.G., M.A.), Johns Hopkins University School of Medicine, and the Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University (M.G.T., S.M.Y., R.C.M.) - both in Baltimore; the Child Neurology Residency Program, Boston Children's Hospital, Boston (D.L.G.); the Department of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami (D.B.L.); and the Division of Hematology, Oncology, and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis (E.S.A.)
| | - David B Lombard
- From the Departments of Oncology (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., E.S.A., C.D.G., M.A.), Pathology (C.D.G., M.A.), and Genetic Medicine (M.A.), the Medical Scientist Training Program (E.A.D.), the Telomere Center (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., M.A.), and Sidney Kimmel Comprehensive Cancer Center (K.E.S., E.S.A., C.D.G., M.A.), Johns Hopkins University School of Medicine, and the Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University (M.G.T., S.M.Y., R.C.M.) - both in Baltimore; the Child Neurology Residency Program, Boston Children's Hospital, Boston (D.L.G.); the Department of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami (D.B.L.); and the Division of Hematology, Oncology, and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis (E.S.A.)
| | - Emmanuel S Antonarakis
- From the Departments of Oncology (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., E.S.A., C.D.G., M.A.), Pathology (C.D.G., M.A.), and Genetic Medicine (M.A.), the Medical Scientist Training Program (E.A.D.), the Telomere Center (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., M.A.), and Sidney Kimmel Comprehensive Cancer Center (K.E.S., E.S.A., C.D.G., M.A.), Johns Hopkins University School of Medicine, and the Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University (M.G.T., S.M.Y., R.C.M.) - both in Baltimore; the Child Neurology Residency Program, Boston Children's Hospital, Boston (D.L.G.); the Department of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami (D.B.L.); and the Division of Hematology, Oncology, and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis (E.S.A.)
| | - Christopher D Gocke
- From the Departments of Oncology (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., E.S.A., C.D.G., M.A.), Pathology (C.D.G., M.A.), and Genetic Medicine (M.A.), the Medical Scientist Training Program (E.A.D.), the Telomere Center (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., M.A.), and Sidney Kimmel Comprehensive Cancer Center (K.E.S., E.S.A., C.D.G., M.A.), Johns Hopkins University School of Medicine, and the Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University (M.G.T., S.M.Y., R.C.M.) - both in Baltimore; the Child Neurology Residency Program, Boston Children's Hospital, Boston (D.L.G.); the Department of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami (D.B.L.); and the Division of Hematology, Oncology, and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis (E.S.A.)
| | - Rajiv C McCoy
- From the Departments of Oncology (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., E.S.A., C.D.G., M.A.), Pathology (C.D.G., M.A.), and Genetic Medicine (M.A.), the Medical Scientist Training Program (E.A.D.), the Telomere Center (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., M.A.), and Sidney Kimmel Comprehensive Cancer Center (K.E.S., E.S.A., C.D.G., M.A.), Johns Hopkins University School of Medicine, and the Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University (M.G.T., S.M.Y., R.C.M.) - both in Baltimore; the Child Neurology Residency Program, Boston Children's Hospital, Boston (D.L.G.); the Department of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami (D.B.L.); and the Division of Hematology, Oncology, and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis (E.S.A.)
| | - Mary Armanios
- From the Departments of Oncology (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., E.S.A., C.D.G., M.A.), Pathology (C.D.G., M.A.), and Genetic Medicine (M.A.), the Medical Scientist Training Program (E.A.D.), the Telomere Center (E.A.D., K.E.S., Z.L.C., E.J.M., Z.X., M.A.), and Sidney Kimmel Comprehensive Cancer Center (K.E.S., E.S.A., C.D.G., M.A.), Johns Hopkins University School of Medicine, and the Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University (M.G.T., S.M.Y., R.C.M.) - both in Baltimore; the Child Neurology Residency Program, Boston Children's Hospital, Boston (D.L.G.); the Department of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami (D.B.L.); and the Division of Hematology, Oncology, and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis (E.S.A.)
| |
Collapse
|
22
|
Helderman NC, Terlouw D, Bonjoch L, Golubicki M, Antelo M, Morreau H, van Wezel T, Castellví-Bel S, Goldberg Y, Nielsen M. Molecular functions of MCM8 and MCM9 and their associated pathologies. iScience 2023; 26:106737. [PMID: 37378315 PMCID: PMC10291252 DOI: 10.1016/j.isci.2023.106737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Minichromosome Maintenance 8 Homologous Recombination Repair Factor (MCM8) and Minichromosome Maintenance 9 Homologous Recombination Repair Factor (MCM9) are recently discovered minichromosome maintenance proteins and are implicated in multiple DNA-related processes and pathologies, including DNA replication (initiation), meiosis, homologous recombination and mismatch repair. Consistent with these molecular functions, variants of MCM8/MCM9 may predispose carriers to disorders such as infertility and cancer and should therefore be included in relevant diagnostic testing. In this overview of the (patho)physiological functions of MCM8 and MCM9 and the phenotype of MCM8/MCM9 variant carriers, we explore the potential clinical implications of MCM8/MCM9 variant carriership and highlight important future directions of MCM8 and MCM9 research. With this review, we hope to contribute to better MCM8/MCM9 variant carrier management and the potential utilization of MCM8 and MCM9 in other facets of scientific research and medical care.
Collapse
Affiliation(s)
| | - Diantha Terlouw
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Laia Bonjoch
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Mariano Golubicki
- Oncology Section and Molecular Biology Laboratory, Hospital of Gastroenterology "Dr. C.B. Udaondo", Buenos Aires, Argentina
| | - Marina Antelo
- Oncology Section and Molecular Biology Laboratory, Hospital of Gastroenterology "Dr. C.B. Udaondo", Buenos Aires, Argentina
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sergi Castellví-Bel
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Yael Goldberg
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petah Tikva, Israel
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
23
|
A View on Uterine Leiomyoma Genesis through the Prism of Genetic, Epigenetic and Cellular Heterogeneity. Int J Mol Sci 2023; 24:ijms24065752. [PMID: 36982825 PMCID: PMC10056617 DOI: 10.3390/ijms24065752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Uterine leiomyomas (ULs), frequent benign tumours of the female reproductive tract, are associated with a range of symptoms and significant morbidity. Despite extensive research, there is no consensus on essential points of UL initiation and development. The main reason for this is a pronounced inter- and intratumoral heterogeneity resulting from diverse and complicated mechanisms underlying UL pathobiology. In this review, we comprehensively analyse risk and protective factors for UL development, UL cellular composition, hormonal and paracrine signalling, epigenetic regulation and genetic abnormalities. We conclude the need to carefully update the concept of UL genesis in light of the current data. Staying within the framework of the existing hypotheses, we introduce a possible timeline for UL development and the associated key events—from potential prerequisites to the beginning of UL formation and the onset of driver and passenger changes.
Collapse
|
24
|
Välimäki N, Jokinen V, Cajuso T, Kuisma H, Taira A, Dagnaud O, Ilves S, Kaukomaa J, Pasanen A, Palin K, Heikinheimo O, Bützow R, Aaltonen LA, Karhu A. Inherited mutations affecting the SRCAP complex are central in moderate-penetrance predisposition to uterine leiomyomas. Am J Hum Genet 2023; 110:460-474. [PMID: 36773604 PMCID: PMC10027472 DOI: 10.1016/j.ajhg.2023.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/12/2023] [Indexed: 02/12/2023] Open
Abstract
Uterine leiomyomas (ULs) are benign smooth muscle tumors that are common in premenopausal women. Somatic alterations in MED12, HMGA2, FH, genes encoding subunits of the SRCAP complex, and genes involved in Cullin 3-RING E3 ligase neddylation are mutually exclusive UL drivers. Established predisposition genes explain only partially the estimated heritability of leiomyomas. Here, we examined loss-of-function variants across 18,899 genes in a cohort of 233,614 White European women, revealing variants in four genes encoding SRCAP complex subunits (YEATS4, ZNHIT1, DMAP1, and ACTL6A) with a significant association to ULs, and YEATS4 and ZNHIT1 strikingly rank first and second, respectively. Positive mutation status was also associated with younger age at diagnosis and hysterectomy. Moderate-penetrance UL risk was largely attributed to rare non-synonymous mutations affecting the SRCAP complex. To examine this disease phenotype more closely, we set out to identify inherited mutations affecting the SRCAP complex in our in-house sample collection of Finnish individuals with ULs (n = 860). We detected one individual with an ACTL6A splice-site mutation, two individuals with a YEATS4 missense mutation, and four individuals with DMAP1 mutations: one splice-site, one nonsense, and two missense variants. These individuals had large and/or multiple ULs, were often diagnosed at an early age, and many had family history of ULs. When a somatic second hit was found, ACTL6A and DMAP1 were silenced in tumors by somatic mutation and YEATS4 by promoter hypermethylation. Decreased H2A.Z staining was observed in the tumors, providing further evidence for the pathogenic nature of the germline mutations. Our results establish inactivation of genes encoding SRCAP complex subunits as a central contributor to moderate-penetrance UL predisposition.
Collapse
Affiliation(s)
- Niko Välimäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Vilja Jokinen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Tatiana Cajuso
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Heli Kuisma
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Aurora Taira
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Olivia Dagnaud
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Sini Ilves
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Jaana Kaukomaa
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Annukka Pasanen
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kimmo Palin
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Oskari Heikinheimo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ralf Bützow
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland; Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.
| | - Auli Karhu
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
25
|
Sliz E, Tyrmi JS, Rahmioglu N, Zondervan KT, Becker CM, Uimari O, Kettunen J. Evidence of a causal effect of genetic tendency to gain muscle mass on uterine leiomyomata. Nat Commun 2023; 14:542. [PMID: 36726022 PMCID: PMC9892568 DOI: 10.1038/s41467-023-35974-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2023] [Indexed: 02/03/2023] Open
Abstract
Uterine leiomyomata (UL) are the most common tumours of the female genital tract and the primary cause of surgical removal of the uterus. Genetic factors contribute to UL susceptibility. To add understanding to the heritable genetic risk factors, we conduct a genome-wide association study (GWAS) of UL in up to 426,558 European women from FinnGen and a previous UL meta-GWAS. In addition to the 50 known UL loci, we identify 22 loci that have not been associated with UL in prior studies. UL-associated loci harbour genes enriched for development, growth, and cellular senescence. Of particular interest are the smooth muscle cell differentiation and proliferation-regulating genes functioning on the myocardin-cyclin dependent kinase inhibitor 1 A pathway. Our results further suggest that genetic predisposition to increased fat-free mass may be causally related to higher UL risk, underscoring the involvement of altered muscle tissue biology in UL pathophysiology. Overall, our findings add to the understanding of the genetic pathways underlying UL, which may aid in developing novel therapeutics.
Collapse
Affiliation(s)
- Eeva Sliz
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.
- Biocenter Oulu, Oulu, Finland.
| | - Jaakko S Tyrmi
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, Oulu, Finland
| | - Nilufer Rahmioglu
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Krina T Zondervan
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Christian M Becker
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Outi Uimari
- Department of Obstetrics and Gynecology, Oulu University Hospital, Oulu, Finland
- PEDEGO Research Unit, University of Oulu and Oulu University Hospital, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Johannes Kettunen
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, Oulu, Finland
| |
Collapse
|
26
|
Nunziato M, Scaglione GL, Di Maggio F, Nardelli C, Capoluongo E, Salvatore F. The performance of multi-gene panels for breast/ovarian cancer predisposition. Clin Chim Acta 2023; 539:151-161. [PMID: 36521553 DOI: 10.1016/j.cca.2022.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
BRCA1 and BRCA2 are the most mutated genes in breast cancer. We analyzed 48 breast cancer subjects using two methods that differ in terms of number of genes investigated and strategy used (primers: Panel A - 12 genes - vs probes: Panel B - 48 genes). Both the panels and procedures identified "pathogenic" or "likely pathogenic" variants in TP53, ATM, CHEK2 and BARD1 besides BRCA1 and BRCA2. Panel B identified two other putatively pathogenic variants in RNASEL and in RAD50. Identification of variants other than the BRCA genes can be useful in patient management. A total of 121 variants were distributed within the 12 genes and were correctly detected by both panels. However, the number of calls without divergence, namely ± 0.10 difference of allelic frequency, was 78.3%, while calls with a divergence below 0.10 was 16.7%, thus indicating that only 5% (n = 275) of 5,412 calls had a divergence above 0.10. Although these panels differ from each other, both are useful in different situations, particularly when patients should be tested for genes other than BRCA1/2 (as occurs in patients affected by a so called hereditary syndrome) or for therapeutic purposes.
Collapse
Affiliation(s)
- Marcella Nunziato
- CEINGE - Biotecnologie Avanzate Franco Salvatore, Via Gaetano Salvatore, 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini, 5, 80131 Naples, Italy
| | - Giovanni Luca Scaglione
- CEINGE - Biotecnologie Avanzate Franco Salvatore, Via Gaetano Salvatore, 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini, 5, 80131 Naples, Italy; Istituto Dermopatico dell'Immacolata IDI-IRCCS, Via dei Monti di Creta, 104, 00167 Rome, Italy
| | - Federica Di Maggio
- CEINGE - Biotecnologie Avanzate Franco Salvatore, Via Gaetano Salvatore, 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini, 5, 80131 Naples, Italy
| | - Carmela Nardelli
- CEINGE - Biotecnologie Avanzate Franco Salvatore, Via Gaetano Salvatore, 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini, 5, 80131 Naples, Italy
| | - Ettore Capoluongo
- CEINGE - Biotecnologie Avanzate Franco Salvatore, Via Gaetano Salvatore, 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini, 5, 80131 Naples, Italy; Department of Clinical Pathology and Genomics, Ospedale Cannizzaro, Via Messina, 829, 95126 Catania, Italy.
| | - Francesco Salvatore
- CEINGE - Biotecnologie Avanzate Franco Salvatore, Via Gaetano Salvatore, 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini, 5, 80131 Naples, Italy.
| |
Collapse
|
27
|
Sefah N, Ndebele S, Prince L, Korasare E, Agbleke M, Nkansah A, Thompson H, Al-Hendy A, Agbleke AA. Uterine fibroids - Causes, impact, treatment, and lens to the African perspective. Front Pharmacol 2023; 13:1045783. [PMID: 36703761 PMCID: PMC9871264 DOI: 10.3389/fphar.2022.1045783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Leiomyomas, or uterine fibroids as they are commonly known, are mostly seen in women of reproductive age. However, they can go undetected in most women, and approximately 25% of women show clinical symptoms. Although fibroids are a global burden impacting 80% of premenopausal women, they are more prevalent among Black women than among women of other races. Based on clinical diagnosis, the estimated cumulative incidence of fibroids in women ≤50 years old is significantly higher for black (>80%) versus white women (∼70%). The cause of leiomyomas is not clearly known, but studies have shown evidence of factors that drive the development or exacerbation of the disease. Evidence has linked risk factors such as lifestyle, age, environment, family history of uterine fibroids, and vitamin D deficiencies to an increased risk of uterine fibroids, which impact women of African descent at higher rates. Treatments may be invasive, such as hysterectomy and myomectomy, or non-invasive, such as hormonal or non-hormonal therapies. These treatments are costly and tend to burden women who have the disease. Sub-Saharan Africa is known to have the largest population of black women, yet the majority of uterine fibroid studies do not include populations from the continent. Furthermore, the prevalence of the disease on the continent is not well determined. To effectively treat the disease, its drivers need to be understood, especially with regard to racial preferences. This paper aims to review the existing literature and build a case for conducting future research on African women.
Collapse
|
28
|
Inácio Â, Aguiar L, Carrilho R, Pires P, Ferreira J, Coelho L, Mascarenhas MR, Sardinha L, Bilhim T, Pisco J, Bicho M, Bicho MC. Genetic Contribution of the Adrenergic, Cholinergic, and Serotonergic Systems to Leiomyoma Development and Treatment. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2023; 12:320-334. [PMID: 39006196 PMCID: PMC11240054 DOI: 10.22088/ijmcm.bums.12.4.320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 07/16/2024]
Abstract
The link between the autonomic nervous system and tumor biology is being unfold. We aim to study the contribution of genes of the adrenergic (ADBR2 - rs1042713, NM_000024.6:c.46G>A, NP_000015.2:p. Gly16Arg), cholinergic (CHRNA5 - rs16969968, NM_000745.3:c.1192G>A, NP_000736.2:p.Asp398Asn), and serotonergic systems (SLC6A4 - 5-HTTVNTR-intron2, HTR2A - rs6313, NM_000621.5:c.102C>T, NP_ 001365853 .1: p. Ser 34=) to gynecological tumorigenesis and their treatment by embolization. A total of 517 DNA samples from women were analyzed. Samples were genotyped by PCR, PCR-RFLP and EndPoint genotyping. Results show a statistically significant association between the AA genotype of the ADBR2 gene and GG genotype of the CHRNA5 gene with leiomyoma (OR = 2.311; p = 0.003 and OR = 2.165; p = 0.001, respectively), and the epistatic interaction between genotypes increases the risk (OR = 2.458; p= 0.043). The GG genotype (CHRNA5) shows a lower reduction of the volume of the main leiomyoma after treatment (p=0.015). Combination of the genotypes 12/12-AA (SLC6A4 - ADBR2) increases the risk to leiomyoma (OR = 2.540, p= 0.030). TT genotype of HTR2A gene in combination with any of the two risk genotypes (of ADBR2 or CHRNA5) increases substantially the risk (OR = 5.266, p = 0.006; OR = 6.364, p=0.007, respectively). We conclude that ADBR2 and CHRNA5 genes have a relevant role that is enhanced by the epistatic relationship with the genes HTR2A and SLC6A4. CHRNA5 gene may also be a modulator of the success of embolization. We confirm the contribution of the genetics of Autonomous Nervous System to tumor biology.
Collapse
Affiliation(s)
- Ângel Inácio
- Instituto de Investigação Científica Bento da Rocha Cabral, Calçada Bento Rocha Cabral, 14, 1257-047 Lisboa, Portugal
- Laboratório de Genética, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Instituto de Saúde Ambiental, Laboratório Associado TERRA, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Laura Aguiar
- Instituto de Investigação Científica Bento da Rocha Cabral, Calçada Bento Rocha Cabral, 14, 1257-047 Lisboa, Portugal
- Laboratório de Genética, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Instituto de Saúde Ambiental, Laboratório Associado TERRA, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Raquel Carrilho
- Instituto de Investigação Científica Bento da Rocha Cabral, Calçada Bento Rocha Cabral, 14, 1257-047 Lisboa, Portugal
- Laboratório de Genética, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Patrícia Pires
- Instituto de Investigação Científica Bento da Rocha Cabral, Calçada Bento Rocha Cabral, 14, 1257-047 Lisboa, Portugal
- Laboratório de Genética, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Joana Ferreira
- Instituto de Investigação Científica Bento da Rocha Cabral, Calçada Bento Rocha Cabral, 14, 1257-047 Lisboa, Portugal
- Laboratório de Genética, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Instituto de Saúde Ambiental, Laboratório Associado TERRA, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Luís Coelho
- Instituto de Investigação Científica Bento da Rocha Cabral, Calçada Bento Rocha Cabral, 14, 1257-047 Lisboa, Portugal
- Laboratório de Genética, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Mário Rui Mascarenhas
- Instituto de Saúde Ambiental, Laboratório Associado TERRA, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Clínica de Endocrinologia, Diabetes e Metabolismo de Lisboa, Avenida António Augusto Aguiar 56-r/c-D, 1050-017, Lisboa, Portugal
| | - Luís Sardinha
- Centro Interdisciplinar de Estudo da Performance Humana, Faculdade de Motricidade Humana da Universidade de Lisboa, Estrada da Costa 1499-002 Cruz Quebrada, Oeiras, Portugal
| | - Tiago Bilhim
- Serviço de Radiologia de Intervenção do Hospital Saint Louis, R. Luz Soriano 182, 1200-249 Lisboa, Portugal
- Nova Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - João Pisco
- Serviço de Radiologia de Intervenção do Hospital Saint Louis, R. Luz Soriano 182, 1200-249 Lisboa, Portugal
| | - Manuel Bicho
- Instituto de Investigação Científica Bento da Rocha Cabral, Calçada Bento Rocha Cabral, 14, 1257-047 Lisboa, Portugal
- Laboratório de Genética, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Instituto de Saúde Ambiental, Laboratório Associado TERRA, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Maria Clara Bicho
- Instituto de Saúde Ambiental, Laboratório Associado TERRA, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Instituto de Medicina Preventiva e Saúde Publica, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
29
|
Ha SJ, Kwag E, Kim S, Park JH, Park SJ, Yoo HS. Effect of Traditional Korean Medicine Oncotherapy on the Survival, Quality of Life, and Telomere Length: A Prospective Cohort Study. Integr Cancer Ther 2023; 22:15347354231154267. [PMID: 37615075 PMCID: PMC10467224 DOI: 10.1177/15347354231154267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/08/2022] [Accepted: 01/16/2023] [Indexed: 08/25/2023] Open
Abstract
A 4-year prospective cohort study on patients with lung, gastric, hepatic, colorectal, breast, uterine, and ovarian cancer was conducted at the East-West Cancer Center (EWCC) of Daejeon Korean Medicine Hospital in Daejeon, Korea. We divided patients into 2 groups based on how long they had been receiving TKM oncotherapy and compared event-free survival (EFS), telomere length change, and quality of life (QoL). The study collected data on 83 patients from October 2016 to June 2020 and discovered no statistical differences in EFS based on the duration of TKM oncotherapy. In the analysis of changes in QoL outcomes, there were no statistically significant group differences between the groups. After controlling for covariates that could affect telomere length, the long-term TKM oncotherapy group had a higher daily telomere attrition rate. The study of the relationship between telomere length and prognostic factors discovered that patients with advanced N stage at the time of diagnosis and who had previously received radiotherapy had shorter telomere length. When examining associations between SNP genotype and percentile score of telomere length, this study was able to confirm an association between telomere length and rs4387287. This study is significant because it is the first to assess the effects of TKM oncotherapy and investigate telomere length-related factors. To assess the effects of TKM oncotherapy on cancer patients' survival and QoL, a longer-term observational study with a larger sample size is required.
Collapse
Affiliation(s)
- Su-Jung Ha
- Daejeon University, Daejeon City, Republic of Korea
| | - Eunbin Kwag
- Daejeon University, Daejeon City, Republic of Korea
| | - Soodam Kim
- Daejeon University, Daejeon City, Republic of Korea
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ji-Hye Park
- Daejeon University, Seoul, Republic of Korea
| | - So-Jung Park
- Pusan National University Yangsan-si, Gyeongsangnam-do, Republic of Korea
| | | |
Collapse
|
30
|
Piekos JA, Hellwege JN, Zhang Y, Torstenson ES, Jarvik GP, Dikilitas O, Kullo IJ, Schaid DJ, Crosslin DR, Pendergrass SA, Lee MTM, Roden D, Denny JC, Edwards TL, Velez Edwards DR. Uterine fibroid polygenic risk score (PRS) associates and predicts risk for uterine fibroid. Hum Genet 2022; 141:1739-1748. [PMID: 35226188 PMCID: PMC9420161 DOI: 10.1007/s00439-022-02442-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/11/2022] [Indexed: 11/29/2022]
Abstract
Uterine fibroids (UF) are common pelvic tumors in women, heritable, and genome-wide association studies (GWAS) have identified ~ 30 loci associated with increased risk in UF. Using summary statistics from a previously published UF GWAS performed in a non-Hispanic European Ancestry (NHW) female subset from the Electronic Medical Records and Genomics (eMERGE) Network, we constructed a polygenic risk score (PRS) for UF. UF-PRS was developed using PRSice and optimized in the separate clinical population of BioVU. PRS was validated using parallel methods of 10-fold cross-validation logistic regression and phenome-wide association study (PheWAS) in a seperate subset of eMERGE NHW females (validation set), excluding samples used in GWAS. PRSice determined pt < 0.001 and after linkage disequilibrium pruning (r2 < 0.2), 4458 variants were in the PRS which was significant (pseudo-R2 = 0.0018, p = 0.041). 10-fold cross-validation logistic regression modeling of validation set revealed the model had an area under the curve (AUC) value of 0.60 (95% confidence interval [CI] 0.58-0.62) when plotted in a receiver operator curve (ROC). PheWAS identified six phecodes associated with the PRS with the most significant phenotypes being 218 'benign neoplasm of uterus' and 218.1 'uterine leiomyoma' (p = 1.94 × 10-23, OR 1.31 [95% CI 1.26-1.37] and p = 3.50 × 10-23, OR 1.32 [95% CI 1.26-1.37]). We have developed and validated the first PRS for UF. We find our PRS has predictive ability for UF and captures genetic architecture of increased risk for UF that can be used in further studies.
Collapse
Affiliation(s)
- Jacqueline A Piekos
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, 37203, USA
| | - Jacklyn N Hellwege
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, 37203, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37203, USA
| | - Yanfei Zhang
- Genomic Medicine Institute, Geisinger Health Systems, Danville, PA, 17822, USA
| | - Eric S Torstenson
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, 37203, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37203, USA
| | - Gail P Jarvik
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington Medical Center, Seattle, WA, 98195, USA
| | - Ozan Dikilitas
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Iftikhar J Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Daniel J Schaid
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - David R Crosslin
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington Medical Center, Seattle, WA, 98195, USA
| | | | - Ming Ta Michael Lee
- Genomic Medicine Institute, Geisinger Health Systems, Danville, PA, 17822, USA
| | - Dan Roden
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, 37203, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37203, USA
| | - Josh C Denny
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, 37203, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, 37203, USA
| | - Todd L Edwards
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, 37203, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37203, USA
| | - Digna R Velez Edwards
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, 37203, USA.
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, 37203, USA.
- Division of Quantitative Science, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, 37203, USA.
| |
Collapse
|
31
|
Tai AS, Lin RT, Lin YC, Wang CH, Lin SH, Imoto S. Genome-wide causal mediation analysis identifies genetic loci associated with uterine fibroids mediated by age at menarche. Hum Reprod 2022; 37:2197-2212. [PMID: 35689443 PMCID: PMC10467635 DOI: 10.1093/humrep/deac136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/04/2022] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Could the direct contribution of genetic variants to the pathophysiology of uterine fibroids and the contribution mediated by age at menarche be different? SUMMARY ANSWER Age at menarche plays a mediation role in the genetic influence on uterine fibroids, and four causal genetic mechanisms underlying the age at menarche-mediated effects of common genetic loci on uterine fibroid development were identified. WHAT IS KNOWN ALREADY Uterine fibroids are common benign tumors developing from uterine smooth muscle. Genome-wide association studies (GWASs) have identified over 30 genetic loci associated with uterine fibroids in different ethnic populations. Several genetic variations in or nearby these identified loci were also associated with early age at menarche, one of the major risk factors of uterine fibroids. Although the results of GWASs reveal how genetic variations affect uterine fibroids, the genetic mechanism of uterine fibroids mediated by age at menarche remains elusive. STUDY DESIGN, SIZE, DURATION In this study, we conducted a genome-wide causal mediation analysis in two cohorts covering a total of 69 552 females of Han Chinese descent from the Taiwan Biobank (TWB). TWB is an ongoing community- and hospital-based cohort aiming to enroll 200 000 individuals from the general Taiwanese population between 30 and 70 years old. It has been enrolling Taiwanese study participants since 2012 and has extensive phenotypic data collected from 148 291 individuals as of May 2021. PARTICIPANTS/MATERIALS, SETTING, METHODS We recruited individuals in two cohorts, with 13 899 females in TWB1 and 55 653 females in TWB2. The two sets of individuals are almost distinct, with only 730 individuals enrolled in both cohorts. Over 99% of the participants are Han Chinese. Approximately 21% of participants developed uterine fibroids. DNA samples from both cohorts were genotyped using two different customized chips (TWB1 and TWB2 arrays). After quality control and genotype imputation, 646 973 TWB1 single-nucleotide polymorphisms (SNPs) and 686 439 TWB2 SNPs were assessed in our analysis. There were 99 939 SNPs which overlapped between the TWB1 and TWB2 arrays, 547 034 TWB1 array-specific SNPs and 586 500 TWB2 array-specific SNPs. We performed GWASs for screening potential risk SNPs for age at menarche and for uterine fibroids. We subsequently identified causal mediation effects of risk SNPs on uterine fibroids mediated by age at menarche. MAIN RESULTS AND THE ROLE OF CHANCE In addition to known loci at LIN28B associated with age at menarche and loci at WNT4 associated with uterine fibroids, we identified 162 SNPs in 77 transcripts that were associated with menarche-mediated causal effects on uterine fibroids via four different causal genetic mechanisms: a both-harmful group with 52 SNPs, a both-protective group with 34 SNPs, a mediator-harmful group with 22 SNPs and a mediator-protective group with 54 SNPs. Among these SNPs, rs809302 in SLK significantly increased the risk of developing uterine fibroids by 3.92% through a mechanism other than age at menarche (P < 10-10), and rs371721345 in HLA-DOB was associated with a 2.70% decreased risk (P < 10-10) in the occurrence of uterine fibroids, mediated by age at menarche. These findings provide insights into the mechanism underlying the effect of genetic loci on uterine fibroids mediated by age at menarche. LIMITATIONS, REASONS FOR CAUTION A potential issue is that the present study relied upon self-reported age at menarche and uterine fibroid information. Due to the experimental design, the consistency between self-reports and medical records for uterine fibroids in Taiwan cannot be checked. Fortunately, the literature support that self-reporting even years later remains a practical means for collecting data on menarche and uterine fibroids. We found that the impact of under-reporting of uterine fibroids is less in our study. In addition, the rate of reporting a diagnosis of uterine fibroids was within the rates of medical diagnosis based on national health insurance data. Future work investigating the consistency between self-reports and medical records in Taiwan can remedy this issue. WIDER IMPLICATIONS OF THE FINDINGS This study is the first to investigate whether and to what extent age at menarche mediates the causal effects of genetic variants on uterine fibroids by using genome-wide causal mediation analysis. By treating age at menarche as a mediator, this report provides an insight into the genetic risk factors for developing uterine fibroids. Thus, this article represents a step forward in deciphering the role of intermediated risk factors in the genetic mechanism of disease. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the China Medical University, Taiwan (CMU110-ASIA-13 and CMU107-Z-04), the Ministry of Science and Technology, Taiwan (MOST 110-2314-B-039-058) and the International Joint Usage/Research Center, the Institute of Medical Science, the University of Tokyo, Japan (K2104). The authors have no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- An-Shun Tai
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Statistics, National Cheng Kung University, Tainan, Taiwan
| | - Ro-Ting Lin
- College of Public Health, China Medical University, Taichung, Taiwan
| | - Yi-Chun Lin
- College of Public Health, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chung-Hsing Wang
- Department of Pediatrics, China Medical University Children’s Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Sheng-Hsuan Lin
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Seiya Imoto
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
32
|
Abegglen LM, Harrison TM, Moresco A, Fowles JS, Troan BV, Kiso WK, Schmitt D, Boddy AM, Schiffman JD. Of Elephants and Other Mammals: A Comparative Review of Reproductive Tumors and Potential Impact on Conservation. Animals (Basel) 2022; 12:2005. [PMID: 35953994 PMCID: PMC9367617 DOI: 10.3390/ani12152005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/13/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
Reproductive tumors can impact conception, pregnancy, and birth in mammals. These impacts are well documented in humans, while data in other mammals are limited. An urgent need exists to understand the reproductive impact of these lesions in endangered species, because some endangered species have a documented high prevalence of reproductive tumors. This article documents that the prevalence of both benign and malignant neoplasia differs between African and Asian elephants, with Asian elephants more frequently diagnosed and negatively affected by both. The prevalence of these tumors across mammalian species is compared, and impact plus treatment options in human medicine are reviewed to inform decision making in elephants. Evidence suggests that reproductive tumors can negatively impact elephant conservation. Future studies that document reproductive outcomes, including the success of various treatment approaches in elephants with tumors will benefit conservation efforts.
Collapse
Affiliation(s)
- Lisa M. Abegglen
- Department of Pediatrics & Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85281, USA
- Exotic Species Cancer Research Alliance, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Tara M. Harrison
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85281, USA
- Exotic Species Cancer Research Alliance, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Anneke Moresco
- Exotic Species Cancer Research Alliance, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
- Reproductive Health Surveillance Program, Morrison, CO 80465, USA
| | - Jared S. Fowles
- Department of Pediatrics & Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Brigid V. Troan
- Exotic Species Cancer Research Alliance, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Wendy K. Kiso
- White Oak Conservation Foundation, Yulee, FL 32097, USA
| | - Dennis Schmitt
- Department of Animal Science, William H. Darr College of Agriculture, Missouri State University, Springfield, MO 65809, USA
| | - Amy M. Boddy
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85281, USA
- Exotic Species Cancer Research Alliance, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Joshua D. Schiffman
- Department of Pediatrics & Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85281, USA
- Exotic Species Cancer Research Alliance, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
- Peel Therapeutics, Inc., Salt Lake City, UT 84108, USA
| |
Collapse
|
33
|
Byun J, Han Y, Li Y, Xia J, Long E, Choi J, Xiao X, Zhu M, Zhou W, Sun R, Bossé Y, Song Z, Schwartz A, Lusk C, Rafnar T, Stefansson K, Zhang T, Zhao W, Pettit RW, Liu Y, Li X, Zhou H, Walsh KM, Gorlov I, Gorlova O, Zhu D, Rosenberg SM, Pinney S, Bailey-Wilson JE, Mandal D, de Andrade M, Gaba C, Willey JC, You M, Anderson M, Wiencke JK, Albanes D, Lam S, Tardon A, Chen C, Goodman G, Bojeson S, Brenner H, Landi MT, Chanock SJ, Johansson M, Muley T, Risch A, Wichmann HE, Bickeböller H, Christiani DC, Rennert G, Arnold S, Field JK, Shete S, Le Marchand L, Melander O, Brunnstrom H, Liu G, Andrew AS, Kiemeney LA, Shen H, Zienolddiny S, Grankvist K, Johansson M, Caporaso N, Cox A, Hong YC, Yuan JM, Lazarus P, Schabath MB, Aldrich MC, Patel A, Lan Q, Rothman N, Taylor F, Kachuri L, Witte JS, Sakoda LC, Spitz M, Brennan P, Lin X, McKay J, Hung RJ, Amos CI. Cross-ancestry genome-wide meta-analysis of 61,047 cases and 947,237 controls identifies new susceptibility loci contributing to lung cancer. Nat Genet 2022; 54:1167-1177. [PMID: 35915169 PMCID: PMC9373844 DOI: 10.1038/s41588-022-01115-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 05/27/2022] [Indexed: 02/03/2023]
Abstract
To identify new susceptibility loci to lung cancer among diverse populations, we performed cross-ancestry genome-wide association studies in European, East Asian and African populations and discovered five loci that have not been previously reported. We replicated 26 signals and identified 10 new lead associations from previously reported loci. Rare-variant associations tended to be specific to populations, but even common-variant associations influencing smoking behavior, such as those with CHRNA5 and CYP2A6, showed population specificity. Fine-mapping and expression quantitative trait locus colocalization nominated several candidate variants and susceptibility genes such as IRF4 and FUBP1. DNA damage assays of prioritized genes in lung fibroblasts indicated that a subset of these genes, including the pleiotropic gene IRF4, potentially exert effects by promoting endogenous DNA damage.
Collapse
Affiliation(s)
- Jinyoung Byun
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yafang Li
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jun Xia
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Erping Long
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiangjun Xiao
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | - Wen Zhou
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Ryan Sun
- Department of Biostatistics, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Department of Molecular Medicine, Laval University, Quebec City, Quebec, Canada
| | - Zhuoyi Song
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ann Schwartz
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Karmanos Cancer Institute, Detroit, MI, USA
| | - Christine Lusk
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Karmanos Cancer Institute, Detroit, MI, USA
| | | | | | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wei Zhao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rowland W Pettit
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Yanhong Liu
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Xihao Li
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Hufeng Zhou
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Kyle M Walsh
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Ivan Gorlov
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Olga Gorlova
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Dakai Zhu
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Susan M Rosenberg
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Susan Pinney
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Diptasri Mandal
- Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | - Colette Gaba
- The University of Toledo College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - James C Willey
- The University of Toledo College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Ming You
- Center for Cancer Prevention, Houston Methodist Research Institute, Houston, TX, USA
| | | | - John K Wiencke
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephan Lam
- Department of Integrative Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Adonina Tardon
- Public Health Department, University of Oviedo, ISPA and CIBERESP, Asturias, Spain
| | - Chu Chen
- Program in Epidemiology, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Stig Bojeson
- Department of Clinical Biochemistry, Herlev Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mattias Johansson
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Thomas Muley
- Division of Cancer Epigenomics, DKFZ - German Cancer Research Center, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Angela Risch
- Division of Cancer Epigenomics, DKFZ - German Cancer Research Center, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Biosciences and Medical Biology, Allergy-Cancer-BioNano Research Centre, University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | | | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - David C Christiani
- Department of Epidemiology, Harvard T.H.Chan School of Public Health, Boston, MA, USA
| | - Gad Rennert
- Clalit National Cancer Control Center at Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Susanne Arnold
- University of Kentucky, Markey Cancer Center, Lexington, KY, USA
| | - John K Field
- Roy Castle Lung Cancer Research Programme, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Sanjay Shete
- Department of Biostatistics, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | | | - Geoffrey Liu
- University Health Network- The Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Angeline S Andrew
- Departments of Epidemiology and Community and Family Medicine, Dartmouth College, Hanover, NH, USA
| | | | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | | | - Kjell Grankvist
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Mikael Johansson
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Angela Cox
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jian-Min Yuan
- UPMC Hillman Cancer Center and Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, USA
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Melinda C Aldrich
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alpa Patel
- American Cancer Society, Atlanta, GA, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fiona Taylor
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Linda Kachuri
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - John S Witte
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Margaret Spitz
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Paul Brennan
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Xihong Lin
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - James McKay
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA.
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
34
|
Dai Y, Liu X, Zhu Y, Mao S, Yang J, Zhu L. Exploring Potential Causal Genes for Uterine Leiomyomas: A Summary Data-Based Mendelian Randomization and FUMA Analysis. Front Genet 2022; 13:890007. [PMID: 35903355 PMCID: PMC9315954 DOI: 10.3389/fgene.2022.890007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: To explore potential causal genetic variants and genes underlying the pathogenesis of uterine leiomyomas (ULs). Methods: We conducted the summary data-based Mendelian randomization (SMR) analyses and performed functional mapping and annotation using FUMA to examine genetic variants and genes that are potentially involved in the pathogenies of ULs. Both analyses used summarized data of a recent genome-wide association study (GWAS) on ULs, which has a total sample size of 244,324 (20,406 cases and 223,918 controls). We performed separate SMR analysis using CAGE and GTEx eQTL data. Results: Using the CAGE eQTL data, our SMR analysis identified 13 probes tagging 10 unique genes that were pleiotropically/potentially causally associated with ULs, with the top three probes being ILMN_1675156 (tagging CDC42, PSMR = 8.03 × 10-9), ILMN_1705330 (tagging CDC42, PSMR = 1.02 × 10-7) and ILMN_2343048 (tagging ABCB9, PSMR = 9.37 × 10-7). Using GTEx eQTL data, our SMR analysis did not identify any significant genes after correction for multiple testing. FUMA analysis identified 106 independent SNPs, 24 genomic loci and 137 genes that are potentially involved in the pathogenesis of ULs, seven of which were also identified by the SMR analysis. Conclusions: We identified many genetic variants, genes, and genomic loci that are potentially involved in the pathogenesis of ULs. More studies are needed to explore the exact underlying mechanisms in the etiology of ULs.
Collapse
Affiliation(s)
- Yuxin Dai
- Department of Obstetrics and Gynecology, State Key Laboratory of Complex, Severe and Rare Diseases, National Clinical Research Center for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xudong Liu
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yining Zhu
- School of Mathematical Sciences, Fudan University, Shanghai, China
| | - Su Mao
- Department of Obstetrics and Gynecology, State Key Laboratory of Complex, Severe and Rare Diseases, National Clinical Research Center for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingyun Yang
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, United States
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Lan Zhu
- Department of Obstetrics and Gynecology, State Key Laboratory of Complex, Severe and Rare Diseases, National Clinical Research Center for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
35
|
Wu X, Xiao C, Han Z, Zhang L, Zhao X, Hao Y, Xiao J, Gallagher CS, Kraft P, Morton CC, Li J, Jiang X. Investigating the shared genetic architecture of uterine leiomyoma and breast cancer: A genome-wide cross-trait analysis. Am J Hum Genet 2022; 109:1272-1285. [PMID: 35803233 PMCID: PMC9300879 DOI: 10.1016/j.ajhg.2022.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/25/2022] [Indexed: 01/09/2023] Open
Abstract
Little is known regarding the shared genetic architecture or causality underlying the phenotypic association observed for uterine leiomyoma (UL) and breast cancer (BC). Leveraging summary statistics from the hitherto largest genome-wide association study (GWAS) conducted in each trait, we investigated the genetic overlap and causal associations of UL with BC overall, as well as with its subtypes defined by the status of estrogen receptor (ER). We observed a positive genetic correlation between UL and BC overall (rg = 0.09, p = 6.00 × 10-3), which was consistent in ER+ subtype (rg = 0.06, p = 0.01) but not in ER- subtype (rg = 0.06, p = 0.08). Partitioning the whole genome into 1,703 independent regions, local genetic correlation was identified at 22q13.1 for UL with BC overall and with ER+ subtype. Significant genetic correlation was further discovered in 9 out of 14 functional categories, with the highest estimates observed in coding, H3K9ac, and repressed regions. Cross-trait meta-analysis identified 9 novel loci shared between UL and BC. Mendelian randomization demonstrated a significantly increased risk of BC overall (OR = 1.09, 95% CI = 1.01-1.18) and ER+ subtype (OR = 1.09, 95% CI = 1.01-1.17) for genetic liability to UL. No reverse causality was found. Our comprehensive genome-wide cross-trait analysis demonstrates a shared genetic basis, pleiotropic loci, as well as a putative causal relationship between UL and BC, highlighting an intrinsic link underlying these two complex female diseases.
Collapse
Affiliation(s)
- Xueyao Wu
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenghan Xiao
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhitong Han
- Department of Life Sciences, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Zhang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xunying Zhao
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Hao
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinyu Xiao
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - C Scott Gallagher
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Peter Kraft
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Cynthia Casson Morton
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Manchester Centre for Audiology and Deafness, Manchester Academic Health Science Center, University of Manchester, Manchester M13 9PL, UK
| | - Jiayuan Li
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Xia Jiang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Solna, Stockholm, Sweden; Program in Genetic Epidemiology and Statistical Genetics, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
36
|
Shaheen MF, Tse JY, Sokol ES, Masterson M, Bansal P, Rabinowitz I, Tarleton CA, Dobroff AS, Smith TL, Bocklage TJ, Mannakee BK, Gutenkunst RN, Bischoff J, Ness SA, Riedlinger GM, Groisberg R, Pasqualini R, Ganesan S, Arap W. Genomic landscape of lymphatic malformations: a case series and response to the PI3Kα inhibitor alpelisib in an N-of-1 clinical trial. eLife 2022; 11:e74510. [PMID: 35787784 PMCID: PMC9255965 DOI: 10.7554/elife.74510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Lymphatic malformations (LMs) often pose treatment challenges due to a large size or a critical location that could lead to disfigurement, and there are no standardized treatment approaches for either refractory or unresectable cases. Methods We examined the genomic landscape of a patient cohort of LMs (n = 30 cases) that underwent comprehensive genomic profiling using a large-panel next-generation sequencing assay. Immunohistochemical analyses were completed in parallel. Results These LMs had low mutational burden with hotspot PIK3CA mutations (n = 20) and NRAS (n = 5) mutations being most frequent, and mutually exclusive. All LM cases with Kaposi sarcoma-like (kaposiform) histology had NRAS mutations. One index patient presented with subacute abdominal pain and was diagnosed with a large retroperitoneal LM harboring a somatic PIK3CA gain-of-function mutation (H1047R). The patient achieved a rapid and durable radiologic complete response, as defined in RECIST1.1, to the PI3Kα inhibitor alpelisib within the context of a personalized N-of-1 clinical trial (NCT03941782). In translational correlative studies, canonical PI3Kα pathway activation was confirmed by immunohistochemistry and human LM-derived lymphatic endothelial cells carrying an allele with an activating mutation at the same locus were sensitive to alpelisib treatment in vitro, which was demonstrated by a concentration-dependent drop in measurable impedance, an assessment of cell status. Conclusions Our findings establish that LM patients with conventional or kaposiform histology have distinct, yet targetable, driver mutations. Funding R.P. and W.A. are supported by awards from the Levy-Longenbaugh Fund. S.G. is supported by awards from the Hugs for Brady Foundation. This work has been funded in part by the NCI Cancer Center Support Grants (CCSG; P30) to the University of Arizona Cancer Center (CA023074), the University of New Mexico Comprehensive Cancer Center (CA118100), and the Rutgers Cancer Institute of New Jersey (CA072720). B.K.M. was supported by National Science Foundation via Graduate Research Fellowship DGE-1143953. Clinical trial number NCT03941782.
Collapse
Affiliation(s)
- Montaser F Shaheen
- University of Arizona Cancer CenterTucsonUnited States
- Division of Hematology/Oncology, Department of Medicine, University of Arizona College of MedicineTucsonUnited States
| | - Julie Y Tse
- Foundation Medicine, IncCambridgeUnited States
| | | | - Margaret Masterson
- Rutgers Cancer Institute of New JerseyNew BrunswickUnited States
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical SchoolNew BrunswickUnited States
| | - Pranshu Bansal
- University of New Mexico Comprehensive Cancer CenterAlbuquerqueUnited States
- Division of Hematology/Oncology, Department of Internal Medicine, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Ian Rabinowitz
- University of New Mexico Comprehensive Cancer CenterAlbuquerqueUnited States
- Division of Hematology/Oncology, Department of Internal Medicine, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Christy A Tarleton
- University of New Mexico Comprehensive Cancer CenterAlbuquerqueUnited States
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Andrey S Dobroff
- University of New Mexico Comprehensive Cancer CenterAlbuquerqueUnited States
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Tracey L Smith
- Rutgers Cancer Institute of New JerseyNewarkUnited States
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical SchoolNewarkUnited States
| | - Thèrése J Bocklage
- University of New Mexico Comprehensive Cancer CenterAlbuquerqueUnited States
- Department of Pathology, University of Kentucky College of Medicine and Markey Cancer CenterLexingtonUnited States
| | - Brian K Mannakee
- University of Arizona Cancer CenterTucsonUnited States
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of ArizonaTucsonUnited States
| | - Ryan N Gutenkunst
- University of Arizona Cancer CenterTucsonUnited States
- Department of Molecular and Cellular Biology, College of Science, University of ArizonaTucsonUnited States
| | - Joyce Bischoff
- Vascular Biology Program, Boston Children’s HospitalBostonUnited States
- Department of Surgery, Harvard Medical SchoolBostonUnited States
| | - Scott A Ness
- University of New Mexico Comprehensive Cancer CenterAlbuquerqueUnited States
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Gregory M Riedlinger
- Rutgers Cancer Institute of New JerseyNew BrunswickUnited States
- Department of Pathology, Rutgers Robert Wood Johnson Medical SchoolNew BrunswickUnited States
| | - Roman Groisberg
- Rutgers Cancer Institute of New JerseyNew BrunswickUnited States
- Division of Medical Oncology, Department of Medicine, Rutgers Robert Wood Johnson Medical SchoolNew BrunswickUnited States
| | - Renata Pasqualini
- Rutgers Cancer Institute of New JerseyNewarkUnited States
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical SchoolNewarkUnited States
| | - Shridar Ganesan
- Rutgers Cancer Institute of New JerseyNew BrunswickUnited States
- Division of Medical Oncology, Department of Medicine, Rutgers Robert Wood Johnson Medical SchoolNew BrunswickUnited States
| | - Wadih Arap
- Rutgers Cancer Institute of New JerseyNewarkUnited States
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical SchoolNewarkUnited States
| |
Collapse
|
37
|
Haas CB, Hsu L, Lampe JW, Wernli KJ, Lindström S. Cross-ancestry Genome-wide Association Studies of Sex Hormone Concentrations in Pre- and Postmenopausal Women. Endocrinology 2022; 163:bqac020. [PMID: 35192695 PMCID: PMC8962449 DOI: 10.1210/endocr/bqac020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Concentrations of circulating sex hormones have been associated with a variety of diseases in women and are strongly influenced by menopausal status. We investigated the genetic architectures of circulating concentrations of estradiol, testosterone, and SHBG by menopausal status in women of European and African ancestry. METHODS Using data on 229 966 women from the UK Biobank, we conducted genome-wide association studies (GWASs) of circulating concentrations of estradiol, testosterone, and SHBG in premenopausal and postmenopausal women. We tested for evidence of heterogeneity of genetic effects by menopausal status and genetic ancestry. We conducted gene-based enrichment analyses to identify tissues in which genes with GWAS-enriched signals were expressed. RESULTS We identified 4 loci (5q35.2, 12q14.3, 19q13.42, 20p12.3) that were associated with detectable concentrations of estradiol in both pre- and postmenopausal women of European ancestry. Heterogeneity analysis identified 1 locus for testosterone (7q22.1) in the CYP3A7 gene and 1 locus that was strongly associated with concentrations of SHBG in premenopausal women only (10q15.1) near the AKR1C4 gene. Gene-based analysis of testosterone revealed evidence of enrichment of GWAS signals in genes expressed in adipose tissue for postmenopausal women. We did not find any evidence of ancestry-specific genetic effects for concentrations of estradiol, testosterone, or SHBG. CONCLUSIONS We identified specific loci that showed genome-wide significant evidence of heterogeneity by menopausal status for testosterone and SHBG. We also observed support for a more prominent role of genetic variants located near genes expressed in adipose tissue in determining testosterone concentrations among postmenopausal women.
Collapse
Affiliation(s)
- Cameron B Haas
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Li Hsu
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Johanna W Lampe
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Karen J Wernli
- Kaiser Permanente Washington Health Research Institute, Seattle, WA 98101, USA
| | - Sara Lindström
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
38
|
Chu YD, Kee KM, Lin WR, Lai MW, Lu SN, Chung WH, Pang ST, Yeh CT. SYNE1 Exonic Variant rs9479297 Contributes to Concurrent Hepatocellular and Transitional Cell Carcinoma Double Primary Cancer. Biomedicines 2021; 9:1819. [PMID: 34944636 PMCID: PMC8698502 DOI: 10.3390/biomedicines9121819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/25/2022] Open
Abstract
Unexpected high risk of synchronous/metachronous hepatocellular carcinoma (HCC) and transitional cell carcinoma (TCC) co-occurrence has been discovered previously. Here, we searched for genetic variation contributing to the co-occurrence of this double primary cancer (DPC). Using targeted exome sequencing, a panel of variants associated with concurrent DPC was identified. However, only a nonsynonymous variant within the Spectrin Repeat Containing Nuclear Envelope Protein 1 (SYNE1) gene was associated with DPC occurrence (p = 0.002), compared with that in the healthy population. Further independent cohort verification analysis revealed that the SYNE1-rs9479297-TT genotype (versus TC + CC genotypes) was enriched in patients with DPC, compared with that in those with TCC alone (p = 0.039), those with HCC alone (p = 0.006), those with non-HCC/non-TCC (p < 0.001), and healthy population (p < 0.001). SYNE1 mRNA expression reduced in both patients with HCC and TCC, and its lower expression in HCC was associated with shorter recurrence-free (p = 0.0314) and metastasis-free (p = 0.0479) survival. SYNE1-rs9479297 genotypes were correlated with tissue SYNE1 levels and clinical outcomes in HCC patients. Finally, SYNE1 silencing enhanced the cell proliferation and migration of HCC/TCC cells. In conclusion, SYNE1-rs9479297 genotypes were associated with HCC/TCC DPC co-occurrence and correlated with SYNE1 expression, which in turn contributed to HCC/TCC cell proliferation and migration, thereby affecting clinical outcomes.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-D.C.); (W.-R.L.); (M.-W.L.)
| | - Kwong-Ming Kee
- Division of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (K.-M.K.); (S.-N.L.)
| | - Wey-Ran Lin
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-D.C.); (W.-R.L.); (M.-W.L.)
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ming-Wei Lai
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-D.C.); (W.-R.L.); (M.-W.L.)
- Division of Pediatric Gastroenterology, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Sheng-Nan Lu
- Division of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (K.-M.K.); (S.-N.L.)
| | - Wen-Hung Chung
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung 204, Taiwan;
| | - See-Tong Pang
- Division of Urology, Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-D.C.); (W.-R.L.); (M.-W.L.)
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
39
|
Uimari O, Nazri H, Tapmeier T. Endometriosis and Uterine Fibroids (Leiomyomata): Comorbidity, Risks and Implications. FRONTIERS IN REPRODUCTIVE HEALTH 2021; 3:750018. [PMID: 36304022 PMCID: PMC9580755 DOI: 10.3389/frph.2021.750018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022] Open
Abstract
Uterine Fibroids (leiomyomata) and endometriosis affect millions of women world-wide. Although aetiology and natural history of the conditions are markedly different, symptoms can overlap and make differential diagnoses necessary, often using invasive methods such as laparoscopy. Considerable comorbidity exists between the two conditions and needs to be taken into account when treating fibroids and/or endometriosis. The genetic foundations of both uterine fibroids and endometriosis remain to be fully understood but recent evidence suggest common underpinnings. Here, we discuss the comorbidity of uterine fibroids and endometriosis and the implications for diagnosis, treatment and risks.
Collapse
Affiliation(s)
- Outi Uimari
- Department of Obstetrics and Gynecology, Oulu University, Oulu, Finland
- PEDEGO Research Unit (Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology) and Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
- Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Hannah Nazri
- Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Thomas Tapmeier
- Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- *Correspondence: Thomas Tapmeier
| |
Collapse
|
40
|
Shtykalova SV, Egorova AA, Maretina MA, Freund SA, Baranov VS, Kiselev AV. Molecular Genetic Basis and Prospects of Gene Therapy of Uterine Leiomyoma. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421090118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Tian Y, Chen J. The effects of laparoscopic myomectomy and open surgery on uterine myoma patients' postoperative immuno-inflammatory responses, endocrine statuses, and prognoses: a comparative study. Am J Transl Res 2021; 13:9671-9678. [PMID: 34540094 PMCID: PMC8430179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/02/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To explore the effects of laparoscopic myomectomy and open surgery on the postoperative inflammatory responses, endocrine statuses, and prognoses of uterine myoma patients. METHODS Uterine myoma patients (n=126) admitted to the Department of Gynecology in our hospital were recruited as the study cohort and divided into an observation group (n=63), and a control group (n=63). The patients in the observation group underwent laparoscopic myomectomies, and the patients in the control group underwent open surgery. The completion times, intraoperative blood loss volumes, postoperative hospital stay durations, postoperative exhaust times, preoperative and postoperative immune function, inflammatory factors, sex hormone levels, postoperative complications, and prognoses were observed. RESULTS The observation group showed shorter hospital stays, lower intraoperative blood loss volumes, and shorter postoperative exhaust times (P<0.001). After the surgery, CD3+%, CD4+%, and CD4+%/CD8+% were decreased, but the CD8+% was increased in the two groups (all P<0.01). The observation group had higher CD3+%, CD4+% and CD4+%/CD8+%, and lower CD8+% than the control group (all P<0.001). The C-reactive protein, TNF-α, and IL-6 levels were higher after the surgery in the two groups (all P<0.05), but the observation group had lower levels (all P<0.001). The follicle-stimulating hormone and luteinizing hormone levels were lower, but the estradiol levels were higher in the observation group compared to the levels in the control group (all P<0.001). The total number of complications in the observation group was significantly lower than it was in the control group (P<0.05). CONCLUSION Laparoscopic myomectomy contributes to quick recoveries and short hospital stays, reduces the postoperative inflammatory response and immunosuppression, has little effect on the postoperative sex hormone levels, and has a low incidence of complications. It is worthy of clinical application.
Collapse
Affiliation(s)
- Yunling Tian
- Department of Gynecology, Jincheng People's Hospital Jincheng, Shanxi Province, China
| | - Jianqin Chen
- Department of Gynecology, Jincheng People's Hospital Jincheng, Shanxi Province, China
| |
Collapse
|
42
|
Kho PF, Mortlock S, Rogers PAW, Nyholt DR, Montgomery GW, Spurdle AB, Glubb DM, O'Mara TA. Genetic analyses of gynecological disease identify genetic relationships between uterine fibroids and endometrial cancer, and a novel endometrial cancer genetic risk region at the WNT4 1p36.12 locus. Hum Genet 2021; 140:1353-1365. [PMID: 34268601 DOI: 10.1007/s00439-021-02312-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/05/2021] [Indexed: 12/27/2022]
Abstract
Endometriosis, polycystic ovary syndrome (PCOS) and uterine fibroids have been proposed as endometrial cancer risk factors; however, disentangling their relationships with endometrial cancer is complicated due to shared risk factors and comorbidities. Using genome-wide association study (GWAS) data, we explored the relationships between these non-cancerous gynecological diseases and endometrial cancer risk by assessing genetic correlation, causal relationships and shared risk loci. We found significant genetic correlation between endometrial cancer and PCOS, and uterine fibroids. Adjustment for genetically predicted body mass index (a risk factor for PCOS, uterine fibroids and endometrial cancer) substantially attenuated the genetic correlation between endometrial cancer and PCOS but did not affect the correlation with uterine fibroids. Mendelian randomization analyses suggested a causal relationship between only uterine fibroids and endometrial cancer. Gene-based analyses revealed risk regions shared between endometrial cancer and endometriosis, and uterine fibroids. Multi-trait GWAS analysis of endometrial cancer and the genetically correlated gynecological diseases identified a novel genome-wide significant endometrial cancer risk locus at 1p36.12, which replicated in an independent endometrial cancer dataset. Interrogation of functional genomic data at 1p36.12 revealed biologically relevant genes, including WNT4 which is necessary for the development of the female reproductive system. In summary, our study provides genetic evidence for a causal relationship between uterine fibroids and endometrial cancer. It further provides evidence that the comorbidity of endometrial cancer, PCOS and uterine fibroids may partly be due to shared genetic architecture. Notably, this shared architecture has revealed a novel genome-wide risk locus for endometrial cancer.
Collapse
Affiliation(s)
- Pik Fang Kho
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Sally Mortlock
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | | | | | - Peter A W Rogers
- Department of Obstetrics and Gynaecology, Gynaecology Research Centre, Royal Women's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Dale R Nyholt
- School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Grant W Montgomery
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda B Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Dylan M Glubb
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Tracy A O'Mara
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. .,Molecular Cancer Epidemiology Group, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia.
| |
Collapse
|
43
|
Pitzer LM, Moroney MR, Nokoff NJ, Sikora MJ. WNT4 Balances Development vs Disease in Gynecologic Tissues and Women's Health. Endocrinology 2021; 162:6272210. [PMID: 33963381 PMCID: PMC8197283 DOI: 10.1210/endocr/bqab093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/15/2022]
Abstract
The WNT family of proteins is crucial in numerous developmental pathways and tissue homeostasis. WNT4, in particular, is uniquely implicated in the development of the female phenotype in the fetus, and in the maintenance of müllerian and reproductive tissues. WNT4 dysfunction or dysregulation can drive sex-reversal syndromes, highlighting the key role of WNT4 in sex determination. WNT4 is also critical in gynecologic pathologies later in life, including several cancers, uterine fibroids, endometriosis, and infertility. The role of WNT4 in normal decidualization, implantation, and gestation is being increasingly appreciated, while aberrant activation of WNT4 signaling is being linked both to gynecologic and breast cancers. Notably, single-nucleotide polymorphisms (SNPs) at the WNT4 gene locus are strongly associated with these pathologies and may functionally link estrogen and estrogen receptor signaling to upregulation and activation of WNT4 signaling. Importantly, in each of these developmental and disease states, WNT4 gene expression and downstream WNT4 signaling are regulated and executed by myriad tissue-specific pathways. Here, we review the roles of WNT4 in women's health with a focus on sex development, and gynecologic and breast pathologies, and our understanding of how WNT4 signaling is controlled in these contexts. Defining WNT4 functions provides a unique opportunity to link sex-specific signaling pathways to women's health and disease.
Collapse
Affiliation(s)
- Lauren M Pitzer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Marisa R Moroney
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Natalie J Nokoff
- Department of Pediatrics, Section of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Matthew J Sikora
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- Correspondence: Matthew J. Sikora, PhD; Department of Pathology, University of Colorado Anschutz Medical Campus, Mail Stop 8104, Research Complex 1 South, Rm 5117, 12801 E 17th Ave, Aurora, CO 80045, USA. . Twitter: @mjsikora
| |
Collapse
|
44
|
Shen J, Jiang Y, Wu F, Chen H, Wu Q, Zang X, Chen L, Chen Y, Yuan Q. Correlation Analysis Between MTHFR C677T Polymorphism and Uterine Fibroids: A Retrospective Cohort Study. Front Oncol 2021; 11:648794. [PMID: 34141610 PMCID: PMC8204693 DOI: 10.3389/fonc.2021.648794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background Uterine fibroids(UF) are the most common benign tumors in women, with high incidence and unknown causes. We aimed to explore the correlation between Methylenetetra-hydrofolate reductase (MTHFR) C677T polymorphism and UF. Methods This is a retrospective cohort study. Data were collected from 2411 women detected for MTHFR C677T polymorphism in the Fifth Affiliated Hospital of Sun Yat-sen University from 2018 to 2020. B-ultrasound (BU) and the first page of medical records were used to analyze whether they had ever been diagnosed with UF. The collected data were analyzed. Using the chi-square test and regression analysis to explore the correlation, and the risk factors was screened by multifactor logistic regression analysis. Results A total of 2411 pregnant women were in the MTHFR C677T polymorphism detection. Among them, 226(9.37%) were diagnosed as UF by BU or clinical diagnosis. The allele and genotype of MTHFR C677T were significantly different between the case and control group (p<0.05), and the distribution of the allele was following Hardy-Weinberg (H-W) equilibrium. Comparing with the wild-type (C/C), the mutant group (C/T+T/T) was more likely to form UF(OR,1.43;OR95%CI,1.07-1.89). After adjusting for confoundings, the heterozygous mutant (C/T) was more susceptible to UF than the wild-type (aOR,1.41;aOR95%CI,1.41-1.91). In the case group, BMI, gravidity and parity were not associated with the size and number of UF and the MTHFR C677T polymorphism (p>0.05). However, older maternal age was associated with the incidence of UF, especially the multiple UF (p<0.05). Conclusion Our results found that MTHFR C677T polymorphism was associated with UF occurrence for the first time. This could imply that it may increase the risk of forming UF in women of gestational age.
Collapse
Affiliation(s)
- Jiahui Shen
- Department of Obstetrics, The Fifth Affifiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yanhui Jiang
- Department of Gynecology, The Fifth Affifiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Fengzhi Wu
- Department of Obstetrics, The Fifth Affifiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Hui Chen
- Department of Obstetrics, The Fifth Affifiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Qiujing Wu
- Department of Obstetrics, The Fifth Affifiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xiaoxiao Zang
- Department of Obstetrics, The Fifth Affifiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Le Chen
- Department of Obstetrics, The Fifth Affifiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yong Chen
- Department of Gynecology, The Fifth Affifiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Qiwen Yuan
- Department of Obstetrics, The Fifth Affifiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
45
|
Tonoyan NM, Chagovets VV, Starodubtseva NL, Tokareva AO, Chingin K, Kozachenko IF, Adamyan LV, Frankevich VE. Alterations in lipid profile upon uterine fibroids and its recurrence. Sci Rep 2021; 11:11447. [PMID: 34075062 PMCID: PMC8169782 DOI: 10.1038/s41598-021-89859-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/30/2021] [Indexed: 11/09/2022] Open
Abstract
Uterine fibroids (UF) is the most common (about 70% cases) type of gynecological disease, with the recurrence rate varying from 11 to 40%. Because UF has no distinct symptomatology and is often asymptomatic, the specific and sensitive diagnosis of UF as well as the assessment for the probability of UF recurrence pose considerable challenge. The aim of this study was to characterize alterations in the lipid profile of tissues associated with the first-time diagnosed UF and recurrent uterine fibroids (RUF) and to explore the potential of mass spectrometry (MS) lipidomics analysis of blood plasma samples for the sensitive and specific determination of UF and RUF with low invasiveness of analysis. MS analysis of lipid levels in the myometrium tissues, fibroids tissues and blood plasma samples was carried out on 66 patients, including 35 patients with first-time diagnosed UF and 31 patients with RUF. The control group consisted of 15 patients who underwent surgical treatment for the intrauterine septum. Fibroids and myometrium tissue samples were analyzed using direct MS approach. Blood plasma samples were analyzed using high performance liquid chromatography hyphened with mass spectrometry (HPLC/MS). MS data were processed by discriminant analysis with projection into latent structures (OPLS-DA). Significant differences were found between the first-time UF, RUF and control group in the levels of lipids involved in the metabolism of glycerophospholipids, sphingolipids, lipids with an ether bond, triglycerides and fatty acids. Significant differences between the control group and the groups with UF and RUF were found in the blood plasma levels of cholesterol esters, triacylglycerols, (lyso) phosphatidylcholines and sphingomyelins. Significant differences between the UF and RUF groups were found in the blood plasma levels of cholesterol esters, phosphotidylcholines, sphingomyelins and triacylglycerols. Diagnostic models based on the selected differential lipids using logistic regression showed sensitivity and specificity of 88% and 86% for the diagnosis of first-time UF and 95% and 79% for RUF, accordingly. This study confirms the involvement of lipids in the pathogenesis of uterine fibroids. A diagnostically significant panel of differential lipid species has been identified for the diagnosis of UF and RUF by low-invasive blood plasma analysis. The developed diagnostic models demonstrated high potential for clinical use and further research in this direction.
Collapse
Affiliation(s)
- Narine M Tonoyan
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, 117997, Russian Federation
| | - Vitaliy V Chagovets
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, 117997, Russian Federation
| | - Natalia L Starodubtseva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, 117997, Russian Federation
- Moscow Institute of Physics and Technology, Moscow Region, 141700, Russian Federation
| | - Alisa O Tokareva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, 117997, Russian Federation
- V.L. Talrose Institute for Energy Problems of Chemical Physics, Russia Academy of Sciences, Moscow, 119991, Russian Federation
| | - Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China
| | - Irena F Kozachenko
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, 117997, Russian Federation
| | - Leyla V Adamyan
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, 117997, Russian Federation
| | - Vladimir E Frankevich
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, 117997, Russian Federation.
| |
Collapse
|
46
|
Falahati Z, Mohseni-Dargah M, Mirfakhraie R. Emerging Roles of Long Non-coding RNAs in Uterine Leiomyoma Pathogenesis: a Review. Reprod Sci 2021; 29:1086-1101. [PMID: 33844188 DOI: 10.1007/s43032-021-00571-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/01/2021] [Indexed: 01/19/2023]
Abstract
Uterine leiomyoma (UL), as the most prevalent type of women's health disorders, is a benign tumor that originates from the smooth muscle cell layer of the uterus. A great number of associated complications are observed including infertility, miscarriage, bleeding, pain, dysmenorrhea, menorrhagia, and dyspareunia. Although the etiology of UL is largely undefined, environmental and genetic factors are witnessed to engage in the UL development. As long non-coding RNAs (lncRNAs) are involved in various types of cellular functions, in recent years, a great deal of attention has been drawn to them and their possible roles in UL pathogenesis. Moreover, they have illustrated their potential to be promising candidates for UL treatment. In this review paper, firstly, an overview of UL pathogenesis is presented. Then, the regulation of lncRNAs in UL and their possible mechanisms in cancer development are reviewed. Eventually, therapeutic approaches targeting lncRNAs in various cancers and UL are explored.
Collapse
Affiliation(s)
- Zahra Falahati
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Masoud Mohseni-Dargah
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, Australia
| | - Reza Mirfakhraie
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Koodakyar St., Velenjak Ave, Chamran Highway, Tehran, Iran.
- Genomic Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
Zhang P, Kitchen-Smith I, Xiong L, Stracquadanio G, Brown K, Richter PH, Wallace MD, Bond E, Sahgal N, Moore S, Nornes S, De Val S, Surakhy M, Sims D, Wang X, Bell DA, Zeron-Medina J, Jiang Y, Ryan AJ, Selfe JL, Shipley J, Kar S, Pharoah PD, Loveday C, Jansen R, Grochola LF, Palles C, Protheroe A, Millar V, Ebner DV, Pagadala M, Blagden SP, Maughan TS, Domingo E, Tomlinson I, Turnbull C, Carter H, Bond GL. Germline and Somatic Genetic Variants in the p53 Pathway Interact to Affect Cancer Risk, Progression, and Drug Response. Cancer Res 2021; 81:1667-1680. [PMID: 33558336 PMCID: PMC10266546 DOI: 10.1158/0008-5472.can-20-0177] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/25/2020] [Accepted: 02/03/2021] [Indexed: 11/16/2022]
Abstract
Insights into oncogenesis derived from cancer susceptibility loci (SNP) hold the potential to facilitate better cancer management and treatment through precision oncology. However, therapeutic insights have thus far been limited by our current lack of understanding regarding both interactions of these loci with somatic cancer driver mutations and their influence on tumorigenesis. For example, although both germline and somatic genetic variation to the p53 tumor suppressor pathway are known to promote tumorigenesis, little is known about the extent to which such variants cooperate to alter pathway activity. Here we hypothesize that cancer risk-associated germline variants interact with somatic TP53 mutational status to modify cancer risk, progression, and response to therapy. Focusing on a cancer risk SNP (rs78378222) with a well-documented ability to directly influence p53 activity as well as integration of germline datasets relating to cancer susceptibility with tumor data capturing somatically-acquired genetic variation provided supportive evidence for this hypothesis. Integration of germline and somatic genetic data enabled identification of a novel entry point for therapeutic manipulation of p53 activities. A cluster of cancer risk SNPs resulted in increased expression of prosurvival p53 target gene KITLG and attenuation of p53-mediated responses to genotoxic therapies, which were reversed by pharmacologic inhibition of the prosurvival c-KIT signal. Together, our results offer evidence of how cancer susceptibility SNPs can interact with cancer driver genes to affect cancer progression and identify novel combinatorial therapies. SIGNIFICANCE: These results offer evidence of how cancer susceptibility SNPs can interact with cancer driver genes to affect cancer progression and present novel therapeutic targets.
Collapse
Affiliation(s)
- Ping Zhang
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford, United Kingdom
| | - Isaac Kitchen-Smith
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford, United Kingdom
| | - Lingyun Xiong
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford, United Kingdom
| | - Giovanni Stracquadanio
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford, United Kingdom
| | - Katherine Brown
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Philipp H Richter
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford, United Kingdom
| | - Marsha D Wallace
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford, United Kingdom
| | - Elisabeth Bond
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford, United Kingdom
| | - Natasha Sahgal
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford, United Kingdom
| | - Samantha Moore
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford, United Kingdom
| | - Svanhild Nornes
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford, United Kingdom
| | - Sarah De Val
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford, United Kingdom
| | - Mirvat Surakhy
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford, United Kingdom
| | - David Sims
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Xuting Wang
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences-National Institutes of Health, Research Triangle Park, North Carolina
| | - Douglas A Bell
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences-National Institutes of Health, Research Triangle Park, North Carolina
| | - Jorge Zeron-Medina
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford, United Kingdom
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Yanyan Jiang
- CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Department of Oncology, Old Road Campus Research Building, Oxford, United Kingdom
| | - Anderson J Ryan
- CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Department of Oncology, Old Road Campus Research Building, Oxford, United Kingdom
| | - Joanna L Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Janet Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Siddhartha Kar
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Paul D Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Chey Loveday
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Rick Jansen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, the Netherlands
| | | | - Claire Palles
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew Protheroe
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Val Millar
- Target Discovery Institute, University of Oxford, Nuffield Department of Medicine, Oxford, United Kingdom
| | - Daniel V Ebner
- Target Discovery Institute, University of Oxford, Nuffield Department of Medicine, Oxford, United Kingdom
| | - Meghana Pagadala
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Sarah P Blagden
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Timothy S Maughan
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Enric Domingo
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ian Tomlinson
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Clare Turnbull
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Hannah Carter
- Department of Medicine, University of California, San Diego, La Jolla, California.
| | - Gareth L Bond
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford, United Kingdom.
| |
Collapse
|
48
|
Olafsdottir T, Stacey SN, Sveinbjornsson G, Thorleifsson G, Norland K, Sigurgeirsson B, Thorisdottir K, Kristjansson AK, Tryggvadottir L, Sarin KY, Benediktsson R, Jonasson JG, Sigurdsson A, Jonasdottir A, Kristmundsdottir S, Jonsson H, Gylfason A, Oddsson A, Fridriksdottir R, Gudjonsson SA, Zink F, Lund SH, Rognvaldsson S, Melsted P, Steinthorsdottir V, Gudmundsson J, Mikaelsdottir E, Olason PI, Stefansdottir L, Eggertsson HP, Halldorsson BV, Thorsteinsdottir U, Agustsson TT, Olafsson K, Olafsson JH, Sulem P, Rafnar T, Gudbjartsson DF, Stefansson K. Loss-of-Function Variants in the Tumor-Suppressor Gene PTPN14 Confer Increased Cancer Risk. Cancer Res 2021; 81:1954-1964. [PMID: 33602785 DOI: 10.1158/0008-5472.can-20-3065] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/16/2020] [Accepted: 02/11/2021] [Indexed: 11/16/2022]
Abstract
The success of genome-wide association studies (GWAS) in identifying common, low-penetrance variant-cancer associations for the past decade is undisputed. However, discovering additional high-penetrance cancer mutations in unknown cancer predisposing genes requires detection of variant-cancer association of ultra-rare coding variants. Consequently, large-scale next-generation sequence data with associated phenotype information are needed. Here, we used genotype data on 166,281 Icelanders, of which, 49,708 were whole-genome sequenced and 408,595 individuals from the UK Biobank, of which, 41,147 were whole-exome sequenced, to test for association between loss-of-function burden in autosomal genes and basal cell carcinoma (BCC), the most common cancer in Caucasians. A total of 25,205 BCC cases and 683,058 controls were tested. Rare germline loss-of-function variants in PTPN14 conferred substantial risks of BCC (OR, 8.0; P = 1.9 × 10-12), with a quarter of carriers getting BCC before age 70 and over half in their lifetime. Furthermore, common variants at the PTPN14 locus were associated with BCC, suggesting PTPN14 as a new, high-impact BCC predisposition gene. A follow-up investigation of 24 cancers and three benign tumor types showed that PTPN14 loss-of-function variants are associated with high risk of cervical cancer (OR, 12.7, P = 1.6 × 10-4) and low age at diagnosis. Our findings, using power-increasing methods with high-quality rare variant genotypes, highlight future prospects for new discoveries on carcinogenesis. SIGNIFICANCE: This study identifies the tumor-suppressor gene PTPN14 as a high-impact BCC predisposition gene and indicates that inactivation of PTPN14 by germline sequence variants may also lead to increased risk of cervical cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Bardur Sigurgeirsson
- Landspitali University Hospital, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Kristin Thorisdottir
- Landspitali University Hospital, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Arni Kjalar Kristjansson
- Landspitali University Hospital, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Kavita Y Sarin
- Department of Dermatology, Stanford University School of Medicine, Redwood City, California
| | - Rafn Benediktsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Endocrinology and Metabolic Medicine, Landspitali University Hospital, Reykjavík, Iceland
| | - Jon G Jonasson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
| | | | | | | | | | | | | | | | | | | | | | | | - Pall Melsted
- deCODE Genetics/Amgen, Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | | | - Bjarni V Halldorsson
- deCODE Genetics/Amgen, Reykjavik, Iceland.,School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Tomas T Agustsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Endocrinology and Metabolic Medicine, Landspitali University Hospital, Reykjavík, Iceland.,Faculty of Odontology, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Karl Olafsson
- Department of Obstetrics and Gynecology, Landspitali University Hospital, Reykjavik, Iceland
| | - Jon H Olafsson
- Landspitali University Hospital, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE Genetics/Amgen, Reykjavik, Iceland. .,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
49
|
Ponomarenko I, Reshetnikov E, Polonikov A, Verzilina I, Sorokina I, Yermachenko A, Dvornyk V, Churnosov M. Candidate Genes for Age at Menarche Are Associated With Uterine Leiomyoma. Front Genet 2021; 11:512940. [PMID: 33552117 PMCID: PMC7863975 DOI: 10.3389/fgene.2020.512940] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 10/14/2020] [Indexed: 12/23/2022] Open
Abstract
Age at menarche (AAM) is an important marker of the pubertal development and function of the hypothalamic-pituitary-ovarian system. It was reported as a possible factor for a risk of uterine leiomyoma (UL). However, while more than 350 loci for AAM have been determined by genome-wide association studies (GWASs) to date, no studies of these loci for their association with UL have been conducted so far. In this study, we analyzed 52 candidate loci for AAM for possible association with UL in a sample of 569 patients and 981 controls. The results of the study suggested that 23 out of the 52 studied polymorphisms had association with UL. Locus rs7759938 LIN28B was individually associated with the disease according to the dominant model. Twenty loci were associated with UL within 11 most significant models of intergenic interactions. Nine loci involved in 16 most significant models of interactions between single-nucleotide polymorphism (SNP), induced abortions, and chronic endometritis were associated with UL. Among the 23 loci associated with UL, 16 manifested association also with either AAM (7 SNPs) or height and/or body mass index (BMI) (13 SNPs). The above 23 SNPs and 514 SNPs linked to them have non-synonymous, regulatory, and expression quantitative trait locus (eQTL) significance for 35 genes, which play roles in the pathways related to development of the female reproductive organs and hormone-mediated signaling [false discovery rate (FDR) ≤ 0.05]. This is the first study reporting associations of candidate genes for AAM with UL.
Collapse
Affiliation(s)
- Irina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russia
| | - Evgeny Reshetnikov
- Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russia
| | - Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| | - Irina Verzilina
- Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russia
| | - Inna Sorokina
- Department of Social Epidemiology, Pierre Louis Institute of Epidemiology and Public Health, Sorbonne Universités, Paris, France
| | - Anna Yermachenko
- Department of Social Epidemiology, Pierre Louis Institute of Epidemiology and Public Health, Sorbonne Universités, Paris, France
| | - Volodymyr Dvornyk
- Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh, Saudi Arabia
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russia
| |
Collapse
|
50
|
Senkevich K, Bandres-Ciga S, Yu E, Liyanage UE, Noyce AJ, Gan-Or Z. No Evidence for a Causal Relationship Between Cancers and Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2021; 11:801-809. [PMID: 33646179 PMCID: PMC9719261 DOI: 10.3233/jpd-202474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Epidemiological data suggest that cancer patients have a reduced risk of subsequent Parkinson's disease (PD) development, but the prevalence of PD in melanoma patients is often reported to be increased. Causal relationships between cancers and PD have not been fully explored. OBJECTIVE To study causal relationship between different cancers and PD. METHODS We used GWAS summary statistics of 15 different types of cancers and two-sample Mendelian randomization to study the causal relationship with PD. RESULTS There was no evidence to support a causal relationship between the studied cancers and PD. We also performed reverse analyses between PD and cancers with available full summary statistics (melanoma, breast, prostate, endometrial and keratinocyte cancers) and did not find evidence of causal relationship. CONCLUSION We found no evidence to support a causal relationship between cancers and PD and the previously reported associations could be a result of genetic pleiotropy, shared biology or biases.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, QC, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Sara Bandres-Ciga
- Molecular Genetics Section, Laboratory of Neurogenetics, NIA, NIH, Bethesda, MD, USA
| | - Eric Yu
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Upekha E. Liyanage
- Cancer and Population Studies group, Population Health Department, QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital, Queensland, Australia
| | | | - Alastair J. Noyce
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
- Department of Clinical and Movement Neurosciences, University College London Institute of Neurology, London, UK
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, QC, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| |
Collapse
|