1
|
Mousa R, Shkolnik D, Alalouf Y, Brik A. Chemical approaches to explore ubiquitin-like proteins. RSC Chem Biol 2025; 6:492-509. [PMID: 39950163 PMCID: PMC11817102 DOI: 10.1039/d4cb00220b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Chemical protein synthesis has emerged as a powerful approach for producing ubiquitin (Ub) and ubiquitin-like modifiers (Ubls) in both their free and conjugated forms, particularly when recombinant or enzymatic strategies are challenging. By providing precise control over the assembly of Ub and Ubls, chemical synthesis enables the generation of complex constructs with site-specific modifications that facilitate detailed functional and structural studies. Ub and Ubls are central regulators of protein homeostasis, regulating a wide range of cellular processes such as cell cycle progression, transcription, DNA repair, and apoptosis. Ubls share an evolutionary link with Ub, resembling its structure and following a parallel conjugation pathway that results in a covalent isopeptide bond with their cellular substrates. Despite their structural similarities and sequence homology, Ub and Ubls exhibit distinct functional differences. Understanding Ubl biology is essential for unraveling how cells maintain their regulatory networks and how disruptions in these pathways contribute to various diseases. In this review, we highlight the chemical methodologies and strategies available for studying Ubls and advancing our comprehensive understanding of the Ubl system in health and disease.
Collapse
Affiliation(s)
- Reem Mousa
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa 3200008 Israel
| | - Dana Shkolnik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa 3200008 Israel
| | - Yam Alalouf
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa 3200008 Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa 3200008 Israel
| |
Collapse
|
2
|
Han J, Dang B. Optimizing Solid-Phase Protein Synthesis Using CPG-2000 and a Nickel-Cleavable SNAC-tag Linker. Org Lett 2025; 27:2104-2109. [PMID: 39988888 DOI: 10.1021/acs.orglett.5c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Solid-phase chemical ligation (SPCL) is a powerful method for simplifying protein synthesis but faces challenges with orthogonal protection strategies, suboptimal solid supports, and limited cleavable linkers. In this study, we optimized SPCL by combining low-loading controlled-pore glass (CPG-2000) with a nickel-cleavable SNAC-tag linker. This system enabled the successful assembly of five peptide fragments and the efficient synthesis of a 131-amino-acid de novo protein, achieving a 25% yield.
Collapse
Affiliation(s)
- Jianyi Han
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Research Center for Industries of the Future and Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study; Hangzhou, Zhejiang 310024, China
| | - Bobo Dang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Research Center for Industries of the Future and Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study; Hangzhou, Zhejiang 310024, China
| |
Collapse
|
3
|
Spaltenstein P, Giesler RJ, Scherer SR, Erickson PW, Kay MS. Selective Activation of Peptide-Thioester Precursors for Templated Native Chemical Ligations. Angew Chem Int Ed Engl 2025; 64:e202413644. [PMID: 39198217 PMCID: PMC11913120 DOI: 10.1002/anie.202413644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/01/2024]
Abstract
Chemical protein synthesis enables access to proteins that would otherwise be difficult or impossible to obtain with traditional means such as recombinant expression. Chemoselective ligations provide the ability to join peptide segments prepared by solid-phase peptide synthesis. While native chemical ligation (NCL) is widely used, it is limited by the need for C-terminal thioesters with suitable reaction kinetics, properly placed native Cys or thiolated derivatives, and peptide segment solubility at low mM concentrations. Moreover, repetitive purifications to isolate ligated products are often yield-sapping, hampering efficiency and progress. In this work, we demonstrate the use of Controlled Activation of Peptides for Templated NCL (CAPTN). This traceless multi-segment templated NCL approach permits the one-pot synthesis of proteins by harnessing selective thioester activation and orthogonal conjugation chemistries to favor formation of the full-length ligated product while minimizing side reactions. Importantly, CAPTN provides kinetic enhancements allowing ligations at sterically hindered junctions and low peptide concentrations. Additionally, this one-pot approach removes the need for intermediate purification. We report the synthesis of two E. coli ribosomal subunits S16 and S17 enabled by the chemical tools described herein. We anticipate that CAPTN will expedite the synthesis of valuable proteins and expand on templated approaches for chemical protein synthesis.
Collapse
Affiliation(s)
- Paul Spaltenstein
- Department of Biochemistry, University of Utah, 15 North Medical Drive East, Room 4100 Salt Lake, City, UT, 84112, United States
| | - Riley J Giesler
- Department of Biochemistry, University of Utah, 15 North Medical Drive East, Room 4100 Salt Lake, City, UT, 84112, United States
| | - Samuel R Scherer
- Department of Biochemistry, University of Utah, 15 North Medical Drive East, Room 4100 Salt Lake, City, UT, 84112, United States
| | - Patrick W Erickson
- Department of Biochemistry, University of Utah, 15 North Medical Drive East, Room 4100 Salt Lake, City, UT, 84112, United States
- Current affiliation: Aizen Therapeutics 1927 Pasco Rancho, Castilla, Los Angeles, CA, 90032, United States
| | - Michael S Kay
- Department of Biochemistry, University of Utah, 15 North Medical Drive East, Room 4100 Salt Lake, City, UT, 84112, United States
| |
Collapse
|
4
|
Kamo N, Hayashi G, Okamoto A. Ruthenium-Catalyzed One-pot Peptide Ligation. Methods Mol Biol 2025; 2919:19-45. [PMID: 40257555 DOI: 10.1007/978-1-0716-4486-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
The chemical synthesis of proteins consists of three steps: synthesis of peptide segments, native chemical ligation, and desulfurization. The native chemical ligation is repeated to grow polypeptides, but at each step, deprotection and purification also had to be repeated. To address these issues, by repeating ruthenium-catalyzed fast deprotection of the cysteine terminus of the peptide segment and slow inactivation of the catalyst by thiophenol step by step, we were able to achieve one-pot, repeated native chemical ligation without purification steps. In this method, the ruthenium catalyst rapidly removes the Alloc group for cysteine protection and is slowly deactivated by 4-mercaptophenylacetic acid, which is added to promote peptide ligation and to remove the allyl group from the ruthenium complex. By using this chemical reaction, we have chemically prepared epigenetically modified proteins such as histone protein H1.2, and the protocol is described here.
Collapse
Affiliation(s)
- Naoki Kamo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Gosuke Hayashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan.
| |
Collapse
|
5
|
Shkolnik D, Dey S, Hasan M, Matunis MJ, Brik A. Chemical protein synthesis combined with protein cell delivery reveals new insights on the maturation process of SUMO2. Chem Sci 2024; 16:191-198. [PMID: 39600502 PMCID: PMC11587528 DOI: 10.1039/d4sc06254j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
The Small Ubiquitin-like Modifier (SUMO) is a crucial post-translational modifier of proteins, playing a key role in various cellular functions. All SUMOs are synthesized as precursor proteins that must be proteolytically processed. However, the maturation process of cleaving the extending C-terminal tail, preceding SUMOylation of substrates, remains poorly understood, especially within cellular environments. Chemical protein synthesis coupled with cell delivery offers great opportunities to prepare SUMO analogues to investigate this process in vitro and in live cells. Applying this unique combination we show that SUMO2 analogues containing the native tail undergo rapid cleavage and nuclear localisation, while a Gly93Ala mutation impairs cleavage and alters localisation. Tail mutations (Val94Glu, Tyr95Ala) affected cleavage rates, highlighting roles in SUMO-SENP protease interactions. In cells, SUMO2 analogues containing tail mutations underwent cleavage and subsequently incorporated into promyelocytic leukemia nuclear bodies (PML-NBs). These findings advance our understanding of SUMO2 maturation and provide a foundation for future studies of this process for different SUMO paralogues in various cell lines and tissues.
Collapse
Affiliation(s)
- Dana Shkolnik
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology Haifa 3200008 Israel
| | - Subhasis Dey
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology Haifa 3200008 Israel
| | - Mahdi Hasan
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology Haifa 3200008 Israel
| | - Michael J Matunis
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, Bloomberg School of Public Health Baltimore Maryland USA
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology Haifa 3200008 Israel
| |
Collapse
|
6
|
Koremura S, Sugawara A, Morishita Y, Ozaki T, Asai T. Semi-synthesis of a DNA-Tagged Polyketide-Peptide Hybrid Macrocycle Using a Biosynthetically Prepared Fungal Macrolide as a Synthetic Component. Org Lett 2024; 26:9151-9156. [PMID: 39415106 PMCID: PMC11519919 DOI: 10.1021/acs.orglett.4c03588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024]
Abstract
Presented herein is a synthetic biological method using genome mining and heterologous expression systems that provides access to natural products with desirable structural features as building blocks. In this investigation, we synthesized polyketide-peptide hybrid macrocycles with DNA tags, which have the potential to access a DNA-encoded library containing over one million compounds. This study demonstrates that synthetic biology offers a tool for expanding the diversity of building blocks, facilitating the exploration of unexplored chemical space.
Collapse
Affiliation(s)
| | | | | | - Taro Ozaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Teigo Asai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
7
|
Peng S, Liu X, Lu C, Wang H, Liu X, Gong Q, Tao H, Xu H, Tian C, Xu G, Li JB. Efficient Chemical Synthesis of Multi-Monoubiquitylated and Diubiquitylated Histones by the α-Halogen Ketone-Mediated Strategy. Bioconjug Chem 2024; 35:944-953. [PMID: 38954775 DOI: 10.1021/acs.bioconjchem.4c00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The chemical synthesis of homogeneously ubiquitylated histones is a powerful approach to decipher histone ubiquitylation-dependent epigenetic regulation. Among the various methods, α-halogen ketone-mediated conjugation chemistry has recently been an attractive strategy to generate single-monoubiquitylated histones for biochemical and structural studies. Herein, we report the use of this strategy to prepare not only dual- and even triple-monoubiquitylated histones but also diubiquitin-modified histones. We were surprised to find that the synthetic efficiencies of multi-monoubiquitylated histones were comparable to those of single-monoubiquitylated ones, suggesting that this strategy is highly tolerant to the number of ubiquitin monomers installed onto histones. The facile generation of a series of single-, dual-, and triple-monoubiquitylated H3 proteins enabled us to evaluate the influence of ubiquitylation patterns on the binding of DNA methyltransferase 1 (DNMT1) to nucleosomes. Our study highlights the potential of site-specific conjugation chemistry to generate chemically defined histones for epigenetic studies.
Collapse
Affiliation(s)
- Shuai Peng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou 215123, China
| | - Xin Liu
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Chengpiao Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou 215123, China
| | - Haibo Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou 215123, China
| | - Xiaotong Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou 215123, China
| | - Qingyue Gong
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Huizhong Tao
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Hongrui Xu
- Suzhou Municipal Center for Disease Control and Prevention, Suzhou 215004, China
| | - Changlin Tian
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou 215123, China
| | - Jia-Bin Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Nakamura G, Nakatsu K, Hayashi G. One-pot ligation of multiple peptide segments via N-terminal thiazolidine deprotection chemistry. Methods Enzymol 2024; 698:169-194. [PMID: 38886031 DOI: 10.1016/bs.mie.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Peptide ligation chemistries have revolutionized the synthesis of proteins with site-specific modifications or proteomimetics through assembly of multiple peptide segments. In order to prepare polypeptide chains consisting of 100-150 amino acid residues or larger generally assembled from three or more peptide segments, iterative purification process that decreases the product yield is usually demanded. Accordingly, methodologies for one-pot peptide ligation that omit the purification steps of intermediate peptide segments have been vigorously developed so far to improve the efficiency of chemical protein synthesis. In this chapter, we first outline the concept and recent advances of one-pot peptide ligation strategies. Then, the practical guideline for the preparation of peptide segments for one-pot peptide ligation is described with an emphasis on diketopiperazine thioester synthesis. Finally, we disclose the explicit protocols for one-pot four segment ligation via repetitive deprotection of N-terminal thiazolidine by a 2-aminobenzamide type aldehyde scavenger.
Collapse
Affiliation(s)
- Genki Nakamura
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan
| | - Koki Nakatsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan
| | - Gosuke Hayashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan.
| |
Collapse
|
9
|
Mir MH, Parmar S, Singh C, Kalia D. Location-agnostic site-specific protein bioconjugation via Baylis Hillman adducts. Nat Commun 2024; 15:859. [PMID: 38286847 PMCID: PMC10825175 DOI: 10.1038/s41467-024-45124-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/15/2024] [Indexed: 01/31/2024] Open
Abstract
Proteins labelled site-specifically with small molecules are valuable assets for chemical biology and drug development. The unique reactivity profile of the 1,2-aminothiol moiety of N-terminal cysteines (N-Cys) of proteins renders it highly attractive for regioselective protein labelling. Herein, we report an ultrafast Z-selective reaction between isatin-derived Baylis Hillman adducts and 1,2-aminothiols to form a bis-heterocyclic scaffold, and employ it for stable protein bioconjugation under both in vitro and live-cell conditions. We refer to our protein bioconjugation technology as Baylis Hillman orchestrated protein aminothiol labelling (BHoPAL). Furthermore, we report a lipoic acid ligase-based technology for introducing the 1,2-aminothiol moiety at any desired site within proteins, rendering BHoPAL location-agnostic (not limited to N-Cys). By using this approach in tandem with BHoPAL, we generate dually labelled protein bioconjugates appended with different labels at two distinct specific sites on a single protein molecule. Taken together, the protein bioconjugation toolkit that we disclose herein will contribute towards the generation of both mono and multi-labelled protein-small molecule bioconjugates for applications as diverse as biophysical assays, cellular imaging, and the production of therapeutic protein-drug conjugates. In addition to protein bioconjugation, the bis-heterocyclic scaffold we report herein will find applications in synthetic and medicinal chemistry.
Collapse
Affiliation(s)
- Mudassir H Mir
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Sangeeta Parmar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Chhaya Singh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Dimpy Kalia
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India.
| |
Collapse
|
10
|
Lin X, Harel O, Jbara M. Chemical Engineering of Artificial Transcription Factors by Orthogonal Palladium(II)-Mediated S-Arylation Reactions. Angew Chem Int Ed Engl 2024; 63:e202317511. [PMID: 38085105 DOI: 10.1002/anie.202317511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Site-selective functionalization strategies are in high demand to prepare well-defined homogeneous proteins for basic research and biomedical applications. In this regard, cysteine-based reactions have enabled a broad set of transformations to produce modified proteins for various applications. However, these approaches were mainly employed to modify a single reactive site with a specific transformation. Achieving site selectivity or multiple transformations, essential for preparing complex biomolecules, remains challenging. Herein we demonstrate the power of combining palladium(II)-mediated C-S bond formation and C-S bond cleavage reactions to selectively edit desired cysteine sites in complex and uniquely modified proteins. We developed an orthogonal palladium(II) strategy for rapid and effective diversification of multiple cysteine sites (3-6 residues) with various transformations. Importantly, we employed our approach to prepare 10 complex analogues, including modified, stapled, and multimeric proteins on a milligram scale. Furthermore, we also synthesized a focused library of stabilized artificial transcription factors that displayed enhanced stability and potent DNA binding activity. Our approach enables rapid and effective protein editing and opens new avenues to engineer new biomolecules for fundamental research and therapeutic applications.
Collapse
Affiliation(s)
- Xiaoxi Lin
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Omer Harel
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Muhammad Jbara
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
11
|
Nithun RV, Yao YM, Lin X, Habiballah S, Afek A, Jbara M. Deciphering the Role of the Ser-Phosphorylation Pattern on the DNA-Binding Activity of Max Transcription Factor Using Chemical Protein Synthesis. Angew Chem Int Ed Engl 2023; 62:e202310913. [PMID: 37642402 DOI: 10.1002/anie.202310913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 08/31/2023]
Abstract
The chemical synthesis of site-specifically modified transcription factors (TFs) is a powerful method to investigate how post-translational modifications (PTMs) influence TF-DNA interactions and impact gene expression. Among these TFs, Max plays a pivotal role in controlling the expression of 15 % of the genome. The activity of Max is regulated by PTMs; Ser-phosphorylation at the N-terminus is considered one of the key regulatory mechanisms. In this study, we developed a practical synthetic strategy to prepare homogeneous full-length Max for the first time, to explore the impact of Max phosphorylation. We prepared a focused library of eight Max variants, with distinct modification patterns, including mono-phosphorylated, and doubly phosphorylated analogues at Ser2/Ser11 as well as fluorescently labeled variants through native chemical ligation. Through comprehensive DNA binding analyses, we discovered that the phosphorylation position plays a crucial role in the DNA-binding activity of Max. Furthermore, in vitro high-throughput analysis using DNA microarrays revealed that the N-terminus phosphorylation pattern does not interfere with the DNA sequence specificity of Max. Our work provides insights into the regulatory role of Max's phosphorylation on the DNA interactions and sequence specificity, shedding light on how PTMs influence TF function.
Collapse
Affiliation(s)
- Raj V Nithun
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Yumi Minyi Yao
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Xiaoxi Lin
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Shaimaa Habiballah
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ariel Afek
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Muhammad Jbara
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
12
|
Kriegesmann J, Brik A. Synthesis of ubiquitinated proteins for biochemical and functional analysis. Chem Sci 2023; 14:10025-10040. [PMID: 37772107 PMCID: PMC10529715 DOI: 10.1039/d3sc03664b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/27/2023] [Indexed: 09/30/2023] Open
Abstract
Ubiquitination plays a crucial role in controlling various biological processes such as translation, DNA repair and immune response. Protein degradation for example, is one of the main processes which is controlled by the ubiquitin system and has significant implications on human health. In order to investigate these processes and the roles played by different ubiquitination patterns on biological systems, homogeneously ubiquitinated proteins are needed. Notably, these conjugates that are made enzymatically in cells cannot be easily obtained in large amounts and high homogeneity by employing such strategies. Therefore, chemical and semisynthetic approaches have emerged to prepare different ubiquitinated proteins. In this review, we will present the key synthetic strategies and their applications for the preparation of various ubiquitinated proteins. Furthermore, the use of these precious conjugates in different biochemical and functional studies will be highlighted.
Collapse
Affiliation(s)
- Julia Kriegesmann
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Haifa Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Haifa Israel
| |
Collapse
|
13
|
Nomura K, Okamoto R, Maki Y, Hayashibara A, Takao T, Fukuoka T, Miyoshi E, Pentelute BL, Kajihara Y. Rapid Chemical Synthesis of Serine Protease Inhibitor Kazal-type 13 (SPINK13) Glycoform by a Combined Method with Glycan Insertion Strategy and Fast-Flow Fmoc SPPS. Chemistry 2023; 29:e202300646. [PMID: 37294165 DOI: 10.1002/chem.202300646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 06/10/2023]
Abstract
Serine protease inhibitor Kazal type 13 (SPINK13) is a secreted protein that has been recently studied as a therapeutic drug and an interesting biomarker for cancer cells. Although SPINK13 has a consensus sequence (Pro-Asn-Val-Thr) for N-glycosylation, the existence of N-glycosylation and its functions are still unclear. In addition to this, the preparation of glycosylated SPINK 13 has not been examined by both the cell expression method and chemical synthesis. Herein we report the chemical synthesis of the scarce N-glycosylated form of SPINK13 by a rapid synthetic method combined with the chemical glycan insertion strategy and a fast-flow SPPS method. Glycosylated asparagine thioacid was designed to chemoselectively be inserted between two peptide segments where is the sterically bulky Pro-Asn(N-glycan)-Val junction by two coupling reactions which consist of diacyl disulfide coupling (DDC) and thioacid capture ligation (TCL). This insertion strategy successfully afforded the full-length polypeptide of SPINK13 within two steps from glycosylated asparagine thioacid. Because the two peptides used for this synthesis were prepared by a fast-flow SPPS, the total synthetic time of glycoprotein was considerably shortened. This synthetic concept enables us to repetitively synthesize a target glycoprotein easily. Folding experiments afforded well-folded structure confirmed by CD and disulfide bond map. Invasion assays of glycosylated SPINK13 and non-glycosylated SPINK13 with pancreatic cancer cells showed that non-glycosylated SPINK-13 was more potent than that of glycosylated SPINK13.
Collapse
Affiliation(s)
- Kota Nomura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Ryo Okamoto
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yuta Maki
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Ayumu Hayashibara
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshifumi Takao
- Institute of Protein Research, Osaka University, 3-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoya Fukuoka
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology B18, R596, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Yasuhiro Kajihara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
14
|
Currie MF, Singh SK, Ji M, Chatterjee C. The semisynthesis of site-specifically modified histones and histone-based probes of chromatin-modifying enzymes. Methods 2023; 215:28-37. [PMID: 37244506 PMCID: PMC10364803 DOI: 10.1016/j.ymeth.2023.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/02/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023] Open
Abstract
Histone post-translational modifications (PTMs) on lysine residues, including methylation, ubiquitylation, and sumoylation, have been studied using semisynthetic histones reconstituted into nucleosomes. These studies have revealed the in vitro effects of histone PTMs on chromatin structure, gene transcription, and biochemical crosstalk. However, the dynamic and transient nature of most enzyme-chromatin interactions poses a challenge toward identifying specific enzyme-substrate interactions. To address this, we report methodology for the synthesis of two ubiquitylated activity-based probe histones, H2BK120ub(G76C) and H2BK120ub(G76Dha), that may be used to trap enzyme active-site cysteines as disulfides or in the form of thioether linkages, respectively. The general synthetic method we report for converting ubiquitylated nucleosomes into activity-based probes may also be applied to other histone sites of ubiquitylation in order to facilitate the identification of enzyme-chromatin interactions.
Collapse
Affiliation(s)
- Madeline F Currie
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Sumeet K Singh
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Meihuan Ji
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Champak Chatterjee
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
15
|
Lin X, Nithun RV, Samanta R, Harel O, Jbara M. Enabling Peptide Ligation at Aromatic Junction Mimics via Native Chemical Ligation and Palladium-Mediated S-Arylation. Org Lett 2023; 25:4715-4719. [PMID: 37318270 PMCID: PMC10324392 DOI: 10.1021/acs.orglett.3c01652] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 06/16/2023]
Abstract
Synthetic strategies to assemble peptide fragments are in high demand to access homogeneous proteins for various applications. Here, we combined native chemical ligation (NCL) and Pd-mediated Cys arylation to enable practical peptide ligation at aromatic junctions. The utility of one-pot NCL and S-arylation at the Phe and Tyr junctions was demonstrated and employed for the rapid chemical synthesis of the DNA-binding domains of the transcription factors Myc and Max. Organometallic palladium reagents coupled with NCL enabled a practical strategy to assemble peptides at aromatic junctions.
Collapse
Affiliation(s)
- Xiaoxi Lin
- School of Chemistry, Raymond
and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Raj V. Nithun
- School of Chemistry, Raymond
and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Raju Samanta
- School of Chemistry, Raymond
and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Omer Harel
- School of Chemistry, Raymond
and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Muhammad Jbara
- School of Chemistry, Raymond
and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
16
|
Harel O, Jbara M. Chemical Synthesis of Bioactive Proteins. Angew Chem Int Ed Engl 2023; 62:e202217716. [PMID: 36661212 DOI: 10.1002/anie.202217716] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/21/2023]
Abstract
Nature has developed a plethora of protein machinery to operate and maintain nearly every task of cellular life. These processes are tightly regulated via post-expression modifications-transformations that modulate intracellular protein synthesis, folding, and activation. Methods to prepare homogeneously and precisely modified proteins are essential to probe their function and design new bioactive modalities. Synthetic chemistry has contributed remarkably to protein science by allowing the preparation of novel biomacromolecules that are often challenging or impractical to prepare via common biological means. The ability to chemically build and precisely modify proteins has enabled the production of new molecules with novel physicochemical properties and programmed activity for biomedical research, diagnostic, and therapeutic applications. This minireview summarizes recent developments in chemical protein synthesis to produce bioactive proteins, with emphasis on novel analogs with promising in vitro and in vivo activity.
Collapse
Affiliation(s)
- Omer Harel
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Muhammad Jbara
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
17
|
Xing Y, Wang Y, Ma D, Shen S, Song C, Zhang N, Bo T, Shi T, Huo S. N-Halosuccinimides mediated deprotection of cysteine-S protecting groups for one-pot regioselective synthesis of disulfide bonds in peptides under mild aqueous conditions. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
18
|
Wu H, Tan Y, Ngai WL, Li X. Total synthesis of interleukin-2 via a tunable backbone modification strategy. Chem Sci 2023; 14:1582-1589. [PMID: 36794182 PMCID: PMC9906654 DOI: 10.1039/d2sc05660g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/06/2023] [Indexed: 01/08/2023] Open
Abstract
Chemical synthesis of hydrophobic proteins presents a formidable task as they are often difficultly achieved via peptide synthesis, purification, and peptide ligation. Thus, peptide solubilizing strategies are needed to integrate with peptide ligation to achieve protein total synthesis. Herein, we report a tunable backbone modification strategy, taking advantage of the tunable stability of the Cys/Pen ligation intermediate, which allows for readily introducing a solubilizing tag for both peptide purification and ligation processes. The effectiveness of this strategy was demonstrated by the chemical synthesis of interleukin-2.
Collapse
Affiliation(s)
- Hongxiang Wu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Yi Tan
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Wai Lok Ngai
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 P. R. China
| |
Collapse
|
19
|
Selective macrocyclic peptide modulators of Lys63-linked ubiquitin chains disrupt DNA damage repair. Nat Commun 2022; 13:6174. [PMID: 36257952 PMCID: PMC9579194 DOI: 10.1038/s41467-022-33808-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Developing an effective binder for a specific ubiquitin (Ub) chain is a promising approach for modulating various biological processes with potential applications in drug discovery. Here, we combine the Random Non-standard Peptides Integrated Discovery (RaPID) method and chemical protein synthesis to screen an extended library of macrocyclic peptides against synthetic Lys63-linked Di-Ub to discover a specific binder for this Ub chain. Furthermore, next-generation binders are generated by chemical modifications. We show that our potent cyclic peptide is cell-permeable, and inhibits DNA damage repair, leading to apoptotic cell death. Concordantly, a pulldown experiment with the biotinylated analog of our lead cyclic peptide supports our findings. Collectively, we establish a powerful strategy for selective inhibition of protein-protein interactions associated with Lys63-linked Di-Ub using cyclic peptides. This study offers an advancement in modulating central Ub pathways and provides opportunities in drug discovery areas associated with Ub signaling.
Collapse
|
20
|
Nakatsu K, Okamoto A, Hayashi G, Murakami H. Repetitive Thiazolidine Deprotection Using a Thioester‐Compatible Aldehyde Scavenger for One‐Pot Multiple Peptide Ligation**. Angew Chem Int Ed Engl 2022; 61:e202206240. [DOI: 10.1002/anie.202206240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Koki Nakatsu
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho Chikusa-ku Nagoya 464-8603 Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Research Center for Advanced Science and Technology The University of Tokyo 4-6-1 Komaba Meguro-ku Tokyo 153-8904 Japan
| | - Gosuke Hayashi
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho Chikusa-ku Nagoya 464-8603 Japan
| | - Hiroshi Murakami
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho Chikusa-ku Nagoya 464-8603 Japan
- Institute of Nano-Life-Systems Institutes of Innovation for Future Society Nagoya University Furo-cho Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
21
|
Sun Z, Ma W, Cao Y, Wei T, Mo X, Chow HY, Tan Y, Cheung CH, Liu J, Lee HK, Tse EC, Liu H, Li X. Superfast desulfurization for protein chemical synthesis and modification. Chem 2022. [DOI: 10.1016/j.chempr.2022.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Hayashi G, Nakatsu K, Okamoto A, Murakami H. Repetitive Thiazolidine Deprotection Using a Thioester‐Compatible Aldehyde Scavenger for One‐Pot Multiple Peptide Ligation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Gosuke Hayashi
- Nagoya University Graduate School of Engineering School of Engineering: Nagoya Daigaku Kogakubu Daigakuin Kogaku Kenkyuka Biomolecular Engineering Furo-choChikusa-ku 464-8603 Nagoya JAPAN
| | - Koki Nakatsu
- Nagoya University Graduate School of Engineering School of Engineering: Nagoya Daigaku Kogakubu Daigakuin Kogaku Kenkyuka Biomolecular Engineering JAPAN
| | - Akimitsu Okamoto
- The University of Tokyo Graduate School of Engineering Faculty of Engineering: Tokyo Daigaku Daigakuin Kogakukei Kenkyuka Kogakubu Chemistry and Biotechnology JAPAN
| | - Hiroshi Murakami
- Nagoya University Graduate School of Engineering School of Engineering: Nagoya Daigaku Kogakubu Daigakuin Kogaku Kenkyuka Biomolecular Engineering JAPAN
| |
Collapse
|
23
|
Harel O, Jbara M. Posttranslational Chemical Mutagenesis Methods to Insert Posttranslational Modifications into Recombinant Proteins. Molecules 2022; 27:4389. [PMID: 35889261 PMCID: PMC9316245 DOI: 10.3390/molecules27144389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Posttranslational modifications (PTMs) dramatically expand the functional diversity of the proteome. The precise addition and removal of PTMs appears to modulate protein structure and function and control key regulatory processes in living systems. Deciphering how particular PTMs affect protein activity is a current frontier in biology and medicine. The large number of PTMs which can appear in several distinct positions, states, and combinations makes preparing such complex analogs using conventional biological and chemical tools challenging. Strategies to access homogeneous and precisely modified proteins with desired PTMs at selected sites and in feasible quantities are critical to interpreting their molecular code. Here, we summarize recent advances in posttranslational chemical mutagenesis and late-stage functionalization chemistry to transfer novel PTM mimicry into recombinant proteins with emphasis on novel transformations.
Collapse
Affiliation(s)
| | - Muhammad Jbara
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel;
| |
Collapse
|
24
|
Liao P, Liu H, He C. Chemical synthesis of human selenoprotein F and elucidation of its thiol-disulfide oxidoreductase activity. Chem Sci 2022; 13:6322-6327. [PMID: 35733894 PMCID: PMC9159075 DOI: 10.1039/d2sc00492e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/06/2022] [Indexed: 01/16/2023] Open
Abstract
Selenoprotein F (SelF) is an endoplasmic reticulum-residing eukaryotic protein that contains a selenocysteine (Sec) residue. It has been suggested to be involved in a number of physiological processes by acting as a thiol-disulfide oxidoreductase, but the exact role has remained unclear due to the lack of a reliable production method. We document herein a robust synthesis of the human SelF through a three-segment two-ligation semisynthesis strategy. Highlighted in this synthetic route are the use of a mild desulfurization process to protect the side-chain of the Sec residue from being affected and the simultaneous removal of acetamidomethyl and p-methoxybenzyl protection groups by PdCl2, thus facilitating the synthesis of multi-milligrams of homogenous SelF. The reduction potential of SelF was determined and the thiol-disulfide oxidoreductase activity was further supported by its ability to catalyze the reduction and isomerization of disulfide bonds.
Collapse
Affiliation(s)
- Peisi Liao
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| | - Hongmei Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
- Shenzhen Huazhong University of Science and Technology Research Institute Shenzhen 518057 China
| | - Chunmao He
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| |
Collapse
|
25
|
Wang S, Zhou Q, Li Y, Wei B, Liu X, Zhao J, Ye F, Zhou Z, Ding B, Wang P. Quinoline-Based Photolabile Protection Strategy Facilitates Efficient Protein Assembly. J Am Chem Soc 2022; 144:1232-1242. [PMID: 35034454 DOI: 10.1021/jacs.1c10324] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Native chemical ligation (NCL) provides a powerful solution to assemble proteins with precise chemical features, which enables a detailed investigation of the protein structure-function relationship. As an extension to NCL, the discovery of desulfurization and expressed protein ligation (EPL) techniques has greatly expanded the efficient access to large or challenging protein sequences via chemical ligations. Despite its superior reliability, the NCL-desulfurization protocol requires orthogonal protection strategies to allow selective desulfurization in the presence of native Cys, which is crucial to its synthetic application. In contrast to traditional thiol protecting groups, photolabile protecting groups (PPGs), which are removed upon irradiation, simplify protein assembly and therefore provide minimal perturbation to the peptide scaffold. However, current PPG strategies are mainly limited to nitro-benzyl derivatives, which are incompatible with NCL-desulfurization. Herein, we present for the first time that quinoline-based PPG for cysteine can facilitate various ligation strategies, including iterative NCL and EPL-desulfurization methods. 7-(Piperazin-1-yl)-2-(methyl)quinolinyl (PPZQ) caging of multiple cysteine residues within the protein sequence can be readily introduced via late-stage modification, while the traceless removal of PPZQ is highly efficient via photolysis in an aqueous buffer. In addition, the PPZQ group is compatible with radical desulfurization. The efficiency of this strategy has been highlighted by the synthesis of γ-synuclein and phosphorylated cystatin-S via one-pot iterative ligation and EPL-desulfurization methods. Besides, successful sextuple protection and deprotection of the expressed Interleukin-34 fragment demonstrate the great potential of this strategy in protein caging/uncaging investigations.
Collapse
Affiliation(s)
- Siyao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qingqing Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yunxue Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Bingcheng Wei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xinliang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jie Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Farong Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhongneng Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Bei Ding
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
26
|
Jacobsen MT, Spaltenstein P, Giesler RJ, Chou DHC, Kay MS. Improved Handling of Peptide Segments Using Side Chain-Based "Helping Hand" Solubilizing Tools. Methods Mol Biol 2022; 2530:81-107. [PMID: 35761044 DOI: 10.1007/978-1-0716-2489-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Maintaining high, or even sufficient, solubility of every peptide segment in chemical protein synthesis (CPS) remains a critical challenge; insolubility of just a single peptide segment can thwart a total synthesis venture. Multiple approaches have been used to address this challenge, most commonly by employing a chemical tool to temporarily improve peptide solubility. In this chapter, we discuss chemical tools for introducing semipermanent solubilizing sequences (termed helping hands) at the side chains of Lys and Glu residues. We describe the synthesis, incorporation by Fmoc-SPPS, and cleavage conditions for utilizing these two tools. For Lys sites, we discuss the Fmoc-Ddap-OH dimedone-based linker, which is achiral, synthesized in one step, can be introduced directly at primary amines, and is removed using hydroxylamine (or hydrazine). For Glu sites, we detail the new Fmoc-SPPS building block, Fmoc-Glu(AlHx)-OH, which can be prepared in an efficient process over two purifications. Solubilizing sequences are introduced directly on-resin and later cleaved with palladium-catalyzed transfer under aqueous conditions to restore a native Glu side chain. These two chemical tools are straightforward to prepare and implement, and we anticipate continued usage in "difficult" peptide segments following the protocols described herein.
Collapse
Affiliation(s)
- Michael T Jacobsen
- Division of Diabetes and Endocrinology, Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Paul Spaltenstein
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Riley J Giesler
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Danny Hung-Chieh Chou
- Division of Diabetes and Endocrinology, Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Michael S Kay
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
27
|
Ai H, Peng S, Li JB. Chemical methods for studying the crosstalk between histone H2B ubiquitylation and H3 methylation. J Pept Sci 2021; 28:e3381. [PMID: 34811838 DOI: 10.1002/psc.3381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/19/2021] [Accepted: 11/03/2021] [Indexed: 11/06/2022]
Abstract
The reversible and dynamic post-translational modifications (PTMs) of histones in eukaryotic chromatin are intimately connected to cell development and gene function, and abnormal regulation of PTMs can result in cancer and neurodegenerative diseases. Specific combinations of these modifications are mediated by a series of chromatin proteins that write, erase, and read the "histone codes," but mechanistic studies of the precise biochemical and structural relationships between different sets of modifications and their effects on chromatin function constitute a unique challenge to canonical biochemical approaches. In the past decade, the development and application of chemical methods for investigating histone PTM crosstalks has received considerable attention in the field of chemical biology. In this review, taking the functional crosstalk between H2B ubiquitylation at Lys120 (H2BK120ub) and H3 methylation at Lys79 (H3K79me) as a typical example, we survey recent developments of different chemical methods, in particular, protein synthetic chemistry and protein-based chemical probes, for studying the mechanism of the functional crosstalks of histone PTMs.
Collapse
Affiliation(s)
- Huasong Ai
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Shuai Peng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
28
|
Erickson PW, Fulcher JM, Spaltenstein P, Kay MS. Traceless Click-Assisted Native Chemical Ligation Enabled by Protecting Dibenzocyclooctyne from Acid-Mediated Rearrangement with Copper(I). Bioconjug Chem 2021; 32:2233-2244. [PMID: 34619957 PMCID: PMC9769386 DOI: 10.1021/acs.bioconjchem.1c00403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The scope of proteins accessible to total chemical synthesis via native chemical ligation (NCL) is often limited by slow ligation kinetics. Here we describe Click-Assisted NCL (CAN), in which peptides are incorporated with traceless "helping hand" lysine linkers that enable addition of dibenzocyclooctyne (DBCO) and azide handles. The resulting strain-promoted alkyne-azide cycloaddition (SPAAC) increases their effective concentration to greatly accelerate ligations. We demonstrate that copper(I) protects DBCO from acid-mediated rearrangement during acidic peptide cleavage, enabling direct production of DBCO synthetic peptides. Excitingly, triazole-linked model peptides ligated rapidly and accumulated little side product due to the fast reaction time. Using the E. coli ribosomal subunit L32 as a model protein, we further demonstrate that SPAAC, ligation, desulfurization, and linker cleavage steps can be performed in one pot. CAN is a useful method for overcoming challenging ligations involving sterically hindered junctions. Additionally, CAN is anticipated to be an important stepping stone toward a multisegment, one-pot, templated ligation system.
Collapse
Affiliation(s)
- Patrick W. Erickson
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112, United States
- Institute for Protein Design, Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - James M. Fulcher
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112, United States
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Paul Spaltenstein
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112, United States
| | - Michael S. Kay
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112, United States
| |
Collapse
|
29
|
Spears RJ, McMahon C, Chudasama V. Cysteine protecting groups: applications in peptide and protein science. Chem Soc Rev 2021; 50:11098-11155. [PMID: 34605832 DOI: 10.1039/d1cs00271f] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protecting group chemistry for the cysteine thiol group has enabled a vast array of peptide and protein chemistry over the last several decades. Increasingly sophisticated strategies for the protection, and subsequent deprotection, of cysteine have been developed, facilitating synthesis of complex disulfide-rich peptides, semisynthesis of proteins, and peptide/protein labelling in vitro and in vivo. In this review, we analyse and discuss the 60+ individual protecting groups reported for cysteine, highlighting their applications in peptide synthesis and protein science.
Collapse
Affiliation(s)
| | - Clíona McMahon
- Department of Chemistry, University College London, London, UK.
| | - Vijay Chudasama
- Department of Chemistry, University College London, London, UK.
| |
Collapse
|
30
|
Pomplun S, Jbara M, Schissel CK, Wilson Hawken S, Boija A, Li C, Klein I, Pentelute BL. Parallel Automated Flow Synthesis of Covalent Protein Complexes That Can Inhibit MYC-Driven Transcription. ACS CENTRAL SCIENCE 2021; 7:1408-1418. [PMID: 34471684 PMCID: PMC8393199 DOI: 10.1021/acscentsci.1c00663] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 06/11/2023]
Abstract
Dysregulation of the transcription factor MYC is involved in many human cancers. The dimeric transcription factor complexes of MYC/MAX and MAX/MAX activate or inhibit, respectively, gene transcription upon binding to the same enhancer box DNA. Targeting these complexes in cancer is a long-standing challenge. Inspired by the inhibitory activity of the MAX/MAX dimer, we engineered covalently linked, synthetic homo- and heterodimeric protein complexes to attenuate oncogenic MYC-driven transcription. We prepared the covalent protein complexes (∼20 kDa, 167-231 residues) in a single shot via parallel automated flow synthesis in hours. The stabilized covalent dimers display DNA binding activity, are intrinsically cell-penetrant, and inhibit cancer cell proliferation in different cell lines. RNA sequencing and gene set enrichment analysis in A549 cancer cells confirmed that the synthetic dimers interfere with MYC-driven transcription. Our results demonstrate the potential of automated flow technology to rapidly deliver engineered synthetic protein complex mimetics that can serve as a starting point in developing inhibitors of MYC-driven cancer cell growth.
Collapse
Affiliation(s)
- Sebastian Pomplun
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Muhammad Jbara
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Carly K. Schissel
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Susana Wilson Hawken
- Whitehead
Institute for Biomedical Research, Cambridge, Massachusetts 02142, United States
- Department
of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ann Boija
- Whitehead
Institute for Biomedical Research, Cambridge, Massachusetts 02142, United States
- Department
of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Charles Li
- Whitehead
Institute for Biomedical Research, Cambridge, Massachusetts 02142, United States
- Department
of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Isaac Klein
- Whitehead
Institute for Biomedical Research, Cambridge, Massachusetts 02142, United States
- Department
of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bradley L. Pentelute
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Center
for Environmental Health Sciences, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Broad Institute
of MIT and Harvard, 415
Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
31
|
Sun Z, Li X. Studies on
2‐Formylphenylboronic Acid‐Based
Ser/Thr Ligation and Cys/Pen Ligation
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhenquan Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR 999077 China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR 999077 China
| |
Collapse
|
32
|
Matinkhoo K, Wong AAWL, Hambira CM, Kato B, Wei C, Müller C, Hechler T, Braun A, Gallo F, Pahl A, Perrin DM. Design, Synthesis, and Biochemical Evaluation of Alpha-Amanitin Derivatives Containing Analogs of the trans-Hydroxyproline Residue for Potential Use in Antibody-Drug Conjugates. Chemistry 2021; 27:10282-10292. [PMID: 34058032 DOI: 10.1002/chem.202101373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Indexed: 01/08/2023]
Abstract
Alpha-amanitin, an extremely toxic bicyclic octapeptide extracted from the death-cap mushroom, Amanita phalloides, is a highly selective allosteric inhibitor of RNA polymerase II. Following on growing interest in using this toxin as a payload in antibody-drug conjugates, herein we report the synthesis and biochemical evaluation of several new derivatives of this toxin to probe the role of the trans-hydroxyproline (Hyp), which is known to be critical for toxicity. This structure activity relationship (SAR) study represents the first of its kind to use various Hyp-analogs to alter the conformational and H-bonding properties of Hyp in amanitin.
Collapse
Affiliation(s)
- Kaveh Matinkhoo
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T-1Z1, Canada
| | - Antonio A W L Wong
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T-1Z1, Canada
| | - Chido M Hambira
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T-1Z1, Canada
| | - Brandon Kato
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T-1Z1, Canada
| | - Charlie Wei
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T-1Z1, Canada
| | - Christoph Müller
- Heidelberg Pharma, Gregor-Mendel-Straße 22, 68526, Ladenburg, Germany
| | - Torsten Hechler
- Heidelberg Pharma, Gregor-Mendel-Straße 22, 68526, Ladenburg, Germany
| | - Alexandra Braun
- Heidelberg Pharma, Gregor-Mendel-Straße 22, 68526, Ladenburg, Germany
| | - Francesca Gallo
- Heidelberg Pharma, Gregor-Mendel-Straße 22, 68526, Ladenburg, Germany
| | - Andreas Pahl
- Heidelberg Pharma, Gregor-Mendel-Straße 22, 68526, Ladenburg, Germany
| | - David M Perrin
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T-1Z1, Canada
| |
Collapse
|
33
|
Nomura K, Maki Y, Okamoto R, Satoh A, Kajihara Y. Glycoprotein Semisynthesis by Chemical Insertion of Glycosyl Asparagine Using a Bifunctional Thioacid-Mediated Strategy. J Am Chem Soc 2021; 143:10157-10167. [PMID: 34189908 DOI: 10.1021/jacs.1c02601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glycosylation is a major modification of secreted and cell surface proteins, and the resultant glycans show considerable heterogeneity in their structures. To understand the biological processes arising from each glycoform, the preparation of homogeneous glycoproteins is essential for extensive biological experiments. To establish a more robust and rapid synthetic route for the synthesis of homogeneous glycoproteins, we studied several key reactions based on amino thioacids. We found that diacyl disulfide coupling (DDC) formed with glycosyl asparagine thioacid and peptide thioacid yielded glycopeptides. This efficient coupling reaction enabled us to develop a new glycoprotein synthesis method, such as the bifunctional thioacid-mediated strategy, which can couple two peptides with the N- and C-termini of glycosyl asparagine thioacid. Previous glycoprotein synthesis methods required valuable glycosyl asparagine in the early stage and subsequent multiple glycoprotein synthesis routes, whereas the developed concept can generate glycoproteins within a few steps from peptide and glycosyl asparagine thioacid. Herein, we report the characterization of the DDC of amino thioacids and the efficient ability of glycosyl asparagine thioacid to be used for robust glycoprotein semisynthesis.
Collapse
Affiliation(s)
| | | | | | - Ayano Satoh
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1, Tsushimanaka, Okayama 700-0082, Japan
| | | |
Collapse
|
34
|
Liang L, Chu G, Qu Q, Zuo C, Mao J, Zheng Q, Chen J, Meng X, Jing Y, Deng H, Li Y, Liu L. Chemical Synthesis of Activity‐Based E2‐Ubiquitin Probes for the Structural Analysis of E3 Ligase‐Catalyzed Transthiolation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lu‐Jun Liang
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Guo‐Chao Chu
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
- School of Food and Biological Engineering Engineering Research Center of Bio-process Ministry of Education Hefei University of Technology Hefei 230009 China
| | - Qian Qu
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Chong Zuo
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Junxiong Mao
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Qingyun Zheng
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jingnan Chen
- School of Food and Biological Engineering Engineering Research Center of Bio-process Ministry of Education Hefei University of Technology Hefei 230009 China
| | - Xianbin Meng
- MOE Key Laboratory of Bioinformatics School of Life Sciences Tsinghua University Beijing 100084 China
| | - Yangwode Jing
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics School of Life Sciences Tsinghua University Beijing 100084 China
| | - Yi‐Ming Li
- School of Food and Biological Engineering Engineering Research Center of Bio-process Ministry of Education Hefei University of Technology Hefei 230009 China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
35
|
Liang LJ, Chu GC, Qu Q, Zuo C, Mao J, Zheng Q, Chen J, Meng X, Jing Y, Deng H, Li YM, Liu L. Chemical Synthesis of Activity-Based E2-Ubiquitin Probes for the Structural Analysis of E3 Ligase-Catalyzed Transthiolation. Angew Chem Int Ed Engl 2021; 60:17171-17177. [PMID: 34021957 DOI: 10.1002/anie.202105870] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 12/17/2022]
Abstract
Activity-based E2 conjugating enzyme (E2)-ubiquitin (Ub) probes have recently emerged as effective tools for studying the molecular mechanism of E3 ligase (E3)-catalyzed ubiquitination. However, the preparation of existing activity-based E2-Ub probes depends on recombination technology and bioconjugation chemistry, limiting their structural diversity. Herein we describe an expedient total chemical synthesis of an E2 enzyme variant through a hydrazide-based native chemical ligation, which enabled the construction of a structurally new activity-based E2-Ub probe to covalently capture the catalytic site of Cys-dependent E3s. Chemical cross-linking coupled with mass spectrometry (CXMS) demonstrated the utility of this new probe in structural analysis of the intermediates formed during Nedd4 and Parkin-mediated transthiolation. This study exemplifies the utility of chemical protein synthesis for the development of protein probes for biological studies.
Collapse
Affiliation(s)
- Lu-Jun Liang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Guo-Chao Chu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.,School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
| | - Qian Qu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chong Zuo
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Junxiong Mao
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qingyun Zheng
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jingnan Chen
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
| | - Xianbin Meng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yangwode Jing
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yi-Ming Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
36
|
Ye Y, Wu X, Chu GC, Hua X, Wang J, Zheng X, Li YM. Semi-synthesis of K27-linked-mixed-triubiquitin chains through a combination of enzymatic reaction with CAACU strategy. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Kamo N, Kujirai T, Kurumizaka H, Murakami H, Hayashi G, Okamoto A. Organoruthenium-catalyzed chemical protein synthesis to elucidate the functions of epigenetic modifications on heterochromatin factors. Chem Sci 2021; 12:5926-5937. [PMID: 35342540 PMCID: PMC8872386 DOI: 10.1039/d1sc00731a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/21/2021] [Indexed: 12/21/2022] Open
Abstract
The application of organometallic compounds for protein science has received attention. Recently, total chemical protein synthesis using transition metal complexes has been developed to produce various proteins bearing site-specific posttranslational modifications (PTMs). However, in general, significant amounts of metal complexes were required to achieve chemical reactions of proteins bearing a large number of nucleophilic functional groups. Moreover, syntheses of medium-size proteins (>20 kDa) were plagued by time-consuming procedures due to cumbersome purification and isolation steps, which prevented access to variously decorated proteins. Here, we report a one-pot multiple peptide ligation strategy assisted by an air-tolerant organoruthenium catalyst that showed more than 50-fold activity over previous palladium complexes, leading to rapid and quantitative deprotection on a protein with a catalytic amount (20 mol%) of the metal complex even in the presence of excess thiol moieties. Utilizing the organoruthenium catalyst, heterochromatin factors above 20 kDa, such as linker histone H1.2 and heterochromatin protein 1α (HP1α), bearing site-specific PTMs including phosphorylation, ubiquitination, citrullination, and acetylation have been synthesized. The biochemical assays using synthetic proteins revealed that the citrullination at R53 in H1.2 resulted in the reduced electrostatic interaction with DNA and the reduced binding affinity to nucleosomes. Furthermore, we identified a key phosphorylation region in HP1α to control its DNA-binding ability. The ruthenium chemistry developed here will facilitate the preparation of a variety of biologically and medically significant proteins containing PTMs and non-natural amino acids.
Collapse
Affiliation(s)
- Naoki Kamo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo Bunkyo-ku Tokyo 113-0032 Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo Bunkyo-ku Tokyo 113-0032 Japan
| | - Hiroshi Murakami
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Gosuke Hayashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- Research Center for Advanced Science and Technology, The University of Tokyo Meguro-ku Tokyo 153-8904 Japan
| |
Collapse
|
38
|
Jbara M, Rodriguez J, Dhanjee HH, Loas A, Buchwald SL, Pentelute BL. Oligonucleotide Bioconjugation with Bifunctional Palladium Reagents. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Muhammad Jbara
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
| | - Jacob Rodriguez
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
| | - Heemal H. Dhanjee
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
| | - Andrei Loas
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
| | - Stephen L. Buchwald
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
| | - Bradley L. Pentelute
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
- The Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology 500 Main Street Cambridge MA 02142 USA
- Center for Environmental Health Sciences Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
- Broad Institute of MIT and Harvard 415 Main Street Cambridge MA 02142 USA
| |
Collapse
|
39
|
Jbara M, Rodriguez J, Dhanjee HH, Loas A, Buchwald SL, Pentelute BL. Oligonucleotide Bioconjugation with Bifunctional Palladium Reagents. Angew Chem Int Ed Engl 2021; 60:12109-12115. [PMID: 33730425 DOI: 10.1002/anie.202103180] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 01/01/2023]
Abstract
Organometallic reagents enable practical strategies for bioconjugation. Innovations in the design of water-soluble ligands and the enhancement of reaction rates have allowed for chemoselective cross-coupling reactions of peptides and proteins to be carried out in water. There are currently no organometallic-based methods for oligonucleotide bioconjugation to other biomolecules. Here we report bifunctional palladium(II)-oxidative addition complexes (OACs) as reagents for high-yielding oligonucleotide bioconjugation reactions. These bifunctional OACs react chemoselectively with amine-modified oligonucleotides to generate the first isolable, bench stable oligonucleotide-palladium(II) OACs. These complexes undergo site-selective C-S arylation with a broad range of native thiol-containing biomolecules at low micromolar concentrations in under one hour. This approach provided oligonucleotide-peptide, oligonucleotide-protein, oligonucleotide-small molecule, and oligonucleotide-oligonucleotide conjugates in >80 % yield and afforded conjugation of multiple copies of oligonucleotides onto a monoclonal antibody.
Collapse
Affiliation(s)
- Muhammad Jbara
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Jacob Rodriguez
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Heemal H Dhanjee
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA.,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02142, USA.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.,Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| |
Collapse
|
40
|
Vamisetti GB, Meledin R, Nawatha M, Suga H, Brik A. The Development of a Fluorescence-Based Competitive Assay Enabled the Discovery of Dimeric Cyclic Peptide Modulators of Ubiquitin Chains. Angew Chem Int Ed Engl 2021; 60:7018-7023. [PMID: 33326152 PMCID: PMC8048552 DOI: 10.1002/anie.202013392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/13/2020] [Indexed: 12/15/2022]
Abstract
Development of modulators targeting specific interactions of ubiquitin-based conjugates with their partners is a formidable task since it requires a suitable screening assay and homogeneous ubiquitin conjugates. We developed a novel high-throughput strategy for screening ligands for Lys48-linked tetraubiquitin chain in a relatively simple, fast, and affordable manner. This approach combined with a state-of-the-art toolbox of chemical protein synthesis and a specially optimized Cys deprotection protocol enabled us to design highly potent, Lys48-linked tetraubiquitin chain selective "next generation" dimeric peptide modulators. The dimeric peptide exhibited cancer cell permeability and induced cell death with higher efficiency compared to its monocyclic analogue. These features make our dimeric peptide a promising candidate for further studies using in vivo models. Our assay can be adopted for other various ubiquitin chains in their free or anchored forms as well as conjugates for Ub-like modifiers.
Collapse
Affiliation(s)
- Ganga B. Vamisetti
- SchulichFaculty of ChemistryTechnion-Israel Institute of TechnologyHaifa3200008Israel
| | - Roman Meledin
- SchulichFaculty of ChemistryTechnion-Israel Institute of TechnologyHaifa3200008Israel
| | - Mickal Nawatha
- SchulichFaculty of ChemistryTechnion-Israel Institute of TechnologyHaifa3200008Israel
| | - Hiroaki Suga
- Department of ChemistrySchool of ScienceThe University of TokyoTokyo113-0033Japan
| | - Ashraf Brik
- SchulichFaculty of ChemistryTechnion-Israel Institute of TechnologyHaifa3200008Israel
| |
Collapse
|
41
|
Vamisetti GB, Meledin R, Nawatha M, Suga H, Brik A. The Development of a Fluorescence‐Based Competitive Assay Enabled the Discovery of Dimeric Cyclic Peptide Modulators of Ubiquitin Chains. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ganga B. Vamisetti
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 3200008 Israel
| | - Roman Meledin
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 3200008 Israel
| | - Mickal Nawatha
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 3200008 Israel
| | - Hiroaki Suga
- Department of Chemistry School of Science The University of Tokyo Tokyo 113-0033 Japan
| | - Ashraf Brik
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 3200008 Israel
| |
Collapse
|
42
|
Laps S, Satish G, Brik A. Harnessing the power of transition metals in solid-phase peptide synthesis and key steps in the (semi)synthesis of proteins. Chem Soc Rev 2021; 50:2367-2387. [PMID: 33432943 DOI: 10.1039/d0cs01156h] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Peptides and proteins can be either synthesized using solid-phase peptide synthesis (SPPS) or by applying a combination of SPPS and ligation approaches to address fundamental questions related to human health and disease, among others. The demand for their production either by chemical or biological methods continues to raise significant interests from the synthetic community. In this context, transition metals such as Pd, Ag, Hg, Tl, Au, Zn, Ni, and Cu have also contributed to the field of peptide and protein synthesis such as in peptide conjugation, extending native chemical ligation (NCL), and for regioselective disulfide bonds formation. In this review, we highlight, summarize, and evaluate the use of various transition metals in the chemical synthesis of peptides and proteins with emphasis on recent developments in this exciting research area.
Collapse
Affiliation(s)
- Shay Laps
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel.
| | - Gandhesiri Satish
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel.
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel.
| |
Collapse
|
43
|
Lindstedt PR, Taylor RJ, Bernardes GJL, Vendruscolo M. Facile Installation of Post-translational Modifications on the Tau Protein via Chemical Mutagenesis. ACS Chem Neurosci 2021; 12:557-561. [PMID: 33464820 DOI: 10.1021/acschemneuro.0c00761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Post-translational modifications of proteins are ubiquitous in living organisms, as they enable an accurate control of the interactions of these macromolecules. For mechanistic studies, it would be highly advantageous to be able to produce in vitro post-translationally modified proteins with site-specificity. Here, we demonstrate one facile way to achieve this goal through the use of post-translational chemical mutagenesis. We illustrate this approach by performing site-specific phosphorylation and methylation of tau, a protein that stabilizes microtubules and whose aggregation is closely linked with Alzheimer's disease. We then verify the effects of the post-translational modifications on the ability of tau to control microtubule polymerization, revealing in particular an unexpected role for phosphorylation at S199, which is outside the microtubule-binding region of tau. These results show how the chemical mutagenesis approach that we present enables the systematic analysis of site-specific post-translational modifications of a key protein involved in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Philip R. Lindstedt
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, United Kingdom
| | - Ross J. Taylor
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, United Kingdom
| | - Gonçalo J. L. Bernardes
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, United Kingdom
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, United Kingdom
| |
Collapse
|
44
|
Chu GC, Zhao R, Wu X, Shi J, Li YM. One-Pot Synthesis of a Bis-Thio-Acetone Linked Ubiquitinated Histones Using 1,3-Dibromoacetone. J Org Chem 2020; 85:15631-15637. [PMID: 33191736 DOI: 10.1021/acs.joc.0c01851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Histone ubiquitination affects the structure and function of nucleosomes. Here, we reported a one-pot synthesis of ubiquitinated histone analogues using 1,3-dibromoacetone (DBA) as the cross-linking reagent. The key step is that under the acidic borate buffer, the DBA linker can be efficiently installed to the Cys of the recombinant Ub mutant, followed by the coupling between the Ub-DBA with histones at physiological pH. The process requires a single HPLC step or orthogonal affinity tag purification to obtain ubiquitinated histone at about 24-38 mg/L expression.
Collapse
Affiliation(s)
- Guo-Chao Chu
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.,Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Rui Zhao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiangwei Wu
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jing Shi
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yi-Ming Li
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| |
Collapse
|
45
|
Brewster RC, Klemencic E, Jarvis AG. Palladium in biological media: Can the synthetic chemist's most versatile transition metal become a powerful biological tool? J Inorg Biochem 2020; 215:111317. [PMID: 33310459 DOI: 10.1016/j.jinorgbio.2020.111317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022]
Abstract
Palladium catalysed reactions are ubiquitous in synthetic organic chemistry in both organic solvents and aqueous buffers. The broad reactivity of palladium catalysis has drawn interest as a means to conduct orthogonal transformations in biological settings. Successful examples have been shown for protein modification, in vivo drug decaging and as palladium-protein biohybrid catalysts for selective catalysis. Biological media represents a challenging environment for palladium chemistry due to the presence of a multitude of chelators, catalyst poisons and a requirement for milder reaction conditions e.g. lower temperatures. This review looks to identify successful examples of palladium-catalysed reactions in the presence of proteins or cells and analyse solutions to help to overcome the challenges of working in biological systems.
Collapse
Affiliation(s)
- Richard C Brewster
- EaStCHEM School of Chemistry, Joseph Black Building, David Brewster Rd, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Eva Klemencic
- EaStCHEM School of Chemistry, Joseph Black Building, David Brewster Rd, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Amanda G Jarvis
- EaStCHEM School of Chemistry, Joseph Black Building, David Brewster Rd, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom.
| |
Collapse
|
46
|
Kobayashi D, Naruse N, Denda M, Shigenaga A, Otaka A. Deprotection of S-acetamidomethyl cysteine with copper(ii) and 1,2-aminothiols under aerobic conditions. Org Biomol Chem 2020; 18:8638-8645. [PMID: 32856682 DOI: 10.1039/d0ob01475c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ring-opening by CuSO4 of a 1,3-thiazolidine carbonyl structure (Thz) as an N-terminal cysteine (Cys) residue revealed that an intramolecular S-acetamidomethyl cysteine (Cys(Acm)) can also be deprotected with concomitant formation of a disulphide bond connecting the two Cys residues. A mechanistic study on the disulphide formation led to a general protocol for deprotection of the S-Acm group by CuSO4 and a 1,2-aminothiol under aerobic conditions. Application of this new deprotection reaction allowed for the synthesis of Apamin, a peptide with two-disulphides in a one-pot/stepwise disulphide-bridging procedure.
Collapse
Affiliation(s)
- Daishiro Kobayashi
- Insutitute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan.
| | | | | | | | | |
Collapse
|
47
|
Vamisetti GB, Satish G, Sulkshane P, Mann G, Glickman MH, Brik A. On-Demand Detachment of Succinimides on Cysteine to Facilitate (Semi)Synthesis of Challenging Proteins. J Am Chem Soc 2020; 142:19558-19569. [PMID: 33136379 PMCID: PMC7705887 DOI: 10.1021/jacs.0c07663] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
The
maleimide group is a widely used reagent for bioconjugation
of peptides, proteins, and oligonucleotides employing Michael addition
and Diels–Alder cycloaddition reactions. However, the utility
of this functionality in chemical synthesis of peptides and proteins
remains unexplored. We report, for the first time that PdII complexes can mediate the efficient removal of various succinimide
derivatives in aqueous conditions. Succinimide removal by PdII was applied for the synthesis of two ubiquitin activity-based probes
(Ub-ABPs) employing solid phase chemical ligation (SPCL). SPCL was
achieved through a sequential three segment ligation on a polymer
support via a maleimide anchor. The obtained probes successfully formed
the expected covalent complexes with deubiquitinating enzymes (DUBs)
USP2 and USP7, highlighting the use of our new method for efficient
preparation of unique synthetic proteins. Importantly, we demonstrate
the advantages of our newly developed method for the protection and
deprotection of native cysteine with a succinimide group in a peptide
fragment derived from thioredoxin-1 (Trx-1) obtained via intein based
expression to enable ligation/desulfurization and subsequent disulfide
bond formation in a one-pot process.
Collapse
Affiliation(s)
- Ganga B Vamisetti
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Gandhesiri Satish
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Prasad Sulkshane
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Guy Mann
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Michael H Glickman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| |
Collapse
|
48
|
He PY, Chen H, Hu HG, Hu JJ, Lim YJ, Li YM. Late-stage peptide and protein modifications through phospha-Michael addition reaction. Chem Commun (Camb) 2020; 56:12632-12635. [PMID: 32960198 DOI: 10.1039/d0cc04969g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We developed a late-stage modification strategy by a phospha-Michael addition reaction between various functional phosphines and unprotected dehydroalanine (Dha) peptides and proteins under mild conditions. This strategy was applied to generate a staple peptide to enhance its cell membrane penetrability, and it was also able to regulate α-synuclein aggregation properties and morphological characteristics with the addition of different charges.
Collapse
Affiliation(s)
- Pei-Yang He
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | | | | | | | | | | |
Collapse
|
49
|
Nakatsu K, Hayashi G, Okamoto A. Toolbox for chemically synthesized histone proteins. Curr Opin Chem Biol 2020; 58:10-19. [DOI: 10.1016/j.cbpa.2020.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 01/28/2023]
|
50
|
Sui X, Wang Y, Du YX, Liang LJ, Zheng Q, Li YM, Liu L. Development and application of ubiquitin-based chemical probes. Chem Sci 2020; 11:12633-12646. [PMID: 34123237 PMCID: PMC8163311 DOI: 10.1039/d0sc03295f] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein ubiquitination regulates almost every process in eukaryotic cells. The study of the many enzymes involved in the ubiquitination system and the development of ubiquitination-associated therapeutics are important areas of current research. Synthetic tools such as ubiquitin-based chemical probes have been making an increasing contribution to deciphering various biochemical components involved in ubiquitin conjugation, recruitment, signaling, and deconjugation. In the present minireview, we summarize the progress of ubiquitin-based chemical probes with an emphasis on their various structures and chemical synthesis. We discuss the utility of the ubiquitin-based chemical probes for discovering and profiling ubiquitin-dependent signaling systems, as well as the monitoring and visualization of ubiquitin-related enzymatic machinery. We also show how the probes can serve to elucidate the molecular mechanism of recognition and catalysis. Collectively, the development and application of ubiquitin-based chemical probes emphasizes the importance and utility of chemical protein synthesis in modern chemical biology. This article reviews the design, synthesis, and application of different classes of Ub-based chemical probes.![]()
Collapse
Affiliation(s)
- Xin Sui
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology Hefei 230009 China .,Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Yu Wang
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology Hefei 230009 China
| | - Yun-Xiang Du
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Lu-Jun Liang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Qingyun Zheng
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Yi-Ming Li
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology Hefei 230009 China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University Beijing 100084 China
| |
Collapse
|