1
|
Zhao K, Zhang H, Wang S, Zhou Y, Zhang Z, Kang B, Lin H, Zhang Y, Gu J, Pantoja C, Liu L, He Y, Pan G, Shan Y, Long B. METTL13 is essential for the survival of acute myeloid leukemia cells by regulating MYC. Cell Death Discov 2025; 11:240. [PMID: 40382345 DOI: 10.1038/s41420-025-02512-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/18/2025] [Accepted: 04/25/2025] [Indexed: 05/20/2025] Open
Abstract
Recently, some methyltransferase-like (METTL) proteins have been found to play crucial roles in the development of acute myeloid leukemia (AML) through mediating RNA modifications, such as METTL3/14/16 mediated N6-methyladenosine (m6A) and METTL1 mediated N7-methylguanosine (m7G). However, the roles of other METTL proteins in AML progression remain unknown. Here, we examined the expression levels of all METTL members in AML samples and showed that METTL13 was increased in AML and positively correlated with poor prognosis. Moreover, METTL13 deficiency impaired AML cell proliferation capability in vitro, improved the survival of AML cell line xenograft immune-deficient mice, and reduced tumor infiltration in vivo. Mechanistically, MYC was downregulated after METTL13 knockdown and forced expression of MYC rescued the cell proliferation defect in METTL13-deficient AML cells. Our findings uncover the critical role of METTL13 in the survival of AML cells and identify MYC as a potential downstream target of METTL13. This work highlights METTL13 as a promising candidate target for AML therapy.
Collapse
Affiliation(s)
- Kui Zhao
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, 510630, Guangzhou, China
| | - Hanyue Zhang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, 510630, Guangzhou, China
| | - Shuoting Wang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, 510630, Guangzhou, China
| | - Yuhang Zhou
- Department of Gastroenterology, The Eighth Affiliated Hospital, Sun Yat-sen University, 518033, Shenzhen, China
| | - Zhishuai Zhang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Baoqiang Kang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Huaisong Lin
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Yanqi Zhang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Jiaming Gu
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Carla Pantoja
- Department of Cell Biology, Yale University, New Haven, CT, USA
| | - Lingling Liu
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, 510630, Guangzhou, China
| | - Yi He
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, 510630, Guangzhou, China
| | - Guangjin Pan
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China.
| | - Yongli Shan
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China.
| | - Bing Long
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, 510630, Guangzhou, China.
| |
Collapse
|
2
|
Hamey JJ, Shah M, Wade JD, Bartolec TK, Wettenhall REH, Quinlan KGR, Williamson NA, Wilkins MR. SMYD5 is a ribosomal methyltransferase that trimethylates RPL40 lysine 22 through recognition of a KXY motif. Cell Rep 2025; 44:115518. [PMID: 40184250 DOI: 10.1016/j.celrep.2025.115518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/03/2025] [Accepted: 03/14/2025] [Indexed: 04/06/2025] Open
Abstract
The eukaryotic ribosome is highly modified by protein methylation, yet many of the responsible methyltransferases remain unknown. Here, we identify SET and MYND domain-containing protein 5 (SMYD5) as a ribosomal protein methyltransferase that catalyzes trimethylation of RPL40/eL40 at lysine 22. Through a systematic mass spectrometry-based approach, we identify 12 primary sites of protein methylation in ribosomes from K562 cells, including at RPL40 K22. Through in vitro methylation of synthetic RPL40 using fractionated lysate, we then identify SMYD5 as a candidate RPL40 K22 methyltransferase. We show that recombinant SMYD5 has robust activity toward RPL40 K22 in vitro and that active site mutations ablate this activity. Knockouts of SMYD5 in K562 cells show a complete loss of RPL40 K22 methylation and decreased polysome levels. We show that SMYD5 does not methylate histones in vitro, and by systematic analysis of its recognition motif, we find that SMYD5 requires a KXY motif for methylation, explaining its lack of activity toward histones.
Collapse
Affiliation(s)
- Joshua J Hamey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Manan Shah
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - John D Wade
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Tara K Bartolec
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard E H Wettenhall
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nicholas A Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Øye H, Lundekvam M, Caiella A, Hellesvik M, Arnesen T. Protein N-terminal modifications: molecular machineries and biological implications. Trends Biochem Sci 2025; 50:290-310. [PMID: 39837675 DOI: 10.1016/j.tibs.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025]
Abstract
The majority of eukaryotic proteins undergo N-terminal (Nt) modifications facilitated by various enzymes. These enzymes, which target the initial amino acid of a polypeptide in a sequence-dependent manner, encompass peptidases, transferases, cysteine oxygenases, and ligases. Nt modifications - such as acetylation, fatty acylations, methylation, arginylation, and oxidation - enhance proteome complexity and regulate protein targeting, stability, and complex formation. Modifications at protein N termini are thereby core components of a large number of biological processes, including cell signaling and motility, autophagy regulation, and plant and animal oxygen sensing. Dysregulation of Nt-modifying enzymes is implicated in several human diseases. In this feature review we provide an overview of the various protein Nt modifications occurring either co- or post-translationally, the enzymes involved, and the biological impact.
Collapse
Affiliation(s)
- Hanne Øye
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Malin Lundekvam
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Alessia Caiella
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Surgery, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
4
|
Anguraj Vadivel AK, Pajovic S, Siddaway R, Zhu S, Sbergio SG, Matic O, Phillips L, Bu YJ, Nitz M, Hawkins C. The proteomic landscape of diffuse midline glioma highlights the therapeutic potential of non-histone protein methyltransferases. Neuro Oncol 2025:noaf033. [PMID: 39954016 DOI: 10.1093/neuonc/noaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Diffuse Midline Glioma (DMG) is a highly aggressive pediatric brain tumor with limited treatment options despite extensive genomic characterization. The aim of this study was to investigate the proteomic landscape of DMG to identify potential therapeutic targets. METHODS We conducted a comprehensive proteomic analysis using LC-MS3, along with DNA methylation and DNA/RNA sequencing in 55 DMG patients' samples. PTM profiling (phosphoproteome and methylproteome) was conducted in 30 patient samples. We then investigated the effects of modulating key protein targets on protein methylation, protein synthesis, and DMG cell growth in vitro and in vivo. RESULTS DMGs exhibited high global protein methylation, with significant enrichment of translation machinery proteins and factors involved in apoptosis regulation. Surprisingly, while targets of key kinases were highly phosphorylated, overall protein phosphorylation was lower in DMG compared to normal brain tissues. Non-histone methyltransferases METTL13 and METTL21B, along with protein kinases PAK2, PRKACA, and AKT1, were identified as key players in DMG methylproteome and phosphoproteome, respectively. METTL13 knockdown led to reduced EEF1A1 protein methylation, a shift in oncoprotein synthesis, and inhibited DMG cell growth in vitro and in vivo. CONCLUSIONS Our findings highlight the dependency of DMG on methyl-signaling pathways, particularly involving METTL13, which regulates EEF1A1 protein methylation and oncoprotein synthesis. Targeting the non-histone methyltransferases offers a promising therapeutic strategy for DMG. This study underscores the potential of post-translational modifications, specifically methyl-signaling pathways, as novel therapeutic targets for DMG and possibly other currently incurable cancers.
Collapse
Affiliation(s)
- Arun Kumaran Anguraj Vadivel
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Sanja Pajovic
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Robert Siddaway
- Division of Pathology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Sabrina Zhu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Cir, Toronto, ON, M5S 1A1, Canada
| | - Stefanie-Grace Sbergio
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Cir, Toronto, ON, M5S 1A1, Canada
| | - Olivera Matic
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Lauren Phillips
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Yong Jia Bu
- Department of Chemistry, University of Toronto, 27 King's College Cir, Toronto, ON, M5S 1A1, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, 27 King's College Cir, Toronto, ON, M5S 1A1, Canada
| | - Cynthia Hawkins
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Cir, Toronto, ON, M5S 1A1, Canada
- Division of Pathology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| |
Collapse
|
5
|
Zhang J, He J, Qiang Z, Zhang J, Hao F, Song S, Chen X, Ma W, Li Y. Methyltransferase like 13 promotes malignant behaviors of bladder cancer cells through targeting PI3K/ATK signaling pathway. Open Life Sci 2024; 19:20220981. [PMID: 39711977 PMCID: PMC11662972 DOI: 10.1515/biol-2022-0981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/25/2024] [Accepted: 09/08/2024] [Indexed: 12/24/2024] Open
Abstract
Bladder cancer (BC) is the tenth most common tumor worldwide, characterized by high incidence rates and mortality. This study aimed to explore the role of Methyltransferase like 13 (METTL13) in BC cells. J82 and T24 cells were cultured for in vitro experiments. Cell viability, migration, and invasion were assessed using CCK-8 and transwell assays. Senescence-associated beta-galactosidase (SA-β-gal) levels were detected using a β-galactosidase staining kit. METTL13 and cell cycle-related protein levels were quantified using RT-qPCR and Western blotting. The results showed that METTL13 was upregulated in BC cells. Silencing METTL13 decreased cell viability, migration, and invasion in BC cells, whereas METTL13 overexpression increased these parameters. Additionally, METTL13 knockdown inhibited the phosphorylation levels of PI3K, AKT, and mTOR. Inhibition of the PI3K/AKT pathway reversed the effects of METTL13 on cell viability, migration, invasion, and cell cycle-related proteins in BC cells. In vivo experiments showed that METTL13 knockdown inhibited tumor growth and development. In conclusion, this study demonstrated that METTL13 promoted the malignant behaviors of BC cells through activation of the PI3K/AKT signaling pathway. METTL13 may be a promising therapeutic target for BC in the future.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Urology Surgery, Affiliated Hospital of Qinghai University, No. 29, Tongren Road, West of the City, Xining, 810000, Qinghai, China
| | - Jiejie He
- Department of Gynecologic Surgery, Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, No. 29, Tongren Road, West of the City, Xining, 810000, Qinghai, China
| | - Ziyang Qiang
- Department of Urology Surgery, Affiliated Hospital of Qinghai University, No. 29, Tongren Road, West of the City, Xining, 810000, Qinghai, China
| | - Junli Zhang
- Department of Gynecological Oncology, Affiliated Hospital of Qinghai University, Xining, 810000, Qinghai, China
| | - Fengchen Hao
- Department of Gynecological Oncology, Affiliated Hospital of Qinghai University, Xining, 810000, Qinghai, China
| | - Shiqi Song
- Department of Gynecological Oncology, Affiliated Hospital of Qinghai University, Xining, 810000, Qinghai, China
| | - Xiuying Chen
- Department of Gynaecology and Obstetrics, The First People’s Hospital of Xining, Xining, 810000, Qinghai, China
| | - Wei Ma
- Department of Surgery, Affiliated Hospital of Qinghai University, No. 29, Tongren Road, West of the City, Xining, 810000, Qinghai, China
| | - Yan Li
- Department of Gynecologic Oncology, Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, No. 29, Tongren Road, West of the City, Xining, 810000, Qinghai, China
| |
Collapse
|
6
|
Falnes PØ. Closing in on human methylation-the versatile family of seven-β-strand (METTL) methyltransferases. Nucleic Acids Res 2024; 52:11423-11441. [PMID: 39351878 PMCID: PMC11514484 DOI: 10.1093/nar/gkae816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/15/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
Methylation is a common biochemical reaction, and a number of methyltransferase (MTase) enzymes mediate the various methylation events occurring in living cells. Almost all MTases use the methyl donor S-adenosylmethionine (AdoMet), and, in humans, the largest group of AdoMet-dependent MTases are the so-called seven-β-strand (7BS) MTases. Collectively, the 7BS MTases target a wide range of biomolecules, i.e. nucleic acids and proteins, as well as several small metabolites and signaling molecules. They play essential roles in key processes such as gene regulation, protein synthesis and metabolism, as well as neurotransmitter synthesis and clearance. A decade ago, roughly half of the human 7BS MTases had been characterized experimentally, whereas the remaining ones merely represented hypothetical enzymes predicted from bioinformatics analysis, many of which were denoted METTLs (METhylTransferase-Like). Since then, considerable progress has been made, and the function of > 80% of the human 7BS MTases has been uncovered. In this review, I provide an overview of the (estimated) 120 human 7BS MTases, grouping them according to substrate specificities and sequence similarity. I also elaborate on the challenges faced when studying these enzymes and describe recent major advances in the field.
Collapse
Affiliation(s)
- Pål Ø Falnes
- Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316Oslo, Norway
- CRESCO - Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
7
|
Meng Y, Li Z, He M, Zhang Q, Deng Y, Wang Y, Huang R. Characterizations of Protein Arginine Deiminase 1 as a Substrate of NTMT1: Implications of Nα-Methylation in Protein Stability and Interaction. J Proteome Res 2024; 23:4589-4600. [PMID: 39287128 PMCID: PMC11452276 DOI: 10.1021/acs.jproteome.4c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
α-N-Methylation (Nα-methylation), catalyzed by protein N-terminal methyltransferases (NTMTs), constitutes a crucial post-translational modification involving the transfer of a methyl group from S-adenosyl-l-methionine (SAM) to the Nα-terminal amino group of substrate proteins. NTMT1/2 are known to methylate canonical Nα sequences, such as X-P-K/R. With over 300 potential human protein substrates, only a small fraction has been validated, and even less is known about the functions of Nα-methylation. This study delves into the characterizations of protein arginine deiminase 1 (PAD1) as a substrate of NTMT1. By employing biochemical and cellular assays, we demonstrated NTMT1-mediated Nα-methylation of PAD1, leading to an increase in protein half-life and the modulation of protein-protein interactions in HEK293T cells. The methylation of PAD1 appears nonessential to its enzymatic activity or cellular localization. Proteomic studies revealed differential protein interactions between unmethylated and Nα-methylated PAD1, suggesting a regulatory role for Nα-methylation in modulating PAD1's protein-protein interactions. These findings shed light on the intricate molecular mechanisms governing PAD1 function and expand our knowledge of Nα-methylation in regulating protein function.
Collapse
Affiliation(s)
- Ying Meng
- Borch Department of Medicinal Chemistry and Molecular
Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for
Cancer Research, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907,
United States
| | - Zhouxian Li
- Department of Chemistry, University of California
Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | - Ming He
- Borch Department of Medicinal Chemistry and Molecular
Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for
Cancer Research, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907,
United States
| | - Quanqing Zhang
- Department of Chemistry, University of California
Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | - Youchao Deng
- Borch Department of Medicinal Chemistry and Molecular
Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for
Cancer Research, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907,
United States
| | - Yinsheng Wang
- Department of Chemistry, University of California
Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | - Rong Huang
- Borch Department of Medicinal Chemistry and Molecular
Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for
Cancer Research, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907,
United States
| |
Collapse
|
8
|
Boulter M, Biggar KK. Biological Relevance of Dual Lysine and N-Terminal Methyltransferase METTL13. Biomolecules 2024; 14:1112. [PMID: 39334878 PMCID: PMC11430744 DOI: 10.3390/biom14091112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
The dual methyltransferase methyltransferase-like protein 13, also referred to as METTL13, or formerly known as FEAT (faintly expressed in healthy tissues, aberrantly overexpressed in tumors), has garnered attention as a significant enzyme in various cancer types, as evidenced by prior literature reviews. Recent studies have shed light on new potential roles for METTL13, hinting at its promise as a therapeutic target. This review aims to delve into the multifaceted biology of METTL13, elucidating its proposed mechanisms of action, regulatory pathways, and its implications in disease states, as supported by the current body of literature. Furthermore, the review will highlight emerging trends and gaps in our understanding of METTL13, paving the way for future research efforts. By contextualizing METTL13 within the broader landscape of cancer biology and therapeutics, this study serves as an introductory guide to METTL13, aiming to provide readers with a thorough understanding of its role in disease phenotypes.
Collapse
Affiliation(s)
| | - Kyle K. Biggar
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1N 5B6, Canada;
| |
Collapse
|
9
|
Zhang W, Wang J, Shan C. The eEF1A protein in cancer: Clinical significance, oncogenic mechanisms, and targeted therapeutic strategies. Pharmacol Res 2024; 204:107195. [PMID: 38677532 DOI: 10.1016/j.phrs.2024.107195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Eukaryotic elongation factor 1A (eEF1A) is among the most abundant proteins in eukaryotic cells. Evolutionarily conserved across species, eEF1A is in charge of translation elongation for protein biosynthesis as well as a plethora of non-translational moonlighting functions for cellular homeostasis. In malignant cells, however, eEF1A becomes a pleiotropic driver of cancer progression via a broad diversity of pathways, which are not limited to hyperactive translational output. In the past decades, mounting studies have demonstrated the causal link between eEF1A and carcinogenesis, gaining deeper insights into its multifaceted mechanisms and corroborating its value as a prognostic marker in various cancers. On the other hand, an increasing number of natural and synthetic compounds were discovered as anticancer eEF1A-targeting inhibitors. Among them, plitidepsin was approved for the treatment of multiple myeloma whereas metarrestin was currently under clinical development. Despite significant achievements in these two interrelated fields, hitherto there lacks a systematic examination of the eEF1A protein in the context of cancer research. Therefore, the present work aims to delineate its clinical implications, molecular oncogenic mechanisms, and targeted therapeutic strategies as reflected in the ever expanding body of literature, so as to deepen mechanistic understanding of eEF1A-involved tumorigenesis and inspire the development of eEF1A-targeted chemotherapeutics and biologics.
Collapse
Affiliation(s)
- Weicheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| | - Jiyan Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Changliang Shan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| |
Collapse
|
10
|
Francis JW, Hausmann S, Ikram S, Yin K, Mealey-Farr R, Flores NM, Trinh AT, Chasan T, Thompson J, Mazur PK, Gozani O. FAM86A methylation of eEF2 links mRNA translation elongation to tumorigenesis. Mol Cell 2024; 84:1753-1763.e7. [PMID: 38508183 PMCID: PMC11069438 DOI: 10.1016/j.molcel.2024.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/16/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024]
Abstract
eEF2 post-translational modifications (PTMs) can profoundly affect mRNA translation dynamics. However, the physiologic function of eEF2K525 trimethylation (eEF2K525me3), a PTM catalyzed by the enzyme FAM86A, is unknown. Here, we find that FAM86A methylation of eEF2 regulates nascent elongation to promote protein synthesis and lung adenocarcinoma (LUAD) pathogenesis. The principal physiologic substrate of FAM86A is eEF2, with K525me3 modeled to facilitate productive eEF2-ribosome engagement during translocation. FAM86A depletion in LUAD cells causes 80S monosome accumulation and mRNA translation inhibition. FAM86A is overexpressed in LUAD and eEF2K525me3 levels increase through advancing LUAD disease stages. FAM86A knockdown attenuates LUAD cell proliferation and suppression of the FAM86A-eEF2K525me3 axis inhibits cancer cell and patient-derived LUAD xenograft growth in vivo. Finally, FAM86A ablation strongly attenuates tumor growth and extends survival in KRASG12C-driven LUAD mouse models. Thus, our work uncovers an eEF2 methylation-mediated mRNA translation elongation regulatory node and nominates FAM86A as an etiologic agent in LUAD.
Collapse
Affiliation(s)
| | - Simone Hausmann
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sabeen Ikram
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Kunlun Yin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Natasha Mahealani Flores
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Annie Truc Trinh
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Tourkian Chasan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Julia Thompson
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pawel Karol Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Hobble HV, Schaner Tooley CE. Intrafamily heterooligomerization as an emerging mechanism of methyltransferase regulation. Epigenetics Chromatin 2024; 17:5. [PMID: 38429855 PMCID: PMC10908127 DOI: 10.1186/s13072-024-00530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/10/2024] [Indexed: 03/03/2024] Open
Abstract
Protein and nucleic acid methylation are important biochemical modifications. In addition to their well-established roles in gene regulation, they also regulate cell signaling, metabolism, and translation. Despite this high biological relevance, little is known about the general regulation of methyltransferase function. Methyltransferases are divided into superfamilies based on structural similarities and further classified into smaller families based on sequence/domain/target similarity. While members within superfamilies differ in substrate specificity, their structurally similar active sites indicate a potential for shared modes of regulation. Growing evidence from one superfamily suggests a common regulatory mode may be through heterooligomerization with other family members. Here, we describe examples of methyltransferase regulation through intrafamily heterooligomerization and discuss how this can be exploited for therapeutic use.
Collapse
Affiliation(s)
- Haley V Hobble
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
12
|
Hamey JJ, Nguyen A, Haddad M, Vázquez-Campos X, Pfeiffer PG, Wilkins MR. Methylation of elongation factor 1A by yeast Efm4 or human eEF1A-KMT2 involves a beta-hairpin recognition motif and crosstalks with phosphorylation. J Biol Chem 2024; 300:105639. [PMID: 38199565 PMCID: PMC10844748 DOI: 10.1016/j.jbc.2024.105639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/13/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Translation elongation factor 1A (eEF1A) is an essential and highly conserved protein required for protein synthesis in eukaryotes. In both Saccharomyces cerevisiae and human, five different methyltransferases methylate specific residues on eEF1A, making eEF1A the eukaryotic protein targeted by the highest number of dedicated methyltransferases after histone H3. eEF1A methyltransferases are highly selective enzymes, only targeting eEF1A and each targeting just one or two specific residues in eEF1A. However, the mechanism of this selectivity remains poorly understood. To reveal how S. cerevisiae elongation factor methyltransferase 4 (Efm4) specifically methylates eEF1A at K316, we have used AlphaFold-Multimer modeling in combination with crosslinking mass spectrometry (XL-MS) and enzyme mutagenesis. We find that a unique beta-hairpin motif, which extends out from the core methyltransferase fold, is important for the methylation of eEF1A K316 in vitro. An alanine mutation of a single residue on this beta-hairpin, F212, significantly reduces Efm4 activity in vitro and in yeast cells. We show that the equivalent residue in human eEF1A-KMT2 (METTL10), F220, is also important for its activity towards eEF1A in vitro. We further show that the eEF1A guanine nucleotide exchange factor, eEF1Bα, inhibits Efm4 methylation of eEF1A in vitro, likely due to competitive binding. Lastly, we find that phosphorylation of eEF1A at S314 negatively crosstalks with Efm4-mediated methylation of K316. Our findings demonstrate how protein methyltransferases can be highly selective towards a single residue on a single protein in the cell.
Collapse
Affiliation(s)
- Joshua J Hamey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Australia.
| | - Amy Nguyen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Australia
| | - Mahdi Haddad
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Australia
| | - Xabier Vázquez-Campos
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Australia
| | - Paige G Pfeiffer
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Australia
| |
Collapse
|
13
|
Schnee P, Pleiss J, Jeltsch A. Approaching the catalytic mechanism of protein lysine methyltransferases by biochemical and simulation techniques. Crit Rev Biochem Mol Biol 2024; 59:20-68. [PMID: 38449437 DOI: 10.1080/10409238.2024.2318547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
Protein lysine methyltransferases (PKMTs) transfer up to three methyl groups to the side chains of lysine residues in proteins and fulfill important regulatory functions by controlling protein stability, localization and protein/protein interactions. The methylation reactions are highly regulated, and aberrant methylation of proteins is associated with several types of diseases including neurologic disorders, cardiovascular diseases, and various types of cancer. This review describes novel insights into the catalytic machinery of various PKMTs achieved by the combined application of biochemical experiments and simulation approaches during the last years, focusing on clinically relevant and well-studied enzymes of this group like DOT1L, SMYD1-3, SET7/9, G9a/GLP, SETD2, SUV420H2, NSD1/2, different MLLs and EZH2. Biochemical experiments have unraveled many mechanistic features of PKMTs concerning their substrate and product specificity, processivity and the effects of somatic mutations observed in PKMTs in cancer cells. Structural data additionally provided information about the substrate recognition, enzyme-substrate complex formation, and allowed for simulations of the substrate peptide interaction and mechanism of PKMTs with atomistic resolution by molecular dynamics and hybrid quantum mechanics/molecular mechanics methods. These simulation technologies uncovered important mechanistic details of the PKMT reaction mechanism including the processes responsible for the deprotonation of the target lysine residue, essential conformational changes of the PKMT upon substrate binding, but also rationalized regulatory principles like PKMT autoinhibition. Further developments are discussed that could bring us closer to a mechanistic understanding of catalysis of this important class of enzymes in the near future. The results described here illustrate the power of the investigation of enzyme mechanisms by the combined application of biochemical experiments and simulation technologies.
Collapse
Affiliation(s)
- Philipp Schnee
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
14
|
Yu S, Sun Z, Wang X, Ju T, Wang C, Liu Y, Qu Z, Liu K, Mei Z, Li N, Lu M, Wu F, Huang M, Pang X, Jia Y, Li Y, Zhang Y, Dou S, Jiang J, Li X, Yang B, Du W. Mettl13 protects against cardiac contractile dysfunction by negatively regulating C-Cbl-mediated ubiquitination of SERCA2a in ischemic heart failure. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2786-2804. [PMID: 37450238 DOI: 10.1007/s11427-022-2351-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/14/2023] [Indexed: 07/18/2023]
Abstract
Ischemic heart failure (HF) remains a leading cause of morbidity and mortality. Maintaining homeostasis of cardiac function and preventing cardiac remodeling deterioration are critical to halting HF progression. Methyltransferase-like protein 13 (Mettl13) has been shown to regulate protein translation efficiency by acting as a protein lysine methyltransferase, but its role in cardiac pathology remains unexplored. This study aims to characterize the roles and mechanisms of Mettl13 in cardiac contractile function and HF. We found that Mettl13 was downregulated in the failing hearts of mice post-myocardial infarction (MI) and in a cellular model of oxidative stress. Cardiomyocyte-specific overexpression of Mettl13 mediated by AAV9-Mettl13 attenuated cardiac contractile dysfunction and fibrosis in response to MI, while silencing of Mettl13 impaired cardiac function in normal mice. Moreover, Mettl13 overexpression abrogated the reduction in cell shortening, Ca2+ transient amplitude and SERCA2a protein levels in the cardiomyocytes of adult mice with MI. Conversely, knockdown of Mettl13 impaired the contractility of cardiomyocytes, and decreased Ca2+ transient amplitude and SERCA2a protein expression in vivo and in vitro. Mechanistically, Mettl13 impaired the stability of c-Cbl by inducing lysine methylation of c-Cbl, which in turn inhibited ubiquitination-dependent degradation of SERCA2a. Furthermore, the inhibitory effects of knocking down Mettl13 on SERCA2a protein expression and Ca2+ transients were partially rescued by silencing c-Cbl in H2O2-treated cardiomyocytes. In conclusion, our study uncovers a novel mechanism that involves the Mettl13/c-Cbl/SERCA2a axis in regulating cardiac contractile function and remodeling, and identifies Mettl13 as a novel therapeutic target for ischemic HF.
Collapse
Affiliation(s)
- Shuting Yu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - ZhiYong Sun
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiuzhu Wang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Tiantian Ju
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Changhao Wang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yingqi Liu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zhezhe Qu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - KuiWu Liu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zhongting Mei
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Na Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Meixi Lu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fan Wu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Min Huang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaochen Pang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yingqiong Jia
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ying Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yaozhi Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Shunkang Dou
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jianhao Jiang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xin Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Baofeng Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, Harbin, 150081, China.
| | - Weijie Du
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, Harbin, 150081, China.
| |
Collapse
|
15
|
Negrutskii BS, Porubleva LV, Malinowska A, Novosylna OV, Dadlez M, Knudsen CR. Understanding functions of eEF1 translation elongation factors beyond translation. A proteomic approach. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:67-99. [PMID: 38220433 DOI: 10.1016/bs.apcsb.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Mammalian translation elongation factors eEF1A1 and eEF1A2 are 92% homologous isoforms whose mutually exclusive tissue-specific expression is regulated during development. The isoforms have similar translation functionality, but show differences in spatial organization and participation in various processes, such as oncogenesis and virus reproduction. The differences may be due to their ability to interact with isoform-specific partner proteins. We used the identified sets of eEF1A1 or eEF1A2 partner proteins to identify cell complexes and/or processes specific to one particular isoform. As a result, we found isoform-specific interactions reflecting the involvement of different eEF1A isoforms in different cellular processes, including actin-related, chromatin-remodeling, ribonuclease H2, adenylyl cyclase, and Cul3-RING ubiquitin ligase complexes as well as initiation of mitochondrial transcription. An essential by-product of our analysis is the elucidation of a number of cellular processes beyond protein biosynthesis, where both isoforms appear to participate such as large ribosomal subunit biogenesis, mRNA splicing, DNA mismatch repair, 26S proteasome activity, P-body and exosomes formation, protein targeting to the membrane. This information suggests that a relatively high content of eEF1A in the cell may be necessary not only to maintain efficient translation, but also to ensure its participation in various cellular processes, where some roles of eEF1A have not yet been described. We believe that the data presented here will be useful for deciphering new auxiliary functions of eEF1A and its isoforms, and provide a new look at the known non-canonical functions of this main component of the human translation-elongation machinery.
Collapse
Affiliation(s)
- Boris S Negrutskii
- Institute of Molecular Biology and Genetics, Kyiv, Ukraine; Aarhus Institute of Advanced Sciences, Høegh-Guldbergs, Aarhus C, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen, Aarhus C, Denmark.
| | | | - Agata Malinowska
- Institute of Biochemistry and Biophysics, PAN, Pawinskiego, Warsaw, Poland
| | | | - Michal Dadlez
- Institute of Biochemistry and Biophysics, PAN, Pawinskiego, Warsaw, Poland
| | - Charlotte R Knudsen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen, Aarhus C, Denmark
| |
Collapse
|
16
|
Pichlak M, Sobierajski T, Błażewska KM, Gendaszewska-Darmach E. Targeting reversible post-translational modifications with PROTACs: a focus on enzymes modifying protein lysine and arginine residues. J Enzyme Inhib Med Chem 2023; 38:2254012. [PMID: 37667522 PMCID: PMC10481767 DOI: 10.1080/14756366.2023.2254012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/17/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023] Open
Abstract
PROTACs represent an emerging field in medicinal chemistry, which has already led to the development of compounds that reached clinical studies. Posttranslational modifications contribute to the complexity of proteomes, with 2846 disease-associated sites. PROTAC field is very advanced in targeting kinases, while its use for enzymes mediating posttranslational modifications of the basic amino acid residues, started to be developed recently. Therefore, we bring together this less popular class of PROTACs, targeting lysine acetyltransferases/deacetylases, lysine and arginine methyltransferases, ADP-ribosyltransferases, E3 ligases, and ubiquitin-specific proteases. We put special emphasis on structural aspects of PROTAC elements to facilitate the lengthy experimental endeavours directed towards developing PROTACs. We will cover the period from the inception of the field, 2017, to April 2023.
Collapse
Affiliation(s)
- Marta Pichlak
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Łódź, Poland
| | - Tomasz Sobierajski
- Institute of Organic Chemistry, Lodz University of Technology, Łódź, Poland
| | | | | |
Collapse
|
17
|
Jia W, Yuan J, Li S, Cheng B. The role of dysregulated mRNA translation machinery in cancer pathogenesis and therapeutic value of ribosome-inactivating proteins. Biochim Biophys Acta Rev Cancer 2023; 1878:189018. [PMID: 37944831 DOI: 10.1016/j.bbcan.2023.189018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Dysregulated protein synthesis is a hallmark of tumors. mRNA translation reprogramming contributes to tumorigenesis, which is fueled by abnormalities in ribosome formation, tRNA abundance and modification, and translation factors. Not only malignant cells but also stromal cells within tumor microenvironment can undergo transformation toward tumorigenic phenotypes during translational reprogramming. Ribosome-inactivating proteins (RIPs) have garnered interests for their ability to selectively inhibit protein synthesis and suppress tumor growth. This review summarizes the role of dysregulated translation machinery in tumor development and explores the potential of RIPs in cancer treatment.
Collapse
Affiliation(s)
- Wentao Jia
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
18
|
Qi YN, Liu Z, Hong LL, Li P, Ling ZQ. Methyltransferase-like proteins in cancer biology and potential therapeutic targeting. J Hematol Oncol 2023; 16:89. [PMID: 37533128 PMCID: PMC10394802 DOI: 10.1186/s13045-023-01477-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023] Open
Abstract
RNA modification has recently become a significant process of gene regulation, and the methyltransferase-like (METTL) family of proteins plays a critical role in RNA modification, methylating various types of RNAs, including mRNA, tRNA, microRNA, rRNA, and mitochondrial RNAs. METTL proteins consist of a unique seven-beta-strand domain, which binds to the methyl donor SAM to catalyze methyl transfer. The most typical family member METTL3/METTL14 forms a methyltransferase complex involved in N6-methyladenosine (m6A) modification of RNA, regulating tumor proliferation, metastasis and invasion, immunotherapy resistance, and metabolic reprogramming of tumor cells. METTL1, METTL4, METTL5, and METTL16 have also been recently identified to have some regulatory ability in tumorigenesis, and the rest of the METTL family members rely on their methyltransferase activity for methylation of different nucleotides, proteins, and small molecules, which regulate translation and affect processes such as cell differentiation and development. Herein, we summarize the literature on METTLs in the last three years to elucidate their roles in human cancers and provide a theoretical basis for their future use as potential therapeutic targets.
Collapse
Affiliation(s)
- Ya-Nan Qi
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Zhu Liu
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, P.R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, P.R. China
| | - Lian-Lian Hong
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, P.R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, P.R. China
| | - Pei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, P.R. China.
| | - Zhi-Qiang Ling
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, P.R. China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, P.R. China.
| |
Collapse
|
19
|
Batth TS, Simonsen JL, Hernández-Rollán C, Brander S, Morth JP, Johansen KS, Nørholm MHH, Hoof JB, Olsen JV. A seven-transmembrane methyltransferase catalysing N-terminal histidine methylation of lytic polysaccharide monooxygenases. Nat Commun 2023; 14:4202. [PMID: 37452022 PMCID: PMC10349129 DOI: 10.1038/s41467-023-39875-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are oxidative enzymes that help break down lignocellulose, making them highly attractive for improving biomass utilization in industrial biotechnology. The catalytically essential N-terminal histidine (His1) of LPMOs is post-translationally modified by methylation in filamentous fungi to protect them from auto-oxidative inactivation, however, the responsible methyltransferase enzyme is unknown. Using mass-spectrometry-based quantitative proteomics in combination with systematic CRISPR/Cas9 knockout screening in Aspergillus nidulans, we identify the N-terminal histidine methyltransferase (NHMT) encoded by the gene AN4663. Targeted proteomics confirm that NHMT was solely responsible for His1 methylation of LPMOs. NHMT is predicted to encode a unique seven-transmembrane segment anchoring a soluble methyltransferase domain. Co-localization studies show endoplasmic reticulum residence of NHMT and co-expression in the industrial production yeast Komagataella phaffii with LPMOs results in His1 methylation of the LPMOs. This demonstrates the biotechnological potential of recombinant production of proteins and peptides harbouring this specific post-translational modification.
Collapse
Affiliation(s)
- Tanveer S Batth
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen Denmark, Copenhagen, Denmark.
| | - Jonas L Simonsen
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen Denmark, Copenhagen, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Cristina Hernández-Rollán
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Søren Brander
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Jens Preben Morth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Katja S Johansen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Morten H H Nørholm
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Jakob B Hoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Jesper V Olsen
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen Denmark, Copenhagen, Denmark.
| |
Collapse
|
20
|
Engelfriet ML, Małecki JM, Forsberg AF, Falnes PØ, Ciosk R. Characterization of the biochemical activity and tumor-promoting role of the dual protein methyltransferase METL-13/METTL13 in Caenorhabditis elegans. PLoS One 2023; 18:e0287558. [PMID: 37347777 PMCID: PMC10286969 DOI: 10.1371/journal.pone.0287558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
The methyltransferase-like protein 13 (METTL13) methylates the eukaryotic elongation factor 1 alpha (eEF1A) on two locations: the N-terminal amino group and lysine 55. The absence of this methylation leads to reduced protein synthesis and cell proliferation in human cancer cells. Previous studies showed that METTL13 is dispensable in non-transformed cells, making it potentially interesting for cancer therapy. However, METTL13 has not been examined yet in whole animals. Here, we used the nematode Caenorhabditis elegans as a simple model to assess the functions of METTL13. Using methyltransferase assays and mass spectrometry, we show that the C. elegans METTL13 (METL-13) methylates eEF1A (EEF-1A) in the same way as the human protein. Crucially, the cancer-promoting role of METL-13 is also conserved and depends on the methylation of EEF-1A, like in human cells. At the same time, METL-13 appears dispensable for animal growth, development, and stress responses. This makes C. elegans a convenient whole-animal model for studying METL13-dependent carcinogenesis without the complications of interfering with essential wild-type functions.
Collapse
Affiliation(s)
- Melanie L. Engelfriet
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Jędrzej M. Małecki
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Anna F. Forsberg
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Pål Ø. Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Rafal Ciosk
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
21
|
Mealey-Farr R, Jeong J, Park J, Liu S, Hausmann S, Francis JW, Angulo Ibanez M, Cho J, Chua K, Mazur PK, Gozani O. Antibody toolkit to investigate eEF1A methylation dynamics in mRNA translation elongation. J Biol Chem 2023; 299:104747. [PMID: 37094697 PMCID: PMC10220242 DOI: 10.1016/j.jbc.2023.104747] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023] Open
Abstract
Protein synthesis is a fundamental step in gene expression, with modulation of mRNA translation at the elongation step emerging as an important regulatory node in shaping cellular proteomes. In this context, five distinct lysine methylation events on eukaryotic elongation factor 1A (eEF1A), a fundamental nonribosomal elongation factor, are proposed to influence mRNA translation elongation dynamics. However, a lack of affinity tools has hindered progress in fully understanding how eEF1A lysine methylation impacts protein synthesis. Here we develop and characterize a suite of selective antibodies to investigate eEF1A methylation and provide evidence that methylation levels decline in aged tissue. Determination of the methyl state and stoichiometry on eEF1A in various cell lines by mass spectrometry shows modest cell-to-cell variability. We also find by Western blot analysis that knockdown of individual eEF1A-specific lysine methyltransferases leads to depletion of the cognate lysine methylation event and indicates active crosstalk between different sites. Further, we find that the antibodies are specific in immunohistochemistry applications. Finally, application of the antibody toolkit suggests that several eEF1A methylation events decrease in aged muscle tissue. Together, our study provides a roadmap for leveraging methyl state and sequence-selective antibody reagents to accelerate discovery of eEF1A methylation-related functions and suggests a role for eEF1A methylation, via protein synthesis regulation, in aging biology.
Collapse
Affiliation(s)
| | - Jinho Jeong
- Department of Biology, Stanford University, Stanford, California, USA
| | - Juhyung Park
- Department of Biology, Stanford University, Stanford, California, USA
| | - Shuo Liu
- Department of Biology, Stanford University, Stanford, California, USA
| | - Simone Hausmann
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joel W Francis
- Department of Biology, Stanford University, Stanford, California, USA
| | - Maria Angulo Ibanez
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Joonseok Cho
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Katrin Chua
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Pawel K Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, California, USA.
| |
Collapse
|
22
|
Chen P, Huang R, Hazbun TR. Unlocking the Mysteries of Alpha-N-Terminal Methylation and its Diverse Regulatory Functions. J Biol Chem 2023:104843. [PMID: 37209820 PMCID: PMC10293735 DOI: 10.1016/j.jbc.2023.104843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023] Open
Abstract
Protein post-translation modifications (PTMs) are a critical regulatory mechanism of protein function. Protein α-N-terminal (Nα) methylation is a conserved PTM across prokaryotes and eukaryotes. Studies of the Nα methyltransferases responsible for Να methylation and their substrate proteins have shown that the PTM involves diverse biological processes, including protein synthesis and degradation, cell division, DNA damage response, and transcription regulation. This review provides an overview of the progress toward the regulatory function of Να methyltransferases and their substrate landscape. More than 200 proteins in humans and 45 in yeast are potential substrates for protein Nα methylation based on the canonical recognition motif, XP[KR]. Based on recent evidence for a less stringent motif requirement, the number of substrates might be increased, but further validation is needed to solidify this concept. A comparison of the motif in substrate orthologs in selected eukaryotic species indicates intriguing gain and loss of the motif across the evolutionary landscape. We discuss the state of knowledge in the field that has provided insights into the regulation of protein Να methyltransferases and their role in cellular physiology and disease. We also outline the current research tools that are key to understanding Να methylation. Finally, challenges are identified and discussed that would aid in unlocking a system-level view of the roles of Να methylation in diverse cellular pathways.
Collapse
Affiliation(s)
- Panyue Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States; Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tony R Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States; Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States.
| |
Collapse
|
23
|
Parker HV, Schaner Tooley CE. Opposing regulation of the Nα-trimethylase METTL11A by its family members METTL11B and METTL13. J Biol Chem 2023; 299:104588. [PMID: 36889590 PMCID: PMC10166787 DOI: 10.1016/j.jbc.2023.104588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
N-terminal protein methylation (Nα-methylation) is a posttranslational modification that influences numerous biological processes by regulating protein stability, protein-DNA interactions, and protein-protein interactions. Although significant progress has been made in understanding the biological roles of Nα-methylation, we still do not completely understand how the modifying methyltransferases are regulated. A common mode of methyltransferase regulation is through complex formation with close family members, and we have previously shown that the Nα-trimethylase METTL11A (NRMT1/NTMT1) is activated through binding of its close homolog METTL11B (NRMT2/NTMT2). Other recent reports indicate that METTL11A co-fractionates with a third METTL family member METTL13, which methylates both the N-terminus and lysine 55 (K55) of eukaryotic elongation factor 1 alpha. Here, using co-immunoprecipitations, mass spectrometry, and in vitro methylation assays, we confirm a regulatory interaction between METTL11A and METTL13 and show that while METTL11B is an activator of METTL11A, METTL13 inhibits METTL11A activity. This is the first example of a methyltransferase being opposingly regulated by different family members. Similarly, we find that METTL11A promotes the K55 methylation activity of METTL13 but inhibits its Nα-methylation activity. We also find that catalytic activity is not needed for these regulatory effects, demonstrating new, noncatalytic functions for METTL11A and METTL13. Finally, we show METTL11A, METTL11B, and METTL13 can complex together, and when all three are present, the regulatory effects of METTL13 take precedence over those of METTL11B. These findings provide a better understanding of Nα-methylation regulation and suggest a model where these methyltransferases can serve in both catalytic and noncatalytic roles.
Collapse
Affiliation(s)
- Haley V Parker
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
24
|
Meng Y, Huang R. Site-specific methylation on α-N-terminus of peptides through chemical and enzymatic methods. Methods Enzymol 2023; 684:113-133. [PMID: 37230586 PMCID: PMC10525076 DOI: 10.1016/bs.mie.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Protein α-N-terminal (Nα) methylation is a post-translational modification catalyzed by N-terminal methyltransferase 1/2 (NTMT1/2) and METTL13. Nα methylation affects protein stability, protein-protein interaction, and protein-DNA interaction. Thus, Nα methylated peptides are essential tools to study the function of Nα methylation, generate specific antibodies for different states of Nα methylation, and characterize the enzyme kinetics and activity. Here, we describe chemical methods of site-specific synthesis of Nα mono-, di-, and trimethylated peptides in the solid phase. In addition, we describethe preparation of trimethylation peptides by recombinant NTMT1 catalysis.
Collapse
Affiliation(s)
- Ying Meng
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
25
|
Parker HV, Tooley JG, Schaner Tooley CE. Optimizing purification and activity assays of N-terminal methyltransferase complexes. Methods Enzymol 2023; 684:71-111. [PMID: 37230594 PMCID: PMC10619428 DOI: 10.1016/bs.mie.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
In vitro methyltransferase assays have traditionally been carried out with tritiated S-adenosyl-methionine (SAM) as the methyl donor, as site-specific methylation antibodies are not always available for Western or dot blots and structural requirements of many methyltransferases prohibit the use of peptide substrates in luminescent or colorimetric assays. The discovery of the first N-terminal methyltransferase, METTL11A, has allowed for a second look at non-radioactive in vitro methyltransferase assays, as N-terminal methylation is amenable to antibody production and the limited structural requirements of METTL11A allow for its methylation of peptide substrates. We have used a combination of Western blots and luminescent assays to verify substrates of METTL11A and the two other known N-terminal methyltransferases, METTL11B and METTL13. We have also developed these assays for use beyond substrate identification, showing that METTL11A activity is opposingly regulated by METTL11B and METTL13. Here we provide two methods for non-radioactive characterization of N-terminal methylation, Western blots with full-length recombinant protein substrates and luminescent assays with peptide substrates, and describe how each can be additionally adapted to look at regulatory complexes. We will review the advantages and disadvantages of each method in context with the other types of in vitro methyltransferase assays and discuss why these types of assays could be of general use to the N-terminal modification field.
Collapse
Affiliation(s)
- Haley V Parker
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - John G Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
26
|
Falnes PØ, Małecki JM, Herrera MC, Bengtsen M, Davydova E. Human seven-β-strand (METTL) methyltransferases - conquering the universe of protein lysine methylation. J Biol Chem 2023; 299:104661. [PMID: 36997089 DOI: 10.1016/j.jbc.2023.104661] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
|
27
|
Conner MM, Schaner Tooley CE. Three's a crowd - why did three N-terminal methyltransferases evolve for one job? J Cell Sci 2023; 136:jcs260424. [PMID: 36647772 PMCID: PMC10022744 DOI: 10.1242/jcs.260424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
N-terminal methylation of the α-amine group (Nα-methylation) is a post-translational modification (PTM) that was discovered over 40 years ago. Although it is not the most abundant of the Nα-PTMs, there are more than 300 predicted substrates of the three known mammalian Nα-methyltransferases, METTL11A and METTL11B (also known as NTMT1 and NTMT2, respectively) and METTL13. Of these ∼300 targets, the bulk are acted upon by METTL11A. Only one substrate is known to be Nα-methylated by METTL13, and METTL11B has no proven in vivo targets or predicted targets that are not also methylated by METTL11A. Given that METTL11A could clearly handle the entire substrate burden of Nα-methylation, it is unclear why three distinct Nα-methyltransferases have evolved. However, recent evidence suggests that many methyltransferases perform important biological functions outside of their catalytic activity, and the Nα-methyltransferases might be part of this emerging group. Here, we describe the distinct expression, localization and physiological roles of each Nα-methyltransferase, and compare these characteristics to other methyltransferases with non-catalytic functions, as well as to methyltransferases with both catalytic and non-catalytic functions, to give a better understanding of the global roles of these proteins. Based on these comparisons, we hypothesize that these three enzymes do not just have one common function but are actually performing three unique jobs in the cell.
Collapse
Affiliation(s)
- Meghan M. Conner
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Christine E. Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
28
|
Abstract
The methyltransferase-like (METTL) family is a diverse group of methyltransferases that can methylate nucleotides, proteins, and small molecules. Despite this diverse array of substrates, they all share a characteristic seven-beta-strand catalytic domain, and recent evidence suggests many also share an important role in stem cell biology. The most well characterized family members METTL3 and METTL14 dimerize to form an N6-methyladenosine (m6A) RNA methyltransferase with established roles in cancer progression. However, new mouse models indicate that METTL3/METTL14 are also important for embryonic stem cell (ESC) development and postnatal hematopoietic and neural stem cell self-renewal and differentiation. METTL1, METTL5, METTL6, METTL8, and METTL17 also have recently identified roles in ESC pluripotency and differentiation, while METTL11A/11B, METTL4, METTL7A, and METTL22 have been shown to play roles in neural, mesenchymal, bone, and hematopoietic stem cell development, respectively. Additionally, a variety of other METTL family members are translational regulators, a role that could place them as important players in the transition from stem cell quiescence to differentiation. Here we will summarize what is known about the role of METTL proteins in stem cell differentiation and highlight the connection between their growing importance in development and their established roles in oncogenesis.
Collapse
Affiliation(s)
- John G Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 955 Main St., Buffalo, NY, 14203, USA
| | - James P Catlin
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 955 Main St., Buffalo, NY, 14203, USA
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 955 Main St., Buffalo, NY, 14203, USA.
| |
Collapse
|
29
|
Liu Y, Wu Z, Wu D, Gao N, Lin J. Reconstitution of Multi-Protein Complexes through Ribozyme-Assisted Polycistronic Co-Expression. ACS Synth Biol 2022; 12:136-143. [PMID: 36512506 PMCID: PMC9872166 DOI: 10.1021/acssynbio.2c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In living cells, proteins often exert their functions by interacting with other proteins forming protein complexes. Obtaining homogeneous samples of protein complexes with correct fold and stoichiometry is critical for its biochemical and biophysical characterization as well as functional investigation. Here, we developed a Ribozyme-Assisted Polycistronic co-expression system (pRAP) for heterologous co-production and in vivo assembly of multi-subunit complexes. In the pRAP system, a polycistronic mRNA transcript is co-transcriptionally converted into individual mono-cistrons in vivo. Each cistron can initiate translation with comparable efficiency, resulting in balanced production for all subunits, thus permitting faithful protein complex assembly. With pRAP polycistronic co-expression, we have successfully reconstituted large functional multi-subunit complexes involved in mammalian translation initiation. Our invention provides a valuable tool for studying the molecular mechanisms of biological processes.
Collapse
Affiliation(s)
- Yan Liu
- State
Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan
Hospital, Fudan University, Shanghai 200438, China
| | - Zihan Wu
- State
Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan
Hospital, Fudan University, Shanghai 200438, China
| | - Damu Wu
- State
Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for
Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ning Gao
- State
Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for
Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jinzhong Lin
- State
Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan
Hospital, Fudan University, Shanghai 200438, China,. Tel.: +86-21-31246764
| |
Collapse
|
30
|
Jiang H, Zhang Y, Liu B, Yang X, Wang Z, Han M, Li H, Luo J, Yao H. Dynamic regulation of eEF1A1 acetylation affects colorectal carcinogenesis. Biol Chem 2022; 404:585-599. [PMID: 36420535 DOI: 10.1515/hsz-2022-0180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022]
Abstract
Abstract
The dysregulation of the translation elongation factor families which are responsible for reprogramming of mRNA translation has been shown to contribute to tumor progression. Here, we report that the acetylation of eukaryotic Elongation Factor 1 Alpha 1 (eEF1A1/EF1A1) is required for genotoxic stress response and maintaining the malignancy of colorectal cancer (CRC) cells. The evolutionarily conserved site K439 is identified as the key acetylation site. Tissue expression analysis demonstrates that the acetylation level of eEF1A1 K439 is higher than paired normal tissues. Most importantly, hyperacetylation of eEF1A1 at K439 negatively correlates with CRC patient survival. Mechanistically, CBP and SIRT1 are the major acetyltransferase and deacetylase of eEF1A1. Hyperacetylation of eEF1A1 at K439 shows a significant tumor-promoting effect by increasing the capacity of proliferation, migration, and invasion of CRC cells. Our findings identify the altered post-translational modification at the translation machines as a critical factor in stress response and susceptibility to colorectal carcinogenesis.
Collapse
Affiliation(s)
- Hongpeng Jiang
- Department of General Surgery, Beijing Friendship Hospital , Capital Medical University; Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases , 95 Yong-an Road, Xi-Cheng District , Beijing 100050 , P.R. China
| | - Yu Zhang
- Department of Medical Genetics, Center for Medical Genetics , Peking University Health Science Center , Beijing 100191 , P.R. China
| | - Boya Liu
- Department of Medical Genetics, Center for Medical Genetics , Peking University Health Science Center , Beijing 100191 , P.R. China
| | - Xin Yang
- Department of Medical Genetics, Center for Medical Genetics , Peking University Health Science Center , Beijing 100191 , P.R. China
| | - Zhe Wang
- Department of Medical Genetics, Center for Medical Genetics , Peking University Health Science Center , Beijing 100191 , P.R. China
| | - Meng Han
- MOE Key Laboratory of Bioinformatics, School of Life Sciences , Tsinghua University , Beijing 100084 , P.R. China
- College of Biological Sciences and Technology , Beijing Key Laboratory of Food Processing and Safety in Forest, Beijing Forestry University , Beijing 100083 , P.R. China
| | - Huiying Li
- College of Biological Sciences and Technology , Beijing Key Laboratory of Food Processing and Safety in Forest, Beijing Forestry University , Beijing 100083 , P.R. China
| | - Jianyuan Luo
- Department of Medical Genetics, Center for Medical Genetics , Peking University Health Science Center , Beijing 100191 , P.R. China
| | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital , Capital Medical University; Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases , 95 Yong-an Road, Xi-Cheng District , Beijing 100050 , P.R. China
| |
Collapse
|
31
|
Hapke R, Venton L, Rose KL, Sheng Q, Reddy A, Prather R, Jones A, Rathmell WK, Haake SM. SETD2 regulates the methylation of translation elongation factor eEF1A1 in clear cell renal cell carcinoma. KIDNEY CANCER JOURNAL : OFFICIAL JOURNAL OF THE KIDNEY CANCER ASSOCIATION 2022; 6:179-193. [PMID: 36684483 PMCID: PMC9851421 DOI: 10.3233/kca-220009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND SET domain-containing protein 2 (SETD2) is commonly mutated in renal cell carcinoma. SETD2 methylates histone H3 as well as a growing list of non-histone proteins. OBJECTIVE Initially, we sought to explore SETD2-dependent changes in lysine methylation of proteins in proximal renal tubule cells. Subsequently, we focused on changes in lysine methylation of the translation elongation factor eEF1A1. METHODS To accomplish these objectives, we initially performed a systems-wide analysis of protein lysine-methylation and expression in wild type (WT) and SETD2-knock out (KO) kidney cells and later focused our studies on eEF1A1 as well as the expression of lysine methyltransferases that regulate its lysine methylation. RESULTS We observed decreased lysine methylation of the translation elongation factor eEF1A1. EEF1AKMT2 and EEF1AKMT3 are known to methylate eEF1A1, and we show here that their expression is dependent on SET-domain function of SETD2. Globally, we observe differential expression of hundreds of proteins in WT versus SETD2-KO cells, including increased expression of many involved in protein translation. Finally, we observe decreased progression free survival and loss of EEF1AKMT2 gene expression in SETD2-mutated tumors predicted to have loss of function of the SET domain. CONCLUSION Overall, these data suggest that SETD2-mutated ccRCC, via loss of enzymatic function of the SET domain, displays dysregulation of protein translation as a potentially important component of the transformed phenotype.
Collapse
Affiliation(s)
- Robert Hapke
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lindsay Venton
- Department of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kristie Lindsay Rose
- Mass Spectrometry Research Center, Proteomics Core Laboratory, Vanderbilt University, Nashville, TN, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Rebecca Prather
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Angela Jones
- Vanderbilt Technologies for Advanced Genomics (VANTAGE), Vanderbilt University Medical Center, Nashville, TN, USA
| | - W. Kimryn Rathmell
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Scott M. Haake
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
32
|
Rubio A, Garland GD, Sfakianos A, Harvey RF, Willis AE. Aberrant protein synthesis and cancer development: The role of canonical eukaryotic initiation, elongation and termination factors in tumorigenesis. Semin Cancer Biol 2022; 86:151-165. [PMID: 35487398 DOI: 10.1016/j.semcancer.2022.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023]
Abstract
In tumourigenesis, oncogenes or dysregulated tumour suppressor genes alter the canonical translation machinery leading to a reprogramming of the translatome that, in turn, promotes the translation of selected mRNAs encoding proteins involved in proliferation and metastasis. It is therefore unsurprising that abnormal expression levels and activities of eukaryotic initiation factors (eIFs), elongation factors (eEFs) or termination factors (eRFs) are associated with poor outcome for patients with a wide range of cancers. In this review we discuss how RNA binding proteins (RBPs) within the canonical translation factor machinery are dysregulated in cancers and how targeting such proteins is leading to new therapeutic avenues.
Collapse
Affiliation(s)
- Angela Rubio
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Gavin D Garland
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Aristeidis Sfakianos
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Robert F Harvey
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK.
| |
Collapse
|
33
|
Huang C, Zhao Q, Zhou X, Huang R, Duan Y, Haybaeck J, Yang Z. The progress of protein synthesis factors eIFs, eEFs and eRFs in inflammatory bowel disease and colorectal cancer pathogenesis. Front Oncol 2022; 12:898966. [PMID: 36387239 PMCID: PMC9659945 DOI: 10.3389/fonc.2022.898966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/14/2022] [Indexed: 04/02/2025] Open
Abstract
Colorectal diseases are threatening human health, especially inflammatory bowel disease (IBD) and colorectal cancer (CRC). IBD is a group of chronic, recurrent and incurable disease, which may affect the entire gastrointestinal tract, increasing the risk of CRC. Eukaryotic gene expression is a complicated process, which is mainly regulated at the level of gene transcription and mRNA translation. Protein translation in tissue is associated with a sequence of steps, including initiation, elongation, termination and recycling. Abnormal regulation of gene expression is the key to the pathogenesis of CRC. In the early stages of cancer, it is vital to identify new diagnostic and therapeutic targets and biomarkers. This review presented current knowledge on aberrant expression of eIFs, eEFs and eRFs in colorectal diseases. The current findings of protein synthesis on colorectal pathogenesis showed that eIFs, eEFs and eRFs may be potential targets for CRC treatment.
Collapse
Affiliation(s)
- Conggai Huang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qi Zhao
- Department of Pathology, Basic Medical College of Southwest Medical University, Luzhou, China
| | - Xiaoqing Zhou
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ran Huang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Duan
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Johannes Haybaeck
- Department of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Zhihui Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
34
|
Soundararajan A, Wang T, Sundararajan R, Wijeratne A, Mosley A, Harvey FC, Bhattacharya S, Pattabiraman PP. Multiomics analysis reveals the mechanical stress-dependent changes in trabecular meshwork cytoskeletal-extracellular matrix interactions. Front Cell Dev Biol 2022; 10:874828. [PMID: 36176278 PMCID: PMC9513235 DOI: 10.3389/fcell.2022.874828] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Trabecular meshwork (TM) tissue is subjected to constant mechanical stress due to the ocular pulse created by the cardiac cycle. This brings about alterations in the membrane lipids and associated cell-cell adhesion and cell-extracellular matrix (ECM) interactions, triggering intracellular signaling responses to counter mechanical insults. A loss of such response can lead to elevated intraocular pressure (IOP), a major risk factor for primary open-angle glaucoma. This study is aimed to understand the changes in signaling responses by TM subjected to mechanical stretch. We utilized multiomics to perform an unbiased mRNA sequencing to identify changes in transcripts, mass spectrometry- (MS-) based quantitative proteomics for protein changes, and multiple reaction monitoring (MRM) profiling-based MS and high-performance liquid chromatography (HPLC-) based MS to characterize the lipid changes. We performed pathway analysis to obtain an integrated map of TM response to mechanical stretch. The human TM cells subjected to mechanical stretch demonstrated an upregulation of protein quality control, oxidative damage response, pro-autophagic signal, induction of anti-apoptotic, and survival signaling. We propose that mechanical stretch-induced lipid signaling via increased ceramide and sphingomyelin potentially contributes to increased TM stiffness through actin-cytoskeleton reorganization and profibrotic response. Interestingly, increased phospholipids and diacylglycerol due to mechanical stretch potentially enable cell membrane remodeling and changes in signaling pathways to alter cellular contractility. Overall, we propose the mechanistic interplay of macromolecules to bring about a concerted cellular response in TM cells to achieve mechanotransduction and IOP regulation when TM cells undergo mechanical stretch.
Collapse
Affiliation(s)
- Avinash Soundararajan
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ting Wang
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Rekha Sundararajan
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Aruna Wijeratne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Amber Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, IN, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Faith Christine Harvey
- Bascom Palmer Eye Institute, Miller School of Medicine at University of Miami, Miami, FL, United States
- Miami Integrative Metabolomics Research Center, Miami, FL, United States
| | - Sanjoy Bhattacharya
- Bascom Palmer Eye Institute, Miller School of Medicine at University of Miami, Miami, FL, United States
- Miami Integrative Metabolomics Research Center, Miami, FL, United States
| | - Padmanabhan Paranji Pattabiraman
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
35
|
Proteomic and lipidomic analyses of lipid droplets in Aurantiochytrium limacinum ATCC MYA-1381. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Farache D, Antine SP, Lee ASY. Moonlighting translation factors: multifunctionality drives diverse gene regulation. Trends Cell Biol 2022; 32:762-772. [PMID: 35466028 PMCID: PMC9378348 DOI: 10.1016/j.tcb.2022.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/09/2022]
Abstract
Translation factors have traditionally been viewed as proteins that drive ribosome function and ensure accurate mRNA translation. Recent discoveries have highlighted that these factors can also moonlight in gene regulation, but through functions distinct from their canonical roles in protein synthesis. Notably, the additional functions that translation factors encode are diverse, ranging from transcriptional control and extracellular signaling to RNA binding, and are highly regulated in response to external cues and the intrinsic cellular state. Thus, this multifunctionality of translation factors provides an additional mechanism for exquisite control of gene expression.
Collapse
Affiliation(s)
- Dorian Farache
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sadie P Antine
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amy S Y Lee
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
37
|
Alam M, Shima H, Matsuo Y, Long NC, Matsumoto M, Ishii Y, Sato N, Sugiyama T, Nobuta R, Hashimoto S, Liu L, Kaneko MK, Kato Y, Inada T, Igarashi K. mTORC1-independent translation control in mammalian cells by methionine adenosyltransferase 2A and S-adenosylmethionine. J Biol Chem 2022; 298:102084. [PMID: 35636512 PMCID: PMC9243181 DOI: 10.1016/j.jbc.2022.102084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022] Open
Abstract
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (SAM). As the sole methyl-donor for methylation of DNA, RNA, and proteins, SAM levels affect gene expression by changing methylation patterns. Expression of MAT2A, the catalytic subunit of isozyme MAT2, is positively correlated with proliferation of cancer cells; however, how MAT2A promotes cell proliferation is largely unknown. Given that the protein synthesis is induced in proliferating cells and that RNA and protein components of translation machinery are methylated, we tested here whether MAT2 and SAM are coupled with protein synthesis. By measuring ongoing protein translation via puromycin labeling, we revealed that MAT2A depletion or chemical inhibition reduced protein synthesis in HeLa and Hepa1 cells. Furthermore, overexpression of MAT2A enhanced protein synthesis, indicating that SAM is limiting under normal culture conditions. In addition, MAT2 inhibition did not accompany reduction in mechanistic target of rapamycin complex 1 activity but nevertheless reduced polysome formation. Polysome-bound RNA sequencing revealed that MAT2 inhibition decreased translation efficiency of some fraction of mRNAs. MAT2A was also found to interact with the proteins involved in rRNA processing and ribosome biogenesis; depletion or inhibition of MAT2 reduced 18S rRNA processing. Finally, quantitative mass spectrometry revealed that some translation factors were dynamically methylated in response to the activity of MAT2A. These observations suggest that cells possess an mTOR-independent regulatory mechanism that tunes translation in response to the levels of SAM. Such a system may acclimate cells for survival when SAM synthesis is reduced, whereas it may support proliferation when SAM is sufficient.
Collapse
Affiliation(s)
- Mahabub Alam
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Animal Science and Nutrition, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshitaka Matsuo
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Nguyen Chi Long
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusho Ishii
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nichika Sato
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takato Sugiyama
- Laboratory of Gene Regulation, Department of Molecular Biopharmacy and Genetics, Tohoku University Graduate School of Pharmaceutical Science, Sendai, Japan
| | - Risa Nobuta
- Laboratory of Gene Regulation, Department of Molecular Biopharmacy and Genetics, Tohoku University Graduate School of Pharmaceutical Science, Sendai, Japan
| | - Satoshi Hashimoto
- Laboratory of Gene Regulation, Department of Molecular Biopharmacy and Genetics, Tohoku University Graduate School of Pharmaceutical Science, Sendai, Japan
| | - Liang Liu
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshifumi Inada
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
38
|
Li C, Wang W, Sun Y, Ni Y, Qin F, Li X, Wang T, Guo M, Sun G. Selective sorting and secretion of hY4 RNA fragments into extracellular vesicles mediated by methylated YBX1 to promote lung cancer progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:136. [PMID: 35410432 PMCID: PMC8996536 DOI: 10.1186/s13046-022-02346-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 03/25/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Extracellular vesicles (EVs) are emerging mediators of intercellular communication that have been shown to play important roles in tumor progression. YRNA fragments, a type of small non-coding RNA, are dysregulated in non-small cell lung cancer (NSCLC) cell-derived EVs, suggesting that they may be an effective biomarker for cancer diagnosis and treatment strategies. METHODS Differentially expressed YRNA hY4 fragments (hY4F) in EVs from NSCLC cells and normal lung fibroblasts were isolated by differential ultra-centrifugation. RNA-binding proteins that interacted with hY4F were identified by screening with an RNA pulldown assay and mass spectrometry. The molecular mechanism of hY4F and the RNA-binding protein Y box binding protein 1 (YBX1) was demonstrated by qRT-PCR, western blot, RNA pulldown, and rescue experiments. Transcriptome sequencing, qRT-PCR validation, bioinformatics analysis and NF-κB pathway inhibitor assays elucidate the mechanism of YBX1 and hY4F inhibiting lung cancer. A peptide pulldown assay was performed to screen and identify a potential methyltransferase for YBX1. The roles of hY4F, YBX1, and SET domain containing 3 in biological functions, such as proliferation, migration, invasion, and apoptosis, in lung cancer cells were also examined by EdU incorporation assay, Transwell assay, flow cytometry, and other methods. Lastly, a mouse xenograft assay was used to assess the clinical relevance of YBX1 and hY4F in vivo. RESULTS Our data demonstrate that hY4 RNA fragments were upregulated in lung cancer- derived EVs, hY4F inhibits tumor progression through downregulating MAPK/NF-κB signaling, and then the selective sorting and secretion of hY4F into lung cancer EVs is regulated by the RNA-binding protein YBX1. Furthermore, we identified lysine K264 within the YBX1 C-terminal domain as the necessary site for its interaction with hY4Fs. K264 is modified by methylation, which affects its binding to hY4F and subsequent selective sorting into EVs in lung cancer cells. CONCLUSION Our findings demonstrate that hY4F acts as a tumor suppressor and is selectively sorted into lung cancer cell-derived EVs by interacting with methylated YBX1, which in turn promotes lung cancer progression. hY4F is a promising circulating biomarker for non-small cell lung cancer diagnosis and prognosis and an exceptional candidate for further therapeutic exploration.
Collapse
Affiliation(s)
- Chuang Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, P. R. China.,Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, P. R. China
| | - Wei Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, P. R. China
| | - Yuting Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, P. R. China
| | - Yifan Ni
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, P. R. China
| | - Fang Qin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, P. R. China
| | - Xiaolu Li
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Mingxiong Guo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, P. R. China.
| | - Guihong Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, P. R. China. .,Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan, Hubei, P. R. China.
| |
Collapse
|
39
|
Małecki JM, Davydova E, Falnes PØ. Protein methylation in mitochondria. J Biol Chem 2022; 298:101791. [PMID: 35247388 PMCID: PMC9006661 DOI: 10.1016/j.jbc.2022.101791] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Many proteins are modified by posttranslational methylation, introduced by a number of methyltransferases (MTases). Protein methylation plays important roles in modulating protein function and thus in optimizing and regulating cellular and physiological processes. Research has mainly focused on nuclear and cytosolic protein methylation, but it has been known for many years that also mitochondrial proteins are methylated. During the last decade, significant progress has been made on identifying the MTases responsible for mitochondrial protein methylation and addressing its functional significance. In particular, several novel human MTases have been uncovered that methylate lysine, arginine, histidine, and glutamine residues in various mitochondrial substrates. Several of these substrates are key components of the bioenergetics machinery, e.g., respiratory Complex I, citrate synthase, and the ATP synthase. In the present review, we report the status of the field of mitochondrial protein methylation, with a particular emphasis on recently discovered human MTases. We also discuss evolutionary aspects and functional significance of mitochondrial protein methylation and present an outlook for this emergent research field.
Collapse
Affiliation(s)
- Jędrzej M Małecki
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway.
| | - Erna Davydova
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Pål Ø Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
40
|
Chen J, Wei X, Wang X, Liu T, Zhao Y, Chen L, Luo Y, Du H, Li Y, Liu T, Cao L, Zhou Z, Zhang Z, Liang L, Li L, Yan X, Zhang X, Deng X, Yang G, Yin P, Hao J, Yin Z, You F. TBK1-METTL3 axis facilitates antiviral immunity. Cell Rep 2022; 38:110373. [PMID: 35172162 DOI: 10.1016/j.celrep.2022.110373] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 11/30/2021] [Accepted: 01/21/2022] [Indexed: 02/09/2023] Open
Abstract
mRNA m6A modification is heavily involved in modulation of immune responses. However, its function in antiviral immunity is controversial, and how immune responses regulate m6A modification remains elusive. We here find TBK1, a key kinase of antiviral pathways, phosphorylates the core m6A methyltransferase METTL3 at serine 67. The phosphorylated METTL3 interacts with the translational complex, which is required for enhancing protein translation, thus facilitating antiviral responses. TBK1 also promotes METTL3 activation and m6A modification to stabilize IRF3 mRNA. Type I interferon (IFN) induction is severely impaired in METTL3-deficient cells. Mettl3fl/fl-lyz2-Cre mice are more susceptible to influenza A virus (IAV)-induced lethality than control mice. Consistently, Ythdf1-/- mice show higher mortality than wild-type mice due to decreased IRF3 expression and subsequently attenuated IFN production. Together, we demonstrate that innate signals activate METTL3 via TBK1, and METTL3-mediated m6A modification secures antiviral immunity by promoting mRNA stability and protein translation.
Collapse
Affiliation(s)
- Jingxuan Chen
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing 100191, China; College of Acupuncture & Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province 712046, China
| | - Xuemei Wei
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing 100191, China
| | - Xiao Wang
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing 100191, China
| | - Tong Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yingchi Zhao
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing 100191, China
| | - Luoying Chen
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing 100191, China
| | - Yujie Luo
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing 100191, China
| | - Hongqiang Du
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing 100191, China
| | - Yunfei Li
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing 100191, China
| | - Tongtong Liu
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing 100191, China
| | - Lili Cao
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing 100191, China
| | - Zhe Zhou
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zeming Zhang
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing 100191, China
| | - Ling Liang
- Institute of Systems Biomedicine, Department of Biochemistry and Biophysics, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Lu Li
- College of Acupuncture & Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province 712046, China
| | - Xuhui Yan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuehui Zhang
- Department of Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology & NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xuliang Deng
- Department of Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology & NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Guang Yang
- Departments of Parasitology and Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601, Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianlei Hao
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhinan Yin
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong 510632, China
| | - Fuping You
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
41
|
Su R, Dong L, Li Y, Gao M, He PC, Liu W, Wei J, Zhao Z, Gao L, Han L, Deng X, Li C, Prince E, Tan B, Qing Y, Qin X, Shen C, Xue M, Zhou K, Chen Z, Xue J, Li W, Qin H, Wu X, Sun M, Nam Y, Chen CW, Huang W, Horne D, Rosen ST, He C, Chen J. METTL16 exerts an m 6A-independent function to facilitate translation and tumorigenesis. Nat Cell Biol 2022; 24:205-216. [PMID: 35145225 PMCID: PMC9070413 DOI: 10.1038/s41556-021-00835-2] [Citation(s) in RCA: 202] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 12/21/2021] [Indexed: 12/23/2022]
Abstract
METTL16 has recently been identified as an RNA methyltransferase responsible for the deposition of N6-methyladenosine (m6A) in a few transcripts. Whether METTL16 methylates a large set of transcripts, similar to METTL3 and METTL14, remains unclear. Here we show that METTL16 exerts both methyltransferase activity-dependent and -independent functions in gene regulation. In the cell nucleus, METTL16 functions as an m6A writer to deposit m6A into hundreds of its specific messenger RNA targets. In the cytosol, METTL16 promotes translation in an m6A-independent manner. More specifically, METTL16 directly interacts with the eukaryotic initiation factors 3a and -b as well as ribosomal RNA through its Mtase domain, thereby facilitating the assembly of the translation-initiation complex and promoting the translation of over 4,000 mRNA transcripts. Moreover, we demonstrate that METTL16 is critical for the tumorigenesis of hepatocellular carcinoma. Collectively, our studies reveal previously unappreciated dual functions of METTL16 as an m6A writer and a translation-initiation facilitator, which together contribute to its essential function in tumorigenesis.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Animals
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cytosol/enzymology
- Eukaryotic Initiation Factor-3/genetics
- Eukaryotic Initiation Factor-3/metabolism
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Hep G2 Cells
- Humans
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Mice, Inbred NOD
- Mice, SCID
- Protein Biosynthesis
- RNA Processing, Post-Transcriptional
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Signal Transduction
- Tumor Burden
- Mice
Collapse
Affiliation(s)
- Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA.
| | - Lei Dong
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Yangchan Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Min Gao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
- Department of Pharmaceutics, School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - P Cody He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Wei Liu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Jiangbo Wei
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Zhicong Zhao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Gao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Li Han
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
- School of Pharmacy, China Medical University, Shenyang, China
| | - Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Chenying Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
- Key Laboratory of Hematopoietic Malignancies, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Emily Prince
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Brandon Tan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Ying Qing
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Xi Qin
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Chao Shen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Meilin Xue
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Keren Zhou
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Jianhuang Xue
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Wei Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Hanjun Qin
- The Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Xiwei Wu
- The Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Miao Sun
- Keck School of Medicine, University of Southern California, and Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Yunsun Nam
- Laboratory of RNA Biology, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA
- Graduate School of Biological Science, City of Hope, Duarte, CA, USA
| | - David Horne
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Steven T Rosen
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA.
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA.
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA, USA.
| |
Collapse
|
42
|
Weirich S, Jeltsch A. Specificity Analysis of Protein Methyltransferases and Discovery of Novel Substrates Using SPOT Peptide Arrays. Methods Mol Biol 2022; 2529:313-325. [PMID: 35733022 DOI: 10.1007/978-1-0716-2481-4_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Posttranslational methylation of amino acid side chains in proteins mainly occurs on lysine, arginine, glutamine, and histidine residues. It is introduced by different protein methyltransferases (PMTs) and regulates many aspects of protein function including stability, activity, localization, and protein/protein interactions. Although the biological effects of PMTs are mediated by their methylation substrates, the full substrate spectrum of most PMTs is not known. For many PMTs, their activity on a particular potential substrate depends, among other factors, on the peptide sequence containing the target residue for methylation. In this protocol, we describe the application of SPOT peptide arrays to investigate the substrate specificity of PMTs and identify novel substrates. Methylation of SPOT peptide arrays makes it possible to study the methylation of many different peptides in one experiment at reasonable costs and thereby provides detailed information about the specificity of the PMT under investigation. In these experiments, a known substrate sequence is used as template to design a SPOT peptide array containing peptides with single amino acid exchanges at all positions of the sequence. Methylation of the array with the PMT provides detailed preferences for each amino acid at each position in the substrate sequence, yielding a substrate sequence specificity profile. This information can then be used to identify novel potential PMT substrates by in silico data base searches. Methylation of novel substrate candidates can be validated in SPOT arrays at peptide level, followed by validation at protein level in vitro and in cells.
Collapse
Affiliation(s)
- Sara Weirich
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
43
|
Hydroxylation of the Acetyltransferase NAA10 Trp38 Is Not an Enzyme-Switch in Human Cells. Int J Mol Sci 2021; 22:ijms222111805. [PMID: 34769235 PMCID: PMC8583962 DOI: 10.3390/ijms222111805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
NAA10 is a major N-terminal acetyltransferase (NAT) that catalyzes the cotranslational N-terminal (Nt-) acetylation of 40% of the human proteome. Several reports of lysine acetyltransferase (KAT) activity by NAA10 exist, but others have not been able to find any NAA10-derived KAT activity, the latter of which is supported by structural studies. The KAT activity of NAA10 towards hypoxia-inducible factor 1α (HIF-1α) was recently found to depend on the hydroxylation at Trp38 of NAA10 by factor inhibiting HIF-1α (FIH). In contrast, we could not detect hydroxylation of Trp38 of NAA10 in several human cell lines and found no evidence that NAA10 interacts with or is regulated by FIH. Our data suggest that NAA10 Trp38 hydroxylation is not a switch in human cells and that it alters its catalytic activity from a NAT to a KAT.
Collapse
|
44
|
Jakobsson ME. Structure, Activity and Function of the Dual Protein Lysine and Protein N-Terminal Methyltransferase METTL13. Life (Basel) 2021; 11:1121. [PMID: 34832997 PMCID: PMC8624817 DOI: 10.3390/life11111121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
METTL13 (also known as eEF1A-KNMT and FEAT) is a dual methyltransferase reported to target the N-terminus and Lys55 in the eukaryotic translation elongation factor 1 alpha (eEF1A). METTL13-mediated methylation of eEF1A has functional consequences related to translation dynamics and include altered rate of global protein synthesis and translation of specific codons. Aberrant regulation of METTL13 has been linked to several types of cancer but the precise mechanisms are not yet fully understood. In this article, the current literature related to the structure, activity, and function of METTL13 is systematically reviewed and put into context. The links between METTL13 and diseases, mainly different types of cancer, are also summarized. Finally, key challenges and opportunities for METTL13 research are pinpointed in a prospective outlook.
Collapse
Affiliation(s)
- Magnus E Jakobsson
- Department of Immunotechnology, Lund University, Medicon Village, 22100 Lund, Sweden
| |
Collapse
|
45
|
Wong JM, Eirin-Lopez JM. Evolution of methyltransferase like (METTL) proteins in Metazoa: A complex gene family involved in epitranscriptomic regulation and other epigenetic processes. Mol Biol Evol 2021; 38:5309-5327. [PMID: 34480573 PMCID: PMC8662637 DOI: 10.1093/molbev/msab267] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The methyltransferase-like (METTL) proteins constitute a family of seven-beta-strand methyltransferases with S-adenosyl methionine-binding domains that modify DNA, RNA, and proteins. Methylation by METTL proteins contributes to the epigenetic, and in the case of RNA modifications, epitranscriptomic regulation of a variety of biological processes. Despite their functional importance, most investigations of the substrates and functions of METTLs within metazoans have been restricted to model vertebrate taxa. In the present work, we explore the evolutionary mechanisms driving the diversification and functional differentiation of 33 individual METTL proteins across Metazoa. Our results show that METTLs are nearly ubiquitous across the animal kingdom, with most having arisen early in metazoan evolution (i.e., occur in basal metazoan phyla). Individual METTL lineages each originated from single independent ancestors, constituting monophyletic clades, which suggests that each METTL was subject to strong selective constraints driving its structural and/or functional specialization. Interestingly, a similar process did not extend to the differentiation of nucleoside-modifying and protein-modifying METTLs (i.e., each METTL type did not form a unique monophyletic clade). The members of these two types of METTLs also exhibited differences in their rates of evolution. Overall, we provide evidence that the long-term evolution of METTL family members was driven by strong purifying selection, which in combination with adaptive selection episodes, led to the functional specialization of individual METTL lineages. This work contributes useful information regarding the evolution of a gene family that fulfills a variety of epigenetic functions, and can have profound influences on molecular processes and phenotypic traits.
Collapse
Affiliation(s)
- Juliet M Wong
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, FL, United States
| | - Jose M Eirin-Lopez
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, FL, United States
| |
Collapse
|
46
|
Chen P, Paschoal Sobreira TJ, Hall MC, Hazbun TR. Discovering the N-Terminal Methylome by Repurposing of Proteomic Datasets. J Proteome Res 2021; 20:4231-4247. [PMID: 34382793 PMCID: PMC11955830 DOI: 10.1021/acs.jproteome.1c00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein α-N-methylation is an underexplored post-translational modification involving the covalent addition of methyl groups to the free α-amino group at protein N-termini. To systematically explore the extent of α-N-terminal methylation in yeast and humans, we reanalyzed publicly accessible proteomic datasets to identify N-terminal peptides contributing to the α-N-terminal methylome. This repurposing approach found evidence of α-N-methylation of established and novel protein substrates with canonical N-terminal motifs of established α-N-terminal methyltransferases, including human NTMT1/2 and yeast Tae1. NTMT1/2 are implicated in cancer and aging processes but have unclear and context-dependent roles. Moreover, α-N-methylation of noncanonical sequences was surprisingly prevalent, suggesting unappreciated and cryptic methylation events. Analysis of the amino acid frequencies of α-N-methylated peptides revealed a [S]1-[S/A/Q]2 pattern in yeast and [A/N/G]1-[A/S/V]2-[A/G]3 in humans, which differs from the canonical motif. We delineated the distribution of the two types of prevalent N-terminal modifications, acetylation and methylation, on amino acids at the first position. We tested three potentially methylated proteins and confirmed the α-N-terminal methylation of Hsp31 by additional proteomic analysis and immunoblotting. The other two proteins, Vma1 and Ssa3, were found to be predominantly acetylated, indicating that proteomic searching for α-N-terminal methylation requires careful consideration of mass spectra. This study demonstrates the feasibility of reprocessing proteomic data for global α-N-terminal methylome investigations.
Collapse
Affiliation(s)
- Panyue Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907
| | | | - Mark C. Hall
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907
| | - Tony R. Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
47
|
Methyltransferase like 13 mediates the translation of Snail in head and neck squamous cell carcinoma. Int J Oral Sci 2021; 13:26. [PMID: 34381012 PMCID: PMC8357922 DOI: 10.1038/s41368-021-00130-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 01/06/2023] Open
Abstract
Methyltransferase like 13 (METTL13), a kind of methyltransferase, is implicated in protein binding and synthesis. The upregulation of METTL13 has been reported in a variety of tumors. However, little was known about its potential function in head and neck squamous cell carcinoma (HNSCC) so far. In this study, we found that METTL13 was significantly upregulated in HNSCC at both mRNA and protein level. Increased METTL13 was negatively associated with clinical prognosis. And METTL13 markedly affected HNSCC cellular phenotypes in vivo and vitro. Further mechanism study revealed that METTL13 could regulate EMT signaling pathway by mediating enhancing translation efficiency of Snail, the key transcription factor in EMT, hence regulating the progression of EMT. Furthermore, Snail was verified to mediate METTL13-induced HNSCC cell malignant phenotypes. Altogether, our study had revealed the oncogenic role of METTL13 in HNSCC, and provided a potential therapeutic strategy.
Collapse
|
48
|
Chen D, Meng Y, Yu D, Noinaj N, Cheng X, Huang R. Chemoproteomic Study Uncovers HemK2/KMT9 As a New Target for NTMT1 Bisubstrate Inhibitors. ACS Chem Biol 2021; 16:1234-1242. [PMID: 34192867 DOI: 10.1021/acschembio.1c00279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Understanding the selectivity of methyltransferase inhibitors is important to dissecting the functions of each methyltransferase target. From this perspective, we report a chemoproteomic study to profile the selectivity of a potent protein N-terminal methyltransferase 1 (NTMT1) bisubstrate inhibitor NAH-C3-GPKK (Ki, app = 7 ± 1 nM) in endogenous proteomes. First, we describe the rational design, synthesis, and biochemical characterization of a new chemical probe 6, a biotinylated analogue of NAH-C3-GPKK. Next, we systematically analyze protein networks that may selectively interact with the biotinylated probe 6 in concert with the competitor NAH-C3-GPKK. Besides NTMT1, the designated NTMT1 bisubstrate inhibitor NAH-C3-GPKK was found to also potently inhibit a methyltransferase complex HemK2-Trm112 (also known as KMT9-Trm112), highlighting the importance of systematic selectivity profiling. Furthermore, this is the first potent inhibitor for HemK2/KMT9 reported until now. Thus, our studies lay the foundation for future efforts to develop selective inhibitors for either methyltransferase.
Collapse
Affiliation(s)
- Dongxing Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ying Meng
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dan Yu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, United States
| | - Nicholas Noinaj
- Department of Biological Sciences, Markey Center for Structural Biology, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
49
|
Mills A, Gago F. On the Need to Tell Apart Fraternal Twins eEF1A1 and eEF1A2, and Their Respective Outfits. Int J Mol Sci 2021; 22:6973. [PMID: 34203525 PMCID: PMC8268798 DOI: 10.3390/ijms22136973] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 01/03/2023] Open
Abstract
eEF1A1 and eEF1A2 are paralogous proteins whose presence in most normal eukaryotic cells is mutually exclusive and developmentally regulated. Often described in the scientific literature under the collective name eEF1A, which stands for eukaryotic elongation factor 1A, their best known activity (in a monomeric, GTP-bound conformation) is to bind aminoacyl-tRNAs and deliver them to the A-site of the 80S ribosome. However, both eEF1A1 and eEF1A2 are endowed with multitasking abilities (sometimes performed by homo- and heterodimers) and can be located in different subcellular compartments, from the plasma membrane to the nucleus. Given the high sequence identity of these two sister proteins and the large number of post-translational modifications they can undergo, we are often confronted with the dilemma of discerning which is the particular proteoform that is actually responsible for the ascribed biochemical or cellular effects. We argue in this review that acquiring this knowledge is essential to help clarify, in molecular and structural terms, the mechanistic involvement of these two ancestral and abundant G proteins in a variety of fundamental cellular processes other than translation elongation. Of particular importance for this special issue is the fact that several de novo heterozygous missense mutations in the human EEF1A2 gene are associated with a subset of rare but severe neurological syndromes and cardiomyopathies.
Collapse
Affiliation(s)
| | - Federico Gago
- Department of Biomedical Sciences & “Unidad Asociada IQM-CSIC”, School of Medicine and Health Sciences, University of Alcalá, E-28805 Alcalá de Henares, Spain;
| |
Collapse
|
50
|
Kapell S, Jakobsson ME. Large-scale identification of protein histidine methylation in human cells. NAR Genom Bioinform 2021; 3:lqab045. [PMID: 34046594 PMCID: PMC8140740 DOI: 10.1093/nargab/lqab045] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
Methylation can occur on histidine, lysine and arginine residues in proteins and often serves a regulatory function. Histidine methylation has recently attracted attention through the discovery of the human histidine methyltransferase enzymes SETD3 and METTL9. There are currently no methods to enrich histidine methylated peptides for mass spectrometry analysis and large-scale studies of the modification are hitherto absent. Here, we query ultra-comprehensive human proteome datasets to generate a resource of histidine methylation sites. In HeLa cells alone, we report 299 histidine methylation sites as well as 895 lysine methylation events. We use this resource to explore the frequency, localization, targeted domains, protein types and sequence requirements of histidine methylation and benchmark all analyses to methylation events on lysine and arginine. Our results demonstrate that histidine methylation is widespread in human cells and tissues and that the modification is over-represented in regions of mono-spaced histidine repeats. We also report colocalization of the modification with functionally important phosphorylation sites and disease associated mutations to identify regions of likely regulatory and functional importance. Taken together, we here report a system level analysis of human histidine methylation and our results represent a comprehensive resource enabling targeted studies of individual histidine methylation events.
Collapse
Affiliation(s)
- Sebastian Kapell
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | | |
Collapse
|