1
|
Lin X, Huang Z, Huang H, Fang Y, Weng Y, Wang Z, Zhao H, Liu H. A tough Janus poly(vinyl alcohol)-based hydrogel for wound closure and anti postoperative adhesion. Acta Biomater 2024; 188:103-116. [PMID: 39243837 DOI: 10.1016/j.actbio.2024.08.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/10/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
Traditional adhesive hydrogels perform well in tissue adhesion but they fail to prevent postoperative tissue adhesion. To address this challenge, a biodegradable Janus adhesive hydrogel (J-AH) was designed and fabricated by the assembly of three different functional layers including anti-adhesive layer, reinforceable layer, and wet tissue adhesive layer. Each layer of J-AH serves a specific function: the top zwitterionic polymeric anti-adhesive layer shows superior resistance to cell/protein and tissue adhesion; the middle poly(vinyl alcohol)/tannic acid reinforceable matrix layer endows the hydrogel with good mechanical toughness of ∼2.700 MJ/m3; the bottom poly(acrylic acid)/polyethyleneimine adhesive layer imparts tough adhesion (∼382.93 J/m2 of interfacial toughness) to wet tissues. In the rat liver and femoral injury models, J-AH could firmly adhere to the bleeding tissues to seal the wounds and exhibit impressive hemostatic efficiency. Moreover, in the in vivo adhesion/anti-adhesion assay of J-AH between the defected cecum and peritoneal walls, the top anti-adhesive layer can effectively inhibit undesired postoperative abdominal adhesion and inflammatory reaction. Therefore, this research may present a new strategy for the design of advanced bio-absorbable Janus adhesive hydrogels with multi-functions including tissue adhesion, anti-postoperative adhesion and biodegradation. STATEMENT OF SIGNIFICANCE: Despite many adhesive hydrogels with tough tissue adhesion capability have been reported, their proclivity for undesired postoperative adhesion remains a serious problem. The postoperative adhesion may lead to major complications and even endanger the lives of patients. The injectable hydrogels can cover the irregular wound and suppress the formation of postoperative adhesion. However, due to the lack of adhesive properties with tissue, it is difficult for the hydrogels to maintain on the wound surface, resulting in poor anti-postoperative adhesion effect. Herein, we design a Janus adhesive hydrogel (J-AH). J-AH integrates together robust wet tissue adhesion and anti-postoperative adhesion. Therefore, this research may present a new strategy for the design of advanced bio-absorbable Janus adhesive hydrogels.
Collapse
Affiliation(s)
- Xiaojin Lin
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Zongxuan Huang
- Department of General Surgery, Fuzhou General Teaching Hospital, Fujian University of Traditional Chinese Medicine (900TH Hospital of Joint Logistics Support Force), Fuzhou 35025, China
| | - Hongjian Huang
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Yan Fang
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Yunxiang Weng
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Zhengchao Wang
- College of Life Science, Fujian Normal University, Fujian 350007, China
| | - Hu Zhao
- Department of General Surgery, Fuzhou General Teaching Hospital, Fujian University of Traditional Chinese Medicine (900TH Hospital of Joint Logistics Support Force), Fuzhou 35025, China
| | - Haiqing Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China; Fujian-Taiwan Science and Technology Cooperation Base of Biomedical, Materials and Tissue Engineering, Fujian 350007, China; Engineering Research Center of Industrial Biocatalysis, Fujian 350007, China.
| |
Collapse
|
2
|
Yang Y, Fan S, Webb JA, Ma Y, Goyette J, Chen X, Gaus K, Tilley RD, Gooding JJ. Electrochemical fluorescence switching of enhanced green fluorescent protein. Biosens Bioelectron 2023; 237:115467. [PMID: 37437456 DOI: 10.1016/j.bios.2023.115467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 07/14/2023]
Abstract
Switchable fluorescent proteins, for which fluorescence can be switched ON and OFF, are widely used for molecule tracking and super resolution imaging. However, the robust use of the switchable fluorescent proteins is still limited as either the switching is not repeatable, or such switching requires irradiation with coupled lasers of different wavelengths. Herein, we report an electrochemical approach to reversible fluorescence switching for enhanced green fluorescent proteins (EGFP) on indium tin oxide coated glass. Our results demonstrate that negative and positive electrochemical potentials can efficiently switch the fluorescent proteins between the dim (OFF) and bright (ON) states at the single molecule level. The electrochemical fluorescence switching is fast, reversible, and may be performed up to hundreds of cycles before photobleaching occurs. These findings highlight that this method of electrochemical fluorescence switching can be incorporated into advanced fluorescence microscopy.
Collapse
Affiliation(s)
- Ying Yang
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney, 2052, Australia
| | - Sanjun Fan
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney, 2052, Australia
| | - James A Webb
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney, 2052, Australia
| | - Yuanqing Ma
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney, 2052, Australia
| | - Jesse Goyette
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, 2052, Sydney, Australia
| | - Xueqian Chen
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney, 2052, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, 2052, Sydney, Australia
| | - Richard D Tilley
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney, 2052, Australia; Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, 2052, Australia
| | - J Justin Gooding
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney, 2052, Australia.
| |
Collapse
|
3
|
Yang W, Xuan C, Liu X, Zhang Q, Wu K, Bian L, Shi X. A sandwiched patch toward leakage-free and anti-postoperative tissue adhesion sealing of intestinal injuries. Bioact Mater 2022; 24:112-123. [PMID: 36582344 PMCID: PMC9760658 DOI: 10.1016/j.bioactmat.2022.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Ideal repair of intestinal injury requires a combination of leakage-free sealing and postoperative antiadhesion. However, neither conventional hand-sewn closures nor existing bioglues/patches can achieve such a combination. To this end, we develop a sandwiched patch composed of an inner adhesive and an outer antiadhesive layer that are topologically linked together through a reinforced interlayer. The inner adhesive layer tightly and instantly adheres to the wound sites via -NHS chemistry; the outer antiadhesive layer can inhibit cell and protein fouling based on the zwitterion structure; and the interlayer enhances the bulk resilience of the patch under excessive deformation. This complementary trilayer patch (TLP) possesses a unique combination of instant wet adhesion, high mechanical strength, and biological inertness. Both rat and pig models demonstrate that the sandwiched TLP can effectively seal intestinal injuries and inhibit undesired postoperative tissue adhesion. The study provides valuable insight into the design of multifunctional bioadhesives to enhance the treatment efficacy of intestinal injuries.
Collapse
Affiliation(s)
- Wei Yang
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Chengkai Xuan
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China,Guangzhou Soonheal Medical Technology. Co, Ltd, Guangzhou, 510230, China
| | - Xuemin Liu
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Qiang Zhang
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
| | - Liming Bian
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China,School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China,Corresponding author. National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China.
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China,Corresponding author. School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
4
|
The impact of antifouling layers in fabricating bioactive surfaces. Acta Biomater 2021; 126:45-62. [PMID: 33727195 DOI: 10.1016/j.actbio.2021.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/18/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Bioactive surfaces modified with functional peptides are critical for both fundamental research and practical application of implant materials and tissue repair. However, when bioactive molecules are tethered on biomaterial surfaces, their functions can be compromised due to unwanted fouling (mainly nonspecific protein adsorption and cell adhesion). In recent years, researchers have continuously studied antifouling strategies to obtain low background noise and effectively present the function of bioactive molecules. In this review, we describe several commonly used antifouling strategies and analyzed their advantages and drawbacks. Among these strategies, antifouling molecules are widely used to construct the antifouling layer of various bioactive surfaces. Subsequently, we summarize various structures of antifouling molecules and their surface grafting methods and characteristics. Application of these functionalized surfaces in microarray, biosensors, and implants are also introduced. Finally, we discuss the primary challenges associated with antifouling layers in fabricating bioactive surfaces and provide prospects for the future development of this field. STATEMENT OF SIGNIFICANCE: The nonspecific protein adsorption and cell adhesion will cause unwanted background "noise" on the surface of biological materials and detecting devices and compromise the performance of functional molecules and, therefore, impair the performance of materials and the sensitivity of devices. In addition, the selection of antifouling surfaces with proper chain length and high grafting density is also of great importance and requires further studies. Otherwise, the surface-tethered bioactive molecules may not function in their optimal status or even fail to display their functions. Based on these two critical issues, we summarize antifouling molecules with different structures, variable grafting methods, and diverse applications in biomaterials and biomedical devices reported in literature. Overall, we expect to shed some light on choosing the appropriate antifouling molecules in fabricating bioactive surfaces.
Collapse
|
5
|
Li C, Liu C, Li M, Xu X, Li S, Qi W, Su R, Yu J. Structures and Antifouling Properties of Self-Assembled Zwitterionic Peptide Monolayers: Effects of Peptide Charge Distributions and Divalent Cations. Biomacromolecules 2020; 21:2087-2095. [DOI: 10.1021/acs.biomac.0c00062] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chuanxi Li
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Chunjiang Liu
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Minglun Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xin Xu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
6
|
Lei Y, Ye H, Xiang S, Huang Y, Zhu C, Zhang W, Chen Y, Cao Y. Pipette-like action of a reusable and NIR light-responsive film for the aspiration and removal of viable cancer cells. NEW J CHEM 2020. [DOI: 10.1039/c9nj05449a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reusable and NIR light-responsive composite membrane is developed to capture/release viable cancer cells.
Collapse
Affiliation(s)
- Yang Lei
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education
- Jianghan University
- Wuhan 430056
- China
| | - Haixia Ye
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education
- Jianghan University
- Wuhan 430056
- China
| | - Siqi Xiang
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education
- Jianghan University
- Wuhan 430056
- China
| | - Yuan Huang
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education
- Jianghan University
- Wuhan 430056
- China
| | - Chao Zhu
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education
- Jianghan University
- Wuhan 430056
- China
| | - Weiying Zhang
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education
- Jianghan University
- Wuhan 430056
- China
| | - Yong Chen
- Département de Chimie
- Ecole Normale Supérieure
- F-75231 Paris Cedex 05
- France
| | - Yiping Cao
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education
- Jianghan University
- Wuhan 430056
- China
| |
Collapse
|
7
|
Chen Q, Yu S, Zhang D, Zhang W, Zhang H, Zou J, Mao Z, Yuan Y, Gao C, Liu R. Impact of Antifouling PEG Layer on the Performance of Functional Peptides in Regulating Cell Behaviors. J Am Chem Soc 2019; 141:16772-16780. [DOI: 10.1021/jacs.9b07105] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qi Chen
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shan Yu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Donghui Zhang
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenjing Zhang
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haodong Zhang
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingcheng Zou
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuan Yuan
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
8
|
Fan S, Webb JEA, Yang Y, Nieves DJ, Gonçales VR, Tran J, Hilzenrat G, Kahram M, Tilley RD, Gaus K, Gooding JJ. Observing the Reversible Single Molecule Electrochemistry of Alexa Fluor 647 Dyes by Total Internal Reflection Fluorescence Microscopy. Angew Chem Int Ed Engl 2019; 58:14495-14498. [DOI: 10.1002/anie.201907298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/08/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Sanjun Fan
- School of Chemistry Australian Centre for NanoMedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology University of New South Wales Sydney NSW 2052 Australia
| | - James E. A. Webb
- School of Chemistry Australian Centre for NanoMedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology University of New South Wales Sydney NSW 2052 Australia
| | - Ying Yang
- School of Chemistry Australian Centre for NanoMedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology University of New South Wales Sydney NSW 2052 Australia
| | - Daniel J. Nieves
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging University of New South Wales Sydney NSW 2052 Australia
| | - Vinicius R. Gonçales
- School of Chemistry Australian Centre for NanoMedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology University of New South Wales Sydney NSW 2052 Australia
| | - Jason Tran
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging University of New South Wales Sydney NSW 2052 Australia
| | - Geva Hilzenrat
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging University of New South Wales Sydney NSW 2052 Australia
| | - Mohaddeseh Kahram
- School of Chemistry Australian Centre for NanoMedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology University of New South Wales Sydney NSW 2052 Australia
| | - Richard D. Tilley
- School of Chemistry Australian Centre for NanoMedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology University of New South Wales Sydney NSW 2052 Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging University of New South Wales Sydney NSW 2052 Australia
| | - J. Justin Gooding
- School of Chemistry Australian Centre for NanoMedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
9
|
Fan S, Webb JEA, Yang Y, Nieves DJ, Gonçales VR, Tran J, Hilzenrat G, Kahram M, Tilley RD, Gaus K, Gooding JJ. Observing the Reversible Single Molecule Electrochemistry of Alexa Fluor 647 Dyes by Total Internal Reflection Fluorescence Microscopy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sanjun Fan
- School of Chemistry Australian Centre for NanoMedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology University of New South Wales Sydney NSW 2052 Australia
| | - James E. A. Webb
- School of Chemistry Australian Centre for NanoMedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology University of New South Wales Sydney NSW 2052 Australia
| | - Ying Yang
- School of Chemistry Australian Centre for NanoMedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology University of New South Wales Sydney NSW 2052 Australia
| | - Daniel J. Nieves
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging University of New South Wales Sydney NSW 2052 Australia
| | - Vinicius R. Gonçales
- School of Chemistry Australian Centre for NanoMedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology University of New South Wales Sydney NSW 2052 Australia
| | - Jason Tran
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging University of New South Wales Sydney NSW 2052 Australia
| | - Geva Hilzenrat
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging University of New South Wales Sydney NSW 2052 Australia
| | - Mohaddeseh Kahram
- School of Chemistry Australian Centre for NanoMedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology University of New South Wales Sydney NSW 2052 Australia
| | - Richard D. Tilley
- School of Chemistry Australian Centre for NanoMedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology University of New South Wales Sydney NSW 2052 Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging University of New South Wales Sydney NSW 2052 Australia
| | - J. Justin Gooding
- School of Chemistry Australian Centre for NanoMedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
10
|
Abstract
Optical biosensors are defined as portable optical devices that use biorecognition molecules to interrogate a sample for the presence of a target. The capabilities of optical biosensors have expanded rapidly with advances in miniature optical components and molecular engineering. Biosensors to meet the needs in health and environmental monitoring and food safety have become commercially available, with many more in the pipeline. We review the innovative approaches to overcoming existing hurdles to practical biosensor designs and explore potential areas for future breakthroughs in optical biosensor technology.
Collapse
Affiliation(s)
- Frances S Ligler
- Joint Department of Biomedical Engineering , University of North Carolina at Chapel Hill and North Carolina State University and the North Carolina State University Comparative Medicine Institute , Raleigh , North Carolina 27695-7115 , United States
| | - J Justin Gooding
- School of Chemistry, The Australian Centre for NanoMedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , The University of New South Wales , Sydney 2052 , Australia
| |
Collapse
|
11
|
Phan HP, Masud MK, Vadivelu RK, Dinh T, Nguyen TK, Ngo K, Dao DV, Shiddiky MJA, Hossain MSA, Yamauchi Y, Nguyen NT. Transparent crystalline cubic SiC-on-glass electrodes enable simultaneous electrochemistry and optical microscopy. Chem Commun (Camb) 2019; 55:7978-7981. [PMID: 31225573 DOI: 10.1039/c9cc03082d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This work presents crystalline SiC-on-glass as a transparent, robust, and optically stable electrode for simultaneous electrochemical characterization and optical microscope imaging. Experimental results show a large potential window, as well as excellent stability and repeatability over multiple cyclic voltammetric scans in common redox biomarkers such as ruthenium hexaammine and methylene blue. The high optical transmittance and biocompatibility of SiC-on-glass were also observed, enabling cell culture, electrical stimulation, and high resolution fluorescence imaging. This new platform opens exciting opportunities in multi-functional biosensing-probes and observation.
Collapse
Affiliation(s)
- Hoang-Phuong Phan
- Queensland Micro-Nanotechnology Centre, Griffith University, Qld, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Immunoregulation of macrophages by dynamic ligand presentation via ligand-cation coordination. Nat Commun 2019; 10:1696. [PMID: 30979900 PMCID: PMC6461616 DOI: 10.1038/s41467-019-09733-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 03/26/2019] [Indexed: 01/15/2023] Open
Abstract
Macrophages regulate host responses to implants through their dynamic adhesion, release, and activation. Herein, we employ bisphosphonate (BP)-coated gold nanoparticle template (BNP) to direct the swift and convertible formation of Mg2+-functional Mg2+-BP nanoparticle (NP) on the BP-AuNP surface via reversible Mg2+-BP coordination, thus producing (Mg2+-BP)-Au dimer (MgBNP). Ethylenediaminetetraacetic acid-based Mg2+ chelation facilitates the dissolution of Mg2+-BP NP, thus enabling the reversion of the MgBNP to the BNP. This convertible nanoassembly incorporating cell-adhesive Mg2+ moieties directs reversible attachment and detachment of macrophages by BP and EDTA, without physical scraping or trypsin that could damage cells. The swift formation of RGD ligand- and Mg2+-bifunctional RGD-Mg2+-BP NP that yields (RGD-Mg2+-BP)-Au dimer (RGDBNP) further stimulates the adhesion and pro-regenerative M2-type polarization of macrophages, both in vitro and in vivo, including rho-associated protein kinase. This swift and non-toxic dimer formation can include diverse bio-functional moieties to regulate host responses to implants. Control of macrophage adhesion and phenotype is important to biomaterial applications. Here, the authors report on the use of bisphosphonate coated gold nanoparticles by magnesium coordination for the controlled adhesion and polarisation of macrophages in vitro and in vivo and controlled cell release.
Collapse
|
13
|
Lian J, Yang Y, Wang W, Parker SG, Gonçales VR, Tilley RD, Gooding JJ. Amorphous silicon on indium tin oxide: a transparent electrode for simultaneous light activated electrochemistry and optical microscopy. Chem Commun (Camb) 2018; 55:123-126. [PMID: 30516184 DOI: 10.1039/c8cc07889k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein is reported a new type of transparent electrode, prepared by depositing a thin layer of amorphous silicon film on indium tin oxide, which enables photoswitchable electrochemistry and optical imaging to be performed simultaneously. This offers the opportunity to visualise a spatially controlled electrochemical event on an unstructured electrode surface.
Collapse
Affiliation(s)
- Jiaxin Lian
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | | | | | | | |
Collapse
|