1
|
Kumar P, Mishra T, Sanyam, Mondal A, Basu S. Triphenylamine-Naphthalimide-Based "On-Off-On" AIEgen for Imaging Golgi Apparatus and Endoplasmic Reticulum. ACS APPLIED BIO MATERIALS 2025; 8:1524-1532. [PMID: 39835412 DOI: 10.1021/acsabm.4c01722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Golgi apparatus (GA) and endoplasmic reticulum (ER) are two of the interesting subcellular organelles that are critical for protein synthesis, folding, processing, post-translational modifications, and secretion. Consequently, dysregulation in GA and ER and cross-talk between them are implicated in numerous diseases including cancer. As a result, simultaneous visualization of the GA and ER in cancer cells is extremely crucial for developing cancer therapeutics. To address this, herein, we have designed and synthesized a 1,8-napthalimide-based small molecule (AIE-GA-ER) consisting of phenylsulfonamide as Golgi-ER homing and triphenylamine-napthalimide as aggregation-induced emission (AIE) triggering moieties. AIE-GA-ER exhibited remarkable "on-off-on" AIE properties in THF/water binary solvent system due to aggregated "on-state" in pure THF and 80% water in THF. Molecular dynamic simulations and density functional theory (DFT) calculations exhibited the underlying mechanism of the emissive property of AIE-GA-ER to be the interplay between intramolecular charge transfer (ICT) stabilization and aggregation in THF, DMSO, and water. AIE-GA-ER efficiently homed into the GA and ER of HCT-116 colon cancer cells within 15-30 min as well as noncancerous human retinal epithelial pigment cells (RPE-1) within 3 h with minimum toxicity. This AIEgen has the potential to illuminate the Golgi apparatus and ER simultaneously in cancer cells to understand the chemical biology of their cross-talk for next-generation cancer therapeutics.
Collapse
Affiliation(s)
- Phanindra Kumar
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Tripti Mishra
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Sanyam
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Anirban Mondal
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Sudipta Basu
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
2
|
Zhao Z, Wang W, Xiang G, Jiang L, Jiang X. Capillary-Assisted Confinement Assembly for Advanced Sensor Fabrication: From Superwetting Interfaces to Capillary Bridge Patterning. ACS NANO 2025; 19:3019-3036. [PMID: 39814369 DOI: 10.1021/acsnano.4c17499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Precise patterning of sensing materials, particularly the long-range-ordered assembly of micro/nanostructures, is pivotal for improving sensor performance, facilitating miniaturization, and enabling seamless integration. This paper examines the importance of interfacial confined assembly in sensor patterning, including gas-liquid and liquid-liquid confined assembly, wettability-assisted or microstructure-assisted solid-liquid interfacial confined assembly, and tip-induced confined assembly. The application of capillary bridge confined assembly technology in chemical sensors, flexible electronics, and optoelectronics is highlighted. The advantages of capillary bridge confined assembly technology include the ability to achieve high-resolution patterning, scalability, and material arrangement in long-range order. It is, therefore, an ideal processing platform for next-generation sensors. Finally, the broad prospects of this technology in the miniaturization and integration of high-performance multifunctional sensors are discussed.
Collapse
Affiliation(s)
- Zhihao Zhao
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Weijie Wang
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Gongmo Xiang
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Lei Jiang
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangyu Jiang
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
| |
Collapse
|
3
|
Huang R, Liu T, Peng H, Liu J, Liu X, Ding L, Fang Y. Molecular design and architectonics towards film-based fluorescent sensing. Chem Soc Rev 2024; 53:6960-6991. [PMID: 38836431 DOI: 10.1039/d4cs00347k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The past few decades have witnessed encouraging progress in the development of high-performance film-based fluorescent sensors (FFSs) for detecting explosives, illicit drugs, chemical warfare agents (CWAs), and hazardous volatile organic chemicals (VOCs), among others. Several FFSs have transitioned from laboratory research to real-world applications, demonstrating their practical relevance. At the heart of FFS technology lies the sensing films, which play a crucial role in determining the analytes and the resulting signals. The selection of sensing fluorophores and the fabrication strategies employed in film construction are key factors that influence the fluorescence properties, active-layer structures, and overall sensing behaviors of these films. This review examines the progress and innovations in the research field of FFSs over the past two decades, focusing on advancements in fluorophore design and active-layer structural engineering. It underscores popular sensing fluorophore scaffolds and the dynamics of excited state processes. Additionally, it delves into six distinct categories of film fabrication technologies and strategies, providing insights into their advantages and limitations. This review further addresses important considerations such as photostability and substrate effects. Concluding with an overview of the field's challenges and prospects, it sheds light on the potential for further development in this burgeoning area.
Collapse
Affiliation(s)
- Rongrong Huang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| |
Collapse
|
4
|
Zakrzewski J, Liberka M, Wang J, Chorazy S, Ohkoshi SI. Optical Phenomena in Molecule-Based Magnetic Materials. Chem Rev 2024; 124:5930-6050. [PMID: 38687182 PMCID: PMC11082909 DOI: 10.1021/acs.chemrev.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Since the last century, we have witnessed the development of molecular magnetism which deals with magnetic materials based on molecular species, i.e., organic radicals and metal complexes. Among them, the broadest attention was devoted to molecule-based ferro-/ferrimagnets, spin transition materials, including those exploring electron transfer, molecular nanomagnets, such as single-molecule magnets (SMMs), molecular qubits, and stimuli-responsive magnetic materials. Their physical properties open the application horizons in sensors, data storage, spintronics, and quantum computation. It was found that various optical phenomena, such as thermochromism, photoswitching of magnetic and optical characteristics, luminescence, nonlinear optical and chiroptical effects, as well as optical responsivity to external stimuli, can be implemented into molecule-based magnetic materials. Moreover, the fruitful interactions of these optical effects with magnetism in molecule-based materials can provide new physical cross-effects and multifunctionality, enriching the applications in optical, electronic, and magnetic devices. This Review aims to show the scope of optical phenomena generated in molecule-based magnetic materials, including the recent advances in such areas as high-temperature photomagnetism, optical thermometry utilizing SMMs, optical addressability of molecular qubits, magneto-chiral dichroism, and opto-magneto-electric multifunctionality. These findings are discussed in the context of the types of optical phenomena accessible for various classes of molecule-based magnetic materials.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Michal Liberka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Junhao Wang
- Department
of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tonnodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Park SY, Sharma R, Lee HI. Thin colorimetric film array for rapid and selective detection of v-type nerve agent mimic in potentially contaminated areas. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133064. [PMID: 38011824 DOI: 10.1016/j.jhazmat.2023.133064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/24/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
The expeditious detection and quantification of V-series nerve agents (VX) on potentially contaminated surfaces are crucial for the prevention of regional conflict incidents, acts of terrorism, or illicit activities. However, the low volatility and high toxicity of VX make these tasks challenging. Herein, we designed two novel colorimetric thin polymeric films to rapidly and sensitively detect demeton-S, a VX mimic, in contaminated areas. The polymeric films were specifically engineered to include a coordination site for Au (III) ions. Initially, these films were coordinated with Au (III), causing a discernible alteration in color due to enhancement in intramolecular charge transfer process. In the presence of demeton-S, the Au (III) ligands in the films are displaced with demeton-S, resulting in the restoration of the original color of the film, as the enhanced intramolecular charge transfer process is inhibited and thereby serving as an indicator of the presence of demeton-S. The polymeric films exhibit remarkable selectivity toward demeton-S compared to G-type nerve agents and other interference. The reusability of the polymeric films for demeton-S detection was achieved owing to the reversibility of the films during the alternative exposure of Au (III) and demeton-S. The polymeric films demonstrated their applicability for demeton-S detection and quantification in several contaminated areas, including different water, soil, and skin, rendering them highly suitable for on-site measurements.
Collapse
Affiliation(s)
- So-Young Park
- Department of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Rini Sharma
- Department of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Hyung-Il Lee
- Department of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea.
| |
Collapse
|
6
|
Ingle J, Das B, Chaudhary K, Mondal A, Basu S. Small Molecule AIEgens for Illuminating Sub-Cellular Endoplasmic Reticulum, Mitochondria, and Lysosomes. Chembiochem 2023; 24:e202300379. [PMID: 37357962 DOI: 10.1002/cbic.202300379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
Organelles are the working hubs of the cells. Hence, visualizing these organelles inside the cells is highly important for understanding their roles in pathological states and development of therapeutic strategies. Herein, we report the development of a novel highly substituted oxazoles with modular scaffolds (AIE-ER, AIE-Mito, and AIE-Lyso), which can home into endoplasmic reticulum (ER), mitochondria, and lysosomes inside the cells. These oxazoles showed remarkable aggregation-induced emission (AIE) property in water and in the solid state due to dual intramolecular H-bonding, which was confirmed by pH- and temperature-dependent fluorescence studies followed by molecular dynamics (MD) simulations and density functional theory (DFT) calculations. Confocal laser scanning microscopy studies revealed that AIE-ER, AIE-Mito, and AIE-Lyso efficiently homed into ER, mitochondria and lysosomes, respectively, in the HeLa cervical cancer cells and non-cancerous human retinal pigment epithelial RPE-1 cells within 3 h without showing any toxicity to the cells with high sub-cellular photostability. To the best of our knowledge, this is the first report of highly substituted oxazole-based small molecule AIEgens for organelle imaging. We anticipate these novel AIEgens have promise to image sub-cellular organelles in different diseased states as well as understanding the inter-organelle interactions towards the development of novel therapeutics.
Collapse
Affiliation(s)
- Jaypalsing Ingle
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Bibhas Das
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Keshav Chaudhary
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Anirban Mondal
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Sudipta Basu
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| |
Collapse
|
7
|
Zhao Z, Ma C, Xu L, Yu Z, Wang D, Jiang L, Jiang X, Gao G. Conductive Polyaniline-Based Microwire Arrays for SO 2 Gas Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38938-38945. [PMID: 37531472 DOI: 10.1021/acsami.3c06712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Polyaniline-based conductive polymers are promising electrochemical sensor materials due to their unique physical and chemical properties, such as good gas absorption, low dielectric loss, and chemical and thermal stabilities. The sensing performance is highly dependent on the structure and dimensions of the polyaniline-based conductive polymers. Although in situ oxidative polymerization combined with the self-assembly process has become one of the main processes for the preparation of flexible polyaniline-based gas sensors, how to prepare polyaniline materials into uniformly arranged microwire arrays is still an urgent problem. In this paper, an in-depth study was conducted on the preparation of polyaniline microwire arrays by combining a wettability interface dewetting process and a liquid-film-induced capillary bridges method. The factors influencing the preparation of polyaniline microwire arrays, including solution concentration, template width, evaporation temperature, and evaporation time, were investigated in detail. The wire formation rates were recorded from the results of SEM images. 100% microwires formation rate can be obtained by using a 1.0 mg mL-1 concentration of polyaniline solution and a 10 μm silicon template at an evaporation temperature of 80 °C for 18 h. The prepared microwire arrays can realize sulfur dioxide sensing at room temperature with a response speed of about 20 s and can detect sulfur dioxide gas as low as 1 ppm. Thus, the liquid-film-induced capillary bridge method shows a new possibility to prepare gas sensor devices for insoluble polymers.
Collapse
Affiliation(s)
- Zhihao Zhao
- Research Institute of Frontier Science, Beihang University, Beijing 100191, China
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chao Ma
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lingyun Xu
- Research Institute of Frontier Science, Beihang University, Beijing 100191, China
| | - Zhenwei Yu
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dong Wang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Jiang
- Research Institute of Frontier Science, Beihang University, Beijing 100191, China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 101407, China
- Ji Hua Laboratory, Foshan 528000, China
| | - Xiangyu Jiang
- Research Institute of Frontier Science, Beihang University, Beijing 100191, China
- Ji Hua Laboratory, Foshan 528000, China
| | - Guangcheng Gao
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
8
|
Su X, Bao Z, Xie W, Wang D, Han T, Wang D, Tang BZ. Precise Planar-Twisted Molecular Engineering to Construct Semiconducting Polymers with Balanced Absorption and Quantum Yield for Efficient Phototheranostics. RESEARCH (WASHINGTON, D.C.) 2023; 6:0194. [PMID: 37503536 PMCID: PMC10370618 DOI: 10.34133/research.0194] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
Semiconducting polymers (SPs) have shown great feasibility as candidates for near-infrared-II (NIR-II) fluorescence imaging-navigated photothermal therapy due to their strong light-harvesting ability and flexible tunability. However, the fluorescence signal of traditional SPs tends to quench in their aggregate states owing to the strong π-π stacking, which can lead to the radiative decay pathway shutting down. To address this issue, aggregation-induced emission effect has been used as a rational tactic to boost the aggregate-state fluorescence of NIR-II emitters. In this contribution, we developed a precise molecular engineering tactic based on the block copolymerizations that integrate planar and twisted segments into one conjugated polymer backbone, providing great flexibility in tuning the photophysical properties and photothermal conversion capacity of SPs. Two monomers featured with twisted and planar architectures, respectively, were tactfully incorporated via a ternary copolymerization approach to produce a series of new SPs. The optimal copolymer (SP2) synchronously shows desirable absorption ability and good NIR-II quantum yield on the premise of maintaining typical aggregation-induced emission characteristics, resulting in balanced NIR-II fluorescence brightness and photothermal property. Water-dispersible nanoparticles fabricated from the optimal SP2 show efficient photothermal therapeutic effects both in vitro and in vivo. The in vivo investigation reveals the distinguished NIR-II fluorescence imaging performance of SP2 nanoparticles and their photothermal ablation toward tumor with prominent tumor accumulation ability and excellent biocompatibility.
Collapse
Affiliation(s)
- Xiang Su
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering,
Shenzhen University, Shenzhen 518060, China
- School of Biomedical and Pharmaceutical Sciences,
Guangdong University of Technology, Guangzhou 510006, China
| | - Zhirong Bao
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center,
Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Xie
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering,
Shenzhen University, Shenzhen 518060, China
| | - Deliang Wang
- Department of Materials Chemistry,
Huzhou University, Huzhou 313000, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering,
Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering,
Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology,
The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
9
|
Brotherton AR, Shibu A, Meadows JC, Sayresmith NA, Brown CE, Ledezma AM, Schmedake TA, Walter MG. Leveraging Coupled Solvatofluorochromism and Fluorescence Quenching in Nitrophenyl-Containing Thiazolothiazoles for Efficient Organic Vapor Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2205729. [PMID: 37186373 DOI: 10.1002/advs.202205729] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/26/2023] [Indexed: 05/17/2023]
Abstract
Solvatofluorochromic molecules provide strikingly high fluorescent outputs to monitor a wide range of biological, environmental, or materials-related sensing processes. Here, thiazolo[5,4-d]thiazole (TTz) fluorophores equipped with simple alkylamino and nitrophenyl substituents for solid-state, high-performance chemo-responsive sensing applications are reported. Nitroaromatic substituents are known to strongly quench dye fluorescence, however, the TTz core subtly modulates intramolecular charge transfer (ICT) enabling strong, locally excited-state fluorescence in non-polar conditions. In polar media, a planar ICT excited-state shows near complete quenching, enabling a twisted excited-state emission to be observed. These unique fluorescent properties (spectral shifts of 0.13 - 0.87 eV and large transition dipole moments Δµ = 20.4 - 21.3 D) are leveraged to develop highly sought-after chemo-responsive, organic vapor optical sensors. The sensors are developed by embedding the TTz fluorophores within a poly(styrene-isoprene-styrene) block copolymer to form fluorescent dye/polymer composites (ΦF = 70 - 97%). The composites respond reversibly to a comprehensive list of organic solvents and show low vapor concentration sensing (e.g., 0.04% solvent saturation vapor pressure of THF - 66 ppm). The composite films can distinguish between solvent vapors with near complete fluorescent quenching observed when exposed to their saturated solvent vapor pressures, making this an extremely promising material for optical chemo-responsive sensing.
Collapse
Affiliation(s)
- Andrew R Brotherton
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Abhishek Shibu
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Jared C Meadows
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Nickolas A Sayresmith
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Chloe E Brown
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Ana Montoya Ledezma
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Thomas A Schmedake
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Michael G Walter
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| |
Collapse
|
10
|
Qu Z, Zhou P, Min F, Chen S, Guo M, Huang Z, Ji S, Yan Y, Yin X, Jiang H, Ke Y, Zhao YS, Yan X, Qiao Y, Song Y. Bubble wall confinement-driven molecular assembly toward sub-12 nm and beyond precision patterning. SCIENCE ADVANCES 2023; 9:eadf3567. [PMID: 36921052 PMCID: PMC10017045 DOI: 10.1126/sciadv.adf3567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Patterning is attractive for nanofabrication, electron devices, and bioengineering. However, achieving the molecular-scale patterns to meet the demands of these fields is challenging. Here, we propose a bubble-template molecular printing concept by introducing the ultrathin liquid film of bubble walls to confine the self-assembly of molecules and achieve ultrahigh-precision assembly up to 12 nanometers corresponding to the critical point toward the Newton black film limit. The disjoining pressure describing the intermolecular interaction could predict the highest precision effectively. The symmetric molecules exhibit better reconfiguration capacity and smaller preaggregates than the asymmetric ones, which are helpful in stabilizing the drainage of foam films and construct high-precision patterns. Our results confirm the robustness of the bubble template to prepare molecular-scale patterns, verify the criticality of molecular symmetry to obtain the ultimate precision, and predict the application potential of high-precision organic patterns in hierarchical self-assembly and high-sensitivity sensors.
Collapse
Affiliation(s)
- Zhiyuan Qu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Peng Zhou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fanyi Min
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shengnan Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mengmeng Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhandong Huang
- School of Chemical Engineering and Technology, Xi'an JiaoTong University, Shaanxi 710049, P. R. China
| | - Shiyang Ji
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yongli Yan
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiaodong Yin
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Hanqiu Jiang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Spallation Neutron Source Science Center, Dongguan 523803, P. R. China
| | - Yubin Ke
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Spallation Neutron Source Science Center, Dongguan 523803, P. R. China
| | - Yong Sheng Zhao
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xuehai Yan
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yali Qiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanlin Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
11
|
Li H, Jin B, Wang Y, Deng B, Wang D, Tang BZ. As Fiber Meets with AIE: Opening a Wonderland for Smart Flexible Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210085. [PMID: 36479736 DOI: 10.1002/adma.202210085] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Aggregation-induced emission luminogens (AIEgens) have recently been developed at a tremendous pace in the area of organic luminescent materials by virtue of their superior properties. However, the practical applications of AIEgens still face the challenge of transforming AIEgens from molecules into materials. Till now, many AIEgens have been integrated into fiber, endowing the fiber with prominent fluorescence and/or photosensitizing capacities. AIEgens and fiber complement each other for making progress in flexible smart materials, in which the utilization of AIEgens creates new application possibilities for fiber, and the fiber provides an excellent carrier for AIEgens towards realizing the conversion from molecule to materials and an ideal platform to research the aggregate state of AIEgens in mesoscale and macroscale. This review begins with a brief summary of the recent advances related to some typical AIEgens with various functions and the technology for the fabrication of AIEgen-functionalized fiber. The most representative applications are then highlighted by focusing on energy conversion, personal protective equipment, biomedical, sensor, and fluorescence-related fields. Finally, the challenges, opportunities, and tendencies in future development are discussed in detail. This review hopes to inspire innovation in AIEgens and fiber from the view of mesoscale and macroscale.
Collapse
Affiliation(s)
- Haoxuan Li
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Bingqi Jin
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yuanwei Wang
- Centre for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518061, P. R. China
| | - Bingyao Deng
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Dong Wang
- Centre for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518061, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| |
Collapse
|
12
|
Ruan J, Liu C, Song H, Zhong T, Quan P, Fang L. A skin pharmacokinetics study of permeation enhancers: The root cause of dynamic enhancement effect on in vivo drug permeation. Eur J Pharm Biopharm 2023; 184:170-180. [PMID: 36731755 DOI: 10.1016/j.ejpb.2023.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Skin pharmacokinetics (SPK) of permeation enhancers can answer the question of why enhancement effects different at the kinetic level. Herein, SPK of permeation enhancers were classified into two categories, namely, lateral elimination (elimination to surrounding stratum corneum (SC)) and longitudinal elimination (elimination to deep epidermal (EP)). They were evaluated with a specific parameter for permeation enhancers, diffusion ratio (DRSC-EP), according to results of tissue-distribution test, molecular dynamic (MD) simulation, and confocal laser scanning microscopy (CLSM). The linear relationship between ke-enahcer and Δ Cmax-drug (R2 = 0.92), MRTenhancer and Δ Tmax-drug (R2 = 0.97), AUCt-enhancer and Δ AUCt-drug (R2 = 0.90) suggesting that SPK of permeation enhancers precisely controlled dynamic process of drug permeation in vivo. The molecular mechanisms of the dynamic effect of SPK process on drug transdermal behaviors were characterized by modulated-temperature differential scanning calorimetry (MTDSC), dielectric spectroscopy, small-angle X-ray scattering (SAXS), solid-state NMR. Permeation enhancers with high molecular weight (M.W.) and high polar surface area (P.S.A.) had good compatibility and strong interaction strength with SC, leading their lateral-elimination behavior, causing their low DRSC-EP and resulting in low ke-enhancer, long MRTenhancer, and large AUCt-enhancer. Consequently, skin barrier can be rapidly opened fast and to a great extent. In summary, compared with SPK of permeation enhancers with longitudinal elimination, SPK of permeation enhancers with lateral elimination can enable more sustainable and greater drug permeation. The information about SPK of permeation enhancers offered a criterion to estimate its permeation-enhancement effect on the drug and its subsequent application in transdermal formulations.
Collapse
Affiliation(s)
- Jiuheng Ruan
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Haoyuan Song
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Ting Zhong
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Peng Quan
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Liang Fang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| |
Collapse
|
13
|
Zhao Z, Ge Y, Xu L, Sun X, Zuo J, Wang Z, Liu H, Jiang X, Wang D. Bio-inspired polymer array vapor sensor with dual signals of fluorescence intensity and wavelength shift. Front Bioeng Biotechnol 2022; 10:1058404. [DOI: 10.3389/fbioe.2022.1058404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Organic vapor sensors based on polymer owing to their tunable molecular structures and designable functions have attracted considerable research interest. However, detecting multiple organic vapors with high accuracy and a low detection limit is still challenging. Herein, inspired by the mammalian olfactory recognition system, organic vapor sensors based on one-dimensional microfilament array structures with a wide range of sensing gases are demonstrated. By introducing aggregation-induced emission (AIE) molecules, sensors possess dual-optical sensing mechanisms of variation in fluorescence intensity and wavelength. By virtue of the synergistic effects of dual signals, superb accuracy and incredibly low detection limit are achieved for identifying analytes. In particular, the polymer/AIE microfilament array can detect acetone vapor down to 0.03% of saturated vapor pressure. In the saturated vapor of acetone, the fluorescence intensity of the sensor arrays was reduced by 53.7%, while the fluorescence wavelength was red-shifted by 21 nm. Combined with the principal component analysis (PCA) algorithm, the polymer/AIE molecular sensor arrays accomplished the classification and identification of acetone, ethanol, methylene chloride, toluene, and benzene. This bioinspired approach with dual sensing signals may broaden practical applications to high-performance gas sensors for precise molecular detection.
Collapse
|
14
|
Ruan J, Liu C, Wang J, Zhong T, Quan P, Fang L. Efficacy and safety of permeation enhancers: a kinetic evaluation approach and molecular mechanism study in the skin. Int J Pharm 2022; 626:122155. [PMID: 36049584 DOI: 10.1016/j.ijpharm.2022.122155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022]
Abstract
This study sought to provide approach for evaluating and predicting the efficacy and safety of permeation enhancers on the basis of their kinetic distribution behavior in the skin dictated by physicochemical properties. Herein, the efficacy-safety regularity of eight permeation enhancers were studied with ex vivo skin permeation study, small-angle X-ray scattering, MTT assay, H&E staining, and in vivo skin erythema analysis, classifying into the following three categories: high enhancement-low irritation, medium enhancement-high irritation, and low enhancement-low irritation. These three modes were positively correlated with the distribution amount of permeation enhancers in the skin layers and verified by the in vitro tape-stripping study. The kinetic parameter, effective-safety index (IES), was proposed to describe the regularity of enhancement effect tendency and irritation risk, and the relationship between IES and physicochemical properties of permeation enhancers was analyzed with multiple regression analysis. According to the results of modulated temperature differential scanning calorimetry and dielectric spectrum, permeation enhancers with high lipophilicity and low polarity had IES > 1, suggesting high enhancement effect and low irritation due to their higher affinity with the stratum corneum (SC) than with epidermis (EP). Permeation enhancers with medium lipophilicity and medium polarity exhibited 0 <IES ≤ 1, showing medium enhancement effect and high irritation, as determined by their comparable affinity with the SC and epidermis (EP). However, permeation enhancers with low lipophilicity and high polarity had IES → 0, demonstrating low enhancement effect and irritation, as indicated by their poor affinity with the SC. In summary, different physicochemical properties of permeation enhancers influenced their affinities with skin layers, resulting in their different enhancement effect and irritation potential. This study will provide a theoretical basis and criteria for evaluating and predicting the safety and efficacy of permeation enhancers, which will enable a more rational selection of permeation enhancers in the optimization of transdermal patches.
Collapse
Affiliation(s)
- Jiuheng Ruan
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Jiaqi Wang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Ting Zhong
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Peng Quan
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Liang Fang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| |
Collapse
|
15
|
Li D, Song J, Cheng Y, Wu X, Wang Y, Sun C, Yue C, Lei X. Ultra‐Sensitive, Selective and Repeatable Fluorescence Sensor for Methanol Based on a Highly Emissive 0D Hybrid Lead‐Free Perovskite. Angew Chem Int Ed Engl 2022; 61:e202206437. [DOI: 10.1002/anie.202206437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Dong‐Yang Li
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
- School of Chemistry and Chemical Engineering Qufu Normal University Qufu Shandong 273165 P. R. China
| | - Jun‐Hua Song
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
| | - Yu Cheng
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
| | - Xiao‐Min Wu
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
| | - Yu‐Yin Wang
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
| | - Chuan‐Ju Sun
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
| | - Cheng‐Yang Yue
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
| | - Xiao‐Wu Lei
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
| |
Collapse
|
16
|
Yu W, Yu X, Qiu Z, Xu C, Gao M, Zheng J, Zhang J, Wang G, Cheng Y, Zhu M. 1+1>2: Fiber Synergy in Aggregation‐Induced Emission. Chemistry 2022; 28:e202201664. [DOI: 10.1002/chem.202201664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Wanting Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Zhenduo Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Chengjian Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Mengyue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Junjie Zheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Junyan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Gang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| |
Collapse
|
17
|
Fang M, Wei W, Li R, Mao L, Wang Y, Guan Y, Chen Q, Shuai Z, Wei Y. The Variance of Photophysical Properties of Tetraphenylethene and Its Derivatives during Their Transitions from Dissolved States to Solid States. Polymers (Basel) 2022; 14:polym14142880. [PMID: 35890656 PMCID: PMC9320569 DOI: 10.3390/polym14142880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/10/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
The study of aggregation-induced emission luminogens (AIEgens) shows promising perspectives explored in lighting, optical sensors, and biological therapies. Due to their unique feature of intense emissions in aggregated solid states, it smoothly circumvents the weaknesses in fluorescent dyes, which include aggregation-caused quenching of emission and poor photobleaching character. However, our present knowledge of the AIE phenomena still cannot comprehensively explain the mechanism behind the substantially enhanced emission in their aggregated solid states. Herein, to systematically study the mechanism, the typical AIEgens tetraphenylethene (TPE) was chosen, to elucidate its photophysical properties, the TPE in THF/H2O binary solvents, TPE in THF solvents depending on concentration, and the following direct conversion from a dissolved state to a precipitated solid state were analyzed. Moreover, the TPE derivatives were also investigated to supply more evidence to better decipher the generally optical behaviors of TPE and its derivatives. For instance, the TPE derivative was homogeneously dispersed into tetraethyl orthosilicate to monitor the variance of photophysical properties during sol–gel processing. Consequently, TPE and its derivatives are hypothesized to abide by the anti-Kasha rule in dissolved states. In addition, the factors primarily influencing the nonlinear emission shifting of TPE and its derivatives are also discussed.
Collapse
Affiliation(s)
- Ming Fang
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (W.W.); (R.L.); (L.M.)
- Correspondence: (M.F.); (Y.W.)
| | - Wenjuan Wei
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (W.W.); (R.L.); (L.M.)
| | - Ruoxin Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (W.W.); (R.L.); (L.M.)
| | - Liucheng Mao
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (W.W.); (R.L.); (L.M.)
| | - Yuanheng Wang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China; (Y.W.); (Z.S.)
| | - Yan Guan
- Analytical Instrumentation Center of Peking University, Center for Physicochemical Analysis and Measurement in ICCAS, Beijing 100871, China;
| | - Qiang Chen
- Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing 102600, China;
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China; (Y.W.); (Z.S.)
| | - Yen Wei
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (W.W.); (R.L.); (L.M.)
- Correspondence: (M.F.); (Y.W.)
| |
Collapse
|
18
|
Li DY, Song JH, Cheng Y, Wu XM, Wang YY, Sun CJ, Yue CY, Lei XW. Ultra‐Sensitive, Selective and Repeatable Fluorescence Sensor for Methanol based on Highly Emissive 0D Hybrid Lead‐free Perovskite. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dong-Yang Li
- Qufu Normal University School of Chemistry, Chemical Engineer and Materials Shan Dong Qufu CHINA
| | - Jun-Hua Song
- Jining University School of Chemistry, Chemical Engineer and Materials Shan Dong Qufu CHINA
| | - Yu Cheng
- Jining University School of Chemistry, Chemical Engineer and Materials Shan Dong Qufu CHINA
| | - Xiao-Min Wu
- Jining University School of Chemistry, Chemical Engineer and Materials Shan Dong Qufu CHINA
| | - Yu-Yin Wang
- Jining University School of Chemistry, Chemical Engineer and Materials Shan Dong Qufu CHINA
| | - Chuan-Ju Sun
- Jining University School of Chemistry, Chemical Engineer and Materials Shan Dong Qufu CHINA
| | - Cheng-Yang Yue
- Jining University School of Chemistry, Chemical Engineer and Materials Shan Dong Qufu CHINA
| | - Xiao-Wu Lei
- Jining University School of Chemistry, Chemical Engineering and Materials Engineering Xingtan Road 273155 Qufu CHINA
| |
Collapse
|
19
|
Luo X, Zhang X, Jiang L. 仿生超浸润界面材料与界面化学. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Wei Y, Geng Y, Wang K, Gao H, Wu Y, Jiang L. Organic ultrathin nanostructure arrays: materials, methods and applications. NANOSCALE ADVANCES 2022; 4:2399-2411. [PMID: 36134127 PMCID: PMC9417106 DOI: 10.1039/d1na00863c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/20/2022] [Indexed: 06/16/2023]
Abstract
Organic ultrathin semiconductor nanostructures have attracted continuous attention in recent years owing to their excellent charge transport capability, favorable flexibility, solution-processability and adjustable photoelectric properties, providing opportunities for next-generation optoelectronic applications. For integrated electronics, organic ultrathin nanostructures need to be prepared as large-area patterns with precise alignment and high crystallinity to achieve organic electronic devices with high performance and high throughput. However, the fabrication of organic ultrathin nanostructure arrays still remains challenging due to uncontrollable growth along the height direction in solution processes. In this review, we first introduce the properties, assembly methods and applications of four typical organic ultrathin nanostructures, including small molecules, polymers, and other organic-inorganic hybrid materials. Five categories of representative solution-processing techniques for patterning organic micro- and nanostructures are summarized and discussed. Finally, challenges and perspectives in the controllable preparation of organic ultrathin arrays and potential applications are featured on the basis of their current development.
Collapse
Affiliation(s)
- Yanjie Wei
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
| | - Yue Geng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P.R. China
- University of Chinese Academy of Sciences (UCAS) Beijing 100049 P. R. China
| | - Kui Wang
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
| | - Hanfei Gao
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P.R. China
| | - Yuchen Wu
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P.R. China
| | - Lei Jiang
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P.R. China
| |
Collapse
|
21
|
Zhang Z, Bai Q, Manandhar E, Zeng Y, Wu T, Wang M, Yao LY, Newkome GR, Wang P, Xie TZ. Supramolecular cuboctahedra with aggregation-induced emission enhancement and external binding ability. Chem Sci 2022; 13:5999-6007. [PMID: 35685785 PMCID: PMC9132066 DOI: 10.1039/d2sc00082b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/25/2022] [Indexed: 01/14/2023] Open
Abstract
Beyond the AIE (aggregation-induced emission) phenomenon in small molecules, supramolecules with AIE properties have evolved in the AIE family and accelerated the growth of supramolecular application diversity. Inspired by its mechanism, particularly the RIV (restriction of intramolecular vibrations) process, a feasible strategy of constructing an AIE-supramolecular cage based on the oxidation of sulfur atoms and coordination of metals is presented. In contrast to previous strategies that used molecular stacking to limit molecular vibrations, we achieved the desired goal using the synergistic effects of coordination-driven self-assembly and oxidation. Upon assembling with zinc ions, S1 was endowed with a distinct AIE property compared with its ligand L1, while S2 exhibited a remarkable fluorescence enhancement compared to L2. Also, the single cage-sized nanowire structure of supramolecules was obtained via directional electrostatic interactions with multiple anions and rigid-shaped cationic cages. Moreover, the adducts of zinc porphyrin and supramolecules were investigated and characterized by 2D DOSY, ESI-MS, TWIM-MS, UV-vis, and fluorescence spectroscopy. The protocol described here enriches the ongoing research on tunable fluorescence materials and paves the way towards constructing stimuli-responsive luminescent supramolecular cages. Beyond the AIE (aggregation-induced emission) phenomenon in small molecules, supramolecules with AIE properties have evolved in the AIE family and accelerated the growth of supramolecular application diversity.![]()
Collapse
Affiliation(s)
- Zhe Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou-510006 China
| | - Qixia Bai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou-510006 China
| | - Erendra Manandhar
- Departments of Polymer Science and Chemistry, University of Akron Akron OH 44325-4717 USA
| | - Yunting Zeng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun Jilin 130012 China
| | - Tun Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou-510006 China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun Jilin 130012 China
| | - Liao-Yuan Yao
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 102488 China
| | - George R Newkome
- Departments of Polymer Science and Chemistry, University of Akron Akron OH 44325-4717 USA
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou-510006 China
| | - Ting-Zheng Xie
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou-510006 China
| |
Collapse
|
22
|
Abstract
This paper provides an overview of recent developments in the field of volatile organic compound (VOC) sensors, which are finding uses in healthcare, safety, environmental monitoring, food and agriculture, oil industry, and other fields. It starts by briefly explaining the basics of VOC sensing and reviewing the currently available and quickly progressing VOC sensing approaches. It then discusses the main trends in materials' design with special attention to nanostructuring and nanohybridization. Emerging sensing materials and strategies are highlighted and their involvement in the different types of sensing technologies is discussed, including optical, electrical, and gravimetric sensors. The review also provides detailed discussions about the main limitations of the field and offers potential solutions. The status of the field and suggestions of promising directions for future development are summarized.
Collapse
Affiliation(s)
- Muhammad Khatib
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
23
|
Ge S, Wang E, Li J, Tang BZ. Aggregation-Induced Emission Boosting the Study of Polymer Science. Macromol Rapid Commun 2022; 43:e2200080. [PMID: 35320607 DOI: 10.1002/marc.202200080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/09/2022] [Indexed: 11/07/2022]
Abstract
The past one hundred years witness the great development of polymer science. The advancement of polymer science is closely related with the developing of characterization techniques and methods, from viscometry in molecular weight determination to advanced techniques including differential scanning calorimetry, nuclear magnetic resonance and scanning electron microscopy. However, these techniques are normally constrained to tedious sample preparation, high cost, harsh experimental condition, or ex-situ characterization. Fluorescence technology has the merits of high sensitivity and direct visualization. Contrary to conventional aggregation-causing quenching fluorophores, those dyes with aggregation-induced emission characteristic show high emission efficiency in aggregate states. Based on the restriction of intramolecular motions for AIE properties, the AIE materials are very sensitive to the surrounding microenvironments owing to the twisted propeller-like structures and therefore reveal great potentials in polymer's study. The AIE concept has been successfully used in polymer's study and provides us a deeper understanding on polymer structure and properties. In this review, the applications of AIEgens in polymer science for visualizing polymerization, glass transition, dissolution, crystallization, gelation, self-assembly, phase separation, cracking and self-healing were exemplified and summarized. Lastly, the challenges and perspectives in the study of polymer science using AIEgens are addressed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sheng Ge
- S. Ge, Dr. E. Wang, Prof. J. Li, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China
| | - Erjing Wang
- S. Ge, Dr. E. Wang, Prof. J. Li, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China
| | - Jinhua Li
- S. Ge, Dr. E. Wang, Prof. J. Li, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China
| | - Ben Zhong Tang
- Prof. B. Z. Tang, Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, No. 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
24
|
Wu F, Huang Y, Yang X, Hu JJ, Lou X, Xia F, Song Y, Jiang L. Tunning Intermolecular Interaction of Peptide-Conjugated AIEgen in Nano-Confined Space for Quantitative Detection of Tumor Marker Secreted from Cells. Anal Chem 2021; 93:16257-16263. [PMID: 34809422 DOI: 10.1021/acs.analchem.1c04422] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Determining the expression level of biomarkers is crucial for disease diagnosis. However, the low abundance of biomarkers in the early stage makes the detection extremely difficult by traditional aggregation-induced emission (AIE)-based fluorescent probes. Here, by tuning the intermolecular interaction, a two steps-based MP/NPs-SLIPS sensing system is designed for ultrasensitive detection of the tumor marker matrix metalloproteinase-2 (MMP-2). During the sensing process, aggregation of AIE residual could be intensified through the electrostatic absorption by negatively charged nanoparticles (NPs), as well as the confined space formed by the self-assembly of NPs to photonic crystals (PCs) on slippery lubricant-infused porous substrates (SLIPS). The fluorescent signals obviously increased with a strengthened aggregation degree, which contributes to improved sensitivity. Thus, the limit of detection is decreased to 3.7 ng/mL for MP/NPs-SLIPS sensing system, which could be used for detecting the MMP-2 secreted by tumor cells directly. This strategy also demonstrated its potential applications as high-throughput detection devices and will be of significance for the ultrasensitive analysis of biomarkers.
Collapse
Affiliation(s)
- Feng Wu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China.,Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, China
| | - Xian Yang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China.,Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, China
| |
Collapse
|
25
|
|
26
|
Wang Z, Jiang X, Huang K, Ning L, Zhang J, Zhang F, Yang J, Wu Y, Chen X, Yi Y, Shi X, Chen Y, Wang S. A Bioinspired Adhesive-Integrated-Agent Strategy for Constructing Robust Gas-Sensing Arrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2106067. [PMID: 34633120 DOI: 10.1002/adma.202106067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Gas sensors based on organic molecules are attractive for their tailored molecular structures and controllable functions, but weak interfacial adhesion between sensing materials and supporting substrates has severely hampered their practical applications, particularly in harsh environments. Here, inspired by the combined anchoring-recognizing feature of natural olfactory systems, an adhesive-integrated-agent strategy to integrate the adhesive unit (poly(dimethylsiloxane)) with the sensing unit (organoplatinum(II)) into one chemistry entity, creating robust and sensitive nanobelt array gas sensors is demonstrated. Systematic theoretical and experimental studies reveal that incorporating adhesive units significantly enhances the interfacial adhesion of the array sensors and gas-bridged super-exchange electronic couplings of sensing units ensure their efficient gas-sensing performance. The high shear strength of ≈7.05 × 106 N m-2 allows these arrays to resist aggressive ultrasonication, tape peeling, or repeated bending without compromising their sensing performance. This molecular engineering strategy opens a new guideline to develop robust gas sensors.
Collapse
Affiliation(s)
- Zhao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangyu Jiang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
- Ji Hua Laboratory, Foshan, 528000, P. R. China
| | - Kang Huang
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Laboratory of Theoretical and Computational Nanoscience, Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lu Ning
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jianqi Zhang
- Laboratory of Theoretical and Computational Nanoscience, Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Feilong Zhang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jiangong Yang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuchen Wu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yuanping Yi
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xinghua Shi
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Laboratory of Theoretical and Computational Nanoscience, Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yong Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
27
|
Song KM, Kim S, Kang S, Nam TW, Kim GY, Lim H, Cho EN, Kim KH, Kwon SH, Jang MS, Jung YS. Microcellular sensing media with ternary transparency states for fast and intuitive identification of unknown liquids. SCIENCE ADVANCES 2021; 7:eabg8013. [PMID: 34524852 PMCID: PMC8443176 DOI: 10.1126/sciadv.abg8013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Rapid, accurate, and intuitive detection of unknown liquids is greatly important for various fields such as food and drink safety, management of chemical hazards, manufacturing process monitoring, and so on. Here, we demonstrate a highly responsive and selective transparency-switching medium for on-site, visual identification of various liquids. The light scattering–based sensing medium, which is designed to be composed of polymeric interphase voids and hollow nanoparticles, provides an extremely large transmittance window (>95%) with outstanding selectivity and versatility. This sensing medium features ternary transparency states (transparent, semitransparent, and opaque) when immersed in liquids depending on liquid-polymer interactions and diffusion kinetics. Several different types of these transparency-changing media can be configured into an arrayed platform to discriminate a wide variety of liquids and also quantify their mixing ratios. The outstanding versatility and user friendliness of the sensing platform allow the development of a practical tool for discrimination of diverse organic liquids.
Collapse
Affiliation(s)
- Kyeong Min Song
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shinho Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sungmin Kang
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Tae Won Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Geon Yeong Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hunhee Lim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Eugene N. Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kwang Ho Kim
- Global Frontier R&D Center for Hybrid Interface Materials (HIM), Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 609-735, Republic of Korea
- School of Materials Science and Engineering, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Se Hun Kwon
- School of Materials Science and Engineering, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Min Seok Jang
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
28
|
Mousavi H. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. Int J Biol Macromol 2021; 186:1003-1166. [PMID: 34174311 DOI: 10.1016/j.ijbiomac.2021.06.123] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Heterocyclic compounds are among the most prestigious and valuable chemical molecules with diverse and magnificent applications in various sciences. Due to the remarkable and numerous properties of the heterocyclic frameworks, the development of efficient and convenient synthetic methods for the preparation of such outstanding compounds is of great importance. Undoubtedly, catalysis has a conspicuous role in modern chemical synthesis and green chemistry. Therefore, when designing a chemical reaction, choosing and or preparing powerful and environmentally benign simple catalysts or complicated catalytic systems for an acceleration of the chemical reaction is a pivotal part of work for synthetic chemists. Chitosan, as a biocompatible and biodegradable pseudo-natural polysaccharide is one of the excellent choices for the preparation of suitable catalytic systems due to its unique properties. In this review paper, every effort has been made to cover all research articles in the field of one-pot synthesis of heterocyclic frameworks in the presence of chitosan-based catalytic systems, which were published roughly by the first quarter of 2020. It is hoped that this review paper can be a little help to synthetic scientists, methodologists, and catalyst designers, both on the laboratory and industrial scales.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| |
Collapse
|
29
|
Chen Z, Dai C, Xiong W, Che Y, Zhang C. Stable organic self-assembled microwire lasers for chemical vapor sensing. Commun Chem 2021; 4:97. [PMID: 36697588 PMCID: PMC9814925 DOI: 10.1038/s42004-021-00534-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/20/2021] [Indexed: 02/05/2023] Open
Abstract
Organic microlasers hold great potentials in fabricating on-chip sensors for integrated photonic circuits due to their chemical versatility and reactivity. However, chemical vapor detection is still challenging for organic microlaser sensors, as it requires not only optical gain and self-assembly capability, but also rapid response to stimuli and long-term stability under high excitation power. In this work, a new laser dye 4,7-bis(9-octyl-7-(4-(octyloxy)phenyl)-9H-carbazol-2-yl)benzo[c][1,2,5]thiadiazole (BPCBT) is designed and synthesized, which self-assembles into microwires showing strong intramolecular charge transfer (ICT) photoluminescence with >80% quantum efficiency. It enables the lasing from BPCBT microwires under a low threshold of 16 μJ·mm-2·pulse-1 with significantly improved stability over conventional organic microlasers. The stimulated emission amplifies the fluorescence change in the BPCBT microwires under chemical vapors including various acid, acetone, and ethanol vapors, indicating high sensitivity and high selectivity of organic microlaser sensors desirable for compact sensor arrays in integrated photonics.
Collapse
Affiliation(s)
- Zheming Chen
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenghu Dai
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Wei Xiong
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yanke Che
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Chuang Zhang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
30
|
Smook LA, Ritsema van Eck GC, de Beer S. Concentrating Vapor Traces with Binary Brushes of Immiscible Polymers. ACS APPLIED POLYMER MATERIALS 2021; 3:2336-2340. [PMID: 34056613 PMCID: PMC8154206 DOI: 10.1021/acsapm.1c00321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/20/2021] [Indexed: 05/30/2023]
Abstract
Vapors in the air around us can provide useful information about our environment, but we need sensitive vapor sensors to access this information, especially because those vapors are often present at very low concentrations. We report molecular dynamics simulations of a concept that can significantly increase the sensitivity of vapor sensors at low concentrations. By coating the sensor surfaces with end-anchored immiscible polymers, surface-bound polymer blends are formed that can concentrate vapors, reaching sorption enhancements of more than one order of magnitude, especially at low vapor concentrations.
Collapse
Affiliation(s)
- Leon A. Smook
- Sustainable Polymer Chemistry Group,
Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Guido C. Ritsema van Eck
- Sustainable Polymer Chemistry Group,
Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sissi de Beer
- Sustainable Polymer Chemistry Group,
Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
31
|
Wang Z, Zhao J, Muddassir M, Guan R, Tao S. Recovering the Thermally Activated Delayed Fluorescence in Aggregation-Induced Emitters of Carborane. Inorg Chem 2021; 60:4705-4716. [PMID: 33739084 DOI: 10.1021/acs.inorgchem.0c03664] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aggregation-induced emission (AIE) behaviors of carborane-based hybrid emitters have been extensively reported, while their combinations with the thermally activated delayed fluorescence (TADF) are still scarce. We designed and synthesized three Janus carboranes (the chemical structures resemble the double-faced god, Janus) Cb-1/2/3 with different carbazole moieties. All of the Janus carboranes exhibited quenched emission in solution with ΦPL (quantum efficiency of photoluminescence (PL)) lower than 0.01. The PL performance was improved by proceeding to the aggregates in THF/water (ΦPL 0.17-0.35) and further improved in the crystals or solid with ΦPL up to 0.99 for Cb-1, 0.85 for Cb-2, and 0.61 for Cb-3, which agreed with the AIE enhancement. Although the PL of solid Cb-1/2/3 showed non-TADF properties with lifetimes only at several nanoseconds, the crystallographic studies have shown a root cause of π···π stacking that quenched the TADF, and the theoretical calculations forecasted small singlet-triplet energy gaps (ΔES-T) therein. According to these findings, TADF was recovered in Cb-1/2/3 by doping into 1,3-bis(carbazol-9-yl)benzene (mCP). The 10 wt % doped films of Cb-1/2/3 have achieved a trade-off of ΦPL (0.84 in Cb-3 and 0.83 in Cb-1) and delayed lifetime (up to 8 μs). The doped devices of organic light-emitting diodes incorporating Cb-1/2/3 achieved the highest external quantum efficiency at 10.1% and the maximized luminance of 5920 cd/m2 at a driving voltage of 8 V.
Collapse
Affiliation(s)
- Zhaojin Wang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, P.R. China
| | - Juewen Zhao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P.R. China
| | - Mohd Muddassir
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rongfeng Guan
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, P.R. China
| | - Silu Tao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P.R. China
| |
Collapse
|
32
|
Jiang X, Yu Z, Ma C, Wang D, Wu Y, Shi C, Li Y, Pang J, Zhang X, Jiang L. Aggregation-Induced Emission Molecule Microwire-Based Specific Organic Vapor Detector through Structural Modification. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12501-12508. [PMID: 33683097 DOI: 10.1021/acsami.0c22975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An optical organic vapor sensor array based on colorimetric or fluorescence changes quantified by spectroscopy provides an efficient method for realizing rapid identification and detection of organic vapor, but improving the sensitivity of the optical organic vapor sensor is challenging. Here, AIE/polymer (AIE, ggregation-induced emission) composites into microwires arrays are fabricated as organic vapor sensors with specific recognition and high sensitivity for different vapors using the capillary-bridge-mediated assembly method. Such organic vapor sensor successfully detects organic vapor relying on a swelling-induced fluorescence change of the AIE/polymer composites, combating the unique property of AIE molecules and vapor absorption-induced polymer swelling. A series of AIE/polymer composites into microwires arrays with four different groups on the AIE molecule and four different side chains on the polymer is fabricated to detect four different organic vapors. The mechanism for improved sensitivity of the AIE/polymer composites microwires arrays sensors is the same because of the similar polarity between the group of AIE molecules and the vapor molecules. Molecular design of the side chains of the polymer and the groups of AIE molecules based on the polarity of the targeted vapor molecule can enhance the sensitivity of the sensors to the subparts per million level.
Collapse
Affiliation(s)
- Xiangyu Jiang
- Research Institute of Frontier Science, Beihang University, Beijing 100191, China
| | - Zhenwei Yu
- Beijing Advanced Innovation Center for Biomedical Engineering and Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Chao Ma
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dong Wang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuchen Wu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ce Shi
- Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yunqi Li
- Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jinhui Pang
- Engineering Research Center of Special Engineering Plastics, Ministry of Education, Jilin University, Changchun 130012, China
| | - Xiqi Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Jiang
- Research Institute of Frontier Science, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering and Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 101407, China
| |
Collapse
|
33
|
|
34
|
|
35
|
Zhao L, Jia YG, Wang SM, Yang Y, Liu LY, Chang WX, Li J. Controllable polymeric pseudo-crown ether fluorescent sensors: responsiveness and selective detection of metal ions. NEW J CHEM 2021. [DOI: 10.1039/d0nj05201a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A series of responsive polymeric fluorescent sensors were fabricated by post-grafting pyrene and poly(ethylene glycol) onto the backbone of a pseudo-crown ether containing cyclopolymers, and showed good selective recognition toward metal ions.
Collapse
Affiliation(s)
- Le Zhao
- The State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yong-Guang Jia
- The State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Song-Meng Wang
- The State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yi Yang
- The State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Ling-Yan Liu
- The State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Wei-Xing Chang
- The State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Jing Li
- The State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|
36
|
Han T, Wang X, Wang D, Tang BZ. Functional Polymer Systems with Aggregation-Induced Emission and Stimuli Responses. Top Curr Chem (Cham) 2021; 379:7. [PMID: 33428022 PMCID: PMC7797498 DOI: 10.1007/s41061-020-00321-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 12/18/2020] [Indexed: 01/31/2023]
Abstract
Functional polymer systems with stimuli responses have attracted great attention over the years due to their diverse range of applications. Such polymers are capable of altering their chemical and/or physical properties, such as chemical structures, chain conformation, solubility, shape, morphologies, and optical properties, in response to single or multiple stimuli. Among various stimuli-responsive polymers, those with aggregation-induced emission (AIE) properties possess the advantages of high sensitivity, fast response, large contrast, excellent photostability, and low background noise. The changes in fluorescence signal can be conveniently detected and monitored using portable instruments. The integration of AIE and stimuli responses into one polymer system provides a feasible and effective strategy for the development of smart polymers with high sensitivity to environmental variations. Here, we review the recent advances in the design, preparation, performance, and applications of functional synthetic polymer systems with AIE and stimuli responses. Various AIE-based polymer systems with responsiveness toward single physical or chemical stimuli as well as multiple stimuli are summarized with specific examples. The current challenges and perspectives on the future development of this research area will also be discussed at the end of this review.
Collapse
Affiliation(s)
- Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xinnan Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Ben Zhong Tang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
37
|
Wang H, Fontein F, Li J, Huang L, Jiang L, Fuchs H, Wang W, Wang Y, Chi L. Lithographical Fabrication of Organic Single-Crystal Arrays by Area-Selective Growth and Solvent Vapor Annealing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48854-48860. [PMID: 32981323 DOI: 10.1021/acsami.0c14349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Miniaturized organic single-crystal arrays that are addressed by reading-out circuits are crucial for high performance and high-level integration organic electronics. Here, we report a lithography compatible strategy to fabricate organic single-crystal arrays via area-selective growth and solvent vapor annealing (SVA). The organic semiconducting molecules can first selectively grow on photographically patterned drain-source electrodes, forming ordered amorphous aggregates that can further be converted to discrete single-crystal arrays by SVA. This strategy can be applied to self-align the microsized organic single crystals on predesigned locations. With this method, suppression of cross-talk among devices, organic field-effect transistors, and basic logic gate arrays with reading-out electrodes are further demonstrated.
Collapse
Affiliation(s)
- Hong Wang
- Physikalisches Institut and Center for Nanotechnology (CeNTech), Universität Münster, Münster 48149, Germany
- School of Materials and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 135 Xingang Xi Road, Guangzhou 510275, Guangdong, P. R. China
| | - Florian Fontein
- Physikalisches Institut and Center for Nanotechnology (CeNTech), Universität Münster, Münster 48149, Germany
| | - Jianping Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Lizhen Huang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Lin Jiang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Harald Fuchs
- Physikalisches Institut and Center for Nanotechnology (CeNTech), Universität Münster, Münster 48149, Germany
| | - Wenchong Wang
- Physikalisches Institut and Center for Nanotechnology (CeNTech), Universität Münster, Münster 48149, Germany
| | - Yandong Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Lifeng Chi
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
38
|
Barrios CA. Pressure Sensitive Adhesive Tape: A Versatile Material Platform for Optical Sensors. SENSORS (BASEL, SWITZERLAND) 2020; 20:s20185303. [PMID: 32948000 PMCID: PMC7570651 DOI: 10.3390/s20185303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Pressure sensitive adhesive (PSA) tapes are a versatile, safe and easy-to-use solution for fastening, sealing, masking, or joining. They are widely employed in daily life, from domestic use to industrial applications in sectors such as construction and the automotive industry. In recent years, PSA tapes have found a place in the field of micro- and nanotechnology, particularly in contact transfer techniques where they can be used as either sacrificial layers or flexible substrates. As a consequence, various optical sensing configurations based on PSA tapes have been developed. In this paper, recent achievements related to the use of PSA tapes as functional and integral parts of optical sensors are reviewed. These include refractive index sensors, optomechanical sensors and vapor sensors.
Collapse
Affiliation(s)
- Carlos Angulo Barrios
- Institute for Optoelectronic Systems and Microtechnology (ISOM), ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain;
- Department of Photonics and Bioengineering (TFB), ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| |
Collapse
|
39
|
Liu L, Xiong W, Cui L, Xue Z, Huang C, Song Q, Bai W, Peng Y, Chen X, Liu K, Zhang S, Wen L, Che Y, Wang T. Universal Strategy for Improving the Sensitivity of Detecting Volatile Organic Compounds by Patterned Arrays. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lu Liu
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei Xiong
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Linfeng Cui
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhenjie Xue
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chuanhui Huang
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Qian Song
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Wanqiao Bai
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yage Peng
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xiangyu Chen
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Keyan Liu
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shuwei Zhang
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Lei Wen
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yanke Che
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Life and Health Research Institute School of Chemistry and Chemical Engineering Tianjin University of Technology Tianjin 300384 P. R. China
| |
Collapse
|
40
|
Liu L, Xiong W, Cui L, Xue Z, Huang C, Song Q, Bai W, Peng Y, Chen X, Liu K, Zhang S, Wen L, Che Y, Wang T. Universal Strategy for Improving the Sensitivity of Detecting Volatile Organic Compounds by Patterned Arrays. Angew Chem Int Ed Engl 2020; 59:15953-15957. [DOI: 10.1002/anie.202006408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Indexed: 01/21/2023]
Affiliation(s)
- Lu Liu
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei Xiong
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Linfeng Cui
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhenjie Xue
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chuanhui Huang
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Qian Song
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Wanqiao Bai
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yage Peng
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xiangyu Chen
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Keyan Liu
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shuwei Zhang
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Lei Wen
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yanke Che
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Life and Health Research Institute School of Chemistry and Chemical Engineering Tianjin University of Technology Tianjin 300384 P. R. China
| |
Collapse
|
41
|
Jiang Y, Cheng Y, Liu S, Zhang H, Zheng X, Chen M, Khorloo M, Xiang H, Tang BZ, Zhu M. Solid-state intramolecular motions in continuous fibers driven by ambient humidity for fluorescent sensors. Natl Sci Rev 2020; 8:nwaa135. [PMID: 34691610 PMCID: PMC8288334 DOI: 10.1093/nsr/nwaa135] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 11/13/2022] Open
Abstract
One striking feature of molecular rotors is their ability to change conformation with detectable optical signals through molecular motion when stimulated. However, due to the strong intermolecular interactions, synthetic molecular rotors have often relied on fluid environments. Here, we take advantage of the solid-state intramolecular motion of aggregation-induced emission (AIE) molecular rotors and one-dimensional fibers, developing highly sensitive optical fiber sensors that respond to ambient humidity rapidly and reversibly with observable chromatic fluorescence change. Moisture environments induce the swelling of the polymer fibers, activating intramolecular motions of AIE molecules to result in red-shifted fluorescence and linear response to ambient humidity. In this case, polymer fiber provides a process-friendly architecture and a physically tunable medium for the embedded AIE molecules to manipulate their fluorescence response characteristics. Assembly of sensor fibers could be built into hierarchical structures, which are adaptive to diverse-configuration for spatial-temporal humidity mapping, and suitable for device integration to build light-emitting sensors as well as touchless positioning interfaces for intelligence systems.
Collapse
Affiliation(s)
- Yunmeng Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shunjie Liu
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Haoke Zhang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/ Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ming Chen
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Michidmaa Khorloo
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ben Zhong Tang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
42
|
Zhang J, Gai M, Ignatov AV, Dyakov SA, Wang J, Gippius NA, Frueh J, Sukhorukov GB. Stimuli-Responsive Microarray Films for Real-Time Sensing of Surrounding Media, Temperature, and Solution Properties via Diffraction Patterns. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19080-19091. [PMID: 32223175 DOI: 10.1021/acsami.0c05349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stimuli-responsive polymers have attracted increasing attention over the years due to their ability to alter physiochemical properties upon external stimuli. However, many stimuli-responsive polymer-based sensors require specialized and expensive equipment, which limits their applications. Here an inexpensive and portable sensing platform of novel microarray films made of stimuli-responsive polymers is introduced for the real-time sensing of various environmental changes. When illuminated by laser light, microarray films generate diffraction patterns that can reflect and magnify variations of the periodical microstructure induced by surrounding invisible parameters in real time. Stimuli-responsive polyelectrolyte complexes are structured into micropillar arrays to monitor the pH variation and the presence of calcium ions based on reversible swelling/shrinking behaviors of the polymers. A pH hysteretic effect of the selected polyelectrolyte pair is determined and explained. Furthermore, polycaprolactone microchamber arrays are fabricated and display a thermal-driven structural change, which is exploited for photonic threshold temperature detection. Experimentally observed diffraction patterns are additionally compared with rigorous coupled-wave analysis simulations that prove that induced diffraction pattern alterations are solely caused by geometrical microstructure changes. Microarray-based diffraction patterns are a novel sensing platform with versatile sensing capabilities that will likely pave the way for the use of microarray structures as photonic sensors.
Collapse
Affiliation(s)
- Jiaxin Zhang
- School of Engineering and Material Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Meiyu Gai
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Sergey A Dyakov
- Skolkovo Institute of Science and Technology, Moscow 143025, Russia
| | - Jing Wang
- Institute of Environmental Engineering, ETH Eidgenössische Technische Hochschule Zürich, 8093 Zürich, Switzerland
- Advanced Analytical Technologies Laboratory, EMPA, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | | | - Johannes Frueh
- Micro-Nanotechnology Research Center, Harbin Institute of Technology, Harbin 150080, China
- Institute of Environmental Engineering, ETH Eidgenössische Technische Hochschule Zürich, 8093 Zürich, Switzerland
| | - Gleb B Sukhorukov
- School of Engineering and Material Science, Queen Mary University of London, London E1 4NS, United Kingdom
- Skolkovo Institute of Science and Technology, Moscow 143025, Russia
| |
Collapse
|
43
|
Tang T, Jiang WJ, Liu XZ, Deng J, Niu S, Wang B, Jin SF, Zhang Q, Gu L, Hu JS, Wan LJ. Metastable Rock Salt Oxide-Mediated Synthesis of High-Density Dual-Protected M@NC for Long-Life Rechargeable Zinc–Air Batteries with Record Power Density. J Am Chem Soc 2020; 142:7116-7127. [DOI: 10.1021/jacs.0c01349] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tang Tang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Jie Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Xiao-Zhi Liu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Deng
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuai Niu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Shi-Feng Jin
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Lin Gu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jin-Song Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Jun Wan
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
44
|
Liu Q, Liu T, Fang Y. Perylene Bisimide Derivative-Based Fluorescent Film Sensors: From Sensory Materials to Device Fabrication. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2155-2169. [PMID: 32078323 DOI: 10.1021/acs.langmuir.9b03919] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Film-based fluorescent sensors have become an important field of sensor research due to abundant acquirable signals, real-time monitoring, and ease of miniaturization and integration, where chemically sensitive films are the most vital component of the sensor devices. In this feature article, we introduce hardware structures of film-based fluorescent sensors following the examination/investigation of the recent progress of such sensors with perylene bisimide (PBI) derivatives as sensing fluorophores in the films. PBI derivatives were specially chosen because of their outstanding chemical, photochemical, and thermal stabilities as well as their unusual high-fluorescence quantum yields. And finally, we provide a prediction for the future developments and challenges of this emerging field.
Collapse
Affiliation(s)
- Quan Liu
- Key Laboratory of Catalytic Foundation and Applications of Shaanxi Province, School of Chemical and Environmental Science, Shaanxi University of Technology, Hanzhong 723001, P. R. China
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| |
Collapse
|
45
|
Zhang Z, Fang X, Liu Z, Liu H, Chen D, He S, Zheng J, Yang B, Qin W, Zhang X, Wu C. Semiconducting Polymer Dots with Dual‐Enhanced NIR‐IIa Fluorescence for Through‐Skull Mouse‐Brain Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914397] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zhe Zhang
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University, Changchun Jilin 130012 China
| | - Xiaofeng Fang
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Zhihe Liu
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Haichao Liu
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University, Changchun Jilin 130012 China
| | - Dandan Chen
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Shuqing He
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Jie Zheng
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University, Changchun Jilin 130012 China
| | - Bing Yang
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University, Changchun Jilin 130012 China
| | - Weiping Qin
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University, Changchun Jilin 130012 China
| | - Xuanjun Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health ScienceUniversity of Macau Taipa Macau SAR 999078 China
| | - Changfeng Wu
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
46
|
Zhang Z, Fang X, Liu Z, Liu H, Chen D, He S, Zheng J, Yang B, Qin W, Zhang X, Wu C. Semiconducting Polymer Dots with Dual‐Enhanced NIR‐IIa Fluorescence for Through‐Skull Mouse‐Brain Imaging. Angew Chem Int Ed Engl 2020; 59:3691-3698. [DOI: 10.1002/anie.201914397] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/09/2019] [Indexed: 02/02/2023]
Affiliation(s)
- Zhe Zhang
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University, Changchun Jilin 130012 China
| | - Xiaofeng Fang
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Zhihe Liu
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Haichao Liu
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University, Changchun Jilin 130012 China
| | - Dandan Chen
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Shuqing He
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Jie Zheng
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University, Changchun Jilin 130012 China
| | - Bing Yang
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University, Changchun Jilin 130012 China
| | - Weiping Qin
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University, Changchun Jilin 130012 China
| | - Xuanjun Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health ScienceUniversity of Macau Taipa Macau SAR 999078 China
| | - Changfeng Wu
- Department of Biomedical EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
47
|
Xu S, Duan Y, Liu B. Precise Molecular Design for High-Performance Luminogens with Aggregation-Induced Emission. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903530. [PMID: 31583787 DOI: 10.1002/adma.201903530] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/12/2019] [Indexed: 05/06/2023]
Abstract
Precise design of fluorescent molecules with desired properties has enabled the rapid development of many research fields. Among the different types of optically active materials, luminogens with aggregation-induced emission (AIEgens) have attracted significant interest over the past two decades. The negligible luminescence of AIEgens as a molecular species and high brightness in aggregate states distinguish them from conventional fluorescent dyes, which has galvanized efforts to bring AIEgens to a wide array of multidisciplinary applications. Herein, the useful principles and emerging structure-property relationships for precise molecular design toward AIEgens with desirable properties using concrete examples are revealed. The cutting-edge applications of AIEgens and their excellent performance in enabling new research directions in biomedical theranostics, optoelectronic devices, stimuli-responsive smart materials, and visualization of physical processes are also highlighted.
Collapse
Affiliation(s)
- Shidang Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yukun Duan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
48
|
Wu MC, Lin CH, Lin TH, Chan SH, Chang YH, Lin TF, Zhou Z, Wang K, Lai CS. Ultrasensitive Detection of Volatile Organic Compounds by a Freestanding Aligned Ag/CdSe-CdS/PMMA Texture with Double-Side UV-Ozone Treatment. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34454-34462. [PMID: 31433155 DOI: 10.1021/acsami.9b12333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Volatile organic compounds (VOCs) are organic chemicals having a high vapor pressure at room temperature. Chronic exposure to VOC vapor can be potentially dangerous to human health. In this study, we build a high-performance freestanding aligned Ag/CdSe-CdS/poly(methyl methacrylate) (PMMA) texture to detect VOC vapors. The insight of this new VOC-sensing material is based on electrospinning techniques, ultraviolet (UV)/ozone treatments, and nano-optics. The incorporation of CdSe-CdS core-shell quantum rods (QR) and silver nanocrystals in the PMMA nanofibers amplifies the polarization response of long rods in VOC detection, thus increasing the sensitivity of VOC-sensing materials. Further, the uniaxial aligned Ag/QR/PMMA sensing material was treated by UV-ozone etching to increase surface absorption. The advanced double-sided UV-ozone etching on the uniaxial aligned Ag/QR/PMMA efficiently enhanced the extinction changes of VOCs. Two categories of solvents, typical VOCs and alcoholic VOCs, were put into practical tests for the Ag/QR/PMMA VOC-sensing materials. The Ag/QR/PMMA reached the detection limit for 100 ppm butanol within 1 min. The freestanding aligned Ag/CdSe-CdS/PMMA texture is a newly designed nanocomposite device for environmental risk monitoring. It can be accepted by the market compared to the other highly sensitive commercial VOC-sensing materials.
Collapse
Affiliation(s)
| | | | | | | | | | - Tz-Feng Lin
- Department of Fiber and Composite Materials , Feng Chia University , Taichung 40724 , Taiwan
| | - Ziming Zhou
- Department of Electrical and Electronic Engineering , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Kai Wang
- Department of Electrical and Electronic Engineering , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Chao-Sung Lai
- Department of Materials Engineering , Ming Chi University of Technology , New Taipei City 24301 , Taiwan
| |
Collapse
|
49
|
Cao J, Liu QM, Bai SJ, Wang HC, Ren X, Xu YX. Ladder-Type Dye with Large Transition Dipole Moment for Solvatochromism and Microphase Visualization. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29814-29820. [PMID: 31340645 DOI: 10.1021/acsami.9b07677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A large transition dipole moment is usually pursued by strategies of twisted intramolecular charge transfer (TICT) or planar intramolecular charge transfer (PICT) to obtain obvious Stokes shifts and dramatic color changes with tuning of polarities. However, both strategies have their drawbacks and suffer from fluorescence quenching in solid states. Herein, a ladder-type molecule ISOAA-H with an intramolecular hydrogen bond is designed, which undergoes intramolecular charge transfer and proton shift to harvest a large transition dipole moment under light irradiation. Thanks to its out-of-plane side chains, the intermolecular π-π stacking of backbones is prohibited and solid emission is generated. ISOAA-H exhibits outstanding solvatochromic behavior with polarity changes of solvents or polymer matrixes and is successfully used to detect the microphase separation of polymer blends. These results indicate that a strategy combining the advantages of TICT and PICT is established for environment-sensitive dyes used in both solution and solid state.
Collapse
Affiliation(s)
- Jian Cao
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Qi-Ming Liu
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Si-Jie Bai
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Hua-Chun Wang
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Xiancheng Ren
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Yun-Xiang Xu
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| |
Collapse
|
50
|
Dong Z, Bi Y, Cui H, Wang Y, Wang C, Li Y, Jin H, Wang C. AIE Supramolecular Assembly with FRET Effect for Visualizing Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23840-23847. [PMID: 31251019 DOI: 10.1021/acsami.9b04938] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Here, we constructed a nanostructured pH/redox dual-responsive supramolecular drug carrier with both aggregation-induced emission (AIE) and Forster resonance energy transfer (FRET) effects, which enabled selective drug release and monitoring drug delivery and release processes. Taking the hyperbranched polyamide amine (H-PAMAM) with intrinsic AIE effects as the core, poly(ethylene glycol) (PEG) was bridged on its periphery by dithiodipropionic acid. Then, through the host-guest interaction of PEG and α-cyclodextrin, the supramolecular nanoparticles with AIE effects were constructed to load the anticancer drug doxorubicin (DOX). The supramolecular assembly has sufficiently large DOX loading due to the abundant cavities formed by branched structures. The hyperbranched core H-PAMAM has strong fluorescence, and the dynamic track of drug carriers and the dynamic drug release process can be monitored by the AIE and FRET effects between H-PAMAM and DOX, respectively. Furthermore, the introduction of disulfide bonds and the pH sensitivity of H-PAMAM enable the achievement of rapid selective release of loaded DOX at the tumor while remaining stable under normal physiological conditions. In vitro cytotoxicity indicates that the drug-loaded supramolecular assembly has a good therapeutic effect on cancer. In addition, the H-PAMAM core is different from the traditional AIE functional group, which has no conjugated structure, such as a benzene ring, thereby providing better biocompatibility. This technology will have broad applications as a new drug delivery system.
Collapse
Affiliation(s)
- Zhenzhen Dong
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yanze Bi
- School of Materials Science and Engineering , Beihang University , Beijing 100083 , China
| | - Hanrui Cui
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yandong Wang
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chunlei Wang
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yan Li
- School of Materials Science and Engineering , Beihang University , Beijing 100083 , China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Caiqi Wang
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|