1
|
Nguyen TB, Miramontes R, Chillon-Marinas C, Maimon R, Vazquez-Sanchez S, Lau AL, McClure NR, Wu Z, Wang KQ, England WE, Singha M, Stocksdale JT, Heath M, Jang KH, Jung S, Ling K, Jafar-Nejad P, McKnight JI, Ho LN, Dalahmah OA, Faull RLM, Steffan JS, Reidling JC, Jang C, Lee G, Cleveland DW, Lagier-Tourenne C, Spitale RC, Thompson LM. Aberrant splicing in Huntington's disease accompanies disrupted TDP-43 activity and altered m6A RNA modification. Nat Neurosci 2025; 28:280-292. [PMID: 39762660 PMCID: PMC11802453 DOI: 10.1038/s41593-024-01850-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/14/2024] [Indexed: 01/15/2025]
Abstract
Huntington's disease (HD) is caused by a CAG repeat expansion in the HTT gene, leading to altered gene expression. However, the mechanisms leading to disrupted RNA processing in HD remain unclear. Here we identify TDP-43 and the N6-methyladenosine (m6A) writer protein METTL3 to be upstream regulators of exon skipping in multiple HD systems. Disrupted nuclear localization of TDP-43 and cytoplasmic accumulation of phosphorylated TDP-43 occurs in HD mouse and human brains, with TDP-43 also co-localizing with HTT nuclear aggregate-like bodies distinct from mutant HTT inclusions. The binding of TDP-43 onto RNAs encoding HD-associated differentially expressed and aberrantly spliced genes is decreased. Finally, m6A RNA modification is reduced on RNAs abnormally expressed in the striatum of HD R6/2 mouse brain, including at clustered sites adjacent to TDP-43 binding sites. Our evidence supports TDP-43 loss of function coupled with altered m6A modification as a mechanism underlying alternative splicing in HD.
Collapse
Affiliation(s)
- Thai B Nguyen
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
| | | | - Carlos Chillon-Marinas
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Roy Maimon
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sonia Vazquez-Sanchez
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Alice L Lau
- Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Nicolette R McClure
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
| | - Zhuoxing Wu
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Keona Q Wang
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
| | - Whitney E England
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Monika Singha
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Jennifer T Stocksdale
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
| | - Marie Heath
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
| | - Ki-Hong Jang
- Department of Microbiology and Molecular Genetics, Chao Family Comprehensive Cancer Center, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Sunhee Jung
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Karen Ling
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | | | - Jharrayne I McKnight
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
| | - Leanne N Ho
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
| | - Osama Al Dalahmah
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Richard L M Faull
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Joan S Steffan
- Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine, CA, USA
| | | | - Cholsoon Jang
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Gina Lee
- Department of Microbiology and Molecular Genetics, Chao Family Comprehensive Cancer Center, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Clotilde Lagier-Tourenne
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA.
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA.
| | - Leslie M Thompson
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA.
- UCI MIND, University of California, Irvine, Irvine, CA, USA.
- Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine, CA, USA.
- Sue and Bill Gross Stem Cell Center, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
2
|
Sogorb-Gonzalez M, Landles C, Caron NS, Stam A, Osborne G, Hayden MR, Howland D, van Deventer S, Bates GP, Vallès A, Evers M. Exon 1-targeting miRNA reduces the pathogenic exon 1 HTT protein in Huntington's disease models. Brain 2024; 147:4043-4055. [PMID: 39155061 PMCID: PMC11629698 DOI: 10.1093/brain/awae266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/07/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disease caused by a trinucleotide repeat expansion in exon 1 of the huntingtin gene (HTT) that results in toxic gain of function and cell death. Despite its monogenic cause, the pathogenesis of HD is highly complex, and increasing evidence indicates that, in addition to the full-length (FL) mutant HTT protein, the expanded exon 1 HTT (HTTexon1) protein that is translated from the HTT1a transcript generated by aberrant splicing is prone to aggregate and might contribute to HD pathology. This finding suggests that reducing the expression of HTT1a might achieve a greater therapeutic benefit than targeting only FL mutant HTT. Conversely, strategies that exclusively target FL HTT might not completely prevent the pathogenesis of HD. We have developed an engineered microRNA targeting the HTT exon 1 sequence (miHTT), delivered via adeno-associated virus serotype 5 (AAV5). The target sequence of miHTT is present in both FL HTT and HTT1a transcripts. Preclinical studies with AAV5-miHTT have demonstrated efficacy in several rodent and large animal models by reducing FL HTT mRNA and protein and rescuing HD-like phenotypes and have been the rationale for phase I/II clinical studies now ongoing in the USA and Europe. In the present study, we evaluated the ability of AAV5-miHTT to reduce the levels of aberrantly spliced HTT1a mRNA and the HTTexon1 protein in the brain of two mouse models of HD (heterozygous zQ175 knock-in mice and humanized Hu128/21 mice). Polyadenylated HTT1a mRNA and HTTexon1 protein were detected in the striatum and cortex of heterozygous zQ175 knock-in mice, but not in wild-type littermate control mice. Intrastriatal administration of AAV5-miHTT resulted in dose-dependent expression of mature miHTT microRNA in cortical brain regions, accompanied by significant lowering of both FL HTT and HTT1a mRNA expression at 2 months postinjection. Mutant HTT and HTTexon1 protein levels were also significantly reduced in the striatum and cortex of heterozygous zQ175 knock-in mice at 2 months after AAV5-miHTT treatment and in humanized Hu128/21 mice 7 months post-treatment. The effects were confirmed in primary Hu128/21 neuronal cultures. These results demonstrate that AAV5-miHTT gene therapy is an effective approach to lower both FL HTT and the pathogenic HTTexon1 levels, which could potentially have an additive therapeutic benefit in comparison to other HTT-targeting modalities.
Collapse
Affiliation(s)
- Marina Sogorb-Gonzalez
- Department of Research & Development, uniQure Biopharma BV, Amsterdam 1105 BP, The Netherlands
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Christian Landles
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Anouk Stam
- Department of Research & Development, uniQure Biopharma BV, Amsterdam 1105 BP, The Netherlands
| | - Georgina Osborne
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - David Howland
- CHDI Management/CHDI Foundation, Princeton, NJ 08540, USA
| | - Sander van Deventer
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Gillian P Bates
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Astrid Vallès
- Department of Research & Development, uniQure Biopharma BV, Amsterdam 1105 BP, The Netherlands
| | - Melvin Evers
- Department of Research & Development, uniQure Biopharma BV, Amsterdam 1105 BP, The Netherlands
| |
Collapse
|
3
|
Pupak A, Rodríguez-Navarro I, Sathasivam K, Singh A, Essmann A, Del Toro D, Ginés S, Mouro Pinto R, Bates GP, Vang Ørom UA, Martí E, Brito V. m 6A modification of mutant huntingtin RNA promotes the biogenesis of pathogenic huntingtin transcripts. EMBO Rep 2024; 25:5026-5052. [PMID: 39394467 PMCID: PMC11549361 DOI: 10.1038/s44319-024-00283-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/13/2024] Open
Abstract
In Huntington's disease (HD), aberrant processing of huntingtin (HTT) mRNA produces HTT1a transcripts that encode the pathogenic HTT exon 1 protein. The mechanisms behind HTT1a production are not fully understood. Considering the role of m6A in RNA processing and splicing, we investigated its involvement in HTT1a generation. Here, we show that m6A methylation is increased before the cryptic poly(A) sites (IpA1 and IpA2) within the huntingtin RNA in the striatum of Hdh+/Q111 mice and human HD samples. We further assessed m6A's role in mutant Htt mRNA processing by pharmacological inhibition and knockdown of METTL3, as well as targeted demethylation of Htt intron 1 using a dCas13-ALKBH5 system in HD mouse cells. Our data reveal that Htt1a transcript levels are regulated by both METTL3 and the methylation status of Htt intron 1. They also show that m6A methylation in intron 1 depends on expanded CAG repeats. Our findings highlight a potential role for m6A in aberrant splicing of Htt mRNA.
Collapse
Affiliation(s)
- Anika Pupak
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Irene Rodríguez-Navarro
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Kirupa Sathasivam
- Department of Neurodegenerative Disease, Huntington's Disease Centre and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London, WC1N 3BG, UK
| | - Ankita Singh
- Department for Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Amelie Essmann
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Daniel Del Toro
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Silvia Ginés
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ricardo Mouro Pinto
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gillian P Bates
- Department of Neurodegenerative Disease, Huntington's Disease Centre and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London, WC1N 3BG, UK
| | | | - Eulàlia Martí
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Verónica Brito
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
4
|
Zubkova AE, Yudkin DV. Regulation of HTT mRNA Biogenesis: The Norm and Pathology. Int J Mol Sci 2024; 25:11493. [PMID: 39519046 PMCID: PMC11546943 DOI: 10.3390/ijms252111493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by the expansion of the CAG repeat in exon 1 of the HTT gene, leading to the formation of a toxic variant of the huntingtin protein. It is a rare but severe hereditary disease for which no effective treatment method has been found yet. The primary therapeutic targets include the mutant protein and the mutant mRNA of HTT. Current clinical trial approaches in gene therapy involve the application of splice modulation, siRNA, or antisense oligonucleotides for RNA-targeted knockdown of HTT. However, these approaches do not take into account the diversity of HTT transcript isoforms in the normal conditions and in HD. In this review, we discuss the features of transcriptional regulation and processing that lead to the formation of various HTT mRNA variants, each of which may uniquely contribute to the progression of the disease. Furthermore, understanding the role of known transcription factors of HTT in pathology may aid in the development of potentially new therapeutic tools based on endogenous regulators.
Collapse
Affiliation(s)
- Alexandra E. Zubkova
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Trubetskaya Str., 8/2, Moscow 119048, Russia;
- Department of Natural Sciences, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Dmitry V. Yudkin
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Trubetskaya Str., 8/2, Moscow 119048, Russia;
| |
Collapse
|
5
|
Montero-Hidalgo AJ, Jiménez-Vacas JM, Gómez-Gómez E, Porcel-Pastrana F, Sáez-Martínez P, Pérez-Gómez JM, Fuentes-Fayos AC, Blázquez-Encinas R, Sánchez-Sánchez R, González-Serrano T, Castro E, López-Soto PJ, Carrasco-Valiente J, Sarmento-Cabral A, Martinez-Fuentes AJ, Eyras E, Castaño JP, Sharp A, Olmos D, Gahete MD, Luque RM. SRSF6 modulates histone-chaperone HIRA splicing to orchestrate AR and E2F activity in prostate cancer. SCIENCE ADVANCES 2024; 10:eado8231. [PMID: 39356765 PMCID: PMC11446284 DOI: 10.1126/sciadv.ado8231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
Despite novel therapeutic strategies, advanced-stage prostate cancer (PCa) remains highly lethal, pointing out the urgent need for effective therapeutic strategies. While dysregulation of the splicing process is considered a cancer hallmark, the role of certain splicing factors remains unknown in PCa. This study focuses on characterizing the levels and role of SRSF6 in this disease. Comprehensive analyses of SRSF6 alterations (copy number/mRNA/protein) were conducted across eight well-characterized PCa cohorts and the Hi-MYC transgenic model. SRSF6 was up-regulated in PCa samples, correlating with adverse clinical parameters. Functional assays, both in vitro (cell proliferation, migration, colony, and tumorsphere formation) and in vivo (xenograft tumors), demonstrated the impact of SRSF6 modulation on critical cancer hallmarks. Mechanistically, SRSF6 regulates the splicing pattern of the histone-chaperone HIRA, consequently affecting the activity of H3.3 in PCa and breast cancer cell models and disrupting pivotal oncogenic pathways (AR and E2F) in PCa cells. These findings underscore SRSF6 as a promising therapeutic target for PCa/advanced-stage PCa.
Collapse
Affiliation(s)
- Antonio J. Montero-Hidalgo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Juan M. Jiménez-Vacas
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
- Institute of Cancer Research, London, UK
| | - Enrique Gómez-Gómez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Urology Service, HURS/IMIBIC, Cordoba, Spain
| | - Francisco Porcel-Pastrana
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Prudencio Sáez-Martínez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Jesús M. Pérez-Gómez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio C. Fuentes-Fayos
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Ricardo Blázquez-Encinas
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Anatomical Pathology Service, HURS, Cordoba, Spain
| | - Teresa González-Serrano
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Anatomical Pathology Service, HURS, Cordoba, Spain
| | - Elena Castro
- Genitourinary Cancer Translational Research Group, Biomedical Research Institute of Málaga, Málaga, Spain
| | - Pablo J. López-Soto
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Department of Nursing, Pharmacology, and Physiotherapy, University of Cordoba, Córdoba, Spain
| | - Julia Carrasco-Valiente
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Urology Service, HURS/IMIBIC, Cordoba, Spain
| | - André Sarmento-Cabral
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio J. Martinez-Fuentes
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Eduardo Eyras
- The John Curtin School of Medical Research, Australian National University, Canberra, Australia
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, Australia
| | - Justo P. Castaño
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Adam Sharp
- Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - David Olmos
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Manuel D. Gahete
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Raúl M. Luque
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| |
Collapse
|
6
|
Pengo M, Squitieri F. Beyond CAG Repeats: The Multifaceted Role of Genetics in Huntington Disease. Genes (Basel) 2024; 15:807. [PMID: 38927742 PMCID: PMC11203031 DOI: 10.3390/genes15060807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Huntington disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG expansion on the huntingtin (HTT) gene and is characterized by progressive motor, cognitive, and neuropsychiatric decline. Recently, new genetic factors besides CAG repeats have been implicated in the disease pathogenesis. Most genetic modifiers are involved in DNA repair pathways and, as the cause of the loss of CAA interruption in the HTT gene, they exert their main influence through somatic expansion. However, this mechanism might not be the only driver of HD pathogenesis, and future studies are warranted in this field. The aim of the present review is to dissect the many faces of genetics in HD pathogenesis, from cis- and trans-acting genetic modifiers to RNA toxicity, mitochondrial DNA mutations, and epigenetics factors. Exploring genetic modifiers of HD onset and progression appears crucial to elucidate not only disease pathogenesis, but also to improve disease prediction and prevention, develop biomarkers of disease progression and response to therapies, and recognize new therapeutic opportunities. Since the same genetic mechanisms are also described in other repeat expansion diseases, their implications might encompass the whole spectrum of these disorders.
Collapse
Affiliation(s)
- Marta Pengo
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy;
| | - Ferdinando Squitieri
- Centre for Neurological Rare Diseases (CMNR), Fondazione Lega Italiana Ricerca Huntington (LIRH), 00161 Rome, Italy
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
7
|
Neueder A, Kojer K, Gu Z, Wang Y, Hering T, Tabrizi S, Taanman JW, Orth M. Huntington's disease affects mitochondrial network dynamics predisposing to pathogenic mitochondrial DNA mutations. Brain 2024; 147:2009-2022. [PMID: 38195181 PMCID: PMC11512592 DOI: 10.1093/brain/awae007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/27/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
Huntington's disease (HD) predominantly affects the brain, causing a mixed movement disorder, cognitive decline and behavioural abnormalities. It also causes a peripheral phenotype involving skeletal muscle. Mitochondrial dysfunction has been reported in tissues of HD models, including skeletal muscle, and lymphoblast and fibroblast cultures from patients with HD. Mutant huntingtin protein (mutHTT) expression can impair mitochondrial quality control and accelerate mitochondrial ageing. Here, we obtained fresh human skeletal muscle, a post-mitotic tissue expressing the mutated HTT allele at physiological levels since birth, and primary cell lines from HTT CAG repeat expansion mutation carriers and matched healthy volunteers to examine whether such a mitochondrial phenotype exists in human HD. Using ultra-deep mitochondrial DNA (mtDNA) sequencing, we showed an accumulation of mtDNA mutations affecting oxidative phosphorylation. Tissue proteomics indicated impairments in mtDNA maintenance with increased mitochondrial biogenesis of less efficient oxidative phosphorylation (lower complex I and IV activity). In full-length mutHTT expressing primary human cell lines, fission-inducing mitochondrial stress resulted in normal mitophagy. In contrast, expression of high levels of N-terminal mutHTT fragments promoted mitochondrial fission and resulted in slower, less dynamic mitophagy. Expression of high levels of mutHTT fragments due to somatic nuclear HTT CAG instability can thus affect mitochondrial network dynamics and mitophagy, leading to pathogenic mtDNA mutations. We show that life-long expression of mutant HTT causes a mitochondrial phenotype indicative of mtDNA instability in fresh post-mitotic human skeletal muscle. Thus, genomic instability may not be limited to nuclear DNA, where it results in somatic expansion of the HTT CAG repeat length in particularly vulnerable cells such as striatal neurons. In addition to efforts targeting the causative mutation, promoting mitochondrial health may be a complementary strategy in treating diseases with DNA instability such as HD.
Collapse
Affiliation(s)
| | - Kerstin Kojer
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Yiqin Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Tanja Hering
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Sarah Tabrizi
- UCL Huntington’s Disease Centre, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Dementia Research Institute at UCL, London WC1N 3BG, UK
| | - Jan-Willem Taanman
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London NW3 2PF, UK
| | - Michael Orth
- Department of Neurology, Ulm University, 89081 Ulm, Germany
- Swiss Huntington Centre, Siloah AG, 3073 Gümligen, Switzerland
- University Hospital of Old Age Psychiatry and Psychotherapy, Bern University, CH-3000 Bern 60, Switzerland
| |
Collapse
|
8
|
Hoschek F, Natan J, Wagner M, Sathasivam K, Abdelmoez A, von Einem B, Bates GP, Landwehrmeyer GB, Neueder A. Huntingtin HTT1a is generated in a CAG repeat-length-dependent manner in human tissues. Mol Med 2024; 30:36. [PMID: 38459427 PMCID: PMC10924374 DOI: 10.1186/s10020-024-00801-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/19/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND The disease-causing mutation in Huntington disease (HD) is a CAG trinucleotide expansion in the huntingtin (HTT) gene. The mutated CAG tract results in the production of a small RNA, HTT1a, coding for only exon 1 of HTT. HTT1a is generated by a block in the splicing reaction of HTT exon 1 to exon 2 followed by cleavage in intron 1 and polyadenylation. Translation of HTT1a leads to the expression of the highly toxic HTT exon 1 protein fragment. We have previously shown that the levels of HTT1a expression in mouse models of HD is dependent on the CAG repeat length. However, these data are lacking for human tissues. METHODS To answer this question, we developed highly sensitive digital PCR assays to determine HTT1a levels in human samples. These assays allow the absolute quantification of transcript numbers and thus also facilitate the comparison of HTT1a levels between tissues, cell types and across different studies. Furthermore, we measured CAG repeat sizes for every sample used in the study. Finally, we analysed our data with ANOVA and linear modelling to determine the correlation of HTT1a expression levels with CAG repeat sizes. RESULTS In summary, we show that HTT1a is indeed expressed in a CAG repeat-length-dependent manner in human post mortem brain tissues as well as in several peripheral cell types. In particular, PBMCs show a statistically significant positive correlation of HTT1a expression with CAG repeat length, and elevated HTT1a expression levels even in the adult-onset CAG repeat range. CONCLUSIONS Our results show that HTT1a expression occurs throughout a wide range of tissues and likely with all CAG lengths. Our data from peripheral sample sources demonstrate that HTT1a is indeed generated throughout the body in a CAG repeat-length-dependent manner. Therefore, the levels of HTT1a might be a sensitive marker of disease state and/or progression and should be monitored over time, especially in clinical trials targeting HTT expression.
Collapse
Affiliation(s)
- Franziska Hoschek
- Department of Neurology, University Hospital Ulm, 89081, Ulm, Germany
| | - Julia Natan
- Department of Neurology, University Hospital Ulm, 89081, Ulm, Germany
| | - Maximilian Wagner
- Department of Neurology, University Hospital Ulm, 89081, Ulm, Germany
| | - Kirupa Sathasivam
- Huntington's Disease Centre, Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, WC1N 3BG, London, UK
| | - Alshaimaa Abdelmoez
- Department of Neurology, University Hospital Ulm, 89081, Ulm, Germany
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Björn von Einem
- Department of Neurology, University Hospital Ulm, 89081, Ulm, Germany
| | - Gillian P Bates
- Huntington's Disease Centre, Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, WC1N 3BG, London, UK
| | | | - Andreas Neueder
- Department of Neurology, University Hospital Ulm, 89081, Ulm, Germany.
| |
Collapse
|
9
|
Dinamarca MC, Colombo L, Brykczynska U, Grimm A, Fruh I, Hossain I, Gabriel D, Eckert A, Müller M, Pecho-Vrieseling E. Transmission-selective muscle pathology induced by the active propagation of mutant huntingtin across the human neuromuscular synapse. Front Mol Neurosci 2024; 16:1287510. [PMID: 38235149 PMCID: PMC10791992 DOI: 10.3389/fnmol.2023.1287510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Neuron-to-neuron transmission of aggregation-prone, misfolded proteins may potentially explain the spatiotemporal accumulation of pathological lesions in the brains of patients with neurodegenerative protein-misfolding diseases (PMDs). However, little is known about protein transmission from the central nervous system to the periphery, or how this propagation contributes to PMD pathology. To deepen our understanding of these processes, we established two functional neuromuscular systems derived from human iPSCs. One was suitable for long-term high-throughput live-cell imaging and the other was adapted to a microfluidic system assuring that connectivity between motor neurons and muscle cells was restricted to the neuromuscular junction. We show that the Huntington's disease (HD)-associated mutant HTT exon 1 protein (mHTTEx1) is transmitted from neurons to muscle cells across the human neuromuscular junction. We found that transmission is an active and dynamic process that starts before aggregate formation and is regulated by synaptic activity. We further found that transmitted mHTTEx1 causes HD-relevant pathology at both molecular and functional levels in human muscle cells, even in the presence of the ubiquitous expression of mHTTEx1. In conclusion, we have uncovered a causal link between mHTTEx1 synaptic transmission and HD pathology, highlighting the therapeutic potential of blocking toxic protein transmission in PMDs.
Collapse
Affiliation(s)
- Margarita C. Dinamarca
- Neuronal Development and Degeneration Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Laura Colombo
- Neuronal Development and Degeneration Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Urszula Brykczynska
- Neuronal Development and Degeneration Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Amandine Grimm
- Neurobiology Laboratory for Brain Aging and Mental Health, Transfaculty Research Platform, Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Isabelle Fruh
- Biomedical Research, Novartis Pharma AG, Novartis Campus, Basel, Switzerland
| | - Imtiaz Hossain
- Biomedical Research, Novartis Pharma AG, Novartis Campus, Basel, Switzerland
| | - Daniela Gabriel
- Biomedical Research, Novartis Pharma AG, Novartis Campus, Basel, Switzerland
| | - Anne Eckert
- Neurobiology Laboratory for Brain Aging and Mental Health, Transfaculty Research Platform, Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Matthias Müller
- Biomedical Research, Novartis Pharma AG, Novartis Campus, Basel, Switzerland
| | - Eline Pecho-Vrieseling
- Neuronal Development and Degeneration Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Yandrapally S, Sarkar S, Banerjee S. HIV-1 Tat commandeers nuclear export of Rev-viral RNA complex by controlling hnRNPA2-mediated splicing. J Virol 2023; 97:e0104423. [PMID: 37905837 PMCID: PMC10688328 DOI: 10.1128/jvi.01044-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE HIV-infected host cells impose varied degrees of regulation on viral replication, from very high to abortive. Proliferation of HIV in astrocytes is limited when compared to immune cells, such as CD4+ T lymphocytes. Understanding such differential regulation is one of the key questions in the field as these cells permit HIV persistence and rebound viremia, challenging HIV treatment and clinical cure. This study focuses on understanding the molecular mechanism behind such cell-specific disparities. We show that one of the key mechanisms is the regulation of heterogenous nuclear ribonucleoprotein A2, a host factor involved in alternative splicing and RNA processing, by HIV-1 Tat in CD4+ T lymphocytes, not observed in astrocytes. This regulation causes an increase in the levels of unspliced/partially spliced viral RNA and nuclear export of Rev-RNA complexes which results in high viral propagation in CD4+ T lymphocytes. The study reveals a new mechanism imposed by HIV on host cells that determines the fate of infection.
Collapse
Affiliation(s)
- Sriram Yandrapally
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Satarupa Sarkar
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
11
|
Reed AL, Mitchell W, Alexandrescu AT, Alder NN. Interactions of amyloidogenic proteins with mitochondrial protein import machinery in aging-related neurodegenerative diseases. Front Physiol 2023; 14:1263420. [PMID: 38028797 PMCID: PMC10652799 DOI: 10.3389/fphys.2023.1263420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Most mitochondrial proteins are targeted to the organelle by N-terminal mitochondrial targeting sequences (MTSs, or "presequences") that are recognized by the import machinery and subsequently cleaved to yield the mature protein. MTSs do not have conserved amino acid compositions, but share common physicochemical properties, including the ability to form amphipathic α-helical structures enriched with basic and hydrophobic residues on alternating faces. The lack of strict sequence conservation implies that some polypeptides can be mistargeted to mitochondria, especially under cellular stress. The pathogenic accumulation of proteins within mitochondria is implicated in many aging-related neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Mechanistically, these diseases may originate in part from mitochondrial interactions with amyloid-β precursor protein (APP) or its cleavage product amyloid-β (Aβ), α-synuclein (α-syn), and mutant forms of huntingtin (mHtt), respectively, that are mediated in part through their associations with the mitochondrial protein import machinery. Emerging evidence suggests that these amyloidogenic proteins may present cryptic targeting signals that act as MTS mimetics and can be recognized by mitochondrial import receptors and transported into different mitochondrial compartments. Accumulation of these mistargeted proteins could overwhelm the import machinery and its associated quality control mechanisms, thereby contributing to neurological disease progression. Alternatively, the uptake of amyloidogenic proteins into mitochondria may be part of a protein quality control mechanism for clearance of cytotoxic proteins. Here we review the pathomechanisms of these diseases as they relate to mitochondrial protein import and effects on mitochondrial function, what features of APP/Aβ, α-syn and mHtt make them suitable substrates for the import machinery, and how this information can be leveraged for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Ashley L. Reed
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Wayne Mitchell
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrei T. Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
12
|
Tong H, Yang T, Liu L, Li C, Sun Y, Jia Q, Qin Y, Chen L, Zhao X, Zhou G, Yan S, Li XJ, Li S. Aberrant splicing of mutant huntingtin in Huntington's disease knock-in pigs. Neurobiol Dis 2023; 187:106291. [PMID: 37716514 DOI: 10.1016/j.nbd.2023.106291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023] Open
Abstract
Huntington's disease (HD) is an autosomal-dominant inherited neurodegenerative disease caused by a CAG repeat expansion in exon1 of the huntingtin gene (HTT). This expansion leads to the production of N-terminal mutant huntingtin protein (mHtt) that contains an expanded polyglutamine tract, which is toxic to neurons and causes neurodegeneration. While the production of N-terminal mHtt can be mediated by proteolytic cleavage of full-length mHtt, abnormal splicing of exon1-intron1 of mHtt has also been identified in the brains of HD mice and patients. However, the proportion of aberrantly spliced exon1 mHTT in relation to normal mHTT exon remains to be defined. In this study, HTT exon1 production was examined in the HD knock-in (KI) pig model, which more closely recapitulates neuropathology seen in HD patient brains than HD mouse models. The study revealed that aberrant spliced HTT exon1 is also present in the brains of HD pigs, but it is expressed at a much lower level than the normally spliced HTT exon products. These findings suggest that careful consideration is needed when assessing the contribution of aberrantly spliced mHTT exon1 to HD pathogenesis, and further rigorous investigation is required.
Collapse
Affiliation(s)
- Huichun Tong
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Tianqi Yang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Li Liu
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Caijuan Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Yize Sun
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Qingqing Jia
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Yiyang Qin
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Laiqiang Chen
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Xianxian Zhao
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Gongke Zhou
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Sen Yan
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
13
|
Li D, Yu W, Lai M. Towards understandings of serine/arginine-rich splicing factors. Acta Pharm Sin B 2023; 13:3181-3207. [PMID: 37655328 PMCID: PMC10465970 DOI: 10.1016/j.apsb.2023.05.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/13/2023] [Accepted: 05/06/2023] [Indexed: 09/02/2023] Open
Abstract
Serine/arginine-rich splicing factors (SRSFs) refer to twelve RNA-binding proteins which regulate splice site recognition and spliceosome assembly during precursor messenger RNA splicing. SRSFs also participate in other RNA metabolic events, such as transcription, translation and nonsense-mediated decay, during their shuttling between nucleus and cytoplasm, making them indispensable for genome diversity and cellular activity. Of note, aberrant SRSF expression and/or mutations elicit fallacies in gene splicing, leading to the generation of pathogenic gene and protein isoforms, which highlights the therapeutic potential of targeting SRSF to treat diseases. In this review, we updated current understanding of SRSF structures and functions in RNA metabolism. Next, we analyzed SRSF-induced aberrant gene expression and their pathogenic outcomes in cancers and non-tumor diseases. The development of some well-characterized SRSF inhibitors was discussed in detail. We hope this review will contribute to future studies of SRSF functions and drug development targeting SRSFs.
Collapse
Affiliation(s)
- Dianyang Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wenying Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Maode Lai
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Science (2019RU042), Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
14
|
Wright SE, Todd PK. Native functions of short tandem repeats. eLife 2023; 12:e84043. [PMID: 36940239 PMCID: PMC10027321 DOI: 10.7554/elife.84043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/08/2023] [Indexed: 03/21/2023] Open
Abstract
Over a third of the human genome is comprised of repetitive sequences, including more than a million short tandem repeats (STRs). While studies of the pathologic consequences of repeat expansions that cause syndromic human diseases are extensive, the potential native functions of STRs are often ignored. Here, we summarize a growing body of research into the normal biological functions for repetitive elements across the genome, with a particular focus on the roles of STRs in regulating gene expression. We propose reconceptualizing the pathogenic consequences of repeat expansions as aberrancies in normal gene regulation. From this altered viewpoint, we predict that future work will reveal broader roles for STRs in neuronal function and as risk alleles for more common human neurological diseases.
Collapse
Affiliation(s)
- Shannon E Wright
- Department of Neurology, University of Michigan–Ann ArborAnn ArborUnited States
- Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States
- Department of Neuroscience, Picower InstituteCambridgeUnited States
| | - Peter K Todd
- Department of Neurology, University of Michigan–Ann ArborAnn ArborUnited States
- VA Ann Arbor Healthcare SystemAnn ArborUnited States
| |
Collapse
|
15
|
Mukim A, Smith DM, Deshmukh S, Qazi AA, Beliakova-Bethell N. A Camptothetin Analog, Topotecan, Promotes HIV Latency via Interference with HIV Transcription and RNA Splicing. J Virol 2023; 97:e0163022. [PMID: 36719238 PMCID: PMC9973035 DOI: 10.1128/jvi.01630-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/11/2023] [Indexed: 02/01/2023] Open
Abstract
Low level HIV transcription during modern antiretroviral therapy (ART) in persons with HIV is linked to residual inflammation and associated diseases, like cardiovascular disease and cancer. The "block and lock" approach to hold HIV in a state of deep latency may help decrease residual inflammation in a person with HIV on ART and thus improve health. A camptothecin analog topotecan (TPT) was previously implicated as an inhibitor of active HIV replication. Using an in vitro primary T cell model of HIV latency, we demonstrated that (i) TPT reduces HIV transcriptional activity in latently infected cells; (ii) downregulation of HIV RNA by TPT cannot be reversed by latency reversing agents; (iii) several primary and secondary mechanism of action of TPT may be involved in control of HIV replication; (iv) regulation of HIV RNA by TPT is dependent on splicing complexity; (v) increase in proportion of unspliced HIV transcripts was facilitated by intron retention and upregulation of splicing factors, specifically SRSF6, by TPT. Although high TPT dosing (10 μM) was needed to achieve the observed effects, viability of primary CD4+ T cells was not greatly affected. Because toxicity can be observed with TPT in persons with cancer, TPT is unlikely to be used as an anti-HIV agent in clinic, but our study provides proof that camptothetin has "block and lock" activity. Other camptothetin analogs, which are less toxic than TPT, should be designed and tested as HIV "block and lock" agents. IMPORTANCE HIV survives in a state of very low activity, called latency, for long periods in persons with HIV on antiretroviral therapy. This low activity of HIV is linked to residual inflammation and associated diseases, such as heart disease and cancer. New strategies are being explored to further silence the HIV provirus and suppress residual inflammation. This study provides strong evidence that the camptothetin analog, Topotecan, can reduce residual activity of HIV in an experimental model of HIV latency. While Topotecan itself is likely not suitable for use in the clinic due to its toxicity, other camptothetin analogs should be designed and investigated as "block and lock" agents.
Collapse
Affiliation(s)
- Amey Mukim
- Veterans Medical Research Foundation, San Diego, California, USA
| | - Davey M. Smith
- Department of Medicine, University of California, San Diego, California, USA
| | - Savitha Deshmukh
- Veterans Medical Research Foundation, San Diego, California, USA
| | - Andrew A. Qazi
- Veterans Medical Research Foundation, San Diego, California, USA
| | - Nadejda Beliakova-Bethell
- Veterans Medical Research Foundation, San Diego, California, USA
- Department of Medicine, University of California, San Diego, California, USA
- VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
16
|
Gangwani MR, Soto JS, Jami-Alahmadi Y, Tiwari S, Kawaguchi R, Wohlschlegel JA, Khakh BS. Neuronal and astrocytic contributions to Huntington's disease dissected with zinc finger protein transcriptional repressors. Cell Rep 2023; 42:111953. [PMID: 36640336 PMCID: PMC9898160 DOI: 10.1016/j.celrep.2022.111953] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
Huntington's disease (HD) is caused by expanded CAG repeats in the huntingtin gene (HTT) resulting in expression of mutant HTT proteins (mHTT) with extended polyglutamine tracts, including in striatal neurons and astrocytes. It is unknown whether pathophysiology in vivo can be attenuated by lowering mHTT in either cell type throughout the brain, and the relative contributions of neurons and astrocytes to HD remain undefined. We use zinc finger protein (ZFP) transcriptional repressors to cell-selectively lower mHTT in vivo. Astrocytes display loss of essential functions such as cholesterol metabolism that are partly driven by greater neuronal dysfunctions, which encompass neuromodulation, synaptic, and intracellular signaling pathways. Using transcriptomics, proteomics, electrophysiology, and behavior, we dissect neuronal and astrocytic contributions to HD pathophysiology. Remarkably, brain-wide delivery of neuronal ZFPs results in strong mHTT lowering, rescue of HD-associated behavioral and molecular phenotypes, and significant extension of lifespan, findings that support translational development.
Collapse
Affiliation(s)
- Mohitkumar R. Gangwani
- Department of Physiology, University of California Los Angeles. Los Angeles, CA 90095-1751, USA
| | - Joselyn S. Soto
- Department of Physiology, University of California Los Angeles. Los Angeles, CA 90095-1751, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California Los Angeles. Los Angeles, CA 90095-1751, USA
| | - Srushti Tiwari
- Department of Physiology, University of California Los Angeles. Los Angeles, CA 90095-1751, USA
| | - Riki Kawaguchi
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles. Los Angeles, CA 90095-1751, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, University of California Los Angeles. Los Angeles, CA 90095-1751, USA
| | - Baljit S. Khakh
- Department of Physiology, University of California Los Angeles. Los Angeles, CA 90095-1751, USA,Department of Neurobiology, University of California Los Angeles. Los Angeles, CA 90095-1751, USA
| |
Collapse
|
17
|
Ly S, Didiot MC, Ferguson CM, Coles AH, Miller R, Chase K, Echeverria D, Wang F, Sadri-Vakili G, Aronin N, Khvorova A. Mutant huntingtin messenger RNA forms neuronal nuclear clusters in rodent and human brains. Brain Commun 2022; 4:fcac248. [PMID: 36458209 PMCID: PMC9707646 DOI: 10.1093/braincomms/fcac248] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/14/2022] [Accepted: 10/12/2022] [Indexed: 01/25/2023] Open
Abstract
Mutant messenger RNA (mRNA) and protein contribute to the clinical manifestation of many repeat-associated neurological disorders, with the presence of nuclear RNA clusters being a common pathological feature. Yet, investigations into Huntington's disease-caused by a CAG repeat expansion in exon 1 of the huntingtin (HTT) gene-have primarily focused on toxic protein gain-of-function as the primary disease-causing feature. To date, mutant HTT mRNA has not been identified as an in vivo hallmark of Huntington's disease. Here, we report that, in two Huntington's disease mouse models (YAC128 and BACHD-97Q-ΔN17), mutant HTT mRNA is retained in the nucleus. Widespread formation of large mRNA clusters (∼0.6-5 µm3) occurred in 50-75% of striatal and cortical neurons. Cluster formation was independent of age and driven by expanded repeats. Clusters associate with chromosomal transcriptional sites and quantitatively co-localize with the aberrantly processed N-terminal exon 1-intron 1 mRNA isoform, HTT1a. HTT1a mRNA clusters are observed in a subset of neurons from human Huntington's disease post-mortem brain and are likely caused by somatic expansion of repeats. In YAC128 mice, clusters, but not individual HTT mRNA, are resistant to antisense oligonucleotide treatment. Our findings identify mutant HTT/HTT1a mRNA clustering as an early, robust molecular signature of Huntington's disease, providing in vivo evidence that Huntington's disease is a repeat expansion disease with mRNA involvement.
Collapse
Affiliation(s)
| | | | | | - Andrew H Coles
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Rachael Miller
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Kathryn Chase
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Feng Wang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Ghazaleh Sadri-Vakili
- Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Neil Aronin
- Correspondence may also be addressed to: Neil Aronin 368 Plantation Street, Albert Sherman Center Worcester, MA 01655, USA. E-mail:
| | - Anastasia Khvorova
- Correspondence to: Anastasia Khvorova 368 Plantation Street, Albert Sherman Center Worcester, MA 01655, USA E-mail:
| |
Collapse
|
18
|
van der Bent ML, Evers MM, Vallès A. Emerging Therapies for Huntington's Disease - Focus on N-Terminal Huntingtin and Huntingtin Exon 1. Biologics 2022; 16:141-160. [PMID: 36213816 PMCID: PMC9532260 DOI: 10.2147/btt.s270657] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/14/2022] [Indexed: 11/12/2022]
Abstract
Huntington's disease is a devastating heritable neurodegenerative disorder that is caused by the presence of a trinucleotide CAG repeat expansion in the Huntingtin gene, leading to a polyglutamine tract in the protein. Various mechanisms lead to the production of N-terminal Huntingtin protein fragments, which are reportedly more toxic than the full-length protein. In this review, we summarize the current knowledge on the production and toxicity of N-terminal Huntingtin protein fragments. Further, we expand on various therapeutic strategies targeting N-terminal Huntingtin on the protein, RNA and DNA level. Finally, we compare the therapeutic approaches that are clinically most advanced, including those that do not target N-terminal Huntingtin, discussing differences in mode of action and translational applicability.
Collapse
Affiliation(s)
| | - Melvin M Evers
- uniQure biopharma B.V., Department of Research and Development, Amsterdam, the Netherlands
| | - Astrid Vallès
- uniQure biopharma B.V., Department of Research and Development, Amsterdam, the Netherlands
| |
Collapse
|
19
|
Lobanov SV, McAllister B, McDade-Kumar M, Landwehrmeyer GB, Orth M, Rosser AE, Paulsen JS, Lee JM, MacDonald ME, Gusella JF, Long JD, Ryten M, Williams NM, Holmans P, Massey TH, Jones L. Huntington's disease age at motor onset is modified by the tandem hexamer repeat in TCERG1. NPJ Genom Med 2022; 7:53. [PMID: 36064847 PMCID: PMC9445028 DOI: 10.1038/s41525-022-00317-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/15/2022] [Indexed: 01/29/2023] Open
Abstract
Huntington's disease is caused by an expanded CAG tract in HTT. The length of the CAG tract accounts for over half the variance in age at onset of disease, and is influenced by other genetic factors, mostly implicating the DNA maintenance machinery. We examined a single nucleotide variant, rs79727797, on chromosome 5 in the TCERG1 gene, previously reported to be associated with Huntington's disease and a quasi-tandem repeat (QTR) hexamer in exon 4 of TCERG1 with a central pure repeat. We developed a method for calling perfect and imperfect repeats from exome-sequencing data, and tested association between the QTR in TCERG1 and residual age at motor onset (after correcting for the effects of CAG length in the HTT gene) in 610 individuals with Huntington's disease via regression analysis. We found a significant association between age at onset and the sum of the repeat lengths from both alleles of the QTR (p = 2.1 × 10-9), with each added repeat hexamer reducing age at onset by one year (95% confidence interval [0.7, 1.4]). This association explained that previously observed with rs79727797. The association with age at onset in the genome-wide association study is due to a QTR hexamer in TCERG1, translated to a glutamine/alanine tract in the protein. We could not distinguish whether this was due to cis-effects of the hexamer repeat on gene expression or of the encoded glutamine/alanine tract in the protein. These results motivate further study of the mechanisms by which TCERG1 modifies onset of HD.
Collapse
Affiliation(s)
- Sergey V Lobanov
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Branduff McAllister
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Mia McDade-Kumar
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | | | - Michael Orth
- Department of Old Age Psychiatry and Psychotherapy, Bern University, Bern, Switzerland
- Swiss Huntington's Disease Centre, Siloah, Gümligen, Switzerland
| | - Anne E Rosser
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Jane S Paulsen
- Department of Neurology, University of Wisconsin, Madison, WI53705, USA
| | - Jong-Min Lee
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Marcy E MacDonald
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - James F Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Jeffrey D Long
- Departments of Psychiatry and Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Mina Ryten
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University, College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Nigel M Williams
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Peter Holmans
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Thomas H Massey
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK.
| | - Lesley Jones
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, UK
| |
Collapse
|
20
|
Yang X, Liu C, Kuo YA, Yeh HC, Ren P. Computational study on the binding of Mango-II RNA aptamer and fluorogen using the polarizable force field AMOEBA. Front Mol Biosci 2022; 9:946708. [PMID: 36120549 PMCID: PMC9478177 DOI: 10.3389/fmolb.2022.946708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Fluorescent light-up aptamers (FLAPs) are well-performed biosensors for cellular imaging and the detection of different targets of interest, including RNA, non-nucleic acid molecules, metal ions, and so on. They could be easily designed and emit a strong fluorescence signal once bound to specified fluorogens. Recently, one unique aptamer called Mango-II has been discovered to possess a strong affinity and excellent fluorescent properties with fluorogens TO1-Biotin and TO3-Biotin. To explore the binding mechanisms, computational simulations have been performed to obtain structural and thermodynamic information about FLAPs at atomic resolution. AMOEBA polarizable force field, with the capability of handling the highly charged and flexible RNA system, was utilized for the simulation of Mango-II with TO1-Biotin and TO3-Biotin in this work. The calculated binding free energy using published crystal structures is in excellent agreement with the experimental values. Given the challenges in modeling complex RNA dynamics, our work demonstrates that MD simulation with a polarizable force field is valuable for understanding aptamer-fluorogen binding and potentially designing new aptamers or fluorogens with better performance.
Collapse
Affiliation(s)
- Xudong Yang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Chengwen Liu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Yu-An Kuo
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
- Texas Materials Institute, University of Texas at Austin, Austin, TX, United States
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
- Oden Institute for Computational Engineering and Science, Austin, TX, United States
- Interdisciplinary Life Science Graduate Programs, Austin, TX, United States
| |
Collapse
|
21
|
White A, McGlone A, Gomez-Pastor R. Protein Kinase CK2 and Its Potential Role as a Therapeutic Target in Huntington's Disease. Biomedicines 2022; 10:1979. [PMID: 36009526 PMCID: PMC9406209 DOI: 10.3390/biomedicines10081979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Huntington's Disease (HD) is a devastating neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the HTT gene, for which no disease modifying therapies are currently available. Much of the recent research has focused on developing therapies to directly lower HTT expression, and while promising, these therapies have presented several challenges regarding administration and efficacy. Another promising therapeutic approach is the modulation of HTT post-translational modifications (PTMs) that are dysregulated in disease and have shown to play a key role in HTT toxicity. Among all PTMs, modulation of HTT phosphorylation has been proposed as an attractive therapeutic option due to the possibility of orally administering specific kinase effectors. One of the kinases described to participate in HTT phosphorylation is Protein Kinase CK2. CK2 has recently emerged as a target for the treatment of several neurological and psychiatric disorders, although its role in HD remains controversial. While pharmacological studies in vitro inhibiting CK2 resulted in reduced HTT phosphorylation and increased toxicity, genetic approaches in mouse models of HD have provided beneficial effects. In this review we discuss potential therapeutic approaches related to the manipulation of HTT-PTMs with special emphasis on the role of CK2 as a therapeutic target in HD.
Collapse
Affiliation(s)
| | | | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
22
|
Dinamarca MC, Colombo L, Tousiaki NE, Müller M, Pecho-Vrieseling E. Synaptic and functional alterations in the development of mutant huntingtin expressing hiPSC-derived neurons. Front Mol Biosci 2022; 9:916019. [PMID: 35928225 PMCID: PMC9343803 DOI: 10.3389/fmolb.2022.916019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is a monogenic disease that results in a combination of motor, psychiatric, and cognitive symptoms. It is caused by a CAG trinucleotide repeat expansion in the exon 1 of the huntingtin (HTT) gene, which results in the production of a mutant HTT protein (mHTT) with an extended polyglutamine tract (PolyQ). Severe motor symptoms are a hallmark of HD and typically appear during middle age; however, mild cognitive and personality changes often occur already during early adolescence. Wild-type HTT is a regulator of synaptic functions and plays a role in axon guidance, neurotransmitter release, and synaptic vesicle trafficking. These functions are important for proper synapse assembly during neuronal network formation. In the present study, we assessed the effect of mHTT exon1 isoform on the synaptic and functional maturation of human induced pluripotent stem cell (hiPSC)-derived neurons. We used a relatively fast-maturing hiPSC line carrying a doxycycline-inducible pro-neuronal transcription factor, (iNGN2), and generated a double transgenic line by introducing only the exon 1 of HTT, which carries the mutant CAG (mHTTEx1). The characterization of our cell lines revealed that the presence of mHTTEx1 in hiPSC-derived neurons alters the synaptic protein appearance, decreases synaptic contacts, and causes a delay in the development of a mature neuronal activity pattern, recapitulating some of the developmental alterations observed in HD models, nonetheless in a shorted time window. Our data support the notion that HD has a neurodevelopmental component and is not solely a degenerative disease.
Collapse
Affiliation(s)
| | - Laura Colombo
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Matthias Müller
- Novartis Institute for Biomedical Research, Basel, Switzerland
| | | |
Collapse
|
23
|
Podvin S, Rosenthal SB, Poon W, Wei E, Fisch KM, Hook V. Mutant Huntingtin Protein Interaction Map Implicates Dysregulation of Multiple Cellular Pathways in Neurodegeneration of Huntington's Disease. J Huntingtons Dis 2022; 11:243-267. [PMID: 35871359 PMCID: PMC9484122 DOI: 10.3233/jhd-220538] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Huntington's disease (HD) is a genetic neurodegenerative disease caused by trinucleotide repeat (CAG) expansions in the human HTT gene encoding the huntingtin protein (Htt) with an expanded polyglutamine tract. OBJECTIVE HD models from yeast to transgenic mice have investigated proteins interacting with mutant Htt that may initiate molecular pathways of cell death. There is a paucity of datasets of published Htt protein interactions that include the criteria of 1) defining fragments or full-length Htt forms, 2) indicating the number of poly-glutamines of the mutant and wild-type Htt forms, and 3) evaluating native Htt interaction complexes. This research evaluated such interactor data to gain understanding of Htt dysregulation of cellular pathways. METHODS Htt interacting proteins were compiled from the literature that meet our criteria and were subjected to network analysis via clustering, gene ontology, and KEGG pathways using rigorous statistical methods. RESULTS The compiled data of Htt interactors found that both mutant and wild-type Htt interact with more than 2,971 proteins. Application of a community detection algorithm to all known Htt interactors identified significant signal transduction, membrane trafficking, chromatin, and mitochondrial clusters, among others. Binomial analyses of a subset of reported protein interactor information determined that chromatin organization, signal transduction and endocytosis were diminished, while mitochondria, translation and membrane trafficking had enriched overall edge effects. CONCLUSION The data support the hypothesis that mutant Htt disrupts multiple cellular processes causing toxicity. This dataset is an open resource to aid researchers in formulating hypotheses of HD mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology & Bioinformatics, University of California, San Diego, La Jolla, CA, USA
| | - William Poon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Enlin Wei
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kathleen M Fisch
- Center for Computational Biology & Bioinformatics, University of California, San Diego, La Jolla, CA, USA.,Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA.,Department of Neuroscience and Dept of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
24
|
Hickman RA, Faust PL, Marder K, Yamamoto A, Vonsattel JP. The distribution and density of Huntingtin inclusions across the Huntington disease neocortex: regional correlations with Huntingtin repeat expansion independent of pathologic grade. Acta Neuropathol Commun 2022; 10:55. [PMID: 35440014 PMCID: PMC9020040 DOI: 10.1186/s40478-022-01364-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
Huntington disease is characterized by progressive neurodegeneration, especially of the striatum, and the presence of polyglutamine huntingtin (HTT) inclusions. Although HTT inclusions are most abundant in the neocortex, their neocortical distribution and density in relation to the extent of CAG repeat expansion in the HTT gene and striatal pathologic grade have yet to be formally established. We immunohistochemically studied 65 brains with a pathologic diagnosis of Huntington disease to investigate the cortical distributions and densities of HTT inclusions within the calcarine (BA17), precuneus (BA7), motor (BA4) and prefrontal (BA9) cortices; in 39 of these brains, a p62 immunostain was used for comparison. HTT inclusions predominate in the infragranular cortical layers (layers V-VI) and layer III, however, the densities of HTT inclusions across the human cerebral cortex are not uniform but are instead regionally contingent. The density of HTT and p62 inclusions (intranuclear and extranuclear) in layers V-VI increases caudally to rostrally (BA17 < BA7 < BA4 < BA9) with the median burden of HTT inclusions being 38-fold greater in the prefrontal cortex (BA9) than in the calcarine cortex (BA17). Conversely, intranuclear HTT inclusions prevail in the calcarine cortex irrespective of HTT CAG length. Neocortical HTT inclusion density correlates with CAG repeat expansion, but not with the neuropathologic grade of striatal degeneration (Vonsattel grade) or with the duration of clinical disease since motor onset. Extrapolation of these findings suggest that HTT inclusions are at a regionally-contingent, CAG-dependent, density during the advanced stages of HD. The distribution and density of HTT inclusions in HD therefore does not provide a measure of pathologic disease stage but rather infers the degree of pathogenic HTT expansion.
Collapse
Affiliation(s)
- Richard A. Hickman
- grid.51462.340000 0001 2171 9952Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - Phyllis L. Faust
- grid.413734.60000 0000 8499 1112Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, 630 W 168th Street, New York, NY 10032 USA
| | - Karen Marder
- grid.21729.3f0000000419368729Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Ai Yamamoto
- grid.413734.60000 0000 8499 1112Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, 630 W 168th Street, New York, NY 10032 USA ,grid.21729.3f0000000419368729Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Jean-Paul Vonsattel
- grid.413734.60000 0000 8499 1112Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, 630 W 168th Street, New York, NY 10032 USA ,grid.239585.00000 0001 2285 2675Taub Institute for Research On Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, 710 West 168th Street, New York, NY 10032 USA
| |
Collapse
|
25
|
SRSF6 Regulates the Alternative Splicing of the Apoptotic Fas Gene by Targeting a Novel RNA Sequence. Cancers (Basel) 2022; 14:cancers14081990. [PMID: 35454897 PMCID: PMC9025165 DOI: 10.3390/cancers14081990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Alternative splicing (AS) produces multiple mRNA isoforms from a gene to make a large number of proteins. Fas (Apo-1/CD95) pre-mRNA, a member of TNF receptor family that mediates apoptosis, can generate pro-apoptotic and anti-apoptotic proteins through AS. Here, we identified SRSF6 as an essential regulator protein in Fas AS. We further located a new functional target sequence of SRSF6 in Fas splicing. In addition, our large-scale RNA-seq analysis using GTEX and TCGA indicated that while SRSF6 expression was correlated with Fas expression in normal tissues, the correlation was disrupted in tumors. Our results suggest a novel regulatory mechanisms of Fas AS. Abstract Alternative splicing (AS) is a procedure during gene expression that allows the production of multiple mRNAs from a single gene, leading to a larger number of proteins with various functions. The alternative splicing (AS) of Fas (Apo-1/CD95) pre-mRNA can generate membrane-bound or soluble isoforms with pro-apoptotic and anti-apoptotic functions. SRSF6, a member of the Serine/Arginine-rich protein family, plays essential roles in both constitutive and alternative splicing. Here, we identified SRSF6 as an important regulatory protein in Fas AS. The cassette exon inclusion of Fas was decreased by SRSF6-targeting shRNA treatment, but increased by SRSF6 overexpression. The deletion and substitution mutagenesis of the Fas minigene demonstrated that the UGCCAA sequence in the cassette exon of the Fas gene causes the functional disruption of SRSF6, indicating that these sequences are essential for SRSF6 function in Fas splicing. In addition, biotin-labeled RNA-pulldown and immunoblotting analysis showed that SRSF6 interacted with these RNA sequences. Mutagenesis in the splice-site strength alteration demonstrated that the 5′ splice-site, but not the 3′ splice-site, was required for the SRSF6 regulation of Fas pre-mRNA. In addition, a large-scale RNA-seq analysis using GTEX and TCGA indicated that while SRSF6 expression was correlated with Fas expression in normal tissues, the correlation was disrupted in tumors. Furthermore, high SRSF6 expression was linked to the high expression of pro-apoptotic and immune activation genes. Therefore, we identified a novel RNA target with 5′ splice-site dependence of SRSF6 in Fas pre-mRNA splicing, and a correlation between SRSF6 and Fas expression.
Collapse
|
26
|
Implications of Poly(A) Tail Processing in Repeat Expansion Diseases. Cells 2022; 11:cells11040677. [PMID: 35203324 PMCID: PMC8870147 DOI: 10.3390/cells11040677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 11/21/2022] Open
Abstract
Repeat expansion diseases are a group of more than 40 disorders that affect mainly the nervous and/or muscular system and include myotonic dystrophies, Huntington’s disease, and fragile X syndrome. The mutation-driven expanded repeat tract occurs in specific genes and is composed of tri- to dodeca-nucleotide-long units. Mutant mRNA is a pathogenic factor or important contributor to the disease and has great potential as a therapeutic target. Although repeat expansion diseases are quite well known, there are limited studies concerning polyadenylation events for implicated transcripts that could have profound effects on transcript stability, localization, and translation efficiency. In this review, we briefly present polyadenylation and alternative polyadenylation (APA) mechanisms and discuss their role in the pathogenesis of selected diseases. We also discuss several methods for poly(A) tail measurement (both transcript-specific and transcriptome-wide analyses) and APA site identification—the further development and use of which may contribute to a better understanding of the correlation between APA events and repeat expansion diseases. Finally, we point out some future perspectives on the research into repeat expansion diseases, as well as APA studies.
Collapse
|
27
|
Bunting EL, Hamilton J, Tabrizi SJ. Polyglutamine diseases. Curr Opin Neurobiol 2022; 72:39-47. [PMID: 34488036 DOI: 10.1016/j.conb.2021.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/29/2021] [Accepted: 07/10/2021] [Indexed: 12/11/2022]
Abstract
Polyglutamine diseases are a collection of nine CAG trinucleotide expansion disorders, presenting with a spectrum of neurological and clinical phenotypes. Recent human, mouse and cell studies of Huntington's disease have highlighted the role of DNA repair genes in somatic expansion of the CAG repeat region, modifying disease pathogenesis. Incomplete splicing of the HTT gene has also been shown to occur in humans, with the resulting exon 1 fragment most probably contributing to the Huntington's disease phenotype. In the spinocerebellar ataxias, studies have converged on transcriptional dysregulation of ion channels as a key disease modifier. In addition, advances have been made in understanding how increased levels of toxic, polyglutamine-expanded proteins can arise in the spinocerebellar ataxias through post-transcriptional and -translational modifications and autophagic mechanisms. Recent studies in spinal and bulbar muscular atrophy implicate similar pathogenic pathways to the more common polyglutamine diseases, highlighting autophagy stimulation as a potential therapeutic target. Finally, the therapeutic use of antisense oligonucleotides in several polyglutamine diseases has shown preclinical benefits and serves as potential future therapies in humans.
Collapse
Affiliation(s)
- Emma L Bunting
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Joseph Hamilton
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Sarah J Tabrizi
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK; UK Dementia Research Institute, University College London, London, WC1N 3BG, UK.
| |
Collapse
|
28
|
Gall-Duncan T, Sato N, Yuen RKC, Pearson CE. Advancing genomic technologies and clinical awareness accelerates discovery of disease-associated tandem repeat sequences. Genome Res 2022; 32:1-27. [PMID: 34965938 PMCID: PMC8744678 DOI: 10.1101/gr.269530.120] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/29/2021] [Indexed: 11/25/2022]
Abstract
Expansions of gene-specific DNA tandem repeats (TRs), first described in 1991 as a disease-causing mutation in humans, are now known to cause >60 phenotypes, not just disease, and not only in humans. TRs are a common form of genetic variation with biological consequences, observed, so far, in humans, dogs, plants, oysters, and yeast. Repeat diseases show atypical clinical features, genetic anticipation, and multiple and partially penetrant phenotypes among family members. Discovery of disease-causing repeat expansion loci accelerated through technological advances in DNA sequencing and computational analyses. Between 2019 and 2021, 17 new disease-causing TR expansions were reported, totaling 63 TR loci (>69 diseases), with a likelihood of more discoveries, and in more organisms. Recent and historical lessons reveal that properly assessed clinical presentations, coupled with genetic and biological awareness, can guide discovery of disease-causing unstable TRs. We highlight critical but underrecognized aspects of TR mutations. Repeat motifs may not be present in current reference genomes but will be in forthcoming gapless long-read references. Repeat motif size can be a single nucleotide to kilobases/unit. At a given locus, repeat motif sequence purity can vary with consequence. Pathogenic repeats can be "insertions" within nonpathogenic TRs. Expansions, contractions, and somatic length variations of TRs can have clinical/biological consequences. TR instabilities occur in humans and other organisms. TRs can be epigenetically modified and/or chromosomal fragile sites. We discuss the expanding field of disease-associated TR instabilities, highlighting prospects, clinical and genetic clues, tools, and challenges for further discoveries of disease-causing TR instabilities and understanding their biological and pathological impacts-a vista that is about to expand.
Collapse
Affiliation(s)
- Terence Gall-Duncan
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Nozomu Sato
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Ryan K C Yuen
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christopher E Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
29
|
Jarosińska OD, Rüdiger SGD. Molecular Strategies to Target Protein Aggregation in Huntington's Disease. Front Mol Biosci 2021; 8:769184. [PMID: 34869596 PMCID: PMC8636123 DOI: 10.3389/fmolb.2021.769184] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by the aggregation of the mutant huntingtin (mHTT) protein in nerve cells. mHTT self-aggregates to form soluble oligomers and insoluble fibrils, which interfere in a number of key cellular functions. This leads to cell quiescence and ultimately cell death. There are currently still no treatments available for HD, but approaches targeting the HTT levels offer systematic, mechanism-driven routes towards curing HD and other neurodegenerative diseases. This review summarizes the current state of knowledge of the mRNA targeting approaches such as antisense oligonucleotides and RNAi system; and the novel methods targeting mHTT and aggregates for degradation via the ubiquitin proteasome or the autophagy-lysosomal systems. These methods include the proteolysis-targeting chimera, Trim-Away, autophagosome-tethering compound, autophagy-targeting chimera, lysosome-targeting chimera and approach targeting mHTT for chaperone-mediated autophagy. These molecular strategies provide a knowledge-based approach to target HD and other neurodegenerative diseases at the origin.
Collapse
Affiliation(s)
- Olga D. Jarosińska
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Science for Life, Utrecht University, Utrecht, Netherlands
| | - Stefan G. D. Rüdiger
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Science for Life, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
30
|
Pigazzini ML, Lawrenz M, Margineanu A, Kaminski Schierle GS, Kirstein J. An Expanded Polyproline Domain Maintains Mutant Huntingtin Soluble in vivo and During Aging. Front Mol Neurosci 2021; 14:721749. [PMID: 34720872 PMCID: PMC8554126 DOI: 10.3389/fnmol.2021.721749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/30/2021] [Indexed: 02/02/2023] Open
Abstract
Huntington's disease is a dominantly inherited neurodegenerative disorder caused by the expansion of a CAG repeat, encoding for the amino acid glutamine (Q), present in the first exon of the protein huntingtin. Over the threshold of Q39 HTT exon 1 (HTTEx1) tends to misfold and aggregate into large intracellular structures, but whether these end-stage aggregates or their on-pathway intermediates are responsible for cytotoxicity is still debated. HTTEx1 can be separated into three domains: an N-terminal 17 amino acid region, the polyglutamine (polyQ) expansion and a C-terminal proline rich domain (PRD). Alongside the expanded polyQ, these flanking domains influence the aggregation propensity of HTTEx1: with the N17 initiating and promoting aggregation, and the PRD modulating it. In this study we focus on the first 11 amino acids of the PRD, a stretch of pure prolines, which are an evolutionary recent addition to the expanding polyQ region. We hypothesize that this proline region is expanding alongside the polyQ to counteract its ability to misfold and cause toxicity, and that expanding this proline region would be overall beneficial. We generated HTTEx1 mutants lacking both flanking domains singularly, missing the first 11 prolines of the PRD, or with this stretch of prolines expanded. We then followed their aggregation landscape in vitro with a battery of biochemical assays, and in vivo in novel models of C. elegans expressing the HTTEx1 mutants pan-neuronally. Employing fluorescence lifetime imaging we could observe the aggregation propensity of all HTTEx1 mutants during aging and correlate this with toxicity via various phenotypic assays. We found that the presence of an expanded proline stretch is beneficial in maintaining HTTEx1 soluble over time, regardless of polyQ length. However, the expanded prolines were only advantageous in promoting the survival and fitness of an organism carrying a pathogenic stretch of Q48 but were extremely deleterious to the nematode expressing a physiological stretch of Q23. Our results reveal the unique importance of the prolines which have and still are evolving alongside expanding glutamines to promote the function of HTTEx1 and avoid pathology.
Collapse
Affiliation(s)
- Maria Lucia Pigazzini
- Department of Molecular Physiology and Cell Biology, Leibniz Research Institute for Molecular Pharmacology in the Forschungsverbund Berlin e.V. (FMP), Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Mandy Lawrenz
- Department of Molecular Physiology and Cell Biology, Leibniz Research Institute for Molecular Pharmacology in the Forschungsverbund Berlin e.V. (FMP), Berlin, Germany
| | - Anca Margineanu
- Advanced Light Microscopy, Max-Delbrück Centrum for Molecular Medicine (MDC), Berlin, Germany
| | - Gabriele S. Kaminski Schierle
- Molecular Neuroscience Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Janine Kirstein
- Department of Molecular Physiology and Cell Biology, Leibniz Research Institute for Molecular Pharmacology in the Forschungsverbund Berlin e.V. (FMP), Berlin, Germany
- Department of Cell Biology, University of Bremen, Bremen, Germany
| |
Collapse
|
31
|
Chongtham A, Isas JM, Pandey NK, Rawat A, Yoo JH, Mastro T, Kennedy MB, Langen R, Khoshnan A. Amplification of neurotoxic HTTex1 assemblies in human neurons. Neurobiol Dis 2021; 159:105517. [PMID: 34563643 DOI: 10.1016/j.nbd.2021.105517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/24/2021] [Accepted: 09/21/2021] [Indexed: 11/25/2022] Open
Abstract
Huntington's disease (HD) is a genetically inherited neurodegenerative disorder caused by expansion of a polyglutamine (polyQ) repeat in the exon-1 of huntingtin protein (HTT). The expanded polyQ enhances the amyloidogenic propensity of HTT exon 1 (HTTex1), which forms a heterogeneous mixture of assemblies with a broad neurotoxicity spectrum. While predominantly intracellular, monomeric and aggregated mutant HTT species are also present in the cerebrospinal fluids of HD patients, however, their biological properties are not well understood. To explore the role of extracellular mutant HTT in aggregation and toxicity, we investigated the uptake and amplification of recombinant HTTex1 assemblies in cell culture models. We find that small HTTex1 fibrils preferentially enter human neurons and trigger the amplification of neurotoxic assemblies; astrocytes or epithelial cells are not permissive. The amplification of HTTex1 in neurons depletes endogenous HTT protein with non-pathogenic polyQ repeat, activates apoptotic caspase-3 pathway and induces nuclear fragmentation. Using a panel of novel monoclonal antibodies and genetic mutation, we identified epitopes within the N-terminal 17 amino acids and proline-rich domain of HTTex1 to be critical in neural uptake and amplification. Synaptosome preparations from the brain homogenates of HD mice also contain mutant HTT species, which enter neurons and behave similar to small recombinant HTTex1 fibrils. These studies suggest that amyloidogenic extracellular mutant HTTex1 assemblies may preferentially enter neurons, propagate and promote neurodegeneration.
Collapse
Affiliation(s)
| | - J Mario Isas
- Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, CA 90089, USA
| | - Nitin K Pandey
- Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, CA 90089, USA
| | - Anoop Rawat
- Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, CA 90089, USA
| | - Jung Hyun Yoo
- Biology and Bioengineering, Caltech, Pasadena, CA 91125, USA
| | - Tara Mastro
- Biology and Bioengineering, Caltech, Pasadena, CA 91125, USA
| | - Mary B Kennedy
- Biology and Bioengineering, Caltech, Pasadena, CA 91125, USA
| | - Ralf Langen
- Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, CA 90089, USA
| | - Ali Khoshnan
- Biology and Bioengineering, Caltech, Pasadena, CA 91125, USA.
| |
Collapse
|
32
|
Huntingtin and Its Role in Mechanisms of RNA-Mediated Toxicity. Toxins (Basel) 2021; 13:toxins13070487. [PMID: 34357961 PMCID: PMC8310054 DOI: 10.3390/toxins13070487] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 12/20/2022] Open
Abstract
Huntington’s disease (HD) is caused by a CAG-repeat expansion mutation in the Huntingtin (HTT) gene. It is characterized by progressive psychiatric and neurological symptoms in combination with a progressive movement disorder. Despite the ubiquitous expression of HTT, pathological changes occur quite selectively in the central nervous system. Since the discovery of HD more than 150 years ago, a lot of research on molecular mechanisms contributing to neurotoxicity has remained the focal point. While traditionally, the protein encoded by the HTT gene remained the cynosure for researchers and was extensively reviewed elsewhere, several studies in the last few years clearly indicated the contribution of the mutant RNA transcript to cellular dysfunction as well. In this review, we outline recent studies on RNA-mediated molecular mechanisms that are linked to cellular dysfunction in HD models. These mechanisms include mis-splicing, aberrant translation, deregulation of the miRNA machinery, deregulated RNA transport and abnormal regulation of mitochondrial RNA. Furthermore, we summarize recent therapeutical approaches targeting the mutant HTT transcript. While currently available treatments are of a palliative nature only and do not halt the disease progression, recent clinical studies provide hope that these novel RNA-targeting strategies will lead to better therapeutic approaches.
Collapse
|
33
|
Role and Perspective of Molecular Simulation-Based Investigation of RNA-Ligand Interaction: From Small Molecules and Peptides to Photoswitchable RNA Binding. Molecules 2021; 26:molecules26113384. [PMID: 34205049 PMCID: PMC8199858 DOI: 10.3390/molecules26113384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Aberrant RNA–protein complexes are formed in a variety of diseases. Identifying the ligands that interfere with their formation is a valuable therapeutic strategy. Molecular simulation, validated against experimental data, has recently emerged as a powerful tool to predict both the pose and energetics of such ligands. Thus, the use of molecular simulation may provide insight into aberrant molecular interactions in diseases and, from a drug design perspective, may allow for the employment of less wet lab resources than traditional in vitro compound screening approaches. With regard to basic research questions, molecular simulation can support the understanding of the exact molecular interaction and binding mode. Here, we focus on examples targeting RNA–protein complexes in neurodegenerative diseases and viral infections. These examples illustrate that the strategy is rather general and could be applied to different pharmacologically relevant approaches. We close this study by outlining one of these approaches, namely the light-controllable association of small molecules with RNA, as an emerging approach in RNA-targeting therapy.
Collapse
|
34
|
Abstract
Technologies for RNA imaging in live cells play an important role in understanding the function and regulatory process of RNAs. One approach for genetically encoded fluorescent RNA imaging involves fluorescent light-up aptamers (FLAPs), which are short RNA sequences that can bind cognate fluorogens and activate their fluorescence greatly. Over the past few years, FLAPs have emerged as genetically encoded RNA-based fluorescent biosensors for the cellular imaging and detection of various targets of interest. In this review, we first give a brief overview of the development of the current FLAPs based on various fluorogens. Then we further discuss on the photocycles of the reversibly photoswitching properties in FLAPs and their photostability. Finally, we focus on the applications of FLAPs as genetically encoded RNA-based fluorescent biosensors in biosensing and bioimaging, including RNA, non-nucleic acid molecules, metal ions imaging and quantitative imaging. Their design strategies and recent cellular applications are emphasized and summarized in detail.
Collapse
Affiliation(s)
- Huangmei Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China.,NYU-ECNU Institute of Physics at NYU Shanghai, Shanghai, China
| |
Collapse
|
35
|
Elorza A, Márquez Y, Cabrera JR, Sánchez-Trincado JL, Santos-Galindo M, Hernández IH, Picó S, Díaz-Hernández JI, García-Escudero R, Irimia M, Lucas JJ. Huntington's disease-specific mis-splicing unveils key effector genes and altered splicing factors. Brain 2021; 144:2009-2023. [PMID: 33725094 PMCID: PMC8370404 DOI: 10.1093/brain/awab087] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/31/2022] Open
Abstract
Correction of mis-splicing events is a growing therapeutic approach for neurological diseases such as spinal muscular atrophy or neuronal ceroid lipofuscinosis 7, which are caused by splicing-affecting mutations. Mis-spliced effector genes that do not harbour mutations are also good candidate therapeutic targets in diseases with more complex aetiologies such as cancer, autism, muscular dystrophies or neurodegenerative diseases. Next-generation RNA sequencing (RNA-seq) has boosted investigation of global mis-splicing in diseased tissue to identify such key pathogenic mis-spliced genes. Nevertheless, while analysis of tumour or dystrophic muscle biopsies can be informative on early stage pathogenic mis-splicing, for neurodegenerative diseases, these analyses are intrinsically hampered by neuronal loss and neuroinflammation in post-mortem brains. To infer splicing alterations relevant to Huntington’s disease pathogenesis, here we performed intersect-RNA-seq analyses of human post-mortem striatal tissue and of an early symptomatic mouse model in which neuronal loss and gliosis are not yet present. Together with a human/mouse parallel motif scan analysis, this approach allowed us to identify the shared mis-splicing signature triggered by the Huntington’s disease-causing mutation in both species and to infer upstream deregulated splicing factors. Moreover, we identified a plethora of downstream neurodegeneration-linked mis-spliced effector genes that—together with the deregulated splicing factors—become new possible therapeutic targets. In summary, here we report pathogenic global mis-splicing in Huntington’s disease striatum captured by our new intersect-RNA-seq approach that can be readily applied to other neurodegenerative diseases for which bona fide animal models are available.
Collapse
Affiliation(s)
- Ainara Elorza
- Center for Molecular Biology 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain
| | - Yamile Márquez
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology, 08003 Barcelona, Spain
| | - Jorge R Cabrera
- Center for Molecular Biology 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain
| | - José Luis Sánchez-Trincado
- Center for Molecular Biology 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain
| | - María Santos-Galindo
- Center for Molecular Biology 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain
| | - Ivó H Hernández
- Center for Molecular Biology 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain.,Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Sara Picó
- Center for Molecular Biology 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain
| | - Juan I Díaz-Hernández
- Center for Molecular Biology 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain
| | - Ramón García-Escudero
- Molecular Oncology Unit, CIEMAT, Madrid 28040, Spain.,Biomedical Research Institute i+12, Hospital 12 de Octubre, Madrid 28041, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra, 08003, Barcelona, Spain.,ICREA, Barcelona, Spain
| | - José J Lucas
- Center for Molecular Biology 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain
| |
Collapse
|
36
|
Donaldson J, Powell S, Rickards N, Holmans P, Jones L. What is the Pathogenic CAG Expansion Length in Huntington's Disease? J Huntingtons Dis 2021; 10:175-202. [PMID: 33579866 PMCID: PMC7990448 DOI: 10.3233/jhd-200445] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Huntington's disease (HD) (OMIM 143100) is caused by an expanded CAG repeat tract in the HTT gene. The inherited CAG length is known to expand further in somatic and germline cells in HD subjects. Age at onset of the disease is inversely correlated with the inherited CAG length, but is further modulated by a series of genetic modifiers which are most likely to act on the CAG repeat in HTT that permit it to further expand. Longer repeats are more prone to expansions, and this expansion is age dependent and tissue-specific. Given that the inherited tract expands through life and most subjects develop disease in mid-life, this implies that in cells that degenerate, the CAG length is likely to be longer than the inherited length. These findings suggest two thresholds- the inherited CAG length which permits further expansion, and the intracellular pathogenic threshold, above which cells become dysfunctional and die. This two-step mechanism has been previously proposed and modelled mathematically to give an intracellular pathogenic threshold at a tract length of 115 CAG (95% confidence intervals 70- 165 CAG). Empirically, the intracellular pathogenic threshold is difficult to determine. Clues from studies of people and models of HD, and from other diseases caused by expanded repeat tracts, place this threshold between 60- 100 CAG, most likely towards the upper part of that range. We assess this evidence and discuss how the intracellular pathogenic threshold in manifest disease might be better determined. Knowing the cellular pathogenic threshold would be informative for both understanding the mechanism in HD and deploying treatments.
Collapse
Affiliation(s)
- Jasmine Donaldson
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Sophie Powell
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Nadia Rickards
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Peter Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Lesley Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
37
|
Hernández IH, Cabrera JR, Santos-Galindo M, Sánchez-Martín M, Domínguez V, García-Escudero R, Pérez-Álvarez MJ, Pintado B, Lucas JJ. Pathogenic SREK1 decrease in Huntington's disease lowers TAF1 mimicking X-linked dystonia parkinsonism. Brain 2020; 143:2207-2219. [PMID: 32533168 PMCID: PMC7363496 DOI: 10.1093/brain/awaa150] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/20/2020] [Accepted: 03/21/2020] [Indexed: 12/04/2022] Open
Abstract
Huntington’s disease and X-linked dystonia parkinsonism are two monogenic basal ganglia model diseases. Huntington’s disease is caused by a polyglutamine-encoding CAG repeat expansion in the Huntingtin (HTT) gene leading to several toxic interactions of both the expanded CAG-containing mRNA and the polyglutamine-containing protein, while X-linked dystonia parkinsonism is caused by a retrotransposon insertion in the TAF1 gene, which decreases expression of this core scaffold of the basal transcription factor complex TFIID. SRSF6 is an RNA-binding protein of the serine and arginine-rich (SR) protein family that interacts with expanded CAG mRNA and is sequestered into the characteristic polyglutamine-containing inclusion bodies of Huntington’s disease brains. Here we report decreased levels of the SRSF6 interactor and regulator SREK1—another SR protein involved in RNA processing—which includes TAF1 as one of its targets. This led us to hypothesize that Huntington’s disease and X-linked dystonia parkinsonism pathogeneses converge in TAF1 alteration. We show that diminishing SRSF6 through RNA interference in human neuroblastoma cells leads to a decrease in SREK1 levels, which, in turn, suffices to cause diminished TAF1 levels. We also observed decreased SREK1 and TAF1 levels in striatum of Huntington’s disease patients and transgenic model mice. We then generated mice with neuronal transgenic expression of SREK1 (TgSREK1 mice) that, interestingly, showed transcriptomic alterations complementary to those in Huntington’s disease mice. Most importantly, by combining Huntington’s disease and TgSREK1 mice we verify that SREK1 overexpression corrects TAF1 deficiency and attenuates striatal atrophy and motor phenotype of Huntington’s disease mice. Our results therefore demonstrate that altered RNA processing upon SREK1 dysregulation plays a key role in Huntington’s disease pathogenesis and pinpoint TAF1 as a likely general determinant of selective vulnerability of the striatum in multiple neurological disorders.
Collapse
Affiliation(s)
- Ivó H Hernández
- Center for Molecular Biology 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain.,Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Jorge R Cabrera
- Center for Molecular Biology 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain
| | - María Santos-Galindo
- Center for Molecular Biology 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain
| | - Manuel Sánchez-Martín
- Transgenic Facility, Nucleus platform, Universidad de Salamanca, Salamanca 37007, Spain
| | - Verónica Domínguez
- Center for Molecular Biology 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid 28049, Spain.,Transgenesis Facility CNB-CBMSO, CSIC-UAM, Madrid 28049, Spain
| | - Ramón García-Escudero
- Molecular Oncology Unit, CIEMAT, Madrid 28040, Spain.,Biomedicine Research Institute, Hospital 12 Octubre, Madrid 28041, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - María J Pérez-Álvarez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Belén Pintado
- Transgenesis Facility CNB-CBMSO, CSIC-UAM, Madrid 28049, Spain
| | - José J Lucas
- Center for Molecular Biology 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain
| |
Collapse
|
38
|
Ollà I, Santos-Galindo M, Elorza A, Lucas JJ. P2X7 Receptor Upregulation in Huntington's Disease Brains. Front Mol Neurosci 2020; 13:567430. [PMID: 33122998 PMCID: PMC7573237 DOI: 10.3389/fnmol.2020.567430] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/28/2020] [Indexed: 01/02/2023] Open
Abstract
Huntington’s disease (HD) is a fatal degenerative disorder affecting the nervous system. It is characterized by motor, cognitive, and psychiatric dysfunctions, with a late onset and an autosomal dominant pattern of inheritance. HD-causing mutation consists in an expansion of repeated CAG triplets in the huntingtin gene (HTT), encoding for an expanded polyglutamine (polyQ) stretch in the huntingtin protein (htt). The mutation causes neuronal dysfunction and loss through multiple mechanisms, affecting both the nucleus and cytoplasm. P2X7 receptor (P2X7R) emerged as a major player in neuroinflammation, since ATP – its endogenous ligand – is massively released under this condition. Indeed, P2X7R stimulation in the central nervous system (CNS) is known to enhance the release of pro-inflammatory cytokines from microglia and of neurotransmitters from neuronal presynaptic terminals, as well as to promote apoptosis. Previous experiments performed with neurons expressing the mutant huntingtin and exploiting HD mouse models demonstrated a role of P2X7R in HD. On the basis of those results, here, we explore for the first time the status of P2X7R in HD patients’ brain. We report that in HD postmortem striatum, as earlier observed in HD mice, the protein levels of the full-length form of P2X7R, also named P2X7R-A, are upregulated. In addition, the exclusively human naturally occurring variant lacking the C-terminus region, P2X7R-B, is upregulated as well. As we show here, this augmented protein levels can be explained by elevated mRNA levels. Furthermore, in HD patients’ striatum, P2X7R shows not only an augmented total transcript level but also an alteration of its splicing. Remarkably, P2X7R introns 10 and 11 are more retained in HD patients when compared with controls. Taken together, our data confirm that P2X7R is altered in brains of HD subjects and strengthen the notion that P2X7R may represent a potential therapeutic target for HD.
Collapse
Affiliation(s)
- Ivana Ollà
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid, Spain.,Networking Research Centre on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - María Santos-Galindo
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid, Spain.,Networking Research Centre on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ainara Elorza
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid, Spain.,Networking Research Centre on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - José J Lucas
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid, Spain.,Networking Research Centre on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
39
|
Mason MA, Gomez-Paredes C, Sathasivam K, Neueder A, Papadopoulou AS, Bates GP. Silencing Srsf6 does not modulate incomplete splicing of the huntingtin gene in Huntington's disease models. Sci Rep 2020; 10:14057. [PMID: 32820193 PMCID: PMC7441155 DOI: 10.1038/s41598-020-71111-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/06/2020] [Indexed: 12/31/2022] Open
Abstract
We have previously shown that the incomplete splicing of exon 1 to exon 2 of the HTT gene results in the production of a small polyadenylated transcript (Httexon1) that encodes the highly pathogenic exon 1 HTT protein. There is evidence to suggest that the splicing factor SRSF6 is involved in the mechanism that underlies this aberrant splicing event. Therefore, we set out to test this hypothesis, by manipulating SRSF6 levels in Huntington's disease models in which an expanded CAG repeat had been knocked in to the endogenous Htt gene. We began by generating mice that were knocked out for Srsf6, and demonstrated that reduction of SRSF6 to 50% of wild type levels had no effect on incomplete splicing in zQ175 knockin mice. We found that nullizygosity for Srsf6 was embryonic lethal, and therefore, to decrease SRSF6 levels further, we established mouse embryonic fibroblasts (MEFs) from wild type, zQ175, and zQ175::Srsf6+/- mice and transfected them with an Srsf6 siRNA. The incomplete splicing of Htt was recapitulated in the MEFs and we demonstrated that ablation of SRSF6 did not modulate the levels of the Httexon1 transcript. We conclude that SRSF6 is not required for the incomplete splicing of HTT in Huntington's disease.
Collapse
Affiliation(s)
- Michael A Mason
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Casandra Gomez-Paredes
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Kirupa Sathasivam
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Andreas Neueder
- Department of Neurology, Ulm University, 89081, Ulm, Germany
| | - Aikaterini-Smaragdi Papadopoulou
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Gillian P Bates
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
| |
Collapse
|
40
|
Neueder A, Orth M. Mitochondrial biology and the identification of biomarkers of Huntington's disease. Neurodegener Dis Manag 2020; 10:243-255. [PMID: 32746707 DOI: 10.2217/nmt-2019-0033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Apart from finding novel compounds for treating Huntington's disease (HD) an important challenge at present consists in finding reliable read-outs or biomarkers that reflect key biological processes involved in HD pathogenesis. The core elements of HD biology, for example, HTT RNA levels or protein species can serve as biomarker, as could measures from biological systems or pathways in which Huntingtin plays an important role. Here we review the evidence for the involvement of mitochondrial biology in HD. The most consistent findings pertain to mitochondrial quality control, for example, fission/fusion. However, a convincing mitochondrial signature with biomarker potential is yet to emerge. This requires more research including in peripheral sources of human material, such as blood, or skeletal muscle.
Collapse
Affiliation(s)
| | - Michael Orth
- Department of Neurology, Ulm University, Ulm, Germany.,SwissHuntington's Disease Centre, Neurozentrum Siloah, Worbstr. 312, 3073 Gümligenbei Bern, Switzerland
| |
Collapse
|
41
|
Landles C, Milton RE, Ali N, Flomen R, Flower M, Schindler F, Gomez-Paredes C, Bondulich MK, Osborne GF, Goodwin D, Salsbury G, Benn CL, Sathasivam K, Smith EJ, Tabrizi SJ, Wanker EE, Bates GP. Subcellular Localization And Formation Of Huntingtin Aggregates Correlates With Symptom Onset And Progression In A Huntington'S Disease Model. Brain Commun 2020; 2:fcaa066. [PMID: 32954323 PMCID: PMC7425396 DOI: 10.1093/braincomms/fcaa066] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/02/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease is caused by the expansion of a CAG repeat within exon 1 of the HTT gene, which is unstable, leading to further expansion, the extent of which is brain region and peripheral tissue specific. The identification of DNA repair genes as genetic modifiers of Huntington's disease, that were known to abrogate somatic instability in Huntington's disease mouse models, demonstrated that somatic CAG expansion is central to disease pathogenesis, and that the CAG repeat threshold for pathogenesis in specific brain cells might not be known. We have previously shown that the HTT gene is incompletely spliced generating a small transcript that encodes the highly pathogenic exon 1 HTT protein. The longer the CAG repeat, the more of this toxic fragment is generated, providing a pathogenic consequence for somatic expansion. Here, we have used the R6/2 mouse model to investigate the molecular and behavioural consequences of expressing exon 1 HTT with 90 CAGs, a mutation that causes juvenile Huntington's disease, compared to R6/2 mice carrying ∼200 CAGs, a repeat expansion of a size rarely found in Huntington's disease patient's blood, but which has been detected in post-mortem brains as a consequence of somatic CAG repeat expansion. We show that nuclear aggregation occurred earlier in R6/2(CAG)90 mice and that this correlated with the onset of transcriptional dysregulation. Whereas in R6/2(CAG)200 mice, cytoplasmic aggregates accumulated rapidly and closely tracked with the progression of behavioural phenotypes and with end-stage disease. We find that aggregate species formed in the R6/2(CAG)90 brains have different properties to those in the R6/2(CAG)200 mice. Within the nucleus, they retain a diffuse punctate appearance throughout the course of the disease, can be partially solubilized by detergents and have a greater seeding potential in young mice. In contrast, aggregates from R6/2(CAG)200 brains polymerize into larger structures that appear as inclusion bodies. These data emphasize that a subcellular analysis, using multiple complementary approaches, must be undertaken in order to draw any conclusions about the relationship between HTT aggregation and the onset and progression of disease phenotypes.
Collapse
Affiliation(s)
- Christian Landles
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, Queen Square, WC1N 3BG, UK
| | - Rebecca E Milton
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, Queen Square, WC1N 3BG, UK
| | - Nadira Ali
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, Queen Square, WC1N 3BG, UK
| | - Rachel Flomen
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, Queen Square, WC1N 3BG, UK
| | - Michael Flower
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, Queen Square, WC1N 3BG, UK
| | - Franziska Schindler
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany and Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Casandra Gomez-Paredes
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, Queen Square, WC1N 3BG, UK
| | - Marie K Bondulich
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, Queen Square, WC1N 3BG, UK
| | - Georgina F Osborne
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, Queen Square, WC1N 3BG, UK
| | - Daniel Goodwin
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, Queen Square, WC1N 3BG, UK
| | - Grace Salsbury
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, Queen Square, WC1N 3BG, UK
| | - Caroline L Benn
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, Queen Square, WC1N 3BG, UK.,LoQus23 Therapeutics, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Kirupa Sathasivam
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, Queen Square, WC1N 3BG, UK
| | - Edward J Smith
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, Queen Square, WC1N 3BG, UK
| | - Sarah J Tabrizi
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, Queen Square, WC1N 3BG, UK
| | - Erich E Wanker
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany and Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Gillian P Bates
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, Queen Square, WC1N 3BG, UK
| |
Collapse
|
42
|
Generation of New Isogenic Models of Huntington's Disease Using CRISPR-Cas9 Technology. Int J Mol Sci 2020; 21:ijms21051854. [PMID: 32182692 PMCID: PMC7084361 DOI: 10.3390/ijms21051854] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/17/2020] [Accepted: 03/05/2020] [Indexed: 01/12/2023] Open
Abstract
Huntington’s disease (HD) is a fatal neurodegenerative disorder caused by the expansion of CAG repeats in exon 1 of the huntingtin gene (HTT). Despite its monogenic nature, HD pathogenesis is still not fully understood, and no effective therapy is available to patients. The development of new techniques such as genome engineering has generated new opportunities in the field of disease modeling and enabled the generation of isogenic models with the same genetic background. These models are very valuable for studying the pathogenesis of a disease and for drug screening. Here, we report the generation of a series of homozygous HEK 293T cell lines with different numbers of CAG repeats at the HTT locus and demonstrate their usefulness for testing therapeutic reagents. In addition, using the CRISPR-Cas9 system, we corrected the mutation in HD human induced pluripotent stem cells and generated a knock-out of the HTT gene, thus providing a comprehensive set of isogenic cell lines for HD investigation.
Collapse
|
43
|
Bogomazova AN, Eremeev AV, Pozmogova GE, Lagarkova MA. The Role of Mutant RNA in the Pathogenesis of Huntington’s Disease and Other Polyglutamine Diseases. Mol Biol 2019. [DOI: 10.1134/s0026893319060037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Franich NR, Hickey MA, Zhu C, Osborne GF, Ali N, Chu T, Bove NH, Lemesre V, Lerner RP, Zeitlin SO, Howland D, Neueder A, Landles C, Bates GP, Chesselet M. Phenotype onset in Huntington's disease knock-in mice is correlated with the incomplete splicing of the mutant huntingtin gene. J Neurosci Res 2019; 97:1590-1605. [PMID: 31282030 PMCID: PMC6801054 DOI: 10.1002/jnr.24493] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/21/2019] [Accepted: 06/17/2019] [Indexed: 01/30/2023]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by an expanded CAG repeat within the huntingtin (HTT) gene. The Q140 and HdhQ150 knock-in HD mouse models were generated such that HdhQ150 mice have an expanded CAG repeat inserted into the mouse Htt gene, whereas in the Q140s, mouse exon 1 Htt was replaced with a mutated version of human exon 1. By standardizing mouse strain background, breeding to homozygosity and employing sensitive behavioral tests, we demonstrate that the onset of behavioral phenotypes occurs earlier in the Q140 than the HdhQ150 knock-in mouse models and that huntingtin (HTT) aggregation appears earlier in the striata of Q140 mice. We have previously found that the incomplete splicing of mutant HTT from exon 1 to exon 2 results in the production of a small polyadenylated transcript that encodes the highly pathogenic mutant HTT exon 1 protein. In this report, we have identified a functional consequence of the sequence differences between these two models at the RNA level, in that the level of incomplete splicing, and of the mutant exon 1 HTT protein, are greater in the brains of Q140 mice. While differences in the human and mouse exon 1 HTT proteins (e.g., proline rich sequences) could also contribute to the phenotypic differences, our data indicate that the incomplete splicing of HTT and approaches to lower the levels of the exon 1 HTT transcript should be pursued as therapeutic targets.
Collapse
Affiliation(s)
- Nicholas R. Franich
- Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCalifornia
| | - Miriam A. Hickey
- Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCalifornia
- Department of PharmacologyUniversity of TartuTartuEstonia
| | - Chunni Zhu
- Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCalifornia
| | - Georgina F. Osborne
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, Queen Square Institute of NeurologyUniversity College LondonLondonUK
- UK Dementia Research Institute at UCLUniversity College LondonLondonUK
| | - Nadira Ali
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, Queen Square Institute of NeurologyUniversity College LondonLondonUK
- UK Dementia Research Institute at UCLUniversity College LondonLondonUK
| | - Tiffany Chu
- Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCalifornia
| | - Nicholas H. Bove
- Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCalifornia
| | - Vincent Lemesre
- Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCalifornia
| | - Renata P. Lerner
- Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCalifornia
| | - Scott O. Zeitlin
- Department of NeuroscienceUniversity of Virginia School of MedicineCharlottesvilleVirginia
| | - David Howland
- CHDI Management/CHDI Foundation Inc.New YorkNew York
| | - Andreas Neueder
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, Queen Square Institute of NeurologyUniversity College LondonLondonUK
- UK Dementia Research Institute at UCLUniversity College LondonLondonUK
| | - Christian Landles
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, Queen Square Institute of NeurologyUniversity College LondonLondonUK
- UK Dementia Research Institute at UCLUniversity College LondonLondonUK
| | - Gillian P. Bates
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, Queen Square Institute of NeurologyUniversity College LondonLondonUK
- UK Dementia Research Institute at UCLUniversity College LondonLondonUK
| | - Marie‐Francoise Chesselet
- Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCalifornia
| |
Collapse
|
45
|
Papadopoulou AS, Gomez-Paredes C, Mason MA, Taxy BA, Howland D, Bates GP. Extensive Expression Analysis of Htt Transcripts in Brain Regions from the zQ175 HD Mouse Model Using a QuantiGene Multiplex Assay. Sci Rep 2019; 9:16137. [PMID: 31695145 PMCID: PMC6834638 DOI: 10.1038/s41598-019-52411-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/14/2019] [Indexed: 11/18/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by a CAG repeat expansion within exon 1 of the huntingtin (HTT) gene. HTT mRNA contains 67 exons and does not always splice between exon 1 and exon 2 leading to the production of a small polyadenylated HTTexon1 transcript, and the full-length HTT mRNA has three 3'UTR isoforms. We have developed a QuantiGene multiplex panel for the simultaneous detection of all of these mouse Htt transcripts directly from tissue lysates and demonstrate that this can replace the more work-intensive Taqman qPCR assays. We have applied this to the analysis of brain regions from the zQ175 HD mouse model and wild type littermates at two months of age. We show that the incomplete splicing of Htt occurs throughout the brain and confirm that this originates from the mutant and not endogenous Htt allele. Given that HTTexon1 encodes the highly pathogenic exon 1 HTT protein, it is essential that the levels of all Htt transcripts can be monitored when evaluating HTT lowering approaches. Our QuantiGene panel will allow the rapid comparative assessment of all Htt transcripts in cell lysates and mouse tissues without the need to first extract RNA.
Collapse
Affiliation(s)
- Aikaterini S Papadopoulou
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Casandra Gomez-Paredes
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Michael A Mason
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Bridget A Taxy
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - David Howland
- CHDI Management/CHDI Foundation Inc., New York, NY, 10001, USA
| | - Gillian P Bates
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
| |
Collapse
|
46
|
Wanker EE, Ast A, Schindler F, Trepte P, Schnoegl S. The pathobiology of perturbed mutant huntingtin protein-protein interactions in Huntington's disease. J Neurochem 2019; 151:507-519. [PMID: 31418858 DOI: 10.1111/jnc.14853] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/08/2019] [Accepted: 08/02/2019] [Indexed: 12/24/2022]
Abstract
Mutations are at the root of many human diseases. Still, we largely do not exactly understand how they trigger pathogenesis. One, more recent, hypothesis has been that they comprehensively perturb protein-protein interaction (PPI) networks and significantly alter key biological processes. Under this premise, many rare genetic disorders with Mendelian inheritance, like Huntington's disease and several spinocerebellar ataxias, are likely to be caused by complex genotype-phenotype relationships involving abnormal PPIs. These altered PPI networks and their effects on cellular pathways are poorly understood at the molecular level. In this review, we focus on PPIs that are perturbed by the expanded pathogenic polyglutamine tract in huntingtin (HTT), the protein which, in its mutated form, leads to the autosomal dominant, neurodegenerative Huntington's disease. One aspect of perturbed mutant HTT interactions is the formation of abnormal protein species such as fibrils or large neuronal inclusions as a result of homotypic and heterotypic aberrant molecular interactions. This review focuses on abnormal PPIs that are associated with the assembly of mutant HTT aggregates in cells and their potential relevance in disease. Furthermore, the mechanisms and pathobiological processes that may contribute to phenotype development, neuronal dysfunction and toxicity in Huntington's disease brains are also discussed. This article is part of the Special Issue "Proteomics".
Collapse
Affiliation(s)
- Erich E Wanker
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Anne Ast
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Franziska Schindler
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Philipp Trepte
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Sigrid Schnoegl
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
47
|
Wang Z, Liu W, Fan C, Chen N. Visualizing mRNA in live mammalian cells. Methods 2019; 161:16-23. [DOI: 10.1016/j.ymeth.2019.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/10/2019] [Accepted: 03/12/2019] [Indexed: 01/06/2023] Open
|
48
|
Neueder A. RNA-Mediated Disease Mechanisms in Neurodegenerative Disorders. J Mol Biol 2018; 431:1780-1791. [PMID: 30597161 DOI: 10.1016/j.jmb.2018.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 12/16/2022]
Abstract
RNA is accurately entangled in virtually all pathways that maintain cellular homeostasis. To name but a few, RNA is the "messenger" between DNA encoded information and the resulting proteins. Furthermore, RNAs regulate diverse processes by forming DNA::RNA or RNA::RNA interactions. Finally, RNA itself can be the scaffold for ribonucleoprotein complexes, for example, ribosomes or cellular bodies. Consequently, disruption of any of these processes can lead to disease. This review describes known and emerging RNA-based disease mechanisms like interference with regular splicing, the anomalous appearance of RNA-protein complexes and uncommon RNA species, as well as non-canonical translation. Due to the complexity and entanglement of the above-mentioned pathways, only few drugs are available that target RNA-based disease mechanisms. However, advances in our understanding how RNA is involved in and modulates cellular homeostasis might pave the way to novel treatments.
Collapse
Affiliation(s)
- Andreas Neueder
- Experimental Neurology, Department of Neurology, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|