1
|
Schwartz R, Hadar-Volk A, Nam K, Major DT. Template-Based Docking Using Automated Maximum Common Substructure Identification with EnzyDock: Mechanistic and Inhibitor Docking. J Chem Inf Model 2025. [PMID: 40388499 DOI: 10.1021/acs.jcim.5c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
EnzyDock is a multistate, multiscale CHARMM-based docking program which enables mechanistic docking, i.e., modeling enzyme reactions by docking multiple reaction states, like substrates, intermediates, transition states, and products to the enzyme, in addition to standard protein-ligand docking. To achieve docking of multiple reaction states with similar poses (i.e., consensus docking), EnzyDock employs consensus pose restraints of the docked ligand states relative to a docking template. In the current work, we present an implementation of a Maximum Common Substructure (MCS)-guided docking strategy using EnzyDock, enabling the automatic detection of similarity among query ligands. Specifically, the MCS multistate approach is employed to efficiently dock ligands along enzyme reaction coordinates, including reactants, intermediates, and products, which allows efficient and robust mechanistic docking. To demonstrate the effectiveness of the MCS strategy in modeling enzymes, it is first applied to two highly complex enzyme reaction cascades catalyzed by the diterpene synthase CotB2 and the Diels-Alderase LepI. In addition, the MCS strategy is applied to dock enzyme inhibitors using cocrystallized inhibitors or substrates to guide the docking in the enzymes dihydrofolate reductase and the SARS-CoV-2 enzyme Mpro. The latter case exemplifies the use of MCS with EnzyDock's covalent docking capabilities and QM/MM scoring option. We show that different protocols of the implemented MCS algorithm are needed to obtain mechanistic consistency (i.e., similar poses) in mechanistic docking or to accurately dock chemically diverse ligands in inhibitor docking. Although the current implementation is specific for EnzyDock, the findings should be general and transferable to additional docking programs.
Collapse
Affiliation(s)
- Renana Schwartz
- Department of Chemistry, Israel National Institute of Energy Storage (INIES) and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Amit Hadar-Volk
- Department of Chemistry, Israel National Institute of Energy Storage (INIES) and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Kwangho Nam
- Department of Chemistry and Biochemistry and Division of Data Science, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Dan T Major
- Department of Chemistry, Israel National Institute of Energy Storage (INIES) and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
2
|
Suh D, Schwartz R, Gupta PK, Zev S, Major DT, Im W. CHARMM-GUI EnzyDocker for Protein-Ligand Docking of Multiple Reactive States along a Reaction Coordinate in Enzymes. J Chem Theory Comput 2025; 21:2118-2128. [PMID: 39950957 PMCID: PMC11866752 DOI: 10.1021/acs.jctc.4c01691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025]
Abstract
Enzymes play crucial roles in all biological systems by catalyzing a myriad of chemical reactions. These reactions range from simple one-step processes to intricate multistep cascades. Predicting mechanistically appropriate binding modes along a reaction pathway for substrate, product, and all reaction intermediates and transition states is a daunting task. To address this challenge, special docking programs like EnzyDock have been developed. Yet, running such docking simulations is complicated due to the nature of multistep enzyme processes. This work presents CHARMM-GUI EnzyDocker, a web-based cyberinfrastructure designed to streamline the preparation and running of EnzyDock docking simulations. The development of EnzyDocker has been achieved through integration of existing CHARMM-GUI modules, such as PDB Reader and Manipulator, Ligand Designer, and QM/MM Interfacer. In addition, new functionalities have been developed to facilitate a one-stop preparation of multistate and multiscale docking systems and enable interactive and intuitive ligand modifications and flexible protein residues selections. A simple setup related to multiligand docking is automatized through intuitive user interfaces. EnzyDocker offers support for standard classical docking and QM/MM docking with CHARMM built-in semiempirical engines. Automated consensus restraints for incorporating experimental knowledge into the docking are facilitated via a maximum common substructure algorithm. To illustrate the robustness of EnzyDocker, we conducted docking simulations of three enzyme systems: dihydrofolate reductase, SARS-CoV-2 Mpro, and the diterpene synthase CotB2. In addition, we have created four tutorial videos about these systems, which can be found at https://www.charmm-gui.org/demo/enzydock. EnzyDocker is expected to be a valuable and accessible web-based tool that simplifies and accelerates the setup process for multistate docking for enzymes.
Collapse
Affiliation(s)
- Donghyuk Suh
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Renana Schwartz
- Department
of Chemistry, Israel National Institute of Energy Storage (INIES)
and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Prashant Kumar Gupta
- Department
of Chemistry, Israel National Institute of Energy Storage (INIES)
and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Shani Zev
- Department
of Chemistry, Israel National Institute of Energy Storage (INIES)
and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Dan T. Major
- Department
of Chemistry, Israel National Institute of Energy Storage (INIES)
and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Wonpil Im
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
3
|
Li S, Huang JW, Min J, Li H, Ning M, Zhou S, Yang Y, Chen CC, Guo RT. Molecular insights into a distinct class of terpenoid cyclases. Nat Commun 2025; 16:207. [PMID: 39747870 PMCID: PMC11695735 DOI: 10.1038/s41467-024-55717-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Terpenoid cyclases (TCs) account for the synthesis of the most widespread and diverse natural compounds. A sesquiterpene cyclase termed BcABA3 from an abscisic acid-producing fungus Botrytis cinerea that yields (2Z,4E)-α-ionylideneethane but lacks signature feature of canonical TCs represents a distinct type of TCs. Here, we report the crystal structures of BcABA3, a closely related RuABA3 from Rutstroemia sp. and a bacterial SkABA3 from Shimazuella kribbensis. These ABA3 proteins adopt an all-α-helix fold and bind pyrophosphate moiety of farnesyl pyrophosphate by Glu-chelated Mg2+ ion cluster. We conduct mutagenesis experiments to validate the role of the substrate-binding residues. SkABA3 appears to yield compounds that are distinct from (2Z,4E)-α-ionylideneethane. These results not only provide the molecular insight into ABA3 proteins that serve as an important basis to the future investigation of this class of TCs, but also reveal the existence of more uncharacterized terpenoids synthesized via dedicated machineries.
Collapse
Affiliation(s)
- Siyu Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, China
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, China
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, China
| | - Hao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, China
| | - Meidan Ning
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, China
| | - Shuyu Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, China
| | - Yu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, China.
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, China.
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, China.
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
4
|
Sun X, Li Y, Xu H, Huang S, Liu Y, Liao S, Wang B. Terpestacin and Its Derivatives: Bioactivities and Syntheses. Chem Biodivers 2025; 22:e202401905. [PMID: 39318057 DOI: 10.1002/cbdv.202401905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Terpestacin (1), fusaproliferin (2), and their derivatives are a class of sesterterpenes featured by a trans-fused 5/15-membered ring skeleton. There are 45 natural products (1, 2, 4-27, 65-83) isolated from various wild fungi (Fusarium sp., Bipolaris sorokiniana, Arthrinium sp., etc.) or from genetic mutants via biosynthetic gene clusters mining, and 37 derivatives (28-64) produced by semi-synthetic modifications. These compounds show a diverse range of important bioactivities such as antivirus, antimicrobial, cytotoxic, phytotoxic, anti-flammatory, and brine shrimp lethal activities. To date, two racemic and five enantioselective chemical total syntheses of 1 (including 2 and their isomers) have been developed. Over the past decade, a number of biosynthetic gene clusters or their mutants, along with their encoding enzymes responsible for producing sesterterpenes such as terpestacin and its derivatives, have also been identified. This review covers the literature from the year 1993, when 1 was firstly discovered, to May 2024, focusing on the bioactivities and syntheses of 1 and its derivatives or isomers.
Collapse
Affiliation(s)
- Xin Sun
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518104, China
- Shenzhen Clinical College of Integrated Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, 518104, China
| | - Yuyue Li
- Research Center for Marine Microbes, CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huayan Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shuai Huang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yonghong Liu
- Research Center for Marine Microbes, CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengrong Liao
- Research Center for Marine Microbes, CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Wang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518104, China
- Shenzhen Clinical College of Integrated Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, 518104, China
| |
Collapse
|
5
|
Li J, Chen B, Fu Z, Mao J, Liu L, Chen X, Zheng M, Wang CY, Wang C, Guo YW, Xu B. Discovery of a terpene synthase synthesizing a nearly non-flexible eunicellane reveals the basis of flexibility. Nat Commun 2024; 15:5940. [PMID: 39009563 PMCID: PMC11250809 DOI: 10.1038/s41467-024-50209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Eunicellane diterpenoids, containing a typical 6,10-bicycle, are bioactive compounds widely present in marine corals, but rarely found in bacteria and plants. The intrinsic macrocycle exhibits innate structural flexibility resulting in dynamic conformational changes. However, the mechanisms controlling flexibility remain unknown. The discovery of a terpene synthase, MicA, that is responsible for the biosynthesis of a nearly non-flexible eunicellane skeleton, enable us to propose a feasible theory about the flexibility in eunicellane structures. Parallel studies of all eunicellane synthases in nature discovered to date, including 2Z-geranylgeranyl diphosphate incubations and density functional theory-based Boltzmann population computations, reveale that a trans-fused bicycle with a 2Z-configuration alkene restricts conformational flexibility resulting in a nearly non-flexible eunicellane skeleton. The catalytic route and the enzymatic mechanism of MicA are also elucidated by labeling experiments, density functional theory calculations, structural analysis of the artificial intelligence-based MicA model, and mutational studies.
Collapse
Affiliation(s)
- Jinfeng Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Bao Chen
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Zunyun Fu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Jingjing Mao
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Shanghai, 200031, China
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lijun Liu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Xiaochen Chen
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Mingyue Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Chengyuan Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Shanghai, 200031, China.
| | - Yue-Wei Guo
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China.
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Baofu Xu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China.
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai, 201203, China.
| |
Collapse
|
6
|
Tarannam N, Gupta PK, Zev S, Major DT. Stability trends in carbocation intermediates stemming from germacrene A and hedycaryol. Beilstein J Org Chem 2024; 20:1189-1197. [PMID: 38887567 PMCID: PMC11181226 DOI: 10.3762/bjoc.20.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
In the current work, we analyzed the origin of difference in stabilities among the germacrene A and hedycaryol-derived carbocations. This study focused on twelve hydrocarbons derived from germacrene A and twelve from hedycaryol, which can be divided into three groups: four molecules containing 6-6 bicyclic rings, four 5-7 bicyclic compounds with the carbocation being on the seven-membered ring and the remaining four 5-7 bicyclic compounds with the carbocation on the five-membered ring. The variations in energy within the groups of carbocations (i.e., 6-6 and two kinds of 5-7 bicyclic carbocations) can be ascribed to intramolecular repulsion interactions, as seen from non-covalent interactions plots. Despite the structural similarities between germacrene A and hedycaryol cations, they possess a somewhat different stability trend. These differences are attributed to C+···OH intramolecular interactions present in some hedycaryol cations, which are absent in the carbocations derived from germecrene A.
Collapse
Affiliation(s)
- Naziha Tarannam
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Prashant Kumar Gupta
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Shani Zev
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
7
|
Schwartz R, Zev S, Major DT. Differential Substrate Sensing in Terpene Synthases from Plants and Microorganisms: Insight from Structural, Bioinformatic, and EnzyDock Analyses. Angew Chem Int Ed Engl 2024; 63:e202400743. [PMID: 38556463 DOI: 10.1002/anie.202400743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Terpene synthases (TPSs) catalyze the first step in the formation of terpenoids, which comprise the largest class of natural products in nature. TPSs employ a family of universal natural substrates, composed of isoprenoid units bound to a diphosphate moiety. The intricate structures generated by TPSs are the result of substrate binding and folding in the active site, enzyme-controlled carbocation reaction cascades, and final reaction quenching. A key unaddressed question in class I TPSs is the asymmetric nature of the diphosphate-(Mg2+)3 cluster, which forms a critical part of the active site. In this asymmetric ion cluster, two diphosphate oxygen atoms protrude into the active site pocket. The substrate hydrocarbon tail, which is eventually molded into terpenes, can bind to either of these oxygen atoms, yet to which is unknown. Herein, we employ structural, bioinformatics, and EnzyDock docking tools to address this enigma. We bring initial data suggesting that this difference is rooted in evolutionary differences between TPSs. We hypothesize that this alteration in binding, and subsequent chemistry, is due to TPSs originating from plants or microorganisms. We further suggest that this difference can cast light on the frequent observation that the chiral products or intermediates of plant and bacterial terpene synthases represent opposite enantiomers.
Collapse
Affiliation(s)
- Renana Schwartz
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Shani Zev
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Dan T Major
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| |
Collapse
|
8
|
Schwartz R, Zev S, Major DT. Mechanistic docking in terpene synthases using EnzyDock. Methods Enzymol 2024; 699:265-292. [PMID: 38942507 DOI: 10.1016/bs.mie.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Terpene Synthases (TPS) catalyze the formation of multicyclic, complex terpenes and terpenoids from linear substrates. Molecular docking is an important research tool that can further our understanding of TPS multistep mechanisms and guide enzyme design. Standard docking programs are not well suited to tackle the unique challenges of TPS, like the many chemical steps which form multiple stereo-centers, the weak dispersion interactions between the isoprenoid chain and the hydrophobic region of the active site, description of carbocation intermediates, and finding mechanistically meaningful sets of docked poses. To address these and other unique challenges, we developed the multistate, multiscale docking program EnzyDock and used it to study many TPS and other enzymes. In this review we discuss the unique challenges of TPS, the special features of EnzyDock developed to address these challenges and demonstrate its successful use in ongoing research on the bacterial TPS CotB2.
Collapse
Affiliation(s)
- Renana Schwartz
- Department of Chemistry and Institute for Nanotechnology Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Shani Zev
- Department of Chemistry and Institute for Nanotechnology Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Dan T Major
- Department of Chemistry and Institute for Nanotechnology Advanced Materials, Bar Ilan University, Ramat Gan, Israel.
| |
Collapse
|
9
|
Xing B, Lei Z, Bai Z, Zang G, Wang Y, Zhang C, Chen M, Zhou Y, Ding J, Yang D, Ma M. Structural biology of terpene synthases. Methods Enzymol 2024; 699:59-87. [PMID: 38942516 DOI: 10.1016/bs.mie.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Structural biology research of terpene synthases (TSs) has provided a useful basis to understand their catalytic mechanisms in producing diverse terpene products with polycyclic ring systems and multiple chiral centers. However, compared to the large numbers of>95,000 terpenoids discovered to date, few structures of TSs have been solved and the understanding of their catalytic mechanisms is lagging. We here (i) introduce the basic catalytic logic, the structural architectures, and the metal-binding conserved motifs of TSs; (ii) provide detailed experimental procedures, in gene cloning and plasmid construction, protein purification, crystallization, X-ray diffraction data collection and structural elucidation, for structural biology research of TSs; and (iii) discuss the prospects of structure-based engineering and de novo design of TSs in generating valuable terpene molecules, which cannot be easily achieved by chemical synthesis.
Collapse
Affiliation(s)
- Baiying Xing
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Zhenyu Lei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Zhaoye Bai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Guowei Zang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Yuxian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Chenyu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Minren Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Yucheng Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Jiahao Ding
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Donghui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China.
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China.
| |
Collapse
|
10
|
Abstract
Covering: up to July 2023Terpene cyclases (TCs) catalyze some of the most complicated reactions in nature and are responsible for creating the skeletons of more than 95 000 terpenoid natural products. The canonical TCs are divided into two classes according to their structures, functions, and mechanisms. The class II TCs mediate acid-base-initiated cyclization reactions of isoprenoid diphosphates, terpenes without diphosphates (e.g., squalene or oxidosqualene), and prenyl moieties on meroterpenes. The past twenty years witnessed the emergence of many class II TCs, their reactions and their roles in biosynthesis. Class II TCs often act as one of the first steps in the biosynthesis of biologically active natural products including the gibberellin family of phytohormones and fungal meroterpenoids. Due to their mechanisms and biocatalytic potential, TCs elicit fervent attention in the biosynthetic and organic communities and provide great enthusiasm for enzyme engineering to construct novel and bioactive molecules. To engineer and expand the structural diversities of terpenoids, it is imperative to fully understand how these enzymes generate, precisely control, and quench the reactive carbocation intermediates. In this review, we summarize class II TCs from nature, including sesquiterpene, diterpene, triterpene, and meroterpenoid cyclases as well as noncanonical class II TCs and inspect their sequences, structures, mechanisms, and structure-guided engineering studies.
Collapse
Affiliation(s)
- Xingming Pan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7011, USA.
| | - Liao-Bin Dong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
11
|
Xu H, Dickschat JS. Isotopic labelings for mechanistic studies. Methods Enzymol 2024; 699:163-186. [PMID: 38942502 DOI: 10.1016/bs.mie.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
The intricate mechanisms in the biosynthesis of terpenes belong to the most challenging problems in natural product chemistry. Methods to address these problems include the structure-based site-directed mutagenesis of terpene synthases, computational approaches, and isotopic labeling experiments. The latter approach has a long tradition in biosynthesis studies and has recently experienced a revival, after genome sequencing enabled rapid access to biosynthetic genes and enzymes. Today, this allows for a combined approach in which isotopically labeled substrates can be incubated with recombinant terpene synthases. These clearly defined reaction setups can give detailed mechanistic insights into the reactions catalyzed by terpene synthases, and recent developments have substantially deepened our understanding of terpene biosynthesis. This chapter will discuss the state of the art and introduce some of the most important methods that make use of isotopic labelings in mechanistic studies on terpene synthases.
Collapse
Affiliation(s)
- Houchao Xu
- Kekulé-Institute for Organic Chemistry and Biochemistry, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany.
| |
Collapse
|
12
|
Kwon T, Hovde BT. Global characterization of biosynthetic gene clusters in non-model eukaryotes using domain architectures. Sci Rep 2024; 14:1534. [PMID: 38233413 PMCID: PMC10794256 DOI: 10.1038/s41598-023-50095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024] Open
Abstract
The majority of pharmaceuticals are derived from natural products, bioactive compounds naturally synthesized by organisms to provide evolutionary advantages. Although the rich evolutionary history of eukaryotic algal species implicates a high potential for natural product-based drug discovery, it remains largely untouched. This study investigates 2762 putative biosynthetic gene clusters (BGCs) from 212 eukaryotic algal genomes. To analyze a vast set of structurally diverse BGCs, we employed comparative analysis based on the vectorization of biosynthetic domains, referred to as biosynthetic domain architecture (BDA). By characterizing core biosynthetic machineries through BDA, we identified key BDAs of modular BGCs in diverse eukaryotes and introduced 16 candidate modular BGCs with similar BDAs to previously validated BGCs. This study provides a global characterization of eukaryotic algal BGCs, offering an alternative to laborious manual curation for BGC prioritization.
Collapse
Affiliation(s)
- Taehyung Kwon
- Genomics and Bioanalytics Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Blake T Hovde
- Genomics and Bioanalytics Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|
13
|
Zhao Y, Liang Y, Luo G, Li Y, Han X, Wen M. Sequence-Structure Analysis Unlocking the Potential Functional Application of the Local 3D Motifs of Plant-Derived Diterpene Synthases. Biomolecules 2024; 14:120. [PMID: 38254720 PMCID: PMC10813164 DOI: 10.3390/biom14010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/31/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Plant-derived diterpene synthases (PdiTPSs) play a critical role in the formation of structurally and functionally diverse diterpenoids. However, the specificity or functional-related features of PdiTPSs are not well understood. For a more profound insight, we collected, constructed, and curated 199 functionally characterized PdiTPSs and their corresponding 3D structures. The complex correlations among their sequences, domains, structures, and corresponding products were comprehensively analyzed. Ultimately, our focus narrowed to the geometric arrangement of local structures. We found that local structural alignment can rapidly localize product-specific residues that have been validated by mutagenesis experiments. Based on the 3D motifs derived from the residues around the substrate, we successfully searched diterpene synthases (diTPSs) from the predicted terpene synthases and newly characterized PdiTPSs, suggesting that the identified 3D motifs can serve as distinctive signatures in diTPSs (I and II class). Local structural analysis revealed the PdiTPSs with more conserved amino acid residues show features unique to class I and class II, whereas those with fewer conserved amino acid residues typically exhibit product diversity and specificity. These results provide an attractive method for discovering novel or functionally equivalent enzymes and probing the product specificity in cases where enzyme characterization is limited.
Collapse
Affiliation(s)
- Yalan Zhao
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yupeng Liang
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Gan Luo
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yi Li
- College of Mathematics and Computer Science, Dali University, Dali 671003, China
| | - Xiulin Han
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Mengliang Wen
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
14
|
Liu Y, Han B, Zheng W, Peng P, Yang C, Jiang G, Ma Y, Li J, Ni J, Sun D. Identification of genetic associations and functional SNPs of bovine KLF6 gene on milk production traits in Chinese holstein. BMC Genom Data 2023; 24:72. [PMID: 38017423 PMCID: PMC10685595 DOI: 10.1186/s12863-023-01175-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Our previous research identified the Kruppel like factor 6 (KLF6) gene as a prospective candidate for milk production traits in dairy cattle. The expression of KLF6 in the livers of Holstein cows during the peak of lactation was significantly higher than that during the dry and early lactation periods. Notably, it plays an essential role in activating peroxisome proliferator-activated receptor α (PPARα) signaling pathways. The primary aim of this study was to further substantiate whether the KLF6 gene has significant genetic effects on milk traits in dairy cattle. RESULTS Through direct sequencing of PCR products with pooled DNA, we totally identified 12 single nucleotide polymorphisms (SNPs) within the KLF6 gene. The set of SNPs encompasses 7 located in 5' flanking region, 2 located in exon 2 and 3 located in 3' untranslated region (UTR). Of these, the g.44601035G > A is a missense mutation that resulting in the replacement of arginine (CGG) with glutamine (CAG), consequently leading to alterations in the secondary structure of the KLF6 protein, as predicted by SOPMA. The remaining 7 regulatory SNPs significantly impacted the transcriptional activity of KLF6 following mutation (P < 0.005), manifesting as changes in transcription factor binding sites. Additionally, 4 SNPs located in both the UTR and exons were predicted to influence the secondary structure of KLF6 mRNA using the RNAfold web server. Furthermore, we performed the genotype-phenotype association analysis using SAS 9.2 which found all the 12 SNPs were significantly correlated to milk yield, fat yield, fat percentage, protein yield and protein percentage within both the first and second lactations (P < 0.0001 ~ 0.0441). Also, with Haploview 4.2 software, we found the 12 SNPs linked closely and formed a haplotype block, which was strongly associated with five milk traits (P < 0.0001 ~ 0.0203). CONCLUSIONS In summary, our study represented the KLF6 gene has significant impacts on milk yield and composition traits in dairy cattle. Among the identified SNPs, 7 were implicated in modulating milk traits by impacting transcriptional activity, 4 by altering mRNA secondary structure, and 1 by affecting the protein secondary structure of KLF6. These findings provided valuable molecular insights for genomic selection program of dairy cattle.
Collapse
Affiliation(s)
- Yanan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Bo Han
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Weijie Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Peng Peng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Chendong Yang
- Hebei Province Animal Husbandry and Fine Breeds Work Station, No. 7 Xuefu Road, Changan District, Shijiazhuang, 050000, China
| | - Guie Jiang
- Hebei Province Animal Husbandry and Fine Breeds Work Station, No. 7 Xuefu Road, Changan District, Shijiazhuang, 050000, China
| | - Yabin Ma
- Hebei Province Animal Husbandry and Fine Breeds Work Station, No. 7 Xuefu Road, Changan District, Shijiazhuang, 050000, China
| | - Jianming Li
- Hebei Province Animal Husbandry and Fine Breeds Work Station, No. 7 Xuefu Road, Changan District, Shijiazhuang, 050000, China
| | - Junqing Ni
- Hebei Province Animal Husbandry and Fine Breeds Work Station, No. 7 Xuefu Road, Changan District, Shijiazhuang, 050000, China.
| | - Dongxiao Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
15
|
Zhang L, Zhang B, Zhu A, Liu SH, Wu R, Zhang X, Xu Z, Tan RX, Ge HM. Biosynthesis of Phomactin Platelet Activating Factor Antagonist Requires a Two-Enzyme Cascade. Angew Chem Int Ed Engl 2023; 62:e202312996. [PMID: 37804495 DOI: 10.1002/anie.202312996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/09/2023]
Abstract
Phomactin diterpenoids possess a unique bicyclo[9.3.1]pentadecane skeleton with multiple oxidative modifications, and are good platelet-activating factor (PAF) antagonists that can inhibit PAF-induced platelet aggregation. In this study, we identified the gene cluster (phm) responsible for the biosynthesis of phomactins from a marine fungus, Phoma sp. ATCC 74077. Despite the complexity of their structures, phomactin biosynthesis only requires two enzymes: a type I diterpene cyclase PhmA and a P450 monooxygenase PhmC. PhmA was found to catalyze the formation of the phomactatriene, while PhmC sequentially catalyzes the oxidation of multiple sites, leading to the generation of structurally diverse phomactins. The rearrangement mechanism of the diterpene scaffold was investigated through isotope labeling experiments. Additionally, we obtained the crystal complex of PhmA with its substrate analogue FGGPP and elucidated the novel metal-ion-binding mode and enzymatic mechanism of PhmA through site-directed mutagenesis. This study provides the first insight into the biosynthesis of phomactins, laying the foundation for the efficient production of phomactin natural products using synthetic biology approaches.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Ao Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Shuang He Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Rui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Xuan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Zhengren Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
16
|
Taizoumbe KA, Steiner ST, Dickschat JS. Mechanistic Characterisation of Collinodiene Synthase, a Diterpene Synthase from Streptomyces collinus. Chemistry 2023; 29:e202302469. [PMID: 37579200 DOI: 10.1002/chem.202302469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Two homologs of the diterpene synthase CotB2 from Streptomyces collinus (ScCotB2) and Streptomyces iakyrus (SiCotB2) were investigated for their products by in vitro incubations of the recombinant enzymes with geranylgeranyl pyrophosphate, followed by compound isolation and structure elucidation by NMR. ScCotB2 produced the new compound collinodiene, besides the canonical CotB2 product cyclooctat-9-en-7-ol, dolabella-3,7,18-triene and dolabella-3,7,12-triene, while SiCotB2 gave mainly cyclooctat-9-en-7-ol and only traces of dolabella-3,7,18-triene. The cyclisation mechanism towards the ScCotB2 products and their absolute configurations were investigated through isotopic labelling experiments.
Collapse
Affiliation(s)
- Kizerbo A Taizoumbe
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Simon T Steiner
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
17
|
Srivastava P, Johns ST, Walters R, Miller DJ, Van der Kamp MW, Allemann RK. Active Site Loop Engineering Abolishes Water Capture in Hydroxylating Sesquiterpene Synthases. ACS Catal 2023; 13:14199-14204. [PMID: 37942265 PMCID: PMC10629212 DOI: 10.1021/acscatal.3c03920] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/09/2023] [Indexed: 11/10/2023]
Abstract
Terpene synthases (TS) catalyze complex reactions to produce a diverse array of terpene skeletons from linear isoprenyl diphosphates. Patchoulol synthase (PTS) from Pogostemon cablin converts farnesyl diphosphate into patchoulol. Using simulation-guided engineering, we obtained PTS variants that eliminate water capture. Further, we demonstrate that modifying the structurally conserved Hα-1 loop also reduces hydroxylation in PTS, as well as in germacradiene-11-ol synthase (Gd11olS), leading to cyclic neutral intermediates as products, including α-bulnesene (PTS) and isolepidozene (Gd11olS). Hα-1 loop modification could be a general strategy for engineering sesquiterpene synthases to produce complex cyclic hydrocarbons without the need for structure determination or modeling.
Collapse
Affiliation(s)
- Prabhakar
L. Srivastava
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Sam T. Johns
- School
of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Rebecca Walters
- School
of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, United Kingdom
| | - David J. Miller
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Marc W. Van der Kamp
- School
of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Rudolf K. Allemann
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
18
|
Spencer TA, Ditchfield R. Tryptophan Stabilization of a Biochemical Carbocation Evaluated by Analysis of π Complexes of 3-Ethylindole with the t-Butyl Cation. ACS OMEGA 2023; 8:26497-26507. [PMID: 37521644 PMCID: PMC10373456 DOI: 10.1021/acsomega.3c03259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023]
Abstract
Understanding how the highly unstable carbocation intermediates in terpenoid biosynthesis are stabilized and protected during their transient existence in enzyme active sites is an intriguing challenge which has to be addressed computationally. Our efforts have focused on evaluating the stabilization afforded via carbocation-π complexation between a biochemical carbocation and an aromatic amino acid residue. This has involved making measurements on an X-ray structure of an enzyme active site that shows a π donor proximate to a putative carbocation site and using these to build models which are analyzed computationally to provide an estimated stabilization energy (SE). Previously, we reported estimated SEs for several such carbocation-π complexes involving phenylalanine. Herein, we report the first such estimate involving tryptophan as the π donor. Because there was almost no published information about indole as a π-complexation donor, we first located computationally equilibrium π and σ complexes of 3-ethylindole with the t-butyl cation as relevant background information. Then, measurements on the X-ray structure of the enzyme CotB2 complexed with geranylgeranyl thiodiphosphate (GGSPP), specifically on the geometric relationship of the putative carbocation at C15 of GGSPP to W186, were used to build a model that afforded a computed SE of -15.3 kcal/mol.
Collapse
|
19
|
Li Z, Zhang L, Xu K, Jiang Y, Du J, Zhang X, Meng LH, Wu Q, Du L, Li X, Hu Y, Xie Z, Jiang X, Tang YJ, Wu R, Guo RT, Li S. Molecular insights into the catalytic promiscuity of a bacterial diterpene synthase. Nat Commun 2023; 14:4001. [PMID: 37414771 PMCID: PMC10325987 DOI: 10.1038/s41467-023-39706-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023] Open
Abstract
Diterpene synthase VenA is responsible for assembling venezuelaene A with a unique 5-5-6-7 tetracyclic skeleton from geranylgeranyl pyrophosphate. VenA also demonstrates substrate promiscuity by accepting geranyl pyrophosphate and farnesyl pyrophosphate as alternative substrates. Herein, we report the crystal structures of VenA in both apo form and holo form in complex with a trinuclear magnesium cluster and pyrophosphate group. Functional and structural investigations on the atypical 115DSFVSD120 motif of VenA, versus the canonical Asp-rich motif of DDXX(X)D/E, reveal that the absent second Asp of canonical motif is functionally replaced by Ser116 and Gln83, together with bioinformatics analysis identifying a hidden subclass of type I microbial terpene synthases. Further structural analysis, multiscale computational simulations, and structure-directed mutagenesis provide significant mechanistic insights into the substrate selectivity and catalytic promiscuity of VenA. Finally, VenA is semi-rationally engineered into a sesterterpene synthase to recognize the larger substrate geranylfarnesyl pyrophosphate.
Collapse
Affiliation(s)
- Zhong Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Kangwei Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Yuanyuan Jiang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Jieke Du
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Ling-Hong Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, Shandong, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China
| | - Qile Wu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Lei Du
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Xiaoju Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Yuechan Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Zhenzhen Xie
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xukai Jiang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China.
| |
Collapse
|
20
|
Tarasova EV, Luchnikova NA, Grishko VV, Ivshina IB. Actinomycetes as Producers of Biologically Active Terpenoids: Current Trends and Patents. Pharmaceuticals (Basel) 2023; 16:872. [PMID: 37375819 PMCID: PMC10301674 DOI: 10.3390/ph16060872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Terpenes and their derivatives (terpenoids and meroterpenoids, in particular) constitute the largest class of natural compounds, which have valuable biological activities and are promising therapeutic agents. The present review assesses the biosynthetic capabilities of actinomycetes to produce various terpene derivatives; reports the main methodological approaches to searching for new terpenes and their derivatives; identifies the most active terpene producers among actinomycetes; and describes the chemical diversity and biological properties of the obtained compounds. Among terpene derivatives isolated from actinomycetes, compounds with pronounced antifungal, antiviral, antitumor, anti-inflammatory, and other effects were determined. Actinomycete-produced terpenoids and meroterpenoids with high antimicrobial activity are of interest as a source of novel antibiotics effective against drug-resistant pathogenic bacteria. Most of the discovered terpene derivatives are produced by the genus Streptomyces; however, recent publications have reported terpene biosynthesis by members of the genera Actinomadura, Allokutzneria, Amycolatopsis, Kitasatosporia, Micromonospora, Nocardiopsis, Salinispora, Verrucosispora, etc. It should be noted that the use of genetically modified actinomycetes is an effective tool for studying and regulating terpenes, as well as increasing productivity of terpene biosynthesis in comparison with native producers. The review includes research articles on terpene biosynthesis by Actinomycetes between 2000 and 2022, and a patent analysis in this area shows current trends and actual research directions in this field.
Collapse
Affiliation(s)
- Ekaterina V. Tarasova
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
| | - Natalia A. Luchnikova
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| | - Victoria V. Grishko
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
| | - Irina B. Ivshina
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| |
Collapse
|
21
|
T R, Sharma D, Lin F, Choong YK, Lim C, Jobichen C, Zhang C. Structural Understanding of Fungal Terpene Synthases for the Formation of Linear or Cyclic Terpene Products. ACS Catal 2023; 13:4949-4959. [PMID: 37066048 PMCID: PMC10088877 DOI: 10.1021/acscatal.2c05598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/31/2023] [Indexed: 03/29/2023]
Abstract
Terpene synthases (TPSs), known gatekeepers of terpenoid diversity, are the main targets for enzyme engineering attempts. To this end, we have determined the crystal structure of Agrocybe pediades linalool synthase (Ap.LS), which has been recently reported to be 44-fold and 287-fold more efficient than bacterial and plant counterparts, respectively. Structure-based molecular modeling followed by in vivo as well as in vitro tests confirmed that the region of 60-69aa and Tyr299 (adjacent to the motif "WxxxxxRY") are essential for maintaining Ap.LS specificity toward a short-chain (C10) acyclic product. Ap.LS Y299 mutants (Y299A, Y299C, Y299G, Y299Q, and Y299S) yielded long-chain (C15) linear or cyclic products. Molecular modeling based on the Ap.LS crystal structure indicated that farnesyl pyrophosphate in the binding pocket of Ap.LS Y299A has less torsion strain energy compared to the wild-type Ap.LS, which can be partially attributed to the larger space in Ap.LS Y299A for better accommodation of the longer chain (C15). Linalool/nerolidol synthase Y298 and humulene synthase Y302 mutations also produced C15 cyclic products similar to Ap.LS Y299 mutants. Beyond the three enzymes, our analysis confirmed that most microbial TPSs have asparagine at the position and produce mainly cyclized products (δ-cadinene, 1,8-cineole, epi-cubebol, germacrene D, β-barbatene, etc.). In contrast, those producing linear products (linalool and nerolidol) typically have a bulky tyrosine. The structural and functional analysis of an exceptionally selective linalool synthase, Ap.LS, presented in this work provides insights into factors that govern chain length (C10 or C15), water incorporation, and cyclization (cyclic vs acyclic) of terpenoid biosynthesis.
Collapse
|
22
|
Sarkar A, Foderaro T, Kramer L, Markley AL, Lee J, Traylor MJ, Fox JM. Evolution-Guided Biosynthesis of Terpenoid Inhibitors. ACS Synth Biol 2022; 11:3015-3027. [PMID: 35984356 DOI: 10.1021/acssynbio.2c00188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Terpenoids, the largest and most structurally diverse group of natural products, include a striking variety of biologically active compounds, from flavors to medicines. Despite their well-documented biochemical versatility, the evolutionary processes that generate new functional terpenoids are poorly understood and difficult to recapitulate in engineered systems. This study uses a synthetic biochemical objective─a transcriptional system that links the inhibition of protein tyrosine phosphatase 1B (PTP1B), a human drug target, to the expression of a gene for antibiotic resistance in Escherichia coli (E. coli)─to evolve a terpene synthase to produce enzyme inhibitors. Site saturation mutagenesis of poorly conserved residues on γ-humulene synthase (GHS), a promicuous enzyme, yielded mutants that improved fitness (i.e., the antibiotic resistance of E. coli) by reducing GHS toxicity and/or by increasing inhibitor production. Intriguingly, a combination of two mutations enhanced the titer of a minority product─a terpene alcohol that inhibits PTP1B─by over 50-fold, and a comparison of similar mutants enabled the identification of a site where mutations permit efficient hydroxylation. Findings suggest that the plasticity of terpene synthases enables an efficient sampling of structurally distinct starting points for building new functional molecules and provide an experimental framework for exploiting this plasticity in activity-guided screens.
Collapse
Affiliation(s)
- Ankur Sarkar
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Tom Foderaro
- Think Bioscience, Inc., A1B43 MCDB, 1945 Colorado Avenue, Boulder, Colorado 80309, United States
| | - Levi Kramer
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Andrew L Markley
- Think Bioscience, Inc., A1B43 MCDB, 1945 Colorado Avenue, Boulder, Colorado 80309, United States
| | - Jessica Lee
- Think Bioscience, Inc., A1B43 MCDB, 1945 Colorado Avenue, Boulder, Colorado 80309, United States
| | - Matthew J Traylor
- Think Bioscience, Inc., A1B43 MCDB, 1945 Colorado Avenue, Boulder, Colorado 80309, United States
| | - Jerome M Fox
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| |
Collapse
|
23
|
Xing B, Xu H, Li A, Lou T, Xu M, Wang K, Xu Z, Dickschat JS, Yang D, Ma M. Crystal Structure Based Mutagenesis of Cattleyene Synthase Leads to the Generation of Rearranged Polycyclic Diterpenes. Angew Chem Int Ed Engl 2022; 61:e202209785. [PMID: 35819825 PMCID: PMC9543850 DOI: 10.1002/anie.202209785] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 11/08/2022]
Abstract
The crystal structures of cattleyene synthase (apo-CyS), and CyS complexed with geranylgeranyl pyrophosphate (GGPP) were solved. The CySC59A variant exhibited an increased production of cattleyene and other diterpenes with diverse skeletons. Its structure showed a widened active site cavity explaining the relaxed selectivity. Isotopic labeling experiments revealed a remarkable cyclization mechanism involving several skeletal rearrangements for one of the novel diterpenes.
Collapse
Affiliation(s)
- Baiying Xing
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University38 Xueyuan Road, Haidian DistrictBeijing100191China
| | - Houchao Xu
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Strasse 153121BonnGermany
| | - Annan Li
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University38 Xueyuan Road, Haidian DistrictBeijing100191China
| | - Tingting Lou
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University38 Xueyuan Road, Haidian DistrictBeijing100191China
| | - Meng Xu
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University38 Xueyuan Road, Haidian DistrictBeijing100191China
| | - Kaibiao Wang
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University38 Xueyuan Road, Haidian DistrictBeijing100191China
| | - Zhengren Xu
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University38 Xueyuan Road, Haidian DistrictBeijing100191China
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Strasse 153121BonnGermany
| | - Donghui Yang
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University38 Xueyuan Road, Haidian DistrictBeijing100191China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University38 Xueyuan Road, Haidian DistrictBeijing100191China
| |
Collapse
|
24
|
Xing B, Xu H, Li A, Lou T, Xu M, Wang K, Xu Z, Dickschat JS, Yang D, Ma M. Crystal Structure Based Mutagenesis of Cattleyene Synthase Leads to the Generation of Rearranged Polycyclic Diterpenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Baiying Xing
- Peking University School of Pharmaceutical Sciences Department of Natural Medicines CHINA
| | - Houchao Xu
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Organic chemistry and biochemistry GERMANY
| | - Annan Li
- Peking University School of Pharmaceutical Sciences Department of Natural Medicines CHINA
| | - Tingting Lou
- Peking University School of Pharmaceutical Sciences Department of Natural Medicines CHINA
| | - Meng Xu
- Peking University School of Pharmaceutical Sciences Department of Natural Medicines CHINA
| | - Kaibiao Wang
- Peking University School of Pharmaceutical Sciences Department of Natural Medicines CHINA
| | - Zhengren Xu
- Peking University School of Pharmaceutical Sciences Department of Natural Medicines CHINA
| | - Jeroen S. Dickschat
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Organic chemistry and biochemistry GERMANY
| | - Donghui Yang
- Peking University School of Pharmaceutical Sciences Department of Natural Medicines CHINA
| | - Ming Ma
- Peking University School of Pharmaceutical Sciences Department of Natural Medicines 38 Xueyuan Road, Haidian District 100191 Beijing CHINA
| |
Collapse
|
25
|
Ringel M, Dimos N, Himpich S, Haack M, Huber C, Eisenreich W, Schenk G, Loll B, Brück T. Biotechnological potential and initial characterization of two novel sesquiterpene synthases from Basidiomycota Coniophora puteana for heterologous production of δ-cadinol. Microb Cell Fact 2022; 21:64. [PMID: 35440053 PMCID: PMC9018054 DOI: 10.1186/s12934-022-01791-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/07/2022] [Indexed: 01/01/2023] Open
Abstract
Background Terpene synthases are versatile catalysts in all domains of life, catalyzing the formation of an enormous variety of different terpenoid secondary metabolites. Due to their diverse bioactive properties, terpenoids are of great interest as innovative ingredients in pharmaceutical and cosmetic applications. Recent advances in genome sequencing have led to the discovery of numerous terpene synthases, in particular in Basidiomycota like the wood rotting fungus Coniophora puteana, which further enhances the scope for the manufacture of terpenes for industrial purposes. Results In this study we describe the identification of two novel (+)-δ-cadinol synthases from C. puteana, Copu5 and Copu9. The sesquiterpene (+)-δ-cadinol was previously shown to exhibit cytotoxic activity therefore having an application as possible, new, and sustainably sourced anti-tumor agent. In an Escherichia coli strain, optimized for sesquiterpene production, titers of 225 mg l−1 and 395 mg l−1, respectively, could be achieved. Remarkably, both enzymes share the same product profile thereby representing the first two terpene synthases from Basidiomycota with identical product profiles. We solved the crystal structure of Copu9 in its closed conformation, for the first time providing molecular details of sesquiterpene synthase from Basidiomycota. Based on the Copu9 structure, we conducted structure-based mutagenesis of amino acid residues lining the active site, thereby altering the product profile. Interestingly, the mutagenesis study also revealed that despite the conserved product profiles of Copu5 and Copu9 different conformational changes may accompany the catalytic cycle of the two enzymes. This observation suggests that the involvement of tertiary structure elements in the reaction mechanism(s) employed by terpene synthases may be more complex than commonly expected. Conclusion The presented product selectivity and titers of Copu5 and Copu9 may pave the way towards a sustainable, biotechnological production of the potentially new bioactive (+)-δ-cadinol. Furthermore, Copu5 and Copu9 may serve as model systems for further mechanistic studies of terpenoid catalysis. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01791-8.
Collapse
Affiliation(s)
- Marion Ringel
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Nicole Dimos
- Institute for Chemistry and Biochemistry, Structural Biochemistry Laboratory, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany
| | - Stephanie Himpich
- Institute for Chemistry and Biochemistry, Structural Biochemistry Laboratory, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany
| | - Martina Haack
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Claudia Huber
- Bavarian NMR Center - Structural Membrane Biochemistry, Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Wolfgang Eisenreich
- Bavarian NMR Center - Structural Membrane Biochemistry, Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, 68 Cooper Rd, Brisbane, 4702, Australia
| | - Bernhard Loll
- Institute for Chemistry and Biochemistry, Structural Biochemistry Laboratory, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany.
| | - Thomas Brück
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany.
| |
Collapse
|
26
|
Wang X, Wang Z, Zhu G, Jiang L, Zhang W, Huang Y, Cong Z, Zhao YL, Xu JH, Hsiang T, Zhang L, Chen Q, Liu X. Chemical control over the conversion between bicyclic and polycyclic terpenes by fungal bifunctional terpene synthases. Chem Commun (Camb) 2022; 58:9476-9479. [DOI: 10.1039/d2cc03644d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mutation on site 89 in the BFTSs alters the carbocation transportation pathway, which changes the sesterterpene structure.
Collapse
Affiliation(s)
- Xinye Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhixin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lan Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiyan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yiyi Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhanren Cong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, MOE-LSB & MOE-LSC, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
27
|
Zhuang J, Zhang F, Tang X, Liu C, Huang M, Xie H, Wu R. Insights into Enzymatic Catalytic Mechanism of bCinS: The Importance of Protein Conformational Change. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01913a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although the available crystal structures of BCinS (Streptomyces clavuligerus 1,8-cineole synthase), a typic class I terpene cyclases (TPCs), have shown notable protein conformational flexibility once binding with the substrate, the...
Collapse
|
28
|
Zev S, Gupta PK, Pahima E, Major DT. A Benchmark Study of Quantum Mechanics and Quantum Mechanics-Molecular Mechanics Methods for Carbocation Chemistry. J Chem Theory Comput 2021; 18:167-178. [PMID: 34905380 DOI: 10.1021/acs.jctc.1c00746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbocations play key roles in classical organic reactions and have also been implicated in several enzyme families. A hallmark of carbocation chemistry is multitudes of competing reaction pathways, and to be able to distinguish between pathways with quantum chemical calculations, it is necessary to approach chemical accuracy for relative energies between carbocations. Here, we present an extensive study of the performance of selected density functional theory (DFT) methods in describing the thermochemistry and kinetics of carbocations and their corresponding neutral alkenes both in the gas-phase and within a hybrid quantum mechanics-molecular mechanics (QM/MM) framework. The density functionals are benchmarked against accurate ab initio methods such as CBS-QB3 and DLPNO-CCSD(T). Based on the findings in the gas-phase calculations of carbocations and alkenes, the best functionals are chosen and tested further for non-covalent interactions in model systems using QM and QM/MM methods. We compute the interaction energies between a model carbocation/alkane and model π, dipole, and hydrophobic systems using DFT and QM(DFT)/MM and compare with DLPNO-CCSD(T). These latter model systems are representative of side chains of amino acids such as phenylalanine/tyrosine, tryptophan, asparagine/glutamine, serine/threonine, methionine, and other hydrophobic groups. The Lennard-Jones parameters of the QM atoms in QM(DFT)/MM calculations are modified to obtain an optimal fit with the QM energies. Finally, a selected carbocation reaction is studied in the gas phase and in implicit chloroform solvent using QM and in explicit chloroform solvent using QM/MM and umbrella sampling simulations. This study highlights the highest accuracy possible with selected density functionals and QM/MM methods but also some limitations in using QM/MM methods for carbocation systems.
Collapse
Affiliation(s)
- Shani Zev
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Prashant Kumar Gupta
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Efrat Pahima
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
29
|
Xu B, Tantillo DJ, Rudolf JD. Mechanistic Insights into the Formation of the 6,10‐Bicyclic Eunicellane Skeleton by the Bacterial Diterpene Synthase Bnd4. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Baofu Xu
- Department of Chemistry University of Florida Gainesville FL 32611 USA
| | - Dean J. Tantillo
- Department of Chemistry University of California-Davis Davis CA 95616 USA
| | - Jeffrey D. Rudolf
- Department of Chemistry University of Florida Gainesville FL 32611 USA
| |
Collapse
|
30
|
Xu B, Tantillo DJ, Rudolf JD. Mechanistic Insights into the Formation of the 6,10-Bicyclic Eunicellane Skeleton by the Bacterial Diterpene Synthase Bnd4. Angew Chem Int Ed Engl 2021; 60:23159-23163. [PMID: 34378291 PMCID: PMC8511055 DOI: 10.1002/anie.202109641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 11/05/2022]
Abstract
The eunicellane diterpenoids are a unique family of natural products seen in marine organisms, plants, and bacteria. We used a series of biochemical, bioinformatics, and theoretical experiments to investigate the mechanism of the first diterpene synthase known to form the eunicellane skeleton. Deuterium labeling studies and quantum chemical calculations support that Bnd4, from Streptomyces sp. (CL12-4), forms the 6,10-bicyclic skeleton through a 1,10-cyclization, 1,3-hydride shift, and 1,14-cyclization cascade. Bnd4 also demonstrated sesquiterpene cyclase activity and the ability to prenylate small molecules. Bnd4 possesses a unique D94 NxxxD motif and mutation experiments confirmed an absolute requirement for D94 as well as E169.
Collapse
Affiliation(s)
- Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Dean J Tantillo
- Department of Chemistry, University of California-Davis, Davis, CA, 95616, USA
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
31
|
Xing B, Yu J, Chi C, Ma X, Xu Q, Li A, Ge Y, Wang Z, Liu T, Jia H, Yin F, Guo J, Huang L, Yang D, Ma M. Functional characterization and structural bases of two class I diterpene synthases in pimarane-type diterpene biosynthesis. Commun Chem 2021; 4:140. [PMID: 36697656 PMCID: PMC9814573 DOI: 10.1038/s42004-021-00578-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/08/2021] [Indexed: 01/28/2023] Open
Abstract
Pimarane-type diterpenoids are widely distributed in all domains of life, but no structures or catalytic mechanisms of pimarane-type diterpene synthases (DTSs) have been characterized. Here, we report that two class I DTSs, Sat1646 and Stt4548, each accept copalyl diphosphate (CPP) as the substrate to produce isopimara-8,15-diene (1). Sat1646 can also accept syn-CPP and produce syn-isopimaradiene/pimaradiene analogues (2-7), among which 2 possesses a previously unreported "6/6/7" ring skeleton. We solve the crystal structures of Sat1646, Sat1646 complexed with magnesium ions, and Stt4548, thereby revealing the active sites of these pimarane-type DTSs. Substrate modeling and subsequent site-directed mutagenesis experiments demonstrate different structural bases of Sat1646 and Stt4548 for 1 production. Comparisons with previously reported DTSs reveal their distinct carbocation intermediate stabilization mechanisms, which control the conversion of a single substrate CPP into structurally diverse diterpene products. These results illustrate the structural bases for enzymatic catalyses of pimarane-type DTSs, potentially facilitating future DTS engineering and combinatorial biosynthesis.
Collapse
Affiliation(s)
- Baiying Xing
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Jiahui Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Changbiao Chi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Xueyang Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Qingxia Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Annan Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yuanjie Ge
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Zhengdong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Tan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Hongli Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Fuling Yin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Donghui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
32
|
Huang ZY, Ye RY, Yu HL, Li AT, Xu JH. Mining methods and typical structural mechanisms of terpene cyclases. BIORESOUR BIOPROCESS 2021; 8:66. [PMID: 38650244 PMCID: PMC10992375 DOI: 10.1186/s40643-021-00421-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/24/2021] [Indexed: 12/13/2022] Open
Abstract
Terpenoids, formed by cyclization and/or permutation of isoprenes, are the most diverse and abundant class of natural products with a broad range of significant functions. One family of the critical enzymes involved in terpenoid biosynthesis is terpene cyclases (TCs), also known as terpene synthases (TSs), which are responsible for forming the ring structure as a backbone of functionally diverse terpenoids. With the recent advances in biotechnology, the researches on terpene cyclases have gradually shifted from the genomic mining of novel enzyme resources to the analysis of their structures and mechanisms. In this review, we summarize both the new methods for genomic mining and the structural mechanisms of some typical terpene cyclases, which are helpful for the discovery, engineering and application of more and new TCs.
Collapse
Affiliation(s)
- Zheng-Yu Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Ru-Yi Ye
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Ai-Tao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
33
|
Zhu C, Xu B, Adpressa DA, Rudolf JD, Loesgen S. Discovery and Biosynthesis of a Structurally Dynamic Antibacterial Diterpenoid. Angew Chem Int Ed Engl 2021; 60:14163-14170. [PMID: 33780586 PMCID: PMC9247737 DOI: 10.1002/anie.202102453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/07/2021] [Indexed: 01/07/2023]
Abstract
A new bicyclic diterpenoid, benditerpenoic acid, was isolated from soil-dwelling Streptomyces sp. (CL12-4). We sequenced the bacterial genome, identified the responsible biosynthetic gene cluster, verified the function of the terpene synthase, and heterologously produced the core diterpene. Comparative bioinformatics indicated this Streptomyces strain is phylogenetically unique and possesses nine terpene synthases. The absolute configurations of the new trans-fused bicyclo[8.4.0]tetradecanes were achieved by extensive spectroscopic analyses, including Mosher's analysis, J-based coupling analysis, and computations based on sparse NMR-derived experimental restraints. Interestingly, benditerpenoic acid exists in two distinct ring-flipped bicyclic conformations with a rotational barrier of ≈16 kcal mol-1 in solution. The diterpenes exhibit moderate antibacterial activity against Gram-positive bacteria including methicillin and multi-drug resistant Staphylococcus aureus. This is a rare example of an eunicellane-type diterpenoid from bacteria and the first identification of a diterpene synthase and biosynthetic gene cluster responsible for the construction of the eunicellane scaffold.
Collapse
Affiliation(s)
- Chenxi Zhu
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
| | - Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611, USA
| | - Donovon A. Adpressa
- Department of Analytical Research and Development, Merck & Co., Inc. Boston, MA 02115, USA
| | - Jeffrey D. Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611, USA
| | - Sandra Loesgen
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611, USA
| |
Collapse
|
34
|
Entdeckung und Biosynthese eines strukturdynamischen antibakteriellen Diterpenoids. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Xu B, Li Z, Alsup TA, Ehrenberger MA, Rudolf JD. Bacterial diterpene synthases prenylate small molecules. ACS Catal 2021; 11:5906-5915. [PMID: 34796043 PMCID: PMC8594881 DOI: 10.1021/acscatal.1c01113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biosynthesis of terpenoid natural products begins with a carbocation-based cyclization or prenylation reaction. While these reactions are mechanistically similar, there are several families of enzymes, namely terpene synthases and prenyltransferases, that have evolved to specifically catalyze terpene cyclization or prenylation reactions. Here, we report that bacterial diterpene synthases, enzymes that are traditionally considered to be specific for cyclization, are capable of efficiently catalyzing both diterpene cyclization and the prenylation of small molecules. We investigated this unique dual reactivity of terpene synthases through a series of kinetic, biocatalytic, structural, and bioinformatics studies. Overall, this study unveils the ability of terpene synthases to catalyze C-, N-, O-, and S-prenylation on small molecules, proposes a substrate decoy mechanism for prenylation by terpene synthases, supports the physiological relevance of terpene synthase-catalyzed prenylation in vivo, and addresses questions regarding the evolution of prenylation function and its potential role in natural products biosynthesis.
Collapse
Affiliation(s)
- Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Zining Li
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Tyler A. Alsup
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | | | - Jeffrey D. Rudolf
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
36
|
Schriever K, Saenz-Mendez P, Rudraraju RS, Hendrikse NM, Hudson EP, Biundo A, Schnell R, Syrén PO. Engineering of Ancestors as a Tool to Elucidate Structure, Mechanism, and Specificity of Extant Terpene Cyclase. J Am Chem Soc 2021; 143:3794-3807. [PMID: 33496585 PMCID: PMC8023661 DOI: 10.1021/jacs.0c10214] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Indexed: 12/21/2022]
Abstract
Structural information is crucial for understanding catalytic mechanisms and to guide enzyme engineering efforts of biocatalysts, such as terpene cyclases. However, low sequence similarity can impede homology modeling, and inherent protein instability presents challenges for structural studies. We hypothesized that X-ray crystallography of engineered thermostable ancestral enzymes can enable access to reliable homology models of extant biocatalysts. We have applied this concept in concert with molecular modeling and enzymatic assays to understand the structure activity relationship of spiroviolene synthase, a class I terpene cyclase, aiming to engineer its specificity. Engineering a surface patch in the reconstructed ancestor afforded a template structure for generation of a high-confidence homology model of the extant enzyme. On the basis of structural considerations, we designed and crystallized ancestral variants with single residue exchanges that exhibited tailored substrate specificity and preserved thermostability. We show how the two single amino acid alterations identified in the ancestral scaffold can be transferred to the extant enzyme, conferring a specificity switch that impacts the extant enzyme's specificity for formation of the diterpene spiroviolene over formation of sesquiterpenes hedycaryol and farnesol by up to 25-fold. This study emphasizes the value of ancestral sequence reconstruction combined with enzyme engineering as a versatile tool in chemical biology.
Collapse
Affiliation(s)
- Karen Schriever
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 114 28 Stockholm, Sweden
| | - Patricia Saenz-Mendez
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 114 28 Stockholm, Sweden
| | | | - Natalie M. Hendrikse
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 114 28 Stockholm, Sweden
- Swedish
Orphan Biovitrum AB, 112
76 Stockholm, Sweden
| | - Elton P. Hudson
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Protein Science, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
| | - Antonino Biundo
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 114 28 Stockholm, Sweden
| | - Robert Schnell
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, 17 165 Stockholm, Sweden
| | - Per-Olof Syrén
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 114 28 Stockholm, Sweden
- Wallenberg
Wood Science Center, Teknikringen 56−58, 100 44 Stockholm, Sweden
| |
Collapse
|
37
|
Srivastava PL, Escorcia AM, Huynh F, Miller DJ, Allemann RK, van der Kamp MW. Redesigning the Molecular Choreography to Prevent Hydroxylation in Germacradien-11-ol Synthase Catalysis. ACS Catal 2021; 11:1033-1041. [PMID: 33614194 PMCID: PMC7886051 DOI: 10.1021/acscatal.0c04647] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/26/2020] [Indexed: 12/04/2022]
Abstract
![]()
Natural sesquiterpene synthases have evolved to make complex terpenoids by quenching
reactive carbocations either by proton transfer or by hydroxylation (water capture),
depending on their active site. Germacradien-11-ol synthase (Gd11olS) from
Streptomyces coelicolor catalyzes the cyclization of farnesyl
diphosphate (FDP) into the hydroxylated sesquiterpene germacradien-11-ol. Here, we
combine experiment and simulation to guide the redesign of its active site pocket to
avoid hydroxylation of the product. Molecular dynamics simulations indicate two regions
between which water molecules can flow that are responsible for hydroxylation. Point
mutations of selected residues result in variants that predominantly form a complex
nonhydroxylated product, which we identify as isolepidozene. Our results indicate how
these mutations subtly change the molecular choreography in the Gd11olS active site and
thereby pave the way for the engineering of terpene synthases to make complex terpenoid
products.
Collapse
Affiliation(s)
- Prabhakar L. Srivastava
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Andrés M. Escorcia
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Florence Huynh
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - David J. Miller
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Rudolf K. Allemann
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Marc W. van der Kamp
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
38
|
Raz K, Driller R, Dimos N, Ringel M, Brück T, Loll B, Major DT. The Impression of a Nonexisting Catalytic Effect: The Role of CotB2 in Guiding the Complex Biosynthesis of Cyclooctat-9-en-7-ol. J Am Chem Soc 2020; 142:21562-21574. [PMID: 33289561 DOI: 10.1021/jacs.0c11348] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Terpene synthases generate terpenes employing diversified carbocation chemistry, including highly specific ring formations, proton and hydride transfers, and methyl as well as methylene migrations, followed by reaction quenching. In this enzyme family, the main catalytic challenge is not rate enhancement, but rather structural and reactive control of intrinsically unstable carbocations in order to guide the resulting product distribution. Here we employ multiscale modeling within classical and quantum dynamics frameworks to investigate the reaction mechanism in the diterpene synthase CotB2, commencing with the substrate geranyl geranyl diphosphate and terminating with the carbocation precursor to the final product cyclooctat-9-en-7-ol. The 11-step in-enzyme carbocation cascade is compared with the same reaction in the absence of the enzyme. Remarkably, the free energy profiles in gas phase and in CotB2 are surprisingly similar. This similarity contrasts the multitude of strong π-cation, dipole-cation, and ion-pair interactions between all intermediates in the reaction cascade and the enzyme, suggesting a remarkable balance of interactions in CotB2. We ascribe this balance to the similar magnitude of the interactions between the carbocations along the reaction coordinate and the enzyme environment. The effect of CotB2 mutations is studied using multiscale mechanistic docking, machine learning, and X-ray crystallography, pointing the way for future terpene synthase design.
Collapse
Affiliation(s)
- Keren Raz
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Ronja Driller
- Institut für Chemie und Biochemie, Strukturbiochemie, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| | - Nicole Dimos
- Institut für Chemie und Biochemie, Strukturbiochemie, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| | - Marion Ringel
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching, Germany
| | - Thomas Brück
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching, Germany
| | - Bernhard Loll
- Institut für Chemie und Biochemie, Strukturbiochemie, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| | - Dan Thomas Major
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
39
|
Zhang Y, Prach LM, O'Brien TE, DiMaio F, Prigozhin DM, Corn JE, Alber T, Siegel JB, Tantillo DJ. Crystal Structure and Mechanistic Molecular Modeling Studies of Mycobacterium tuberculosis Diterpene Cyclase Rv3377c. Biochemistry 2020; 59:4507-4515. [PMID: 33182997 DOI: 10.1021/acs.biochem.0c00762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Terpenes make up the largest class of natural products, with extensive chemical and structural diversity. Diterpenes, mostly isolated from plants and rarely prokaryotes, exhibit a variety of important biological activities and valuable applications, including providing antitumor and antibiotic pharmaceuticals. These natural products are constructed by terpene synthases, a class of enzymes that catalyze one of the most complex chemical reactions in biology: converting simple acyclic oligo-isoprenyl diphosphate substrates to complex polycyclic products via carbocation intermediates. Here we obtained the second ever crystal structure of a class II diterpene synthase from bacteria, tuberculosinol pyrophosphate synthase (i.e., Halimadienyl diphosphate synthase, MtHPS, or Rv3377c) from Mycobacterium tuberculosis (Mtb). This enzyme transforms (E,E,E)-geranylgeranyl diphosphate into tuberculosinol pyrophosphate (Halimadienyl diphosphate). Rv3377c is part of the Mtb diterpene pathway along with Rv3378c, which converts tuberculosinol pyrophosphate to 1-tuberculosinyl adenosine (1-TbAd). This pathway was shown to exist only in virulent Mycobacterium species, but not in closely related avirulent species, and was proposed to be involved in phagolysosome maturation arrest. To gain further insight into the reaction pathway and the mechanistically relevant enzyme substrate binding orientation, electronic structure calculation and docking studies of reaction intermediates were carried out. Results reveal a plausible binding mode of the substrate that can provide the information to guide future drug design and anti-infective therapies of this biosynthetic pathway.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Chemistry, University of California-Davis, Davis, California 95616, United States
| | - Lisa M Prach
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Terrence E O'Brien
- Department of Chemistry, University of California-Davis, Davis, California 95616, United States
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Daniil M Prigozhin
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jacob E Corn
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Tom Alber
- Department of Molecular & Cell Biology and QB3 Institute, University of California, Berkeley, California 94720, United States
| | - Justin B Siegel
- Department of Chemistry, University of California-Davis, Davis, California 95616, United States.,Department of Biochemistry and Molecular Medicine, University of California-Davis, Davis, California 95616, United States.,Genome Center, University of California-Davis, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California-Davis, Davis, California 95616, United States
| |
Collapse
|
40
|
Tang X, Zhang F, Zeng T, Li W, Yin S, Wu R. Enzymatic Plasticity Inspired by the Diterpene Cyclase CotB2. ACS Chem Biol 2020; 15:2820-2832. [PMID: 32986400 DOI: 10.1021/acschembio.0c00645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzymatic plasticity, as a modern term referring to the functional conversion of an enzyme, is significant for enzymatic activity redesign. The bacterial diterpene cyclase CotB2 is a typical plastic enzyme by which its native form precisely conducts a chemical reaction while its mutants diversify the catalytic functions drastically. Many efforts have been made to disclose the mysteries of CotB2 enzyme catalysis. However, the catalytic details and regulatory mechanism toward the precise chemo- and stereoselectivity are still elusive. In this work, multiscale simulations are employed to illuminate the biocyclization mechanisms of the linear substrate into the final product cyclooctat-9-en-7-ol with a 5-8-5 fused ring scaffold, and the derailment products arising from the premature quenching of reactive carbocation intermediates are also discussed. The two major regulatory factors, local electrostatic stabilization effects from aromatic residues or polar residue in pocket and global features of active site including pocket-contour and pocket-hydrophobicity, are responsible for the enzymatic plasticity of CotB2. Further comparative studies of representative Euphorbiaceae and fungal diterpene cyclase (RcCS and PaFS) show a correlation between pocket plasticity and product diversity, which inspires a tentative enzyme product prediction and the rational diterpene cyclases' reengineering in the future.
Collapse
Affiliation(s)
- Xiaowen Tang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Fan Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tao Zeng
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Sheng Yin
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruibo Wu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
41
|
Raz K, Levi S, Gupta PK, Major DT. Enzymatic control of product distribution in terpene synthases: insights from multiscale simulations. Curr Opin Biotechnol 2020; 65:248-258. [PMID: 32679412 DOI: 10.1016/j.copbio.2020.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/03/2020] [Accepted: 06/07/2020] [Indexed: 11/25/2022]
Abstract
In this opinion, we review some recent work on terpene biosynthesis using multiscale simulation approaches, with special focus on contributions from our group. Terpene synthases generate terpenes employing rich carbocation chemistry, including highly specific ring formations, proton, hydride, methyl, and methylene migrations, followed by reaction quenching. In these enzymes, the main catalytic challenge is not rate enhancement, but rather control of intrinsically reactive carbocations and the resulting product distribution. Herein, we review multiscale simulations of selected mono-, sesqui-, and diterpene synthases. We point to the many tools adopted by terpene synthases to achieve correct substrate fold, carbocation formation, carbocation reaction environment, and reaction quenching. A better understanding of the toolbox employed by terpene synthases is expected to aid in the search for new enzymatic and biomimetic synthetic routes to natural and unnatural terpenes.
Collapse
Affiliation(s)
- Keren Raz
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Shani Levi
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Prashant Kumar Gupta
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
42
|
Exploring the catalytic cascade of cembranoid biosynthesis by combination of genetic engineering and molecular simulations. Comput Struct Biotechnol J 2020; 18:1819-1829. [PMID: 32695274 PMCID: PMC7365961 DOI: 10.1016/j.csbj.2020.06.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/04/2022] Open
Abstract
While chemical steps involved in bioactive cembranoid biosynthesis have been examined, the corresponding enzymatic mechanisms leading to their formation remain elusive. In the tobacco plant, Nicotiana tabacum, a putative cembratriene-ol synthase (CBTS) initiates the catalytic cascade that lead to the biosynthesis of cembratriene-4,6-diols, which displays antibacterial- and anti-proliferative activities. We report here on structural homology models, functional studies, and mechanistic explorations of this enzyme using a combination of biosynthetic and computational methods. This approach guided us to develop an efficient de novo production of five bioactive non- and monohydroxylated cembranoids. Our homology models in combination with quantum and classical simulations suggested putative principles of the CBTS catalytic cycle, and provided a possible rationale for the formation of premature olefinic side products. Moreover, the functional reconstruction of a N. tabacum-derived class II P450 with a cognate CPR, obtained by transcriptome mining provided for production of bioactive cembratriene-4,6-diols. Our combined findings provide mechanistic insights into cembranoid biosynthesis, and a basis for the sustainable industrial production of highly valuable bioactive cembranoids.
Collapse
|
43
|
Levi S, Zhang Q, Major DT. Thermodynamic and Kinetic Control Determine the Sesquiterpene Reaction Pathways Inside Nanocapsules. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shani Levi
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Qi Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P.R. China
| | - Dan T. Major
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
44
|
Kschowak MJ, Maier F, Wortmann H, Buchhaupt M. Analyzing and Engineering the Product Selectivity of a 2-Methylenebornane Synthase. ACS Synth Biol 2020; 9:981-986. [PMID: 32364702 DOI: 10.1021/acssynbio.9b00432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Terpenes constitute the largest class of natural products with more than 70 000 compounds. Many different terpenes find applications in the flavor and fragrance industry or can be used as fine chemicals or drugs. In some bacteria, noncanonical terpenes with 11 carbon atoms are synthesized via a GPP-C2-methyltransferase and the subsequent conversion of 2-methyl-GPP by certain terpene synthases into mainly 2-methylisoborneol and 2-methylenebornane. Many other C11-terpenes were reported as side products, but they are synthesized only in minor amounts by the bacterial C11-terpene biosynthesis pathway. To enable biotechnological synthesis of these largely unexplored natural products, we changed the product selectivity of the 2-methylenebornane synthase from Pseudomonas fluorescens by a semirational protein engineering approach. Active site amino acids with impact on the product selectivity were identified and variants with completely altered product spectra could be identified and characterized. The gathered data provide new insights into the structure-function relationship for C11-terpene synthases and demonstrate the production of formerly inaccessible noncanonical terpenes.
Collapse
Affiliation(s)
- Max J. Kschowak
- DECHEMA Research Institute, Industrial Biotechnology, Frankfurt am Main, 60486, Germany
- Johann Wolfgang Goethe-University, Faculty of Biological Sciences, Frankfurt am Main, 60323, Germany
| | - Felix Maier
- DECHEMA Research Institute, Industrial Biotechnology, Frankfurt am Main, 60486, Germany
- Johann Wolfgang Goethe-University, Faculty of Biological Sciences, Frankfurt am Main, 60323, Germany
| | - Hannah Wortmann
- DECHEMA Research Institute, Industrial Biotechnology, Frankfurt am Main, 60486, Germany
| | - Markus Buchhaupt
- DECHEMA Research Institute, Industrial Biotechnology, Frankfurt am Main, 60486, Germany
| |
Collapse
|
45
|
Lin FL, Lauterbach L, Zou J, Wang YH, Lv JM, Chen GD, Hu D, Gao H, Yao XS, Dickschat JS. Mechanistic Characterization of the Fusicoccane-type Diterpene Synthase for Myrothec-15(17)-en-7-ol. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00377] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fu-Long Lin
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
| | - Lukas Lauterbach
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, Bonn 53121, Germany
| | - Jian Zou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, P. R. China
| | - Yong-Heng Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
| | - Jian-Ming Lv
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
| | - Guo-Dong Chen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
| | - Dan Hu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
| | - Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, Bonn 53121, Germany
| |
Collapse
|
46
|
Rinkel J, Dickschat JS. Mechanistic Studies on Trichoacorenol Synthase from Amycolatopsis benzoatilytica. Chembiochem 2020; 21:807-810. [PMID: 31553510 PMCID: PMC7155024 DOI: 10.1002/cbic.201900584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Indexed: 01/17/2023]
Abstract
Isotopic labeling experiments performed with a newly identified bacterial trichoacorenol synthase established a 1,5-hydride shift occurring in the cyclization mechanism. During EI-MS analysis, major fragments of the sesquiterpenoid were shown to arise via cryptic hydrogen movements. Therefore, the interpretation of earlier results regarding the cyclization mechanism obtained by feeding experiments in Trichoderma is revised.
Collapse
Affiliation(s)
- Jan Rinkel
- Kekulé Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Strasse 153121BonnGermany
| | - Jeroen S. Dickschat
- Kekulé Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Strasse 153121BonnGermany
| |
Collapse
|
47
|
Syntrivanis LD, Némethová I, Schmid D, Levi S, Prescimone A, Bissegger F, Major DT, Tiefenbacher K. Four-Step Access to the Sesquiterpene Natural Product Presilphiperfolan-1β-ol and Unnatural Derivatives via Supramolecular Catalysis. J Am Chem Soc 2020; 142:5894-5900. [DOI: 10.1021/jacs.0c01464] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Ivana Némethová
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Dario Schmid
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Shani Levi
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Fabian Bissegger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Dan T. Major
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 24, 4058 Basel, Switzerland
| |
Collapse
|
48
|
Raz K, Driller R, Brück T, Loll B, Major DT. Understanding the role of active site residues in CotB2 catalysis using a cluster model. Beilstein J Org Chem 2020; 16:50-59. [PMID: 31976016 PMCID: PMC6964657 DOI: 10.3762/bjoc.16.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/17/2019] [Indexed: 11/23/2022] Open
Abstract
Terpene cyclases are responsible for the initial cyclization cascade in the multistep synthesis of a large number of terpenes. CotB2 is a diterpene cyclase from Streptomyces melanosporofaciens, which catalyzes the formation of cycloocta-9-en-7-ol, a precursor to the next-generation anti-inflammatory drug cyclooctatin. In this work, we present evidence for the significant role of the active site's residues in CotB2 on the reaction energetics using quantum mechanical calculations in an active site cluster model. The results revealed the significant effect of the active site residues on the relative electronic energy of the intermediates and transition state structures with respect to gas phase data. A detailed understanding of the role of the enzyme environment on the CotB2 reaction cascade can provide important information towards a biosynthetic strategy for cyclooctatin and the biomanufacturing of related terpene structures.
Collapse
Affiliation(s)
- Keren Raz
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Ronja Driller
- Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
- present address: Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
- present address: Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
| | - Thomas Brück
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching, Germany
| | - Bernhard Loll
- Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| | - Dan T Major
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
49
|
Zhang Q, Catti L, Syntrivanis LD, Tiefenbacher K. En route to terpene natural products utilizing supramolecular cyclase mimetics. Nat Prod Rep 2019; 36:1619-1627. [PMID: 31021352 DOI: 10.1039/c9np00003h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: literature up to 2018 Terpenes are a class of natural products characterized by remarkable structural diversity. Much of this diversity arises biosynthetically from a handful of linear precursors through the so-called tail-to-head terpene cyclization reaction. This reaction is one of the most complex observed in nature, and historically attempts to replicate it with non-enzymatic means have met with little success. In recent years, however, the development of manmade binding pockets that allow such reactions to take place has been reported. This Highlight provides an overview of this nascent field, and outlines the challenges that need to be overcome moving forward.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, China
| | | | | | | |
Collapse
|
50
|
Helfrich EJN, Lin GM, Voigt CA, Clardy J. Bacterial terpene biosynthesis: challenges and opportunities for pathway engineering. Beilstein J Org Chem 2019; 15:2889-2906. [PMID: 31839835 PMCID: PMC6902898 DOI: 10.3762/bjoc.15.283] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/01/2019] [Indexed: 12/27/2022] Open
Abstract
Terpenoids are the largest and structurally most diverse class of natural products. They possess potent and specific biological activity in multiple assays and against diseases, including cancer and malaria as notable examples. Although the number of characterized terpenoid molecules is huge, our knowledge of how they are biosynthesized is limited, particularly when compared to the well-studied thiotemplate assembly lines. Bacteria have only recently been recognized as having the genetic potential to biosynthesize a large number of complex terpenoids, but our current ability to associate genetic potential with molecular structure is severely restricted. The canonical terpene biosynthetic pathway uses a single enzyme to form a cyclized hydrocarbon backbone followed by modifications with a suite of tailoring enzymes that can generate dozens of different products from a single backbone. This functional promiscuity of terpene biosynthetic pathways renders terpene biosynthesis susceptible to rational pathway engineering using the latest developments in the field of synthetic biology. These engineered pathways will not only facilitate the rational creation of both known and novel terpenoids, their development will deepen our understanding of a significant branch of biosynthesis. The biosynthetic insights gained will likely empower a greater degree of engineering proficiency for non-natural terpene biosynthetic pathways and pave the way towards the biotechnological production of high value terpenoids.
Collapse
Affiliation(s)
- Eric J N Helfrich
- Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology, Boston, United States
| | - Geng-Min Lin
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, United States
| | - Christopher A Voigt
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, United States
| | - Jon Clardy
- Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology, Boston, United States
| |
Collapse
|