1
|
Lu X, Sauter B, Keller A, Zhanybekova S, Gillingham D. Exploring the Potential of Homologous Recombination Protein PALB2 in Synthetic Lethal Combinations. ACS Chem Biol 2025. [PMID: 40300769 DOI: 10.1021/acschembio.5c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Cells with defective homologous recombination (HR) are highly sensitive to poly(ADP-ribose) polymerase (PARP) inhibition. Current therapeutic approaches leverage this vulnerability by using PARP inhibitors in cells with genetically compromised HR. However, if HR factors in cancer cells could be inhibited or degraded pharmacologically, it might reveal other opportunities for synergistic combinations. In this study, we developed a model system that recapitulates PARP/HR synthetic lethality by integrating a small-molecule responsive zinc-finger degron into the HR factor Partner and Localizer of BRCA2 (PALB2). We further tested a series of peptide ligands for PALB2 based on its natural binding partners, which led to the discovery of a high affinity peptide that will support future work on PALB2 and HR. Together, our findings validate PALB2 as a promising drug target and provide the tools and starting points for developing molecules with therapeutic applications.
Collapse
Affiliation(s)
- Xinyan Lu
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Basilius Sauter
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Aramis Keller
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Saule Zhanybekova
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Dennis Gillingham
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
2
|
Lahiri S, Hamilton G, Moore G, Goehring L, Huang TT, Jensen RB, Rothenberg E. BRCA2 prevents PARPi-mediated PARP1 retention to protect RAD51 filaments. Nature 2025; 640:1103-1111. [PMID: 40140565 DOI: 10.1038/s41586-025-08749-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/06/2025] [Indexed: 03/28/2025]
Abstract
The tumour-suppressor protein BRCA2 has a central role in homology-directed DNA repair by enhancing the formation of RAD51 filaments on resected single-stranded DNA generated at double-stranded DNA breaks and stimulating RAD51 activity1,2. Individuals with BRCA2 mutations are predisposed to cancer; however, BRCA2-deficient tumours are often responsive to targeted therapy with PARP inhibitors (PARPi)3-6. The mechanism by which BRCA2 deficiency renders cells sensitive to PARPi but with minimal toxicity in cells heterozygous for BRCA2 mutations remains unclear. Here we identify a previously unknown role of BRCA2 that is directly linked to the effect of PARP1 inhibition. Using biochemical and single-molecule approaches, we demonstrate that PARPi-mediated PARP1 retention on a resected DNA substrate interferes with RAD51 filament stability and impairs RAD51-mediated DNA strand exchange. Full-length BRCA2 protects RAD51 filaments and counteracts the instability conferred by PARPi-mediated retention by preventing the binding of PARP1 to DNA. Extending these findings to a cellular context, we use quantitative single-molecule localization microscopy to show that BRCA2 prevents PARPi-induced PARP1 retention at homologous-recombination repair sites. By contrast, BRCA2-deficient cells exhibit increased PARP1 retention at these lesions in response to PARPi. These results provide mechanistic insights into the role of BRCA2 in maintaining RAD51 stability and protecting homologous-recombination repair sites by mitigating PARPi-mediated PARP1 retention.
Collapse
Affiliation(s)
- Sudipta Lahiri
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - George Hamilton
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Gemma Moore
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Liana Goehring
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Tony T Huang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ryan B Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Sharma N, Coticchio G, Borini A, Tachibana K, Nasmyth KA, Schuh M. Changes in DNA repair compartments and cohesin loss promote DNA damage accumulation in aged oocytes. Curr Biol 2024; 34:5131-5148.e6. [PMID: 39437784 DOI: 10.1016/j.cub.2024.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/20/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
Oocyte loss, a natural process that accelerates as women approach their mid-30s, poses a significant challenge to female reproduction. Recent studies have identified DNA damage as a primary contributor to oocyte loss, but the mechanisms underlying DNA damage accumulation remain unclear. Here, we show that aged oocytes have a lower DNA repair capacity and reduced mobility of DNA damage sites compared to young oocytes. Incomplete DNA repair in aged oocytes results in defective chromosome integrity and partitioning, thereby compromising oocyte quality. We found that DNA repair proteins are arranged in spatially distinct DNA repair compartments that form during the late stages of oocyte growth, accompanied by changes in the activity of DNA repair pathways. We demonstrate alterations in these compartments with age, including substantial changes in the levels of key DNA repair proteins and a shift toward error-prone DNA repair pathways. In addition, we show that reduced cohesin levels make aged oocytes more vulnerable to persistent DNA damage and cause changes in DNA repair compartments. Our study links DNA damage accumulation in aged oocytes, a leading cause of oocyte loss, to cohesin deterioration and changes in the organization, abundance, and response of DNA repair machinery.
Collapse
Affiliation(s)
- Ninadini Sharma
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | | | - Andrea Borini
- IVIRMA Global Research Alliance, 9.baby, Bologna 40125, Italy
| | - Kikuë Tachibana
- Department of Totipotency, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich 82152, Germany
| | - Kim A Nasmyth
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Melina Schuh
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany.
| |
Collapse
|
4
|
Kim YN, Gulhan DC, Jin H, Glodzik D, Park PJ. Recent Advances in Genomic Approaches for the Detection of Homologous Recombination Deficiency. Cancer Res Treat 2024; 56:975-990. [PMID: 39026430 PMCID: PMC11491256 DOI: 10.4143/crt.2024.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024] Open
Abstract
Accurate detection of homologous recombination deficiency (HRD) in cancer patients is paramount in clinical applications, as HRD confers sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors. With the advances in genome sequencing technology, mutational profiling on a genome-wide scale has become readily accessible, and our knowledge of the genomic consequences of HRD has been greatly expanded and refined. Here, we review the recent advances in HRD detection methods. We examine the copy number and structural alterations that often accompany the genome instability that results from HRD, describe the advantages of mutational signature-based methods that do not rely on specific gene mutations, and review some of the existing algorithms used for HRD detection. We also discuss the choice of sequencing platforms (panel, exome, or whole-genome) and catalog the HRD detection assays used in key PARP inhibitor trials.
Collapse
Affiliation(s)
- Yoo-Na Kim
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea
| | - Doga C. Gulhan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Hu Jin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Dominik Glodzik
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Peter J. Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Paul MW, Aaron J, Wait E, Van Genderen R, Tyagi A, Kabbech H, Smal I, Chew TL, Kanaar R, Wyman C. Distinct mobility patterns of BRCA2 molecules at DNA damage sites. Nucleic Acids Res 2024; 52:8332-8343. [PMID: 38953170 PMCID: PMC11317164 DOI: 10.1093/nar/gkae559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024] Open
Abstract
BRCA2 is an essential tumor suppressor protein involved in promoting faithful repair of DNA lesions. The activity of BRCA2 needs to be tuned precisely to be active when and where it is needed. Here, we quantified the spatio-temporal dynamics of BRCA2 in living cells using aberration-corrected multifocal microscopy (acMFM). Using multicolor imaging to identify DNA damage sites, we were able to quantify its dynamic motion patterns in the nucleus and at DNA damage sites. While a large fraction of BRCA2 molecules localized near DNA damage sites appear immobile, an additional fraction of molecules exhibits subdiffusive motion, providing a potential mechanism to retain an increased number of molecules at DNA lesions. Super-resolution microscopy revealed inhomogeneous localization of BRCA2 relative to other DNA repair factors at sites of DNA damage. This suggests the presence of multiple nanoscale compartments in the chromatin surrounding the DNA lesion, which could play an important role in the contribution of BRCA2 to the regulation of the repair process.
Collapse
Affiliation(s)
- Maarten W Paul
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jesse Aaron
- Advanced Imaging Center, HHMI Janelia, Ashburn VA, USA
| | - Eric Wait
- Advanced Imaging Center, HHMI Janelia, Ashburn VA, USA
- Elephas Biosciences, Madison WI, USA
| | - Romano M Van Genderen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Arti Tyagi
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Bionanoscience and Kavli Institute of Nanoscience Delft, Delft, University of Technology, Delft, The Netherlands
| | - Hélène Kabbech
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ihor Smal
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Theme Biomedical Sciences, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Roland Kanaar
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Claire Wyman
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Kojak N, Kuno J, Fittipaldi KE, Khan A, Wenger D, Glasser M, Donnianni RA, Tang Y, Zhang J, Huling K, Ally R, Mujica AO, Turner T, Magardino G, Huang PY, Kerk SY, Droguett G, Prissette M, Rojas J, Gomez T, Gagliardi A, Hunt C, Rabinowitz JS, Gong G, Poueymirou W, Chiao E, Zambrowicz B, Siao CJ, Kajimura D. Somatic and intergenerational G4C2 hexanucleotide repeat instability in a human C9orf72 knock-in mouse model. Nucleic Acids Res 2024; 52:5732-5755. [PMID: 38597682 PMCID: PMC11162798 DOI: 10.1093/nar/gkae250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
Expansion of a G4C2 repeat in the C9orf72 gene is associated with familial Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). To investigate the underlying mechanisms of repeat instability, which occurs both somatically and intergenerationally, we created a novel mouse model of familial ALS/FTD that harbors 96 copies of G4C2 repeats at a humanized C9orf72 locus. In mouse embryonic stem cells, we observed two modes of repeat expansion. First, we noted minor increases in repeat length per expansion event, which was dependent on a mismatch repair pathway protein Msh2. Second, we found major increases in repeat length per event when a DNA double- or single-strand break (DSB/SSB) was artificially introduced proximal to the repeats, and which was dependent on the homology-directed repair (HDR) pathway. In mice, the first mode primarily drove somatic repeat expansion. Major changes in repeat length, including expansion, were observed when SSB was introduced in one-cell embryos, or intergenerationally without DSB/SSB introduction if G4C2 repeats exceeded 400 copies, although spontaneous HDR-mediated expansion has yet to be identified. These findings provide a novel strategy to model repeat expansion in a non-human genome and offer insights into the mechanism behind C9orf72 G4C2 repeat instability.
Collapse
Affiliation(s)
- Nada Kojak
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Junko Kuno
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | - David Wenger
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | - Yajun Tang
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Jade Zhang
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Katie Huling
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Roxanne Ally
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | | | - Pei Yi Huang
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Sze Yen Kerk
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | - Jose Rojas
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | | | | | - Guochun Gong
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | - Eric Chiao
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | | |
Collapse
|
7
|
Goehring L, Keegan S, Lahiri S, Xia W, Kong M, Jimenez-Sainz J, Gupta D, Drapkin R, Jensen RB, Smith DJ, Rothenberg E, Fenyö D, Huang TT. Dormant origin firing promotes head-on transcription-replication conflicts at transcription termination sites in response to BRCA2 deficiency. Nat Commun 2024; 15:4716. [PMID: 38830843 PMCID: PMC11148086 DOI: 10.1038/s41467-024-48286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 04/24/2024] [Indexed: 06/05/2024] Open
Abstract
BRCA2 is a tumor suppressor protein responsible for safeguarding the cellular genome from replication stress and genotoxicity, but the specific mechanism(s) by which this is achieved to prevent early oncogenesis remains unclear. Here, we provide evidence that BRCA2 acts as a critical suppressor of head-on transcription-replication conflicts (HO-TRCs). Using Okazaki-fragment sequencing (Ok-seq) and computational analysis, we identified origins (dormant origins) that are activated near the transcription termination sites (TTS) of highly expressed, long genes in response to replication stress. Dormant origins are a source for HO-TRCs, and drug treatments that inhibit dormant origin firing led to a reduction in HO-TRCs, R-loop formation, and DNA damage. Using super-resolution microscopy, we showed that HO-TRC events track with elongating RNA polymerase II, but not with transcription initiation. Importantly, RNase H2 is recruited to sites of HO-TRCs in a BRCA2-dependent manner to help alleviate toxic R-loops associated with HO-TRCs. Collectively, our results provide a mechanistic basis for how BRCA2 shields against genomic instability by preventing HO-TRCs through both direct and indirect means occurring at predetermined genomic sites based on the pre-cancer transcriptome.
Collapse
Affiliation(s)
- Liana Goehring
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Sarah Keegan
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
- Institute for Systems Genetics, New York University School of Medicine, New York University School of Medicine, New York, NY, USA
| | - Sudipta Lahiri
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA
| | - Wenxin Xia
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Michael Kong
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | | | - Dipika Gupta
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ryan B Jensen
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA
| | - Duncan J Smith
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Eli Rothenberg
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - David Fenyö
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
- Institute for Systems Genetics, New York University School of Medicine, New York University School of Medicine, New York, NY, USA
| | - Tony T Huang
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Qian H, Margaretha Plat A, Jonker A, Hoebe RA, Krawczyk P. Super-resolution GSDIM microscopy unveils distinct nanoscale characteristics of DNA repair foci under diverse genotoxic stress. DNA Repair (Amst) 2024; 134:103626. [PMID: 38232606 DOI: 10.1016/j.dnarep.2024.103626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/06/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
DNA double-strand breaks initiate the DNA damage response (DDR), leading to the accumulation of repair proteins at break sites and the formation of the-so-called foci. Various microscopy methods, such as wide-field, confocal, electron, and super-resolution microscopy, have been used to study these structures. However, the impact of different DNA-damaging agents on their (nano)structure remains unclear. Utilising GSDIM super-resolution microscopy, here we investigated the distribution of fluorescently tagged DDR proteins (53BP1, RNF168, MDC1) and γH2AX in U2OS cells treated with γ-irradiation, etoposide, cisplatin, or hydroxyurea. Our results revealed that both foci structure and their nanoscale ultrastructure, including foci size, nanocluster characteristics, fluorophore density and localisation, can be significantly altered by different inducing agents, even ones with similar mechanisms. Furthermore, distinct behaviours of DDR proteins were observed under the same treatment. These findings have implications for cancer treatment strategies involving these agents and provide insights into the nanoscale organisation of the DDR.
Collapse
Affiliation(s)
- Haibin Qian
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Audrey Margaretha Plat
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Ard Jonker
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Ron A Hoebe
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Przemek Krawczyk
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Essawy M, Chesner L, Alshareef D, Ji S, Tretyakova N, Campbell C. Ubiquitin signaling and the proteasome drive human DNA-protein crosslink repair. Nucleic Acids Res 2023; 51:12174-12184. [PMID: 37843153 PMCID: PMC10711432 DOI: 10.1093/nar/gkad860] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023] Open
Abstract
DNA-protein crosslinks (DPCs) are large cytotoxic DNA lesions that form following exposure to chemotherapeutic drugs and environmental chemicals. Nucleotide excision repair (NER) and homologous recombination (HR) promote survival following exposure to DPC-inducing agents. However, it is not known how cells recognize DPC lesions, or what mechanisms selectively target DPC lesions to these respective repair pathways. To address these questions, we examined DPC recognition and repair by transfecting a synthetic DPC lesion comprised of the human oxoguanine glycosylase (OGG1) protein crosslinked to double-stranded M13MP18 into human cells. In wild-type cells, this lesion is efficiently repaired, whereas cells deficient in NER can only repair this lesion if an un-damaged homologous donor is co-transfected. Transfected DPC is subject to rapid K63 polyubiquitination. In NER proficient cells, the DPC is subject to K48 polyubiquitination, and is removed via a proteasome-dependent mechanism. In NER-deficient cells, the DNA-conjugated protein is not subject to K48 polyubiquitination. Instead, the K63 tag remains attached, and is only lost when a homologous donor molecule is present. Taken together, these results support a model in which selective addition of polyubiquitin chains to DNA-crosslinked protein leads to selective recruitment of the proteasome and the cellular NER and recombinational DNA repair machinery.
Collapse
Affiliation(s)
- Maram Essawy
- Department of Pharmacology, University of Minnesota, Minnesota, MN 55455, USA
| | - Lisa Chesner
- Department of Pharmacology, University of Minnesota, Minnesota, MN 55455, USA
| | - Duha Alshareef
- Department of Pharmacology, University of Minnesota, Minnesota, MN 55455, USA
| | - Shaofei Ji
- Department of Medicinal Chemistry, University of Minnesota, Minnesota, MN 55455, USA
| | - Natalia Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minnesota, MN 55455, USA
| | - Colin Campbell
- Department of Pharmacology, University of Minnesota, Minnesota, MN 55455, USA
| |
Collapse
|
10
|
Heemskerk T, van de Kamp G, Essers J, Kanaar R, Paul MW. Multi-scale cellular imaging of DNA double strand break repair. DNA Repair (Amst) 2023; 131:103570. [PMID: 37734176 DOI: 10.1016/j.dnarep.2023.103570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Live-cell and high-resolution fluorescence microscopy are powerful tools to study the organization and dynamics of DNA double-strand break repair foci and specific repair proteins in single cells. This requires specific induction of DNA double-strand breaks and fluorescent markers to follow the DNA lesions in living cells. In this review, where we focused on mammalian cell studies, we discuss different methods to induce DNA double-strand breaks, how to visualize and quantify repair foci in living cells., We describe different (live-cell) imaging modalities that can reveal details of the DNA double-strand break repair process across multiple time and spatial scales. In addition, recent developments are discussed in super-resolution imaging and single-molecule tracking, and how these technologies can be applied to elucidate details on structural compositions or dynamics of DNA double-strand break repair.
Collapse
Affiliation(s)
- Tim Heemskerk
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Gerarda van de Kamp
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Maarten W Paul
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
11
|
Morgan STB, Whelan DR, Rozario AM. Visualizing DNA damage and repair using single molecule super resolution microscopy. Methods Cell Biol 2023; 182:237-245. [PMID: 38359980 DOI: 10.1016/bs.mcb.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Single molecule super resolution microscopy overcomes the diffraction limit by separating individual fluorophore emissions over time, resulting in spatial resolutions that are far superior to epifluorescence microscopy. This allows for DNA damage response (DDR) events to be investigated in greater detail. A variety of DNA damaging drugs can be used on S-phase synchronized immortalized cell lines alongside 5-ethynyl-2'-deoxyuridine (EdU) pulse labelling to ultimately visualize DNA repair pathways at distinct time points and quantify colocalizations between nascent DNA and immunolabeled DDR proteins. This chapter will outline super resolution microscopy assays to interrogate the spatiotemporal organization of DNA repair proteins at damaged foci during DDR events within immortalized cell lines.
Collapse
Affiliation(s)
- Sophie T B Morgan
- La Trobe Institute for Molecular Science, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia
| | - Donna R Whelan
- La Trobe Institute for Molecular Science, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia
| | - Ashley M Rozario
- La Trobe Institute for Molecular Science, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia.
| |
Collapse
|
12
|
Whalen JM, Cantor SB. Unveiling the toxicity of single-stranded DNA gaps through a yeast model. Nat Struct Mol Biol 2023:10.1038/s41594-023-01031-6. [PMID: 37415010 DOI: 10.1038/s41594-023-01031-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Affiliation(s)
- Jenna M Whalen
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sharon B Cantor
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
13
|
Talibova G, Bilmez Y, Ozturk S. Increased double-strand breaks in aged mouse male germ cells may result from changed expression of the genes essential for homologous recombination or nonhomologous end joining repair. Histochem Cell Biol 2023; 159:127-147. [PMID: 36241856 DOI: 10.1007/s00418-022-02157-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 11/26/2022]
Abstract
DNA double-strand breaks (DSBs) are commonly appearing deleterious DNA damages, which progressively increase in male germ cells during biological aging. There are two main pathways for repairing DSBs: homologous recombination (HR) and classical nonhomologous end joining (cNHEJ). Knockout and functional studies revealed that, while RAD51 and RPA70 proteins are indispensable for HR-based repair, KU80 and XRCC4 are the key proteins in cNHEJ repair. As is known, γH2AX contributes to these pathways through recruiting repair-related proteins to damaged site. The underlying reasons of increased DSBs in male germ cells during aging are not fully addressed yet. In this study, we aimed to analyze the spatiotemporal expression of the Rad51, Rpa70, Ku80, and Xrcc4 genes in the postnatal mouse testes, classified into young, prepubertal, pubertal, postpubertal, and aged groups according to their reproductive features and histological structures. We found that expression of these genes significantly decreased in the aged group compared with the other groups (P < 0.05). γH2AX staining showed that DSB levels in the germ cells from spermatogonia to elongated spermatids as well as in the Sertoli cells remarkably increased in the aged group (P < 0.05). The RAD51, RPA70, KU80, and XRCC4 protein levels exhibited predominant changes in the germ and Sertoli cells among groups (P < 0.05). These findings suggest that altered expression of the Rad51, Rpa70, Ku80, and Xrcc4 genes in the germ and Sertoli cells may be associated with increasing DSBs during biological aging, which might result in fertility loss.
Collapse
Affiliation(s)
- Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Yesim Bilmez
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
14
|
Zagelbaum J, Gautier J. Double-strand break repair and mis-repair in 3D. DNA Repair (Amst) 2023; 121:103430. [PMID: 36436496 PMCID: PMC10799305 DOI: 10.1016/j.dnarep.2022.103430] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
DNA double-strand breaks (DSBs) are lesions that arise frequently from exposure to damaging agents as well as from ongoing physiological DNA transactions. Mis-repair of DSBs leads to rearrangements and structural variations in chromosomes, including insertions, deletions, and translocations implicated in disease. The DNA damage response (DDR) limits pathologic mutations and large-scale chromosome rearrangements. DSB repair initiates in 2D at DNA lesions with the stepwise recruitment of repair proteins and local chromatin remodeling which facilitates break accessibility. More complex structures are then formed via protein assembly into nanodomains and via genome folding into chromatin loops. Subsequently, 3D reorganization of DSBs is guided by clustering forces which drive the assembly of repair domains harboring multiple lesions. These domains are further stabilized and insulated into condensates via liquid-liquid phase-separation. Here, we discuss the benefits and risks associated with this 3D reorganization of the broken genome.
Collapse
Affiliation(s)
- Jennifer Zagelbaum
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jean Gautier
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
15
|
Faulkner EL, Pike JA, Densham RM, Garlick E, Thomas SG, Neely RK, Morris JR. Imaging nanoscale nuclear structures with expansion microscopy. J Cell Sci 2022; 135:276027. [PMID: 35748225 PMCID: PMC9450888 DOI: 10.1242/jcs.259009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/21/2022] [Indexed: 11/20/2022] Open
Abstract
Commonly applied super-resolution light microscopies have provided insight into subcellular processes at the nanoscale. However, imaging depth, speed, throughput and cost remain significant challenges, limiting the numbers of three-dimensional (3D) nanoscale processes that can be investigated and the number of laboratories able to undertake such analysis. Expansion microscopy (ExM) solves many of these limitations, but its application to imaging nuclear processes has been constrained by concerns of unequal nuclear expansion. Here, we demonstrate the conditions for isotropic expansion of the nucleus at a resolution equal to or better than 120–130 nm (pre-expansion). Using the DNA damage response proteins BRCA1, 53BP1 (also known as TP53BP1) and RAD51 as exemplars, we quantitatively describe the 3D nanoscale organisation of over 50,000 DNA damage response structures. We demonstrate the ability to assess chromatin-regulated events and show the simultaneous assessment of four elements. This study thus demonstrates how ExM can contribute to the investigation of nanoscale nuclear processes. Summary: Expansion microscopy provides quantitative insight into the impact of chromatin modifiers on spatiotemporal organisation of the DNA repair proteins BRCA1, 53BP1 and RAD51 at a resolution of 65–70 nm.
Collapse
Affiliation(s)
- Emma L Faulkner
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jeremy A Pike
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,COMPARE, University of Birmingham and University of Nottingham, Midlands, UK
| | - Ruth M Densham
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, B15 2TT, UK
| | - Evelyn Garlick
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,COMPARE, University of Birmingham and University of Nottingham, Midlands, UK
| | - Steven G Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,COMPARE, University of Birmingham and University of Nottingham, Midlands, UK
| | - Robert K Neely
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Joanna R Morris
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, B15 2TT, UK
| |
Collapse
|
16
|
Berger ND, Brownlee PM, Chen MJ, Morrison H, Osz K, Ploquin NP, Chan JA, Goodarzi AA. High replication stress and limited Rad51-mediated DNA repair capacity, but not oxidative stress, underlie oligodendrocyte precursor cell radiosensitivity. NAR Cancer 2022; 4:zcac012. [PMID: 35425901 PMCID: PMC9004414 DOI: 10.1093/narcan/zcac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/15/2022] [Accepted: 03/21/2022] [Indexed: 12/29/2022] Open
Abstract
Cranial irradiation is part of the standard of care for treating pediatric brain tumors. However, ionizing radiation can trigger serious long-term neurologic sequelae, including oligodendrocyte and brain white matter loss enabling neurocognitive decline in children surviving brain cancer. Oxidative stress-mediated oligodendrocyte precursor cell (OPC) radiosensitivity has been proposed as a possible explanation for this. Here, however, we demonstrate that antioxidants fail to improve OPC viability after irradiation, despite suppressing oxidative stress, suggesting an alternative etiology for OPC radiosensitivity. Using systematic approaches, we find that OPCs have higher irradiation-induced and endogenous γH2AX foci compared to neural stem cells, neurons, astrocytes and mature oligodendrocytes, and these correlate with replication-associated DNA double strand breakage. Furthermore, OPCs are reliant upon ATR kinase and Mre11 nuclease-dependent processes for viability, are more sensitive to drugs increasing replication fork collapse, and display synthetic lethality with PARP inhibitors after irradiation. This suggests an insufficiency for homology-mediated DNA repair in OPCs-a model that is supported by evidence of normal RPA but reduced RAD51 filament formation at resected lesions in irradiated OPCs. We therefore propose a DNA repair-centric mechanism of OPC radiosensitivity, involving chronically-elevated replication stress combined with 'bottlenecks' in RAD51-dependent DNA repair that together reduce radiation resilience.
Collapse
Affiliation(s)
- N Daniel Berger
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Peter M Brownlee
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Myra J Chen
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Hali Morrison
- Department of Oncology and Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| | - Katalin Osz
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nicolas P Ploquin
- Department of Oncology and Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer A Chan
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aaron A Goodarzi
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Department of Oncology and Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
17
|
USP1-trapping lesions as a source of DNA replication stress and genomic instability. Nat Commun 2022; 13:1740. [PMID: 35365626 PMCID: PMC8975806 DOI: 10.1038/s41467-022-29369-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/08/2022] [Indexed: 12/16/2022] Open
Abstract
The deubiquitinase USP1 is a critical regulator of genome integrity through the deubiquitylation of Fanconi Anemia proteins and the DNA replication processivity factor, proliferating cell nuclear antigen (PCNA). Uniquely, following UV irradiation, USP1 self-inactivates through autocleavage, which enables its own degradation and in turn, upregulates PCNA monoubiquitylation. However, the functional role for this autocleavage event during physiological conditions remains elusive. Herein, we discover that cells harboring an autocleavage-defective USP1 mutant, while still able to robustly deubiquitylate PCNA, experience more replication fork-stalling and premature fork termination events. Using super-resolution microscopy and live-cell single-molecule tracking, we show that these defects are related to the inability of this USP1 mutant to be properly recycled from sites of active DNA synthesis, resulting in replication-associated lesions. Furthermore, we find that the removal of USP1 molecules from DNA is facilitated by the DNA-dependent metalloprotease Spartan to counteract the cytotoxicity caused by “USP1-trapping”. We propose a utility of USP1 inhibitors in cancer therapy based on their ability to induce USP1-trapping lesions and consequent replication stress and genomic instability in cancer cells, similar to how non-covalent DNA-protein crosslinks cause cytotoxicity by imposing steric hindrances upon proteins involved in DNA transactions. Here the authors provide mechanistic insights into how auto-cleavage of the USP1 deubiquitinase regulates DNA replication and genome stability. Implications for the targeting of USP1 activity via protein-DNA trapping in cancer therapy are discussed.
Collapse
|
18
|
RPA phosphorylation facilitates RAD52 dependent homologous recombination in BRCA-deficient cells. Mol Cell Biol 2021; 42:e0052421. [PMID: 34928169 DOI: 10.1128/mcb.00524-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Loss of RAD52 is synthetically lethal in BRCA-deficient cells, owing to its role in backup homologous recombination (HR) repair of DNA double-strand breaks (DSBs). In HR in mammalian cells, DSBs are processed to single-stranded DNA (ssDNA) overhangs, which are then bound by Replication Protein A(RPA). RPA is exchanged for RAD51 by mediator proteins: in mammals BRCA2 is the primary mediator, however, RAD52 provides an alternative mediator pathway in BRCA-deficient cells. RAD51 stimulates strand exchange between homologous DNA duplexes, a critical step in HR. RPA phosphorylation and de-phosphorylation are important for HR, but its effect on RAD52 mediator function is unknown. Here, we show that RPA phosphorylation is required for RAD52 to salvage HR in BRCA-deficient cells. Using BRCA2-depleted human cells, in which the only available mediator pathway is RAD52-dependent, the expression of phosphorylation-deficient RPA mutant reduced HR. Furthermore, RPA-phospho-mutant cells showed reduced association of RAD52 with RAD51. Interestingly, there was no effect of RPA phosphorylation on RAD52 recruitment to repair foci. Finally, we show that RPA phosphorylation does not affect RAD52-dependent ssDNA annealing. Thus, although RAD52 can be recruited independently of RPA's phosphorylation status, RPA phosphorylation is required for RAD52's association with RAD51, and its subsequent promotion of RAD52-mediated HR.
Collapse
|
19
|
Chiang YC, Lin PH, Cheng WF. Homologous Recombination Deficiency Assays in Epithelial Ovarian Cancer: Current Status and Future Direction. Front Oncol 2021; 11:675972. [PMID: 34722237 PMCID: PMC8551835 DOI: 10.3389/fonc.2021.675972] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/17/2021] [Indexed: 01/02/2023] Open
Abstract
Epithelial ovarian cancer (EOC) patients are generally diagnosed at an advanced stage, usually relapse after initial treatments, which include debulking surgery and adjuvant platinum-based chemotherapy, and eventually have poor 5-year survival of less than 50%. In recent years, promising survival benefits from maintenance therapy with poly(ADP-ribose) polymerase (PARP) inhibitor (PARPi) has changed the management of EOC in newly diagnosed and recurrent disease. Identification of BRCA mutations and/or homologous recombination deficiency (HRD) is critical for selecting patients for PARPi treatment. However, the currently available HRD assays are not perfect predictors of the clinical response to PARPis in EOC patients. In this review, we introduce the concept of synthetic lethality, the rationale of using PARPi when HRD is present in tumor cells, the clinical trials of PARPi incorporating the HRD assays for EOC, the current HRD assays, and other HRD assays in development.
Collapse
Affiliation(s)
- Ying-Cheng Chiang
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Han Lin
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Fang Cheng
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
20
|
Banerjee D, Langberg K, Abbas S, Odermatt E, Yerramothu P, Volaric M, Reidenbach MA, Krentz KJ, Rubinstein CD, Brautigan DL, Abbas T, Gelfand BD, Ambati J, Kerur N. A non-canonical, interferon-independent signaling activity of cGAMP triggers DNA damage response signaling. Nat Commun 2021; 12:6207. [PMID: 34707113 PMCID: PMC8551335 DOI: 10.1038/s41467-021-26240-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022] Open
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), produced by cyclic GMP-AMP synthase (cGAS), stimulates the production of type I interferons (IFN). Here we show that cGAMP activates DNA damage response (DDR) signaling independently of its canonical IFN pathways. Loss of cGAS dampens DDR signaling induced by genotoxic insults. Mechanistically, cGAS activates DDR in a STING-TBK1-dependent manner, wherein TBK1 stimulates the autophosphorylation of the DDR kinase ATM, with the consequent activation of the CHK2-p53-p21 signal transduction pathway and the induction of G1 cell cycle arrest. Despite its stimulatory activity on ATM, cGAMP suppresses homology-directed repair (HDR) through the inhibition of polyADP-ribosylation (PARylation), in which cGAMP reduces cellular levels of NAD+; meanwhile, restoring NAD+ levels abrogates cGAMP-mediated suppression of PARylation and HDR. Finally, we show that cGAMP also activates DDR signaling in invertebrate species lacking IFN (Crassostrea virginica and Nematostella vectensis), suggesting that the genome surveillance mechanism of cGAS predates metazoan interferon-based immunity.
Collapse
Affiliation(s)
- Daipayan Banerjee
- Aravind Medical Research Foundation, Madurai, 625020, India
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kurt Langberg
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Salar Abbas
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Eric Odermatt
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Praveen Yerramothu
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Martin Volaric
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Matthew A Reidenbach
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Kathy J Krentz
- Genome Editing & Animal Models Core, University of Wisconsin Biotechnology Center, Madison, WI, USA
| | - C Dustin Rubinstein
- Genome Editing & Animal Models Core, University of Wisconsin Biotechnology Center, Madison, WI, USA
| | - David L Brautigan
- Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Tarek Abbas
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
| | - Bradley D Gelfand
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Nagaraj Kerur
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Ophthalmology and Visual Sciences, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
21
|
Lee WTC, Gupta D, Rothenberg E. Single-molecule imaging of replication fork conflicts at genomic DNA G4 structures in human cells. Methods Enzymol 2021; 661:77-94. [PMID: 34776224 DOI: 10.1016/bs.mie.2021.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
DNA G-quadruplexes (G4s) are stable, non-canonical DNA secondary structures formed within guanine(G)-rich sequences. While extensively studied in vitro, evidence of the occurrence of G4s in vivo has only recently emerged. The formation of G4 structures may pose an obstacle for diverse DNA transactions including replication, which is linked to mutagenesis and genomic instability. A fundamental question in the field has been whether and how the formation of G4s is coupled to the progression of replication forks. This process has remained undefined largely due to the lack of experimental approaches capable of monitoring the presence of G4s and their association with the replication machinery in cells. Here, we describe a detailed multicolor single-molecule localization microscopy (SMLM) protocol for detecting nanoscale spatial-association of DNA G4s with the cellular replisome complex. This method offers a unique platform for visualizing the mechanisms of G4 formation at the molecular level, as well as addressing key biological questions as to the functional roles of these structures in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Wei Ting C Lee
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States.
| | - Dipika Gupta
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States.
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States.
| |
Collapse
|
22
|
Yin Y, Lee WTC, Gupta D, Xue H, Tonzi P, Borowiec JA, Huang TT, Modesti M, Rothenberg E. A basal-level activity of ATR links replication fork surveillance and stress response. Mol Cell 2021; 81:4243-4257.e6. [PMID: 34473946 DOI: 10.1016/j.molcel.2021.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/03/2021] [Accepted: 08/06/2021] [Indexed: 11/27/2022]
Abstract
Mammalian cells use diverse pathways to prevent deleterious consequences during DNA replication, yet the mechanism by which cells survey individual replisomes to detect spontaneous replication impediments at the basal level, and their accumulation during replication stress, remain undefined. Here, we used single-molecule localization microscopy coupled with high-order-correlation image-mining algorithms to quantify the composition of individual replisomes in single cells during unperturbed replication and under replicative stress. We identified a basal-level activity of ATR that monitors and regulates the amounts of RPA at forks during normal replication. Replication-stress amplifies the basal activity through the increased volume of ATR-RPA interaction and diffusion-driven enrichment of ATR at forks. This localized crowding of ATR enhances its collision probability, stimulating the activation of its replication-stress response. Finally, we provide a computational model describing how the basal activity of ATR is amplified to produce its canonical replication stress response.
Collapse
Affiliation(s)
- Yandong Yin
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.
| | - Wei Ting Chelsea Lee
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Dipika Gupta
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Huijun Xue
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Peter Tonzi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - James A Borowiec
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Tony T Huang
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Mauro Modesti
- Cancer Research Center of Marseille, CNRS UMR 7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
23
|
Sharma AB, Erasimus H, Pinto L, Caron MC, Gopaul D, Peterlini T, Neumann K, Nazarov PV, Fritah S, Klink B, Herold-Mende CC, Niclou SP, Pasero P, Calsou P, Masson JY, Britton S, Van Dyck E. XAB2 promotes Ku eviction from single-ended DNA double-strand breaks independently of the ATM kinase. Nucleic Acids Res 2021; 49:9906-9925. [PMID: 34500463 PMCID: PMC8464071 DOI: 10.1093/nar/gkab785] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022] Open
Abstract
Replication-associated single-ended DNA double-strand breaks (seDSBs) are repaired predominantly through RAD51-mediated homologous recombination (HR). Removal of the non-homologous end-joining (NHEJ) factor Ku from resected seDSB ends is crucial for HR. The coordinated actions of MRE11-CtIP nuclease activities orchestrated by ATM define one pathway for Ku eviction. Here, we identify the pre-mRNA splicing protein XAB2 as a factor required for resistance to seDSBs induced by the chemotherapeutic alkylator temozolomide. Moreover, we show that XAB2 prevents Ku retention and abortive HR at seDSBs induced by temozolomide and camptothecin, via a pathway that operates in parallel to the ATM-CtIP-MRE11 axis. Although XAB2 depletion preserved RAD51 focus formation, the resulting RAD51-ssDNA associations were unproductive, leading to increased NHEJ engagement in S/G2 and genetic instability. Overexpression of RAD51 or RAD52 rescued the XAB2 defects and XAB2 loss was synthetically lethal with RAD52 inhibition, providing potential perspectives in cancer therapy.
Collapse
Affiliation(s)
- Abhishek Bharadwaj Sharma
- DNA Repair and Chemoresistance Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Hélène Erasimus
- DNA Repair and Chemoresistance Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg.,Faculty of Science, Technology and Communication, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Lia Pinto
- DNA Repair and Chemoresistance Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg.,Faculty of Science, Technology and Communication, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Marie-Christine Caron
- CHU de Québec Research Center, Oncology Division, Québec City, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Canada
| | - Diyavarshini Gopaul
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| | - Thibaut Peterlini
- CHU de Québec Research Center, Oncology Division, Québec City, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Canada
| | - Katrin Neumann
- DNA Repair and Chemoresistance Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Petr V Nazarov
- Quantitative Biology Unit, Multiomics Data Science Group, LIH, Luxembourg
| | - Sabrina Fritah
- NorLux Neuro-Oncology Laboratory, Department of Oncology, LIH, Luxembourg
| | - Barbara Klink
- National Center of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg.,Functional Tumour Genetics Group, Department of Oncology, LIH, Luxembourg
| | | | - Simone P Niclou
- NorLux Neuro-Oncology Laboratory, Department of Oncology, LIH, Luxembourg.,Department of Biomedicine, University of Bergen, Norway
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| | - Patrick Calsou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France, Equipe Labellisée Ligue Nationale Contre le Cancer 2018
| | - Jean-Yves Masson
- CHU de Québec Research Center, Oncology Division, Québec City, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Canada
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France, Equipe Labellisée Ligue Nationale Contre le Cancer 2018
| | - Eric Van Dyck
- DNA Repair and Chemoresistance Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| |
Collapse
|
24
|
Paul MW, Sidhu A, Liang Y, van Rossum-Fikkert SE, Odijk H, Zelensky AN, Kanaar R, Wyman C. Role of BRCA2 DNA-binding and C-terminal domain in its mobility and conformation in DNA repair. eLife 2021; 10:e67926. [PMID: 34254584 PMCID: PMC8324294 DOI: 10.7554/elife.67926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/12/2021] [Indexed: 11/30/2022] Open
Abstract
Breast cancer type two susceptibility protein (BRCA2) is an essential protein in genome maintenance, homologous recombination (HR), and replication fork protection. Its function includes multiple interaction partners and requires timely localization to relevant sites in the nucleus. We investigated the importance of the highly conserved DNA-binding domain (DBD) and C-terminal domain (CTD) of BRCA2. We generated BRCA2 variants missing one or both domains in mouse embryonic stem (ES) cells and defined their contribution in HR function and dynamic localization in the nucleus, by single-particle tracking of BRCA2 mobility. Changes in molecular architecture of BRCA2 induced by binding partners of purified BRCA2 were determined by scanning force microscopy. BRCA2 mobility and DNA-damage-induced increase in the immobile fraction were largely unaffected by C-terminal deletions. The purified proteins missing CTD and/or DBD were defective in architectural changes correlating with reduced HR function in cells. These results emphasize BRCA2 activity at sites of damage beyond promoting RAD51 delivery.
Collapse
Affiliation(s)
- Maarten W Paul
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical CenterRotterdamNetherlands
| | - Arshdeep Sidhu
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical CenterRotterdamNetherlands
- Department of Radiation Oncology, Erasmus University Medical CenterRotterdamNetherlands
| | - Yongxin Liang
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical CenterRotterdamNetherlands
| | - Sarah E van Rossum-Fikkert
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical CenterRotterdamNetherlands
- Department of Radiation Oncology, Erasmus University Medical CenterRotterdamNetherlands
| | - Hanny Odijk
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical CenterRotterdamNetherlands
| | - Alex N Zelensky
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical CenterRotterdamNetherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical CenterRotterdamNetherlands
| | - Claire Wyman
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical CenterRotterdamNetherlands
- Department of Radiation Oncology, Erasmus University Medical CenterRotterdamNetherlands
| |
Collapse
|
25
|
Fijen C, Rothenberg E. The evolving complexity of DNA damage foci: RNA, condensates and chromatin in DNA double-strand break repair. DNA Repair (Amst) 2021; 105:103170. [PMID: 34256335 DOI: 10.1016/j.dnarep.2021.103170] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/08/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Formation of biomolecular condensates is increasingly recognized as a mechanism employed by cells to deal with stress and to optimize enzymatic reactions. Recent studies have characterized several DNA repair foci as phase-separated condensates, behaving like liquid droplets. Concomitantly, the apparent importance of long non-coding RNAs and RNA-binding proteins for the repair of double-strand breaks has raised many questions about their exact contribution to the repair process. Here we discuss how RNA molecules can participate in condensate formation and how RNA-binding proteins can act as molecular scaffolds. We furthermore summarize our current knowledge about how properties of condensates can influence the choice of repair pathway (homologous recombination or non-homologous end joining) and identify the open questions in this field of emerging importance.
Collapse
Affiliation(s)
- Carel Fijen
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, USA.
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, USA.
| |
Collapse
|
26
|
Dutta A, Dutreux F, Schacherer J. Loss of heterozygosity results in rapid but variable genome homogenization across yeast genetic backgrounds. eLife 2021; 10:70339. [PMID: 34159898 PMCID: PMC8245132 DOI: 10.7554/elife.70339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
The dynamics and diversity of the appearance of genetic variants play an essential role in the evolution of the genome and the shaping of biodiversity. Recent population-wide genome sequencing surveys have highlighted the importance of loss of heterozygosity (LOH) events and have shown that they are a neglected part of the genetic diversity landscape. To assess the extent, variability, and spectrum, we explored the accumulation of LOH events in 169 heterozygous diploid Saccharomyces cerevisiae mutation accumulation lines across nine genetic backgrounds. In total, we detected a large set of 22,828 LOH events across distinct genetic backgrounds with a heterozygous level ranging from 0.1% to 1%. LOH events are very frequent with a rate consistently much higher than the mutation rate, showing their importance for genome evolution. We observed that the interstitial LOH (I-LOH) events, resulting in internal short LOH tracts, were much frequent (n = 19,660) than the terminal LOH (T-LOH) events, that is, tracts extending to the end of the chromosome (n = 3168). However, the spectrum, the rate, and the fraction of the genome under LOH vary across genetic backgrounds. Interestingly, we observed that the more the ancestors were heterozygous, the more they accumulated T-LOH events. In addition, frequent short I-LOH tracts are a signature of the lines derived from hybrids with low spore fertility. Finally, we found lines showing almost complete homozygotization during vegetative progression. Overall, our results highlight that the variable dynamics of the LOH accumulation across distinct genetic backgrounds might lead to rapid differential genome evolution during vegetative growth.
Collapse
Affiliation(s)
- Abhishek Dutta
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Fabien Dutreux
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
27
|
Hsu CL, Chong SY, Lin CY, Kao CF. Histone dynamics during DNA replication stress. J Biomed Sci 2021; 28:48. [PMID: 34144707 PMCID: PMC8214274 DOI: 10.1186/s12929-021-00743-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/08/2021] [Indexed: 01/20/2023] Open
Abstract
Accurate and complete replication of the genome is essential not only for genome stability but also for cell viability. However, cells face constant threats to the replication process, such as spontaneous DNA modifications and DNA lesions from endogenous and external sources. Any obstacle that slows down replication forks or perturbs replication dynamics is generally considered to be a form of replication stress, and the past decade has seen numerous advances in our understanding of how cells respond to and resolve such challenges. Furthermore, recent studies have also uncovered links between defects in replication stress responses and genome instability or various diseases, such as cancer. Because replication stress takes place in the context of chromatin, histone dynamics play key roles in modulating fork progression and replication stress responses. Here, we summarize the current understanding of histone dynamics in replication stress, highlighting recent advances in the characterization of fork-protective mechanisms.
Collapse
Affiliation(s)
- Chia-Ling Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Shin Yen Chong
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chia-Yeh Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
28
|
Jensen RB, Rothenberg E. Preserving genome integrity in human cells via DNA double-strand break repair. Mol Biol Cell 2021; 31:859-865. [PMID: 32286930 PMCID: PMC7185975 DOI: 10.1091/mbc.e18-10-0668] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The efficient maintenance of genome integrity in the face of cellular stress is vital to protect against human diseases such as cancer. DNA replication, chromatin dynamics, cellular signaling, nuclear architecture, cell cycle checkpoints, and other cellular activities contribute to the delicate spatiotemporal control that cells utilize to regulate and maintain genome stability. This perspective will highlight DNA double-strand break (DSB) repair pathways in human cells, how DNA repair failures can lead to human disease, and how PARP inhibitors have emerged as a novel clinical therapy to treat homologous recombination-deficient tumors. We briefly discuss how failures in DNA repair produce a permissive genetic environment in which preneoplastic cells evolve to reach their full tumorigenic potential. Finally, we conclude that an in-depth understanding of DNA DSB repair pathways in human cells will lead to novel therapeutic strategies to treat cancer and potentially other human diseases.
Collapse
Affiliation(s)
- Ryan B Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520-8040
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
29
|
Miriklis EL, Rozario AM, Rothenberg E, Bell TDM, Whelan DR. Understanding DNA organization, damage, and repair with super-resolution fluorescence microscopy. Methods Appl Fluoresc 2021; 9. [PMID: 33765677 DOI: 10.1088/2050-6120/abf239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/25/2021] [Indexed: 11/12/2022]
Abstract
Super-resolution microscopy (SRM) comprises a suite of techniques well-suited to probing the nanoscale landscape of genomic function and dysfunction. Offering the specificity and sensitivity that has made conventional fluorescence microscopy a cornerstone technique of biological research, SRM allows for spatial resolutions as good as 10 nanometers. Moreover, single molecule localization microscopies (SMLMs) enable examination of individual molecular targets and nanofoci allowing for the characterization of subpopulations within a single cell. This review describes how key advances in both SRM techniques and sample preparation have enabled unprecedented insights into DNA structure and function, and highlights many of these new discoveries. Ongoing development and application of these novel, highly interdisciplinary SRM assays will continue to expand the toolbox available for research into the nanoscale genomic landscape.
Collapse
Affiliation(s)
| | | | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, United States of America
| | - Toby D M Bell
- School of Chemistry, Monash University, Clayton, VIC, Australia
| | - Donna R Whelan
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| |
Collapse
|
30
|
Single-molecule imaging reveals replication fork coupled formation of G-quadruplex structures hinders local replication stress signaling. Nat Commun 2021; 12:2525. [PMID: 33953191 PMCID: PMC8099879 DOI: 10.1038/s41467-021-22830-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
Guanine-rich DNA sequences occur throughout the human genome and can transiently form G-quadruplex (G4) structures that may obstruct DNA replication, leading to genomic instability. Here, we apply multi-color single-molecule localization microscopy (SMLM) coupled with robust data-mining algorithms to quantitatively visualize replication fork (RF)-coupled formation and spatial-association of endogenous G4s. Using this data, we investigate the effects of G4s on replisome dynamics and organization. We show that a small fraction of active replication forks spontaneously form G4s at newly unwound DNA immediately behind the MCM helicase and before nascent DNA synthesis. These G4s locally perturb replisome dynamics and organization by reducing DNA synthesis and limiting the binding of the single-strand DNA-binding protein RPA. We find that the resolution of RF-coupled G4s is mediated by an interplay between RPA and the FANCJ helicase. FANCJ deficiency leads to G4 accumulation, DNA damage at G4-associated replication forks, and silencing of the RPA-mediated replication stress response. Our study provides first-hand evidence of the intrinsic, RF-coupled formation of G4 structures, offering unique mechanistic insights into the interference and regulation of stable G4s at replication forks and their effect on RPA-associated fork signaling and genomic instability.
Collapse
|
31
|
Super-resolution mapping of cellular double-strand break resection complexes during homologous recombination. Proc Natl Acad Sci U S A 2021; 118:2021963118. [PMID: 33707212 PMCID: PMC7980414 DOI: 10.1073/pnas.2021963118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Homologous recombination (HR) is a major pathway for repair of DNA double-strand breaks (DSBs). The initial step that drives the HR process is resection of DNA at the DSB, during which a multitude of nucleases, mediators, and signaling proteins accumulates at the damage foci in a manner that remains elusive. Using single-molecule localization super-resolution (SR) imaging assays, we specifically visualize the spatiotemporal behavior of key mediator and nuclease proteins as they resect DNA at single-ended double-strand breaks (seDSBs) formed at collapsed replication forks. By characterizing these associations, we reveal the in vivo dynamics of resection complexes involved in generating the long single-stranded DNA (ssDNA) overhang prior to homology search. We show that 53BP1, a protein known to antagonize HR, is recruited to seDSB foci during early resection but is spatially separated from repair activities. Contemporaneously, CtBP-interacting protein (CtIP) and MRN (MRE11-RAD51-NBS1) associate with seDSBs, interacting with each other and BRCA1. The HR nucleases EXO1 and DNA2 are also recruited and colocalize with each other and with the repair helicase Bloom syndrome protein (BLM), demonstrating multiple simultaneous resection events. Quantification of replication protein A (RPA) accumulation and ssDNA generation shows that resection is completed 2 to 4 h after break induction. However, both BRCA1 and BLM persist later into HR, demonstrating potential roles in homology search and repair resolution. Furthermore, we show that initial recruitment of BRCA1 and removal of Ku are largely independent of MRE11 exonuclease activity but dependent on MRE11 endonuclease activity. Combined, our observations provide a detailed description of resection during HR repair.
Collapse
|
32
|
Sun QX, Wei X, Zhang SQ, Chen ML, Yang T, Yu YL, Wang JH. Dual-mode imaging of copper transporter 1 in HepG2 cells by hyphenating confocal laser scanning microscopy with laser ablation ICPMS. Anal Bioanal Chem 2021; 413:1353-1361. [PMID: 33404748 DOI: 10.1007/s00216-020-03097-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/05/2020] [Accepted: 11/25/2020] [Indexed: 11/29/2022]
Abstract
Copper transporter 1 (CTR1) is a transport protein involved in copper and cisplatin uptake. The visualization of cellular CTR1 migration and its redistribution is highly important in copper/cisplatin exposure/transport. However, to the best of our knowledge, this is a highly challenging task. Herein, a dual-mode imaging strategy for CTR1 is developed by hyphenating confocal laser scanning microscopy (CLSM) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) with a fluorescent/elemental bifunctional tag conjugated with anti-CTR1 antibody. The tag consists of rhodamine B and zirconium metal-organic frameworks (Zr-MOF) for CLSM fluorescence imaging and LA-ICPMS element imaging for a same group of HepG2 cells in a designated visual zone. This dual-mode imaging strategy facilitates visualization of CTR1 migration and meanwhile provides information of CTR1 redistribution in HepG2 cells by uptake of divalent copper or cisplatin. The present dual-mode imaging strategy provides in-depth information for the elucidation of CTR1 involved biological processes. Graphical abstract.
Collapse
Affiliation(s)
- Qi-Xuan Sun
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, Liaoning, China
| | - Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, Liaoning, China
| | - Shang-Qing Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, Liaoning, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, Liaoning, China.
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, Liaoning, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, Liaoning, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, Liaoning, China.
| |
Collapse
|
33
|
Super-Resolution Imaging of Homologous Recombination Repair at Collapsed Replication Forks. Methods Mol Biol 2021; 2153:355-363. [PMID: 32840791 DOI: 10.1007/978-1-0716-0644-5_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Single-molecule super-resolution microscopy (SRM) combines single-molecule detection with spatial resolutions tenfold improved over conventional confocal microscopy. These two key advantages make it possible to visualize individual DNA replication and damage events within the cellular context of fixed cells. This in turn engenders the ability to decipher variations between individual replicative and damage species within a single nucleus, elucidating different subpopulations of stress and repair events. Here, we describe the protocol for combining SRM with novel labeling and damage assays to characterize DNA double-strand break (DSB) induction at stressed replication forks (RFs) and subsequent repair by homologous recombination (HR). These assays enable spatiotemporal mapping of DNA damage response and repair proteins to establish their in vivo function and interactions, as well as detailed characterization of specific dysfunctions in HR caused by drugs or mutations of interest.
Collapse
|
34
|
Whelan DR, Lee WTC, Marks F, Kong YT, Yin Y, Rothenberg E. Super-resolution visualization of distinct stalled and broken replication fork structures. PLoS Genet 2020; 16:e1009256. [PMID: 33370257 PMCID: PMC7793303 DOI: 10.1371/journal.pgen.1009256] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 01/08/2021] [Accepted: 11/03/2020] [Indexed: 12/25/2022] Open
Abstract
Endogenous genotoxic stress occurs in healthy cells due to competition between DNA replication machinery, and transcription and topographic relaxation processes. This causes replication fork stalling and regression, which can further collapse to form single-ended double strand breaks (seDSBs). Super-resolution microscopy has made it possible to directly observe replication stress and DNA damage inside cells, however new approaches to sample preparation and analysis are required. Here we develop and apply multicolor single molecule microscopy to visualize individual replication forks under mild stress from the trapping of Topoisomerase I cleavage complexes, a damage induction which closely mimics endogenous replicative stress. We observe RAD51 and RAD52, alongside RECQ1, as the first responder proteins to stalled but unbroken forks, whereas Ku and MRE11 are initially recruited to seDSBs. By implementing novel super-resolution imaging assays, we are thus able to discern closely related replication fork stress motifs and their repair pathways.
Collapse
Affiliation(s)
- Donna R. Whelan
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
- * E-mail: (DRW); (ER)
| | - Wei Ting C. Lee
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, New York, United States of America
| | - Frances Marks
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, New York, United States of America
| | - Yu Tina Kong
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, New York, United States of America
| | - Yandong Yin
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, New York, United States of America
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, New York, United States of America
- * E-mail: (DRW); (ER)
| |
Collapse
|
35
|
Traver G, Sekhar KR, Crooks PA, Keeney DS, Freeman ML. Targeting NPM1 in irradiated cells inhibits NPM1 binding to RAD51, RAD51 foci formation and radiosensitizes NSCLC. Cancer Lett 2020; 500:220-227. [PMID: 33358698 PMCID: PMC7822076 DOI: 10.1016/j.canlet.2020.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022]
Abstract
The ability of chemo-radiation therapy to control locally advanced stage III non-small cell lung cancer (NSCLC) is poor. While addition of consolidation immunotherapy has improved outcomes in subsets of patients there is still an urgent need for new therapeutic targets. Emerging research indicates that nucleophosmin1 (NPM1) is over-expressed in NSCLC, promotes tumor growth and that over-expression correlates with a lower survival probability. NPM1 is critical for APE1 base excision activity and for RAD51-mediated repair of DNA double strand breaks (DSBs). YTR107 is a small molecule radiation sensitizer that has been shown to bind to NPM1, suppressing pentamer formation. Here we show that in irradiated cells YTR107 inhibits SUMOylated NPM1 from associating with RAD51, RAD51 foci formation and repair of DSBs. YTR107 acts synergistically with the PARP1/2 inhibitor ABT 888 to increase replication stress and radiation-induced cell lethality. YTR107 was found to radiosensitize tumor initiating cells. Congruent with this knowledge, adding YTR107 to a fractionated irradiation regimen diminished NSCLC xenograft growth and increased overall survival. These data support the hypothesis that YTR107 represents a therapeutic target for control of NSCLC.
Collapse
MESH Headings
- Barbiturates/pharmacology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/radiotherapy
- Cell Line, Tumor
- Cell Proliferation/drug effects
- DNA Breaks, Double-Stranded/radiation effects
- DNA Repair/drug effects
- DNA Repair/radiation effects
- DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics
- Humans
- Indoles/pharmacology
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/radiotherapy
- Nuclear Proteins/genetics
- Nucleophosmin
- Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors
- Poly (ADP-Ribose) Polymerase-1/genetics
- Rad51 Recombinase/genetics
- Radiation Tolerance/drug effects
- Radiation-Sensitizing Agents/pharmacology
- Sumoylation/drug effects
- Sumoylation/radiation effects
Collapse
Affiliation(s)
- Geri Traver
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Konjeti R Sekhar
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR72205, USA
| | - Diane S Keeney
- Cumberland Emerging Technologies, Inc., 2525 West End Ave, Suite 950, Nashville, TN, 37203-1608, USA
| | - Michael L Freeman
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
36
|
van Wijk LM, Vermeulen S, Meijers M, van Diest MF, ter Haar NT, de Jonge MM, Solleveld-Westerink N, van Wezel T, van Gent DC, Kroep JR, Bosse T, Gaarenstroom KN, Vrieling H, Vreeswijk MPG. The RECAP Test Rapidly and Reliably Identifies Homologous Recombination-Deficient Ovarian Carcinomas. Cancers (Basel) 2020; 12:E2805. [PMID: 33003546 PMCID: PMC7650677 DOI: 10.3390/cancers12102805] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022] Open
Abstract
Recent studies have shown that the efficacy of PARP inhibitors in epithelial ovarian carcinoma (EOC) is related to tumor-specific defects in homologous recombination (HR) and extends beyond BRCA1/2 deficient EOC. A robust method with which to identify HR-deficient (HRD) carcinomas is therefore of utmost clinical importance. In this study, we investigated the proficiency of a functional HR assay based on the detection of RAD51 foci, the REcombination CAPacity (RECAP) test, in identifying HRD tumors in a cohort of prospectively collected epithelial ovarian carcinomas (EOCs). Of the 39 high-grade serous ovarian carcinomas (HGSOC), the RECAP test detected 26% (10/39) to be HRD, whereas ovarian carcinomas of other histologic subtypes (n = 10) were all HR-proficient (HRP). Of the HRD tumors that could be sequenced, 8/9 showed pathogenic BRCA1/2 variants or BRCA1 promoter hypermethylation, indicating that the RECAP test reliably identifies HRD, including but not limited to tumors related to BRCA1/2 deficiency. Furthermore, we found a trend towards better overall survival (OS) of HGSOC patients with RECAP-identified HRD tumors compared to patients with HRP tumors. This study shows that the RECAP test is an attractive alternative to DNA-based HRD tests, and further development of a clinical grade RECAP test is clearly warranted.
Collapse
Affiliation(s)
- Lise M. van Wijk
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (L.M.v.W.); (S.V.); (M.M.); (M.F.v.D.); (H.V.)
| | - Sylvia Vermeulen
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (L.M.v.W.); (S.V.); (M.M.); (M.F.v.D.); (H.V.)
| | - Matty Meijers
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (L.M.v.W.); (S.V.); (M.M.); (M.F.v.D.); (H.V.)
| | - Manuela F. van Diest
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (L.M.v.W.); (S.V.); (M.M.); (M.F.v.D.); (H.V.)
| | - Natalja T. ter Haar
- Department of Pathology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (N.T.t.H.); (M.M.d.J.); (N.S.-W.); (T.v.W.); (T.B.)
| | - Marthe M. de Jonge
- Department of Pathology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (N.T.t.H.); (M.M.d.J.); (N.S.-W.); (T.v.W.); (T.B.)
| | - Nienke Solleveld-Westerink
- Department of Pathology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (N.T.t.H.); (M.M.d.J.); (N.S.-W.); (T.v.W.); (T.B.)
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (N.T.t.H.); (M.M.d.J.); (N.S.-W.); (T.v.W.); (T.B.)
| | - Dik C. van Gent
- Department of Molecular Genetics, Erasmus MC, 3000 CA Rotterdam, The Netherlands;
| | - Judith R. Kroep
- Department of Medical Oncology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Tjalling Bosse
- Department of Pathology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (N.T.t.H.); (M.M.d.J.); (N.S.-W.); (T.v.W.); (T.B.)
| | - Katja N. Gaarenstroom
- Department of Gynecology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (L.M.v.W.); (S.V.); (M.M.); (M.F.v.D.); (H.V.)
| | - Maaike P. G. Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (L.M.v.W.); (S.V.); (M.M.); (M.F.v.D.); (H.V.)
| |
Collapse
|
37
|
Pálinkás HL, Békési A, Róna G, Pongor L, Papp G, Tihanyi G, Holub E, Póti Á, Gemma C, Ali S, Morten MJ, Rothenberg E, Pagano M, Szűts D, Győrffy B, Vértessy BG. Genome-wide alterations of uracil distribution patterns in human DNA upon chemotherapeutic treatments. eLife 2020; 9:e60498. [PMID: 32956035 PMCID: PMC7505663 DOI: 10.7554/elife.60498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/23/2020] [Indexed: 12/17/2022] Open
Abstract
Numerous anti-cancer drugs perturb thymidylate biosynthesis and lead to genomic uracil incorporation contributing to their antiproliferative effect. Still, it is not yet characterized if uracil incorporations have any positional preference. Here, we aimed to uncover genome-wide alterations in uracil pattern upon drug treatments in human cancer cell line models derived from HCT116. We developed a straightforward U-DNA sequencing method (U-DNA-Seq) that was combined with in situ super-resolution imaging. Using a novel robust analysis pipeline, we found broad regions with elevated probability of uracil occurrence both in treated and non-treated cells. Correlation with chromatin markers and other genomic features shows that non-treated cells possess uracil in the late replicating constitutive heterochromatic regions, while drug treatment induced a shift of incorporated uracil towards segments that are normally more active/functional. Data were corroborated by colocalization studies via dSTORM microscopy. This approach can be applied to study the dynamic spatio-temporal nature of genomic uracil.
Collapse
Affiliation(s)
- Hajnalka L Pálinkás
- Genome Metabolism Research Group, Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and EconomicsBudapestHungary
- Doctoral School of Multidisciplinary Medical Science, University of SzegedSzegedHungary
| | - Angéla Békési
- Genome Metabolism Research Group, Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and EconomicsBudapestHungary
| | - Gergely Róna
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and EconomicsBudapestHungary
- Department of Biochemistry and Molecular Pharmacology, New York University School of MedicineNew YorkUnited States
- Perlmutter Cancer Center, New York University School of MedicineNew YorkUnited States
- Howard Hughes Medical Institute, New York University School of MedicineNew YorkUnited States
| | - Lőrinc Pongor
- Cancer Biomarker Research Group, Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
- Department of Bioinformatics and 2nd Department of Pediatrics, Semmelweis UniversityBudapestHungary
| | - Gábor Papp
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and EconomicsBudapestHungary
| | - Gergely Tihanyi
- Genome Metabolism Research Group, Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and EconomicsBudapestHungary
| | - Eszter Holub
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and EconomicsBudapestHungary
| | - Ádám Póti
- Genome Stability Research Group, Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Carolina Gemma
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital CampusLondonUnited Kingdom
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital CampusLondonUnited Kingdom
| | - Michael J Morten
- Department of Biochemistry and Molecular Pharmacology, New York University School of MedicineNew YorkUnited States
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of MedicineNew YorkUnited States
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University School of MedicineNew YorkUnited States
- Perlmutter Cancer Center, New York University School of MedicineNew YorkUnited States
- Howard Hughes Medical Institute, New York University School of MedicineNew YorkUnited States
| | - Dávid Szűts
- Genome Stability Research Group, Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Balázs Győrffy
- Cancer Biomarker Research Group, Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
- Department of Bioinformatics and 2nd Department of Pediatrics, Semmelweis UniversityBudapestHungary
| | - Beáta G Vértessy
- Genome Metabolism Research Group, Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and EconomicsBudapestHungary
| |
Collapse
|
38
|
Fuh K, Mullen M, Blachut B, Stover E, Konstantinopoulos P, Liu J, Matulonis U, Khabele D, Mosammaparast N, Vindigni A. Homologous recombination deficiency real-time clinical assays, ready or not? Gynecol Oncol 2020; 159:877-886. [PMID: 32967790 DOI: 10.1016/j.ygyno.2020.08.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/31/2020] [Indexed: 01/03/2023]
Abstract
Cancers with deficiencies in homologous recombination-mediated DNA repair (HRR) demonstrate improved clinical outcomes and increased survival. Approximately 50% of high-grade serous ovarian cancers (HGSOC) exhibit homologous recombination deficiency (HRD). HRD can be caused by germline or somatic mutations of genes involved in the HR pathway. Given platinum-based chemotherapy and poly (ADP-ribose) polymerase inhibitors (PARPis) are used in HGSOC, double-strand breaks (DSBs) are common. Unrepaired DSBs are toxic to cells as genomic instability ensues and cells eventually die. Thus, tumor cells with DSBs utilize the high-fidelity HRR as one of the central pathways for repair. In tumors that have HRD, an alternate pathway such as non-homologous end-joining (NHEJ) is used and leads to error-prone repair. To date, methods for clinical detection of homologous recombination deficiency (HRD) are limited to genomic changes of HRR genes and genomic mutation patterns resulting from HRD genes involved in HR-mediated DNA repair. However, these tests detect genomic scars that might not always correlate well with PARP inhibitor or platinum sensitivity in the current state. Therefore, a functional HRD assay should be able to more accurately predict tumor response in real-time. RAD51 foci formation has been used as a functional assay to define HRD and closely correlates with chemotherapy and PARPi sensitivity. The inability to form RAD51 foci is a common feature of HRD. DNA damage can also cause transient slowing or stalling of replication forks defined as replication stress. Replication fork stalling can lead to fork degradation and decreased cell viability if forks do not resume DNA synthesis. Fork degradation has been found to lead to chemosensitivity in BRCA-deficient tumors. To determine this fork degradation phenotype, replication fork/DNA fiber assays are utilized. This review will highlight functional assays for HRD in the context of translating these to real-time clinical assays.
Collapse
Affiliation(s)
- Katherine Fuh
- Division of Gynecologic Oncology, Washington University School of Medicine, and Alvin J. Siteman Cancer Center, St Louis, MO, United States of America.
| | - Mary Mullen
- Division of Gynecologic Oncology, Washington University School of Medicine, and Alvin J. Siteman Cancer Center, St Louis, MO, United States of America
| | - Barbara Blachut
- Division of Gynecologic Oncology, Washington University School of Medicine, and Alvin J. Siteman Cancer Center, St Louis, MO, United States of America
| | - Elizabeth Stover
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Panagiotis Konstantinopoulos
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Joyce Liu
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Ursula Matulonis
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Dineo Khabele
- Division of Gynecologic Oncology, Washington University School of Medicine, and Alvin J. Siteman Cancer Center, St Louis, MO, United States of America
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Washington University School of Medicine, and Alvin J. Siteman Cancer Center, St Louis, MO, United States of America
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, United States of America
| |
Collapse
|
39
|
Konopka A, Whelan DR, Jamali MS, Perri E, Shahheydari H, Toth RP, Parakh S, Robinson T, Cheong A, Mehta P, Vidal M, Ragagnin AMG, Khizhnyak I, Jagaraj CJ, Galper J, Grima N, Deva A, Shadfar S, Nicholson GA, Yang S, Cutts SM, Horejsi Z, Bell TDM, Walker AK, Blair IP, Atkin JD. Impaired NHEJ repair in amyotrophic lateral sclerosis is associated with TDP-43 mutations. Mol Neurodegener 2020; 15:51. [PMID: 32907630 PMCID: PMC7488163 DOI: 10.1186/s13024-020-00386-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background Pathological forms of TAR DNA-binding protein 43 (TDP-43) are present in motor neurons of almost all amyotrophic lateral sclerosis (ALS) patients, and mutations in TDP-43 are also present in ALS. Loss and gain of TDP-43 functions are implicated in pathogenesis, but the mechanisms are unclear. While the RNA functions of TDP-43 have been widely investigated, its DNA binding roles remain unclear. However, recent studies have implicated a role for TDP-43 in the DNA damage response. Methods We used NSC-34 motor neuron-like cells and primary cortical neurons expressing wildtype TDP-43 or TDP-43 ALS associated mutants (A315T, Q331K), in which DNA damage was induced by etoposide or H2O2 treatment. We investigated the consequences of depletion of TDP-43 on DNA repair using small interfering RNAs. Specific non homologous end joining (NHEJ) reporters (EJ5GFP and EJ2GFP) and cells lacking DNA-dependent serine/threonine protein kinase (DNA-PK) were used to investigate the role of TDP-43 in DNA repair. To investigate the recruitment of TDP-43 to sites of DNA damage we used single molecule super-resolution microscopy and a co-immunoprecipitation assay. We also investigated DNA damage in an ALS transgenic mouse model, in which TDP-43 accumulates pathologically in the cytoplasm. We also examined fibroblasts derived from ALS patients bearing the TDP-43 M337V mutation for evidence of DNA damage. Results We demonstrate that wildtype TDP-43 is recruited to sites of DNA damage where it participates in classical NHEJ DNA repair. However, ALS-associated TDP-43 mutants lose this activity, which induces DNA damage. Furthermore, DNA damage is present in mice displaying TDP-43 pathology, implying an active role in neurodegeneration. Additionally, DNA damage triggers features typical of TDP-43 pathology; cytoplasmic mis-localisation and stress granule formation. Similarly, inhibition of NHEJ induces TDP-43 mis-localisation to the cytoplasm. Conclusions This study reveals that TDP-43 functions in DNA repair, but loss of this function triggers DNA damage and is associated with key pathological features of ALS.
Collapse
Affiliation(s)
- Anna Konopka
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, 75 Talavera Road NSW, North Ryde, NSW, 2109, Australia
| | - Donna R Whelan
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Md Shafi Jamali
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, 75 Talavera Road NSW, North Ryde, NSW, 2109, Australia
| | - Emma Perri
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, 75 Talavera Road NSW, North Ryde, NSW, 2109, Australia
| | - Hamideh Shahheydari
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, 75 Talavera Road NSW, North Ryde, NSW, 2109, Australia
| | - Reka P Toth
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, 75 Talavera Road NSW, North Ryde, NSW, 2109, Australia
| | - Sonam Parakh
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, 75 Talavera Road NSW, North Ryde, NSW, 2109, Australia
| | - Tina Robinson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia
| | - Alison Cheong
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia
| | - Prachi Mehta
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, 75 Talavera Road NSW, North Ryde, NSW, 2109, Australia
| | - Marta Vidal
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, 75 Talavera Road NSW, North Ryde, NSW, 2109, Australia
| | - Audrey M G Ragagnin
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, 75 Talavera Road NSW, North Ryde, NSW, 2109, Australia
| | - Ivan Khizhnyak
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, 75 Talavera Road NSW, North Ryde, NSW, 2109, Australia
| | - Cyril J Jagaraj
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, 75 Talavera Road NSW, North Ryde, NSW, 2109, Australia
| | - Jasmin Galper
- Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Natalie Grima
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, 75 Talavera Road NSW, North Ryde, NSW, 2109, Australia
| | - Anand Deva
- Department of Plastic and Reconstructive Surgery, Macquarie University, and The Integrated Specialist Healthcare Education and Research Foundation, Sydney, Australia
| | - Sina Shadfar
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, 75 Talavera Road NSW, North Ryde, NSW, 2109, Australia
| | - Garth A Nicholson
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, 75 Talavera Road NSW, North Ryde, NSW, 2109, Australia.,ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney, NSW, Australia
| | - Shu Yang
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, 75 Talavera Road NSW, North Ryde, NSW, 2109, Australia
| | - Suzanne M Cutts
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia
| | - Zuzana Horejsi
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Toby D M Bell
- School of Chemistry, Monash University, Wellington Road, Clayton, VIC, Australia
| | - Adam K Walker
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, 75 Talavera Road NSW, North Ryde, NSW, 2109, Australia.,Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - Ian P Blair
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, 75 Talavera Road NSW, North Ryde, NSW, 2109, Australia
| | - Julie D Atkin
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, 75 Talavera Road NSW, North Ryde, NSW, 2109, Australia. .,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia.
| |
Collapse
|
40
|
Valles GJ, Bezsonova I, Woodgate R, Ashton NW. USP7 Is a Master Regulator of Genome Stability. Front Cell Dev Biol 2020; 8:717. [PMID: 32850836 PMCID: PMC7419626 DOI: 10.3389/fcell.2020.00717] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
Genetic alterations, including DNA mutations and chromosomal abnormalities, are primary drivers of tumor formation and cancer progression. These alterations can endow cells with a selective growth advantage, enabling cancers to evade cell death, proliferation limits, and immune checkpoints, to metastasize throughout the body. Genetic alterations occur due to failures of the genome stability pathways. In many cancers, the rate of alteration is further accelerated by the deregulation of these processes. The deubiquitinating enzyme ubiquitin specific protease 7 (USP7) has recently emerged as a key regulator of ubiquitination in the genome stability pathways. USP7 is also deregulated in many cancer types, where deviances in USP7 protein levels are correlated with cancer progression. In this work, we review the increasingly evident role of USP7 in maintaining genome stability, the links between USP7 deregulation and cancer progression, as well as the rationale of targeting USP7 in cancer therapy.
Collapse
Affiliation(s)
- Gabrielle J Valles
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Nicholas W Ashton
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
41
|
Trcek T, Douglas TE, Grosch M, Yin Y, Eagle WVI, Gavis ER, Shroff H, Rothenberg E, Lehmann R. Sequence-Independent Self-Assembly of Germ Granule mRNAs into Homotypic Clusters. Mol Cell 2020; 78:941-950.e12. [PMID: 32464092 DOI: 10.1016/j.molcel.2020.05.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/29/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
mRNAs enriched in membraneless condensates provide functional compartmentalization within cells. The mechanisms that recruit transcripts to condensates are under intense study; however, how mRNAs organize once they reach a granule remains poorly understood. Here, we report on a self-sorting mechanism by which multiple mRNAs derived from the same gene assemble into discrete homotypic clusters. We demonstrate that in vivo mRNA localization to granules and self-assembly within granules are governed by different mRNA features: localization is encoded by specific RNA regions, whereas self-assembly involves the entire mRNA, does not involve sequence-specific, ordered intermolecular RNA:RNA interactions, and is thus RNA sequence independent. We propose that the ability of mRNAs to self-sort into homotypic assemblies is an inherent property of an messenger ribonucleoprotein (mRNP) that is augmented under conditions that increase RNA concentration, such as upon enrichment in RNA-protein granules, a process that appears conserved in diverse cellular contexts and organisms.
Collapse
Affiliation(s)
- Tatjana Trcek
- HHMI, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY, USA.
| | - Tyler E Douglas
- HHMI, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY, USA
| | - Markus Grosch
- HHMI, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY, USA
| | - Yandong Yin
- Department of Biochemistry and Pharmacology, NYU School of Medicine, New York, NY, USA
| | - Whitby V I Eagle
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Hari Shroff
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD, USA
| | - Eli Rothenberg
- Department of Biochemistry and Pharmacology, NYU School of Medicine, New York, NY, USA
| | - Ruth Lehmann
- HHMI, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
42
|
Improving Precise CRISPR Genome Editing by Small Molecules: Is there a Magic Potion? Cells 2020; 9:cells9051318. [PMID: 32466303 PMCID: PMC7291049 DOI: 10.3390/cells9051318] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/01/2023] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) genome editing has become a standard method in molecular biology, for the establishment of genetically modified cellular and animal models, for the identification and validation of drug targets in animals, and is heavily tested for use in gene therapy of humans. While the efficiency of CRISPR mediated gene targeting is much higher than of classical targeted mutagenesis, the efficiency of CRISPR genome editing to introduce defined changes into the genome is still low. Overcoming this problem will have a great impact on the use of CRISPR genome editing in academic and industrial research and the clinic. This review will present efforts to achieve this goal by small molecules, which modify the DNA repair mechanisms to facilitate the precise alteration of the genome.
Collapse
|
43
|
Peters DK, Garcea RL. Murine polyomavirus DNA transitions through spatially distinct nuclear replication subdomains during infection. PLoS Pathog 2020; 16:e1008403. [PMID: 32203554 PMCID: PMC7117779 DOI: 10.1371/journal.ppat.1008403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/02/2020] [Accepted: 02/13/2020] [Indexed: 12/16/2022] Open
Abstract
The replication of small DNA viruses requires both host DNA replication and repair factors that are often recruited to subnuclear domains termed viral replication centers (VRCs). Aside from serving as a spatial focus for viral replication, little is known about these dynamic areas in the nucleus. We investigated the organization and function of VRCs during murine polyomavirus (MuPyV) infection using 3D structured illumination microscopy (3D-SIM). We localized MuPyV replication center components, such as the viral large T-antigen (LT) and the cellular replication protein A (RPA), to spatially distinct subdomains within VRCs. We found that viral DNA (vDNA) trafficked sequentially through these subdomains post-synthesis, suggesting their distinct functional roles in vDNA processing. Additionally, we observed disruption of VRC organization and vDNA trafficking during mutant MuPyV infections or inhibition of DNA synthesis. These results reveal a dynamic organization of VRC components that coordinates virus replication.
Collapse
Affiliation(s)
- Douglas K. Peters
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Robert L. Garcea
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
44
|
Majera D, Skrott Z, Chroma K, Merchut-Maya JM, Mistrik M, Bartek J. Targeting the NPL4 Adaptor of p97/VCP Segregase by Disulfiram as an Emerging Cancer Vulnerability Evokes Replication Stress and DNA Damage while Silencing the ATR Pathway. Cells 2020; 9:cells9020469. [PMID: 32085572 PMCID: PMC7072750 DOI: 10.3390/cells9020469] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/20/2022] Open
Abstract
Research on repurposing the old alcohol-aversion drug disulfiram (DSF) for cancer treatment has identified inhibition of NPL4, an adaptor of the p97/VCP segregase essential for turnover of proteins involved in multiple pathways, as an unsuspected cancer cell vulnerability. While we reported that NPL4 is targeted by the anticancer metabolite of DSF, the bis-diethyldithiocarbamate-copper complex (CuET), the exact, apparently multifaceted mechanism(s) through which the CuET-induced aggregation of NPL4 kills cancer cells remains to be fully elucidated. Given the pronounced sensitivity to CuET in tumor cell lines lacking the genome integrity caretaker proteins BRCA1 and BRCA2, here we investigated the impact of NPL4 targeting by CuET on DNA replication dynamics and DNA damage response pathways in human cancer cell models. Our results show that CuET treatment interferes with DNA replication, slows down replication fork progression and causes accumulation of single-stranded DNA (ssDNA). Such a replication stress (RS) scenario is associated with DNA damage, preferentially in the S phase, and activates the homologous recombination (HR) DNA repair pathway. At the same time, we find that cellular responses to the CuET-triggered RS are seriously impaired due to concomitant malfunction of the ATRIP-ATR-CHK1 signaling pathway that reflects an unorthodox checkpoint silencing mode through ATR (Ataxia telangiectasia and Rad3 related) kinase sequestration within the CuET-evoked NPL4 protein aggregates.
Collapse
Affiliation(s)
- Dusana Majera
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77 147 Olomouc, Czech Republic
| | - Zdenek Skrott
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77 147 Olomouc, Czech Republic
| | - Katarina Chroma
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77 147 Olomouc, Czech Republic
| | | | - Martin Mistrik
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77 147 Olomouc, Czech Republic
- Correspondence: (M.M.); (J.B.)
| | - Jiri Bartek
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77 147 Olomouc, Czech Republic
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, 171 77 Stockholm, Sweden
- Correspondence: (M.M.); (J.B.)
| |
Collapse
|
45
|
Foertsch F, Kache T, Drube S, Biskup C, Nasheuer HP, Melle C. Determination of the number of RAD51 molecules in different human cell lines. Cell Cycle 2019; 18:3581-3588. [PMID: 31731884 DOI: 10.1080/15384101.2019.1691802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Knowledge about precise numbers of specific molecules is necessary for understanding and verification of biological pathways. The RAD51 protein is central in the repair of DNA double-strand breaks (DSBs) by homologous recombination repair and understanding its role in cellular pathways is crucial to design mechanistic DNA repair models. Here, we determined the number of RAD51 molecules in several human cell lines including primary fibroblasts. We showed that between 20000 to 100000 of RAD51 molecules are available per human cell that theoretically can be used for simultaneously loading at least 7 DSBs. Interestingly, the amount of RAD51 molecules does not significantly change after the induction of DNA damage using bleomycin or γ-irradiation in cells but an accumulation of RAD51 on the chromatin occurs. Furthermore, we generated an EGFP-RAD51 fusion under the control of HSV thymidine kinase promoter sequences yielding moderate protein expression levels comparable to endogenously expressed RAD51. Initial characterizations suggest that these low levels of ectopically expressed RAD51 are compatible with cell cycle progression of human cells. Hence, we provide parameters for the quantitative understanding and modeling of RAD51-involving processes.
Collapse
Affiliation(s)
| | | | - Sebastian Drube
- Institute of Immunology, Jena University Hospital, Jena, Germany
| | | | - Heinz Peter Nasheuer
- Centre for Chromosome Biology, National University of Ireland Galway, Galway, Ireland
| | | |
Collapse
|
46
|
Leo BF, Fearn S, Gonzalez-Cater D, Theodorou I, Ruenraroengsak P, Goode AE, McPhail D, Dexter DT, Shaffer M, Chung KF, Porter AE, Ryan MP. Label-Free Time-of-Flight Secondary Ion Mass Spectrometry Imaging of Sulfur-Producing Enzymes inside Microglia Cells following Exposure to Silver Nanowires. Anal Chem 2019; 91:11098-11107. [PMID: 31310103 DOI: 10.1021/acs.analchem.9b01704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There are no methods sensitive enough to detect enzymes within cells, without the use of analyte labeling. Here we show that it is possible to detect protein ion signals of three different H2S-synthesizing enzymes inside microglia after pretreatment with silver nanowires (AgNW) using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Protein fragment ions, including the fragment of amino acid (C4H8N+ = 70 amu), fragments of the sulfur-producing cystathionine-containing enzymes, and the Ag+ ion signal could be detected without the use of any labels; the cells were mapped using the C4H8N+ amino acid fragment. Scanning electron microscopy imaging and energy-dispersive X-ray chemical analysis showed that the AgNWs were inside the same cells imaged by TOF-SIMS and transformed chemically into crystalline Ag2S within cells in which the sulfur-producing proteins were detected. The presence of these sulfur-producing cystathionine-containing enzymes within the cells was confirmed by Western blots and confocal microscopy images of fluorescently labeled antibodies against the sulfur-producing enzymes. Label-free TOF-SIMS is very promising for the label-free identification of H2S-contributing enzymes and their cellular localization in biological systems. The technique could in the future be used to identify which of these enzymes are most contributory.
Collapse
Affiliation(s)
- Bey Fen Leo
- Department of Materials and London Centre for Nanotechnology , Imperial College London , Exhibition Road , London SW7 2AZ , U.K.,Central Unit for Advanced Research Imaging (CENTUARI), Faculty of Medicine , University of Malaya , Kuala Lumpur 50603 , Malaysia
| | - Sarah Fearn
- Department of Materials and London Centre for Nanotechnology , Imperial College London , Exhibition Road , London SW7 2AZ , U.K
| | - Daniel Gonzalez-Cater
- Innovation Center of NanoMedicine , 3 Chome-25-14, Tonomachi , Kawasaki 210-0821 , Japan
| | - Ioannis Theodorou
- Department of Materials and London Centre for Nanotechnology , Imperial College London , Exhibition Road , London SW7 2AZ , U.K
| | - Pakatip Ruenraroengsak
- Department of Materials and London Centre for Nanotechnology , Imperial College London , Exhibition Road , London SW7 2AZ , U.K
| | - Angela E Goode
- Department of Materials and London Centre for Nanotechnology , Imperial College London , Exhibition Road , London SW7 2AZ , U.K
| | - David McPhail
- Department of Materials and London Centre for Nanotechnology , Imperial College London , Exhibition Road , London SW7 2AZ , U.K
| | - David T Dexter
- Innovation Center of NanoMedicine , 3 Chome-25-14, Tonomachi , Kawasaki 210-0821 , Japan
| | - Milo Shaffer
- Department of Materials and London Centre for Nanotechnology , Imperial College London , Exhibition Road , London SW7 2AZ , U.K.,Department of Chemistry and London Centre for Nanotechnology , Imperial College London , Exhibition Road , London SW7 2AZ , U.K
| | - Kian F Chung
- Experimental Studies, National Heart & Lung Institute , Imperial College London , London SW3 6LY , U.K
| | - Alexandra E Porter
- Department of Materials and London Centre for Nanotechnology , Imperial College London , Exhibition Road , London SW7 2AZ , U.K
| | - Mary P Ryan
- Department of Materials and London Centre for Nanotechnology , Imperial College London , Exhibition Road , London SW7 2AZ , U.K
| |
Collapse
|
47
|
Jalan M, Olsen KS, Powell SN. Emerging Roles of RAD52 in Genome Maintenance. Cancers (Basel) 2019; 11:E1038. [PMID: 31340507 PMCID: PMC6679097 DOI: 10.3390/cancers11071038] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022] Open
Abstract
The maintenance of genome integrity is critical for cell survival. Homologous recombination (HR) is considered the major error-free repair pathway in combatting endogenously generated double-stranded lesions in DNA. Nevertheless, a number of alternative repair pathways have been described as protectors of genome stability, especially in HR-deficient cells. One of the factors that appears to have a role in many of these pathways is human RAD52, a DNA repair protein that was previously considered to be dispensable due to a lack of an observable phenotype in knock-out mice. In later studies, RAD52 deficiency has been shown to be synthetically lethal with defects in BRCA genes, making RAD52 an attractive therapeutic target, particularly in the context of BRCA-deficient tumors.
Collapse
Affiliation(s)
- Manisha Jalan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kyrie S Olsen
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Simon N Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
48
|
Whelan DR. Overview of the second super-resolution microscopy session of the joint Asian Biophysics Association/Australian Society for Biophysics meeting. Biophys Rev 2019; 11:285-286. [PMID: 31090017 PMCID: PMC6557932 DOI: 10.1007/s12551-019-00549-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 11/29/2022] Open
Affiliation(s)
- Donna R Whelan
- Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, 3552, Australia.
| |
Collapse
|