1
|
Pieniak M, Rokosz M, Nawrocka P, Reichert A, Zyzelewicz B, Mahmut MK, Oleszkiewicz A. Null cross-modal effects of olfactory training on visual, auditory or olfactory working memory in 6- to 9-year-old children. Neuropsychol Rehabil 2025; 35:524-545. [PMID: 38762780 DOI: 10.1080/09602011.2024.2343484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/04/2024] [Indexed: 05/20/2024]
Abstract
Systematic exposure to odours (olfactory training, OT) is a method of smell loss treatment. Due to olfactory system projections to prefrontal brain areas, OT has been hypothesized to enhance cognitive functions, but its effects have been studied predominantly in adults. This study tested OT effects on working memory (WM), i.e., the ability to store and manipulate information for a short time, in healthy children aged 6-9 years. We expected OT to improve olfactory WM and establish cross-modal transfer to visual and auditory WM. Participants performed 12 weeks of bi-daily OT with either 4 odours (lemon, eucalyptus, rose, cloves; OT group) or odourless propylene glycol (placebo group). Pre- and post-training, participants' WM was measured utilizing odours (olfactory WM) or pictures (visual WM) and a word-span task (auditory WM). 84 children (40 girls) completed the study. The analyses revealed no changes in the WM performance following OT. The olfactory WM task was the most difficult for children, highlighting the need to include olfactory-related tasks in educational programmes to improve children's odour knowledge and memory, just as they learn about sounds and pictures. Further neuroimaging research is needed to fully understand the impact of OT on cognitive functions in children.
Collapse
Affiliation(s)
- Michal Pieniak
- Institute of Psychology, University of Wroclaw, Wroclaw, Poland
- Smell & Taste Clinic, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Marta Rokosz
- Institute of Psychology, University of Wroclaw, Wroclaw, Poland
| | | | - Aleksandra Reichert
- Institute of Psychology, University of Wroclaw, Wroclaw, Poland
- Smell & Taste Clinic, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Mehmet K Mahmut
- Food, Flavour and Fragrance Lab, School of Psychological Sciences, Macquarie University, Sydney, Australia
| | - Anna Oleszkiewicz
- Institute of Psychology, University of Wroclaw, Wroclaw, Poland
- Smell & Taste Clinic, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
2
|
Zhao X, Wang Y, Yi X. Proteomic evidence for seed odor modifying olfaction and spatial memory in a scatter-hoarding animal. Behav Brain Res 2025; 477:115282. [PMID: 39369826 DOI: 10.1016/j.bbr.2024.115282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Seed odor plays a crucial role in affecting the scatter-hoarding behavior of small rodents that rely on spatial memory and olfaction to cache and recover. However, evidence of how seed odor modifies olfaction function and spatial memory is still lacking. Here, we coated seeds with waterproof glue to test how seed odor intensity alters the proteome of both the olfactory bulbs and hippocampus of a dominant scatter-hoarding rodent, Leopoldamys edwardsi, in Southwest China. We showed that animals repeatedly caching and recovering weak odor seeds exhibited greater olfactory ability and spatial memory, as indicated by alterations in the protein profiles of the olfactory bulbs and hippocampus. The upregulation of proteins closely related to neural connections between the olfactory bulb and hippocampus is highly responsible for improved olfactory function and spatial memory. Our study provides new insights into how scatter-hoarding rodents manage and respond to cached seeds differing in odor intensity from a neurobiological perspective, which is of significant importance for better understanding the parallel evolution of the olfactory and hippocampal systems.
Collapse
Affiliation(s)
- Xiangyu Zhao
- School of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Yingnan Wang
- School of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Xianfeng Yi
- School of Life Sciences, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
3
|
Abstract
OBJECTIVES We investigated the relationship between olfactory function and depression and suggested future research in this area from rhinology. METHODS We independently searched 5 databases (PubMed, SCOPUS, Embase, the Web of Science, and the Cochrane database) for recent studies published from December 2019 to the present. From the obtained studies, we reviewed the findings on olfactory function and depression using a questionnaire to measure depression and olfactory tests. RESULTS The olfactory function test score based on the UPSIT-40 (standardized mean difference = -.37 [-.66; -.08], P = .0123) was significantly lower in the depression group than in the control group. The olfactory function score based on the Sniffin' sticks test for identification, discrimination, and threshold was lower in the depression group than in the control. A meta-analysis of the studies showed that depressed patients showed lower olfactory function than the control group. CONCLUSIONS AND SIGNIFICANCE The findings revealed that an understanding of the relationship between olfaction and depression can be determined using an analysis methodology and a standardized olfactory test. Olfactory functioning and processing are highly integrated with emotion and memory through projections from the olfactory bulb to the central areas.
Collapse
Affiliation(s)
- Boo-Young Kim
- Department of Otorhinolaryngology, School of Medicine, Ewha Womans University of Korea, Seoul, Korea
| | - Jung Ho Bae
- Department of Otorhinolaryngology, School of Medicine, Ewha Womans University of Korea, Seoul, Korea
| |
Collapse
|
4
|
Biljman K, Gozes I, Lam JCK, Li VOK. An experimental framework for conjoint measures of olfaction, navigation, and motion as pre-clinical biomarkers of Alzheimer's disease. J Alzheimers Dis Rep 2024; 8:1722-1744. [PMID: 40034341 PMCID: PMC11863766 DOI: 10.1177/25424823241307617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/19/2024] [Indexed: 03/05/2025] Open
Abstract
Elucidating Alzheimer's disease (AD) prodromal symptoms can resolve the outstanding challenge of early diagnosis. Based on intrinsically related substrates of olfaction and spatial navigation, we propose a novel experimental framework for their conjoint study. Artificial intelligence-driven multimodal study combining self-collected olfactory and motion data with available big clinical datasets can potentially promote high-precision early clinical screenings to facilitate timely interventions targeting neurodegenerative progression.
Collapse
Affiliation(s)
- Katarina Biljman
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Illana Gozes
- Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, The Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Jacqueline CK Lam
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Victor OK Li
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Jacques L. Multiple Chemical Sensitivity: A Clinical Perspective. Brain Sci 2024; 14:1261. [PMID: 39766460 PMCID: PMC11674335 DOI: 10.3390/brainsci14121261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVE The etiology of multiple chemical sensitivity (MCS) is still debated, which is an obstacle to assessing treatment options. An analysis of the scientific literature combined with the clinical experience can suggest some avenues. METHODS The etiology of MCS and its underlying mechanisms were reviewed from the scientific literature to identify the main factors contributing to its development. The results of the studies involving biomarkers and cerebral imaging techniques on MCS subjects were compared with those performed on subjects having the comorbidities of MCS. From the scientific literature and the experience in a clinical setting in occupational and environmental medicine, distinct types of MCS were looked for, with the application of the underlying mechanisms. The potential effectiveness of available treatments was also reviewed. RESULTS Among many factors, unresolved emotional traumas causing chronic and acute stress reactions play an important role in the development of MCS and can be the basis for effective treatment. We identified three types of clinical presentations, called the accidental type, following a toxic exposure causing an associated emotional trauma, the associative type, following a repeated innocuous exposure in a threatening context, and the developmental type, following a traumatic childhood/adolescence causing hypervigilance and chronic stress/trauma-related disorders. We presented real cases to illustrate these types and the mechanisms behind their development, as well as effective resolution. CONCLUSIONS MCS and its comorbidities could be treated effectively when the underlying emotional trauma(s) are targeted using trauma-focused psychotherapy and other therapies. Diagnostic criteria, principles of treatment and prevention, and avenues for research were derived from this analysis.
Collapse
Affiliation(s)
- Louis Jacques
- Clinic of Occupational and Environmental Medicine, Montreal University Hospital Center, Montreal, QC H2X 0C1, Canada; or
- Department of Medicine, Faculty of Medicine, Montreal University, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
6
|
Sunil A, Pedroncini O, Schaefer AT, Ackels T. How do mammals convert dynamic odor information into neural maps for landscape navigation? PLoS Biol 2024; 22:e3002908. [PMID: 39571004 PMCID: PMC11581409 DOI: 10.1371/journal.pbio.3002908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024] Open
Abstract
Odors are transported by seemingly chaotic plumes, whose spatiotemporal structure contains rich information about space, with olfaction serving as a gateway for obtaining and processing this spatial information. Beyond tracking odors, olfaction provides localization and chemical communication cues for detecting conspecifics and predators, and linking external environments to internal cognitive maps. In this Essay, we discuss recent physiological, behavioral, and methodological advancements in mammalian olfactory research to present our current understanding of how olfaction can be used to navigate the environment. We also examine potential neural mechanisms that might convert dynamic olfactory inputs into environmental maps along this axis. Finally, we consider technological applications of odor dynamics for developing bio-inspired sensor technologies, robotics, and computational models. By shedding light on the principles underlying the processing of odor dynamics, olfactory research will pave the way for innovative solutions that bridge the gap between biology and technology, enriching our understanding of the natural world.
Collapse
Affiliation(s)
- Anantu Sunil
- Sensory Dynamics and Behaviour Lab, Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Olivia Pedroncini
- Sensory Circuits and Neurotechnology Laboratory, Francis Crick Institute, London, United Kingdom
| | - Andreas T. Schaefer
- Sensory Circuits and Neurotechnology Laboratory, Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Tobias Ackels
- Sensory Dynamics and Behaviour Lab, Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
7
|
Capelli S, Arrigoni A, Napolitano A, Pezzetti G, Remuzzi A, Zangari R, Lorini FL, Sessa M, Caroli A, Gerevini S. MRI evidence of gray matter loss in COVID-19 patients with cognitive and olfactory disorders. Ann Clin Transl Neurol 2024; 11:2457-2472. [PMID: 39080851 PMCID: PMC11537127 DOI: 10.1002/acn3.52164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 11/06/2024] Open
Abstract
OBJECTIVE The aim of this study was to assess COVID-19-related gray matter (GM) structural alterations in two distinct groups of patients presenting with the prevailing and distinctive COVID-19-related neurological symptoms - isolated olfactory disorders as sole neurological manifestation (COVID-OD) and cognitive disorders (COVID-CD) - as compared to a control group of unaffected individuals. METHODS The study included 61 COVID-CD patients (57 [60-63] years, 62% females), 84 COVID-OD patients (49 [35-57] years, 60% females), and 17 controls (51 [41-52] years, 41% females). Region-based morphometry (RBM) and voxel-based morphometry (VBM) were performed on T1-weighted MRI scans to assess GM regional volume and voxel-wise density differences between COVID-19 patients and controls. Surface-based morphometry (SBM) was applied to investigate cortical thickness alterations. The statistical models built to assess GM structural differences among groups included total intracranial volume and age as nuisance variables. RESULTS The multi-morphometric analysis revealed statistically significant (p < 0.05 corrected for multiple comparisons) reduction in GM regional volumes, in voxel-wise GM density and in cortical thickness in both COVID-CD and COVID-OD patient groups as compared to controls. Across all three analyses, COVID-CD patients showed more distributed and severe GM loss than COVID-OD patients. The most prominently affected GM regions in the COVID-CD group included the hippocampus, putamen, cingulate gyrus, precuneus, precentral and postcentral gyri, amygdala, lingual gyrus, and caudate nucleus. INTERPRETATION Our MRI findings show that COVID-19-related olfactory and cognitive disorders both induce GM atrophy, although at different degrees of severity, likely indicative of neurodegeneration and neuroinflammation.
Collapse
Affiliation(s)
- Serena Capelli
- Bioengineering DepartmentIstituto di Ricerche Farmacologiche Mario Negri IRCCSRanicaBGItaly
| | - Alberto Arrigoni
- Bioengineering DepartmentIstituto di Ricerche Farmacologiche Mario Negri IRCCSRanicaBGItaly
| | | | - Giulio Pezzetti
- Department of NeuroradiologyASST Papa Giovanni XXIIIBergamoItaly
| | - Andrea Remuzzi
- Department of Management, Information and Production EngineeringUniversity of BergamoDalmineBGItaly
| | - Rosalia Zangari
- FROM Research FoundationASST Papa Giovanni XXIIIBergamoItaly
| | | | - Maria Sessa
- Department of NeurologyASST Papa Giovanni XXIIIBergamoItaly
| | - Anna Caroli
- Bioengineering DepartmentIstituto di Ricerche Farmacologiche Mario Negri IRCCSRanicaBGItaly
| | | |
Collapse
|
8
|
Sanna F, Castelli MP, Mostallino R, Loy F, Masala C. Correlations between Gustatory, Olfactory, Cognitive Function, and Age in Healthy Women. Nutrients 2024; 16:1731. [PMID: 38892664 PMCID: PMC11175123 DOI: 10.3390/nu16111731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Aging is a progressive physiological degeneration associated with a decline in chemosensory processes and cognitive abilities and a reduction in synaptic plasticity. The biological bases of ageing are still not completely understood, and many theories have been proposed. This study aimed to evaluate the occurrence of age-related changes affecting the chemosensory function (gustatory and olfactory) and general cognitive abilities and their potential associations in women. To this aim, 319 women (the age ranging from 18 to 92 years) were recruited and divided into four different age groups: 18-34 years, 35-49 years, 50-64 years, and ≥65 years. Our results confirmed that in women, gustatory, olfactory, and cognitive functions decline, though in a different manner during aging. Olfactory and cognitive function showed a slight decline along the first three age classes, with a dramatic decrease after age 65 years, while gustatory function decreased more gradually. Olfactory and gustatory deficits may have a high degree of predictivity for general cognitive function as well as for specific cognitive subdomains such as visuospatial/executive abilities, language, memory, and attention. Our study highlighted the importance of using chemosensory assessments for the early diagnosis of cognitive decline and for the development of appropriate personalized risk prevention strategies.
Collapse
Affiliation(s)
- Fabrizio Sanna
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, SP 8 Monserrato, 09042 Cagliari, Italy; (M.P.C.); (R.M.); (F.L.); (C.M.)
| | | | | | | | | |
Collapse
|
9
|
Xu Y, Li X, Xu P, Yan F, Wang D. Comparative pharmacokinetic and intracerebral distribution of MDMB-4F-BICA in mice following inhalation ('vapor') and subcutaneous injection. J Pharm Biomed Anal 2024; 241:115988. [PMID: 38301574 DOI: 10.1016/j.jpba.2024.115988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
MDMB-4F-BICA, also known as 4F-MDMB-BICA, is a new psychoactive substance that emerged in 2020. It is often illegally added to electronic cigarette oil for inhalation abuse, leading to serious adverse symptoms and even death. There are significant differences in pharmacokinetics between inhalation administration and conventional drug delivery methods. Inhalation administration can pass through the blood-brain barrier to enter the brain directly. However, the specific distribution of the drug in the brain following inhalation has not been well investigated. In order to scientifically compare the absorption and distribution of MDMB-4F-BICA after two administration methods (inhalation and subcutaneous injection), this study analyzed the drug concentration in mice blood and brain by LC-MS/MS after systemic exposure inhalation in the form of electronic cigarettes. The aim was to conduct the pharmacokinetics study of MDMB-4F-BICA after inhalation('vapor') administration. Pharmacokinetics and distribution of the compound revealed that the maximum concentrations in blood of this compound were reached at 0.5 min and 15 min, respectively, and the concentration in the brain reached the maximum at the same time after two modes of administration. The drug concentration in the brain was higher than that of subcutaneous injection, and the drug remained at a low concentration in the brain for a long period (20 ng/g brain tissue) with a significant distribution in several olfactory primary cortex brain regions. Taken together, the pharmacokinetics of the synthetic cannabinoid MDMB-4F-BICA after single systemic exposure inhalation were investigated for the first time in this study. A basis for subsequent evaluation research of inhalation-related harmfulness is provided by comparing the distribution of drugs in the brain after the two administration modes.
Collapse
Affiliation(s)
- Yawen Xu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, China
| | - Xiangyu Li
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing 100193, China; Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, China
| | - Peng Xu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing 100193, China; Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, China
| | - Fang Yan
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, China.
| | - Dan Wang
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing 100193, China; Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, China.
| |
Collapse
|
10
|
Jacobson PT, Vilarello BJ, Tervo JP, Waring NA, Gudis DA, Goldberg TE, Devanand DP, Overdevest JB. Associations between olfactory dysfunction and cognition: a scoping review. J Neurol 2024; 271:1170-1203. [PMID: 38217708 PMCID: PMC11144520 DOI: 10.1007/s00415-023-12057-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 01/15/2024]
Abstract
INTRODUCTION Strong evidence suggests that olfactory dysfunction (OD) can predict additional neurocognitive decline in neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. However, research exploring olfaction and cognition in younger populations is limited. The aim of this review is to evaluate cognitive changes among non-elderly adults with non-COVID-19-related OD. METHODS We performed a structured comprehensive literature search of PubMed, Ovid Embase, Web of Science, and Cochrane Library in developing this scoping review. The primary outcome of interest was the association between OD and cognitive functioning in adults less than 60 years of age. RESULTS We identified 2878 studies for title and abstract review, with 167 undergoing full text review, and 54 selected for data extraction. Of these, 34 studies reported on populations of individuals restricted to the ages of 18-60, whereas the remaining 20 studies included a more heterogeneous population with the majority of individuals in this target age range in addition to some above the age of 60. The etiologies for smell loss among the included studies were neuropsychiatric disorders (37%), idiopathic cause (25%), type 2 diabetes (7%), trauma (5%), infection (4%), intellectual disability (4%), and other (18%). Some studies reported numerous associations and at times mixed, resulting in a total number of associations greater than the included number of 54 studies. Overall, 21/54 studies demonstrated a positive association between olfaction and cognition, 7/54 demonstrated no association, 25/54 reported mixed results, and only 1/54 demonstrated a negative association. CONCLUSION Most studies demonstrate a positive correlation between OD and cognition, but the data are mixed with associations less robust in this young adult population compared to elderly adults. Despite the heterogeneity in study populations and outcomes, this scoping review serves as a starting point for further investigation on this topic. Notably, as many studies in this review involved disorders that may have confounding effects on both olfaction and cognition, future research should control for these confounders and incorporate non-elderly individuals with non-psychiatric causes of smell loss.
Collapse
Affiliation(s)
- Patricia T Jacobson
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY, USA
| | - Brandon J Vilarello
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jeremy P Tervo
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Nicholas A Waring
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - David A Gudis
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Terry E Goldberg
- Department of Psychiatry, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY, USA
| | - D P Devanand
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Psychiatry, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY, USA
| | - Jonathan B Overdevest
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY, USA.
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
11
|
Schwarz M, Hamburger K. Memory effects of visual and olfactory landmark information in human wayfinding. Cogn Process 2024; 25:37-51. [PMID: 38032500 PMCID: PMC10827900 DOI: 10.1007/s10339-023-01169-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Non-human animals are exceptionally good at using smell to find their way through the environment. However, the use of olfactory cues for human navigation is often underestimated. Although the sense of smell is well-known for its distinct connection to memory and emotion, memory effects in human navigation using olfactory landmarks have not been studied yet. Therefore, this article compares wayfinding and recognition performance for visual and olfactory landmarks learned by 52 participants in a virtual maze. Furthermore, it is one of the first empirical studies investigating differences in memory effects on human navigation by using two separate test situations 1 month apart. The experimental task was to find the way through a maze-like virtual environment with either olfactory or visual cues at the intersections that served as decision points. Our descriptive results show that performance was above chance level for both conditions (visual and olfactory landmarks). Wayfinding performance did not decrease 1 month later when using olfactory landmarks. In contrast, when using visual landmarks wayfinding performance decreased significantly, while visual landmarks overall lead to better recognition than olfactory landmarks at both times of testing. The results demonstrate the unique character of human odor memory and support the conclusion that olfactory cues may be used in human spatial orientation. Furthermore, the present study expands the research field of human wayfinding by providing a study that investigates memory for landmark knowledge and route decisions for the visual and olfactory modality. However, more studies are required to put this important research strand forward.
Collapse
Affiliation(s)
- Mira Schwarz
- Experimental Psychology and Cognitive Science, Department of Psychology and Sport Science, Justus Liebig University, Otto-Behagel-Str. 10F, 35394, Giessen, Germany.
| | - Kai Hamburger
- Experimental Psychology and Cognitive Science, Department of Psychology and Sport Science, Justus Liebig University, Otto-Behagel-Str. 10F, 35394, Giessen, Germany
| |
Collapse
|
12
|
Watanuki S. Identifying distinctive brain regions related to consumer choice behaviors on branded foods using activation likelihood estimation and machine learning. Front Comput Neurosci 2024; 18:1310013. [PMID: 38374888 PMCID: PMC10875973 DOI: 10.3389/fncom.2024.1310013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/04/2024] [Indexed: 02/21/2024] Open
Abstract
Introduction Brand equity plays a crucial role in a brand's commercial success; however, research on the brain regions associated with brand equity has had mixed results. This study aimed to investigate key brain regions associated with the decision-making of branded and unbranded foods using quantitative neuroimaging meta-analysis and machine learning. Methods Quantitative neuroimaging meta-analysis was performed using the activation likelihood method. Activation of the ventral medial prefrontal cortex (VMPFC) overlapped between branded and unbranded foods. The lingual and parahippocampal gyri (PHG) were activated in the case of branded foods, whereas no brain regions were characteristically activated in response to unbranded foods. We proposed a novel predictive method based on the reported foci data, referencing the multi-voxel pattern analysis (MVPA) results. This approach is referred to as the multi-coordinate pattern analysis (MCPA). We conducted the MCPA, adopting the sparse partial least squares discriminant analysis (sPLS-DA) to detect unique brain regions associated with branded and unbranded foods based on coordinate data. The sPLS-DA is an extended PLS method that enables the processing of categorical data as outcome variables. Results We found that the lingual gyrus is a distinct brain region in branded foods. Thus, the VMPFC might be a core brain region in food categories in consumer behavior, regardless of whether they are branded foods. Moreover, the connection between the PHG and lingual gyrus might be a unique neural mechanism in branded foods. Discussion As this mechanism engages in imaging the feature-self based on emotionally subjective contextual associative memories, brand managers should create future-oriented relevancies between brands and consumers to build valuable brands.
Collapse
Affiliation(s)
- Shinya Watanuki
- Department of Marketing, Faculty of Commerce, University of Marketing and Distribution Sciences, Kobe, Hyogo, Japan
| |
Collapse
|
13
|
Schwarz M, Hamburger K. Implicit versus explicit processing of visual, olfactory, and multimodal landmark information in human wayfinding. Front Psychol 2023; 14:1285034. [PMID: 38034279 PMCID: PMC10684750 DOI: 10.3389/fpsyg.2023.1285034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Despite the predominant focus on visual perception in most studies, the role of humans' sense of smell in navigation has often been neglected. Recent research, however, could show that humans are indeed able to use their sense of smell for orientation, particularly when processed implicitly. In this study, we investigate whether implicit perception of olfactory landmarks enhanced wayfinding performance compared to explicit perception. Fifty-two people completed a wayfinding and a recognition task in a virtual maze at two times of testing 1 month apart. Participants either received olfactory, visual, or both cues at the intersections. Wayfinding performance was better for olfactory landmarks, which were not correctly remembered in the recognition task. In contrast, wayfinding performance was better when visual landmarks were correctly remembered. In the multimodal condition, wayfinding performance was better with landmarks being remembered at t1 and remained the same at t2. Our results suggest distinct implicit processing mechanisms within the olfactory system and therefore hold important implications for the nature of spatial odor processing extending beyond explicit odor localization tasks. The study highlights the importance for future studies to develop and employ further experimental methods that capture implicit processing across all of our senses. This is crucial for a comprehensive understanding of consciousness, as olfaction strongly influences our behavior, but remains largely latent unless deliberately honed through practice.
Collapse
Affiliation(s)
- Mira Schwarz
- Department of Experimental Psychology and Cognitive Science, Faculty of Psychology and Sport Science, Justus Liebig University Giessen, Giessen, Germany
| | - Kai Hamburger
- Department of Experimental Psychology and Cognitive Science, Faculty of Psychology and Sport Science, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
14
|
Challakere Ramaswamy VM, Butler T, Ton B, Wilhelm K, Mitchell PB, Knight L, Greenberg D, Ellis A, Gebski V, Schofield PW. Neuropsychiatric correlates of olfactory identification and traumatic brain injury in a sample of impulsive violent offenders. Front Psychol 2023; 14:1254574. [PMID: 37842698 PMCID: PMC10570745 DOI: 10.3389/fpsyg.2023.1254574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Background Olfactory deficits have a diverse etiology and can be detected with simple olfactory tests. Key olfactory pathways are located within the frontal and temporal lobes where they are vulnerable to damage due to head trauma. Orbitofrontal cortex (OFC) integrity is important for olfaction and aspects of behavioral regulation. We measured olfactory identification ability in a sample of impulsive violent offenders to determine its associations with history of traumatic brain injury (TBI) and a range of neuropsychiatric indices, including proxies for cognitive ability, impulsivity and social connectedness. Methods Male participants were drawn from the ReINVEST study, a randomized controlled trial of sertraline to reduce recidivism in violent impulsive offenders. Criteria for participation in the study included a minimum age of 18 years, a documented history of two or more violent offenses, and a score of 70 or above on the Barratt Impulsiveness Scale (BIS-11). The 16-item "Sniffin sticks" (SS) odor identification test (OI) was administered as were standardized questionnaires regarding previous TBI, additional measures to screen cognition [word reading test of the Wechsler Individuals Achievement Test (WIAT), social connectedness (the Duke Social Support Scale), and a range of other neuropsychiatric conditions or symptoms]. The sample SS scores were compared against published age-specific norms. Univariate and multivariate analyses were performed with SS score (linear regression, within those without hyposmia) or hyposmia (logistic regression) as the outcome. Results The mean OI scores were lower than population norms and 16% of participants were classified as hyposmic. Univariate analyses showed associations of SS score with age, WIAT score, impulsivity, TBI and TBI severity, social connectedness, childhood sexual abuse, suicidality and current use of heroin. In multivariate analyses, age, TBI severity and WIAT remained as significant independent predictors of SS score (within the normosmic range) or hyposmia (logistic regression). Conclusion Olfactory performance was associated with multiple behavioral phenomena in a pattern that would be consistent with this serving as a proxy for orbitofrontal functioning. As such, OI testing may have utility in further studies of offenders. In future, we will examine whether olfactory score predicts recidivism or response to the administration of sertraline, in terms of reducing recidivism.
Collapse
Affiliation(s)
| | - Tony Butler
- University of New South Wales, Sydney, NSW, Australia
| | - Bianca Ton
- University of New South Wales, Sydney, NSW, Australia
| | - Kay Wilhelm
- University of New South Wales, Sydney, NSW, Australia
| | | | - Lee Knight
- University of New South Wales, Sydney, NSW, Australia
| | - David Greenberg
- University of New South Wales, Sydney, NSW, Australia
- Justice Health and Forensic Mental Health Network, Matraville, NSW, Australia
| | - Andrew Ellis
- University of New South Wales, Sydney, NSW, Australia
- Justice Health and Forensic Mental Health Network, Matraville, NSW, Australia
| | - Val Gebski
- National Health and Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
| | - Peter William Schofield
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
- Neuropsychiatry Service, Hunter New England Mental Health, Newcastle, NSW, Australia
| |
Collapse
|
15
|
Raithel CU, Miller AJ, Epstein RA, Kahnt T, Gottfried JA. Recruitment of grid-like responses in human entorhinal and piriform cortices by odor landmark-based navigation. Curr Biol 2023; 33:3561-3570.e4. [PMID: 37506703 PMCID: PMC10510564 DOI: 10.1016/j.cub.2023.06.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/23/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Olfactory navigation is universal across the animal kingdom. Humans, however, have rarely been considered in this context. Here, we combined olfactometry techniques, virtual reality (VR) software, and neuroimaging methods to investigate whether humans can navigate an olfactory landscape by learning the spatial relationships among discrete odor cues and integrating this knowledge into a spatial map. Our data show that over time, participants improved their performance on the odor navigation task by taking more direct paths toward targets and completing more trials within a given time period. This suggests that humans can successfully navigate a complex odorous environment, reinforcing the notion of human olfactory navigation. fMRI data collected during the olfactory navigation task revealed the emergence of grid-like responses in entorhinal and piriform cortices that were attuned to the same grid orientation. This result implies the existence of a specialized olfactory grid network tasked with guiding spatial navigation based on odor landmarks.
Collapse
Affiliation(s)
- Clara U Raithel
- Department of Psychology, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA; Department of Neurology, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Alexander J Miller
- Department of Neurology, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Russell A Epstein
- Department of Psychology, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Thorsten Kahnt
- National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Jay A Gottfried
- Department of Psychology, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA; Department of Neurology, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Vilarello BJ, Jacobson PT, Tervo JP, Waring NA, Gudis DA, Goldberg TE, Devanand DP, Overdevest JB. Olfaction and neurocognition after COVID-19: a scoping review. Front Neurosci 2023; 17:1198267. [PMID: 37457004 PMCID: PMC10339825 DOI: 10.3389/fnins.2023.1198267] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction COVID-19 induces both acute and chronic neurological changes. Existing evidence suggests that chemosensory changes, particularly olfactory loss, may reflect central neurological dysfunction in neurodegenerative diseases and mark progression from mild cognitive impairment to Alzheimer's. This scoping review summarizes the available literature to evaluate the relationship between neurocognition and olfaction in young to middle-aged adults with minimal comorbidities following COVID-19 infection. Methods A literature search of PubMed, Ovid Embase, Web of Science, and Cochrane Library was conducted. Studies underwent title/abstract and full text screening by two reviewers, with a third reviewer resolving any conflicts. Remaining studies underwent data extraction. Results Seventeen studies were eligible for data extraction after the review process, where 12 studies found significantly poorer cognition in those suffering from olfactory dysfunction, four studies showed no association between cognition and olfaction, and one study reported lower anosmia prevalence among patients with cognitive impairment. Conclusion The majority of studies in this review find that olfactory dysfunction is associated with poorer cognition. More rigorous studies are needed to further elucidate the relationship between olfaction and cognition after COVID-19.
Collapse
Affiliation(s)
- Brandon J. Vilarello
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Patricia T. Jacobson
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY, United States
| | - Jeremy P. Tervo
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Nicholas A. Waring
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - David A. Gudis
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY, United States
| | - Terry E. Goldberg
- Department of Psychiatry, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY, United States
| | - D. P. Devanand
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
- Department of Psychiatry, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY, United States
| | - Jonathan B. Overdevest
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
17
|
Torres-Pasillas G, Chi-Castañeda D, Carrillo-Castilla P, Marín G, Hernández-Aguilar ME, Aranda-Abreu GE, Manzo J, García LI. Olfactory Dysfunction in Parkinson's Disease, Its Functional and Neuroanatomical Correlates. NEUROSCI 2023; 4:134-151. [PMID: 39483318 PMCID: PMC11523736 DOI: 10.3390/neurosci4020013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 11/03/2024] Open
Abstract
Parkinson's disease (PD) is known for its motor alterations, but the importance of non-motor symptoms (NMSs), such as olfactory dysfunction (OD), is increasingly recognized. OD may manifest during the prodromal period of the disease, even before motor symptoms appear. Therefore, it is suggested that this symptom could be considered a marker of PD. This article briefly describes PD, the evolution of the knowledge about OD in PD, the prevalence of this NMS and its role in diagnosis and as a marker of PD progression, the assessment of olfaction in patients with PD, the role of α-synuclein and its aggregates in the pathophysiology of PD, and then describes some functional, morphological, and histological alterations observed in different structures related to the olfactory system, such as the olfactory epithelium, olfactory bulb, anterior olfactory nucleus, olfactory tract, piriform cortex, hippocampus, orbitofrontal cortex, and amygdala. In addition, considering the growing evidence that suggests that the cerebellum is also involved in the olfactory system, it has also been included in this work. Comprehending the existing functional and neuroanatomical alterations in PD could be relevant for a better understanding of the mechanisms behind OD in patients with this neurodegenerative disorder.
Collapse
Affiliation(s)
| | - Donají Chi-Castañeda
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico
| | | | - Gerardo Marín
- Neural Dynamics and Modulation Lab, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | - Jorge Manzo
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico
| | - Luis I. García
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico
| |
Collapse
|
18
|
Jacobs LF. The PROUST hypothesis: the embodiment of olfactory cognition. Anim Cogn 2023; 26:59-72. [PMID: 36542172 PMCID: PMC9877075 DOI: 10.1007/s10071-022-01734-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/20/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
The extension of cognition beyond the brain to the body and beyond the body to the environment is an area of debate in philosophy and the cognitive sciences. Yet, these debates largely overlook olfaction, a sensory modality used by most animals. Here, I use the philosopher's framework to explore the implications of embodiment for olfactory cognition. The philosopher's 4E framework comprises embodied cognition, emerging from a nervous system characterized by its interactions with its body. The necessity of action for perception adds enacted cognition. Cognition is further embedded in the sensory inputs of the individual and is extended beyond the individual to information stored in its physical and social environments. Further, embodiment must fulfill the criterion of mutual manipulability, where an agent's cognitive state is involved in continual, reciprocal influences with its environment. Cognition cannot be understood divorced from evolutionary history, however, and I propose adding evolved, as a fifth term to the 4E framework. We must, therefore, begin at the beginning, with chemosensation, a sensory modality that underlies purposive behavior, from bacteria to humans. The PROUST hypothesis (perceiving and reconstructing odor utility in space and time) describers how olfaction, this ancient scaffold and common denominator of animal cognition, fulfills the criteria of embodied cognition. Olfactory cognition, with its near universal taxonomic distribution as well as the near absence of conscious representation in humans, may offer us the best sensorimotor system for the study of embodiment.
Collapse
Affiliation(s)
- Lucia F. Jacobs
- Department of Psychology, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94720-1650 USA
| |
Collapse
|
19
|
Spatial Olfactory Memory and Spatial Olfactory Navigation, Assessed with a Variant of Corsi Test, Is Modulated by Gender and Sporty Activity. Brain Sci 2022; 12:brainsci12081108. [PMID: 36009170 PMCID: PMC9406228 DOI: 10.3390/brainsci12081108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/27/2022] Open
Abstract
Many studies have focused on navigation, spatial skills, and the olfactory system in comparative models, including those concerning the relationship between them and physical activity. Although the results are often in contrast with each other, it is assumed that physical activity can affect cognition in different ways—both indirectly and through a certain influence on some brain structures. In contrast, there is little research that focuses on the relationship between spatial abilities and olfactory abilities in humans. This research aimed to evaluate and compare the performance in working memory tasks of athletes and non-athletes who require good visual–spatial navigation, olfactory–spatial navigation, and olfactory–semantic skills. The study involved 236 participants (83 athletes) between the ages of 18 and 40. All subjects were matched by age or sex. The standard Corsi Block Tapping Test (CBTT) was administrated to investigate the visual-spatial memory. Olfactory–spatial navigation and olfactory–semantic skills were assessed with two modified versions of CBTT: Olfactory CBTT (OCBTT) and Semantic–Olfactory CBTT (SOCBTT) respectively. The results show differences between the CORSI conditions in direction of a poor performance for athletes. A gender effect in favor of men was also found, particularly in the classic version of the CBTT. Both groups performed better in the classic version of the CBTT than OCBTT and SOCBTT. The mean of SOCBTT results is markedly lower, perhaps due to the different information processing systems needed to perform this kind of task. It is possible to explain how sports practice can affect tasks that require spatial skills and olfactory perception differently, thus supporting new hypotheses and opening new scientific horizons.
Collapse
|
20
|
Extensive Connections of the Canine Olfactory Pathway Revealed by Tractography and Dissection. J Neurosci 2022; 42:6392-6407. [PMID: 35817576 PMCID: PMC9398547 DOI: 10.1523/jneurosci.2355-21.2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
The olfactory sense of the domestic dog is widely recognized as being highly sensitive with a diverse function; however, little is known about the structure of its olfactory system. This study examined a cohort of mixed-sex mesaticephalic canines and used diffusion tensor imaging (DTI), an MRI technique, to map connections from the olfactory bulb to other cortical regions of the brain. The results were validated using the Klingler dissection method. An extensive pathway composed of five white matter tracts connecting to the occipital lobe, cortical spinal tract, limbic system, piriform lobe, and entorhinal pathway was identified. This is the first documentation of a direct connection between the olfactory bulb and occipital lobe in any species and is a step toward further understanding how the dog integrates olfactory stimuli into their cognitive function.SIGNIFICANCE STATEMENT The highly sensitive olfactory system of the domestic dog is largely unexplored. We applied diffusion tractography and dissection techniques to evaluate the white matter connections associated with the olfactory system in a large cohort of dogs. We discovered an extensive white matter network extending from the olfactory bulb to form novel connections directly to other cortices of the brain. This is the first documentation of these novel olfactory connections and provides new insight into how dogs integrate olfactory stimuli in their cognitive functioning.
Collapse
|
21
|
A New Perspective of Sustainable Perception: Research on the Smellscape of Urban Block Space. SUSTAINABILITY 2022. [DOI: 10.3390/su14159184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The smell of space is inseparable from the sustainable development of the living environment. The research on olfactory perception and smell landscape has a positive effect on landscape design and urban planning and contributes to the formation and design optimization of unique urban memory. This study combines urban smell tracking experiments with Internet social media data analysis to classify smells in the old city center of Guangzhou, China, and analyzes the study within the inner ring and six historic districts. Based on the research results, the smell map was drawn, and the reliability of the smell map was tested through social data and semantic analysis. The emotional score heat map of smell and emotion in six regions was constructed, highlighting the impact of smell in key neighborhoods on the environment. In the conclusion to the study, the thematic routes of green urban design are proposed: sightseeing routes, cultural routes, and food routes, as well as improvement strategies to promote the integration of smell and urban operation activities and the sustainable development of urban regional characteristics.
Collapse
|
22
|
Mahr K, Nowack L, Knauer F, Hoi H. Songbirds use scent cues to relocate to feeding sites after displacement: An experiment in great tits (Parus major). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.858981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Air-borne chemicals are highly abundant sensory cues and their use in navigation might be one of the major evolutionary mechanisms explaining the development of olfaction in animals. Despite solid evidence for the importance of olfaction in avian life (e.g., foraging or mating), the importance of chemical cues in avian orientation remains controversial. In particular, songbirds are sorely neglected models, despite their remarkable orientation skills. Here we show that great tits (Parus major) require olfactory cues to orientate toward winter-feeding sites within their home range after displacement. Birds that received an olfaction-depriving treatment were impaired in homing. However, the return rates between olfaction-deprived and control individuals did not differ. Birds with decreased perception of olfactory cues required more time to return to the winter feeding sites. This effect became apparent when the distance between the releasing and capture sites was greater. Our results indicate that even in a familiar environment with possible visual landmarks, scent cues might serve as an important source of information for orientation.
Collapse
|
23
|
Tan Z, Wang Y, Lu H, Tian W, Xu K, Fan M, Zhao X, Jin L, Cui M, Jiang Y, Chen X. The Effects of Brain Magnetic Resonance Imaging Indices in the Association of Olfactory Identification and Cognition in Chinese Older Adults. Front Aging Neurosci 2022; 14:873032. [PMID: 35865748 PMCID: PMC9294318 DOI: 10.3389/fnagi.2022.873032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background Olfactory identification dysfunction frequently occurs in individuals with cognitive decline; however, a pathological mechanism linking the two has not been discovered. We aimed to study the association between olfactory identification and cognitive function, and determine the effects of brain regions atrophy therein. Methods A total of 645 individuals (57.5% were female) from the Taizhou Imaging Study, who underwent cognitive and olfactory identification measurements, were included. A subsample of participants underwent brain magnetic resonance imaging (n = 622). Cognition was assessed with a neuropsychological battery. Olfactory identification was measured using a 12-item Sniffin’ Sticks test. Beta and logistic regressions were used to elucidate the association between olfactory identification and cognition, and the effects of brain regions atrophy in this association. Results Dementia was diagnosed in 41 (6.4%) individuals (mean age = 64.8 years), and mild cognitive impairment (MCI) in 157 (24.3%) individuals (mean age = 64.4 years). Olfactory identification was associated with MMSE and MoCA (both P < 0.001) and specific cognitive domains (memory, executive function, visuospatial function, and language; all P < 0.05). Higher olfactory identification was associated with lower likelihood of MCI and dementia (P < 0.05). The amygdala volume was significantly related to olfactory identification, MMSE, MoCA, and language, and could attenuate the association between olfactory identification and cognitive function. Conclusion The association between olfactory identification and cognition can be partly attributable to differences in amygdala volume, suggesting that the amygdala could be a shared neural substrate that links olfactory identification and cognitive function. Limitations of this study include that all these results were based on a cross-sectional study.
Collapse
|
24
|
Schwarz M, Hamburger K. Modality Switching in Landmark-Based Wayfinding. Front Psychol 2022; 13:888871. [PMID: 35756240 PMCID: PMC9226452 DOI: 10.3389/fpsyg.2022.888871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
This study investigates switching costs in landmark-based wayfinding using olfactory and visual landmark information. It has already been demonstrated that there seem to be no switching costs, in terms of correct route decisions, when switching between acoustically and visually presented landmarks. Olfaction, on the other hand, is not extensively focused on in landmark-based wayfinding thus far, especially with respect to modality switching. The goal of this work is to empirically test and compare visual and olfactory landmark information with regard to their suitability for wayfinding including a modality switch. To investigate this, an experiment within a virtual environment was conducted in which participants were walked along a virtual route of 12 intersections. At each intersection, landmark information together with directional information was presented, which was to be memorized and recalled in the following phase, either in the same or in the other modality (i.e., visual or olfactory). The results of the study show that, in contrast to the no-switching costs between auditory and visual landmarks in previous studies, switching costs occur when switching modality from visual to olfactory and vice versa. This is indicated by both longer decision times and fewer correct decisions. This means that a modality switch involving olfactory landmark information is possible but could lead to poorer performance. Therefore, olfaction may still be valuable for landmark-based-wayfinding. We argue that the poorer performance in the switching-condition is possibly due to higher cognitive load and the separate initial processing of odors and images in different cognitive systems.
Collapse
Affiliation(s)
- Mira Schwarz
- Department of Experimental Psychology and Cognitive Science, Faculty of Psychology and Sport Science, Justus Lieblig University, Gießen, Germany
| | - Kai Hamburger
- Department of Experimental Psychology and Cognitive Science, Faculty of Psychology and Sport Science, Justus Lieblig University, Gießen, Germany
| |
Collapse
|
25
|
Neural substrates of brand equity: applying a quantitative meta-analytical method for neuroimage studies. Heliyon 2022; 8:e09702. [PMID: 35734557 PMCID: PMC9207674 DOI: 10.1016/j.heliyon.2022.e09702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/29/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
Although the concept of brand equity has been investigated using various approaches, a comprehensive neural basis for brand equity remains unclear. The default mode network (DMN) as a mental process might influence brand equity related consumers' decision-making, as reported in the marketing literature. While studies on the overlapping regions between the DMN and value-based decision-making related brain regions have been reported in neuroscience literature, relationships between the DMN and a neural mechanism of brand equity have not been clarified. The aim of our study is to identify neural substrates of brand equity and examine brand equity-related mental processes by comparing them to the DMN. To determine the neural substrates of brand equity, we first carried out the activation likelihood estimation (ALE) meta-analysis. We examined 26 studies using branded objects as experimental stimuli for the ALE. Next, we set the output regions from ALE as the region of interest for meta-analytic connectivity modeling (MACM). Further, we compared the brand equity-related brain network (BE-RBN) revealed by the MACM with the DMN. We confirmed that the BE-RBN brain regions overlap with the medial temporal lobule (MTL) sub-system, a module composed of the DMN but excluding the retrosplenial cortex. Further, we discovered that several brain regions apart from the DMN are also distinctive BE-RBN brain regions (i.e., the insula, the inferior frontal gyrus, amygdala, ventral striatum, parietal region). We decoded the BE-RBN brain regions using the BrandMap module. The decoded results revealed that the brand equity-related mental processes are complex constructs integrated via multiple mental processes such as self-referential, reward, emotional, memory, and sensorimotor processing. Our study demonstrated that the DMN alone is insufficient to engage in brand equity-related mental processes. Therefore, marketers are required to make strategic plans to integrate the five consumer's multiple mental processes while building brand equity.
Collapse
|
26
|
Dehghani A, Zokaei E, Kahani SM, Alavinejad E, Dehghani M, Meftahi GH, Afarinesh MR. The potential impact of Covid-19 on CNS and psychiatric sequels. Asian J Psychiatr 2022; 72:103097. [PMID: 35405524 PMCID: PMC8982477 DOI: 10.1016/j.ajp.2022.103097] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/19/2022] [Accepted: 04/02/2022] [Indexed: 01/08/2023]
Abstract
Due to its high prevalence and fatality, the current Severe Acute Respiratory Syndrome-coronavirus-2 (SARS-CoV-2) virus, which first emerged in China in 2019, quickly spread around the world and immediately became a serious global health concern. Although respiratory issues were initially the most prominent symptom of coronavirus disease 2019 (COVID-19), it became obvious rapidly that COVID-19, like many other coronavirus family members, could affect the central nervous system (CNS). During the pandemic, CNS involvement expressed itself in a variety of forms, including insomnia, anosmia, headaches, encephalopathies, encephalitis, cerebrovascular accidents, cognitive and memory impairment, and increased psychiatric disorders. Almost everyone who has been infected has at least one of these neurological symptoms, demonstrating that the virus has a high ability to impact the CNS. As the coronavirus pandemic passes its second year, the manifestations it can cause in the long run, such as its psychological sequels, have not yet been thoroughly studied. Given the high importance of this issue in today's society and due to the lack of reliable knowledge about the COVID-19 landscape on psychiatric disorders, we intend to investigate coronavirus's possible effect on mental illnesses based on available literature. Because the majority of the psychological effects of the coronavirus can continue for a long period after the pandemic ends, our research can give insight into potential psychiatric sequels associated with COVID-19.
Collapse
Affiliation(s)
- Ali Dehghani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elham Zokaei
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Seyyed Mohammad Kahani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elaheh Alavinejad
- Department of Medical Genetics, Faculty of Medical Sciences, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Dehghani
- Department of Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mohammad Reza Afarinesh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
27
|
Nagamine T. Transient global amnesia with transient anosmia: a curious case suggestive of middle cerebral artery occlusion. J Integr Neurosci 2022; 21:103. [PMID: 35864755 DOI: 10.31083/j.jin2104103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/16/2021] [Accepted: 04/29/2021] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Transient global amnesia (TGA) is an enigmatic amnestic syndrome and affects people in middle or older age. During an episode of TGA, a person is not able to make new memories, which indicates hippocampal damage. The symptom anosmia may be associated with memory impairment. CASE PRESENTATION A 70-year-old woman presented to our emergency room with transient spatial memory loss. She also complained of a sudden loss of smell. Magnetic resonance angiography confirmed occlusion of the right middle cerebral artery. DISCUSSION AND CONCLUSION The mechanism causing the transient anosmia may have resulted in a transient loss of hippocampal function, resulting in amnesia. This rare case is consistent with recent research showing that olfaction has developed as a navigation system.
Collapse
Affiliation(s)
- Takahiko Nagamine
- Department of Emergency Medicine, Sunlight Brain Research Center, 4-13-18 Jiyugaoka, Hofu, 747-0066 Yamaguchi, Japan
| |
Collapse
|
28
|
Challakere Ramaswamy VM, Schofield PW. Olfaction and Executive Cognitive Performance: A Systematic Review. Front Psychol 2022; 13:871391. [PMID: 35615205 PMCID: PMC9125097 DOI: 10.3389/fpsyg.2022.871391] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/14/2022] [Indexed: 11/30/2022] Open
Abstract
Objective tests of olfaction are widely available to aid in the assessment of olfaction. Their clearest role is in the characterization of olfactory changes, either reported by or suspected in a patient. There is a rapidly growing literature concerned with the association of olfactory changes with certain neuropsychiatric conditions and the use of olfactory testing to supplement conventional assessments in clinical and research practice is evolving. Neural pathways important for olfactory processing overlap extensively with pathways important for cognitive functioning, and especially those important for executive functioning, many of which are concentrated in the frontal lobes. Previous work has identified associations between performance on certain olfactory tests (most frequently olfactory identification) and executive functioning and behavioral measures (e.g. of impulsivity). More recently, similar associations have also been identified in non-clinical samples, raising new questions as to the utility of olfactory test scores as proxy measures for non-olfactory phenomena. In this systemic review, we sought to identify studies, both clinical and non-clinical, that investigated the associations of olfaction with performance on tasks sensitive to frontal lobe functioning. Our search criteria led to the identification of 70 studies published in English. We examined in detail and tabulated the data from these studies, highlighted each study's key findings, and critically evaluated these studies. We use the results of this review to reflect on some of the current and future challenges concerning the use of olfactory testing in clinical neuropsychiatric practice and research and speculate on the potential benefits of administering phonemic fluency in combination with olfactory testing to enhance its predictive value.
Collapse
Affiliation(s)
- Vasudeva Murthy Challakere Ramaswamy
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- *Correspondence: Vasudeva Murthy Challakere Ramaswamy
| | - Peter William Schofield
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Neuropsychiatry Service, Hunter New England Mental Health, New Lambton, NSW, Australia
| |
Collapse
|
29
|
DePasquale A, Hogan JD, Guadamuz Araya C, Dominy NJ, Melin AD. Aeroscapes and the Sensory Ecology of Olfaction in a Tropical Dry Forest. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.849281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aeroscapes—dynamic patterns of air speed and direction—form a critical component of landscape ecology by shaping numerous animal behaviors, including movement, foraging, and social and/or reproductive interactions. Aeroecology is particularly critical for sensory ecology: air is the medium through which many sensory signals and cues propagate, inherently linking sensory perception to variables such as air speed and turbulence. Yet, aeroscapes are seldom explicitly considered in studies of sensory ecology and evolution. A key first step towards this goal is to describe the aeroscapes of habitats. Here, we quantify the variation in air movement in two successional stages (early and late) of a tropical dry forest in Costa Rica. We recorded air speeds every 10 seconds at five different heights simultaneously. Average air speeds and turbulence increased with height above the ground, generally peaked midday, and were higher overall at the early successional forest site. These patterns of lower air speed and turbulence at ground level and overnight have important implications for olfactory foraging niches, as chemotaxis is most reliable when air movement is low and steady. We discuss our results in the context of possible selective pressures and observed variation in the foraging ecology, behaviors, and associated morphologies of resident vertebrates, with a focus on mammals. However, these data also have relevance to researchers studying socioecology, invertebrate biology, plant evolution, community ecology and more. Further investigation into how animals use different forest types, canopy heights and partition activities across different times of day will further inform our understanding of how landscape and sensory ecology are interrelated. Finally, we emphasize the timeliness of monitoring aeroecology as global wind patterns shift with climate change and human disturbance alters forest structure, which may have important downstream consequences for biological conservation.
Collapse
|
30
|
Application of Real and Virtual Radial Arm Maze Task in Human. Brain Sci 2022; 12:brainsci12040468. [PMID: 35447999 PMCID: PMC9027137 DOI: 10.3390/brainsci12040468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Virtual Reality (VR) emerges as a promising technology capable of creating different scenarios in which the body, environment, and brain are closely related, proving enhancements in the diagnosis and treatment of several spatial memory deficits. In recent years, human spatial navigation has increasingly been studied in interactive virtual environments. However, navigational tasks are still not completely adapted in immersive 3D VR systems. We stipulate that an immersive Radial Arm Maze (RAM) is an excellent instrument, allowing the participants to be physically active within the maze exactly as in the walking RAM version in reality modality. RAM is a behavioral ecological task that allows the analyses of different facets of spatial memory, distinguishing declarative components from procedural ones. In addition to describing the characteristics of RAM, we will also analyze studies in which RAM has been used in virtual modality to provide suggestions into RAM building in immersive modality.
Collapse
|
31
|
Jacobs LF. How the evolution of air breathing shaped hippocampal function. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200532. [PMID: 34957846 PMCID: PMC8710879 DOI: 10.1098/rstb.2020.0532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
To make maps from airborne odours requires dynamic respiratory patterns. I propose that this constraint explains the modulation of memory by nasal respiration in mammals, including murine rodents (e.g. laboratory mouse, laboratory rat) and humans. My prior theories of limbic system evolution offer a framework to understand why this occurs. The answer begins with the evolution of nasal respiration in Devonian lobe-finned fishes. This evolutionary innovation led to adaptive radiations in chemosensory systems, including the emergence of the vomeronasal system and a specialization of the main olfactory system for spatial orientation. As mammals continued to radiate into environments hostile to spatial olfaction (air, water), there was a loss of hippocampal structure and function in lineages that evolved sensory modalities adapted to these new environments. Hence the independent evolution of echolocation in bats and toothed whales was accompanied by a loss of hippocampal structure (whales) and an absence of hippocampal theta oscillations during navigation (bats). In conclusion, models of hippocampal function that are divorced from considerations of ecology and evolution fall short of explaining hippocampal diversity across mammals and even hippocampal function in humans. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Lucia F. Jacobs
- Department of Psychology, University of California, 2121 Berkeley Way, Berkeley, CA 94720-1650, USA
| |
Collapse
|
32
|
Waselius T, Xu W, Sparre JI, Penttonen M, Nokia MS. -Cardiac cycle and respiration phase affect responses to the conditioned stimulus in young adults trained in trace eyeblink conditioning. J Neurophysiol 2022; 127:767-775. [PMID: 35138956 DOI: 10.1152/jn.00298.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rhythms of breathing and heartbeat are linked to each other as well as to rhythms of the brain. Our recent studies suggest that presenting the conditioned stimulus during expiration or during the diastolic phase of the cardiac cycle facilitates neural processing of that stimulus and improves learning an eyeblink classical conditioning task. To date, it has not been examined whether utilizing information from both respiration and cardiac cycle phases simultaneously allows even more efficient modulation of learning. Here we studied whether the timing of the conditioned stimulus to different cardiorespiratory rhythm phase combinations affects learning trace eyeblink conditioning in healthy young adults. The results were consistent with previous reports: Timing the conditioned stimulus to diastole during expiration was more beneficial for learning than timing it to systole during inspiration. Cardiac cycle phase seemed to explain most of this variation in learning at the behavioral level. Brain evoked potentials (N1) elicited by the conditioned stimulus and recorded using electroencephalogram were larger when the conditioned stimulus was presented to diastole during expiration than when it was presented to systole during inspiration. Breathing phase explained the variation in the N1 amplitude. To conclude, our findings suggest that non-invasive monitoring of bodily rhythms combined with closed-loop control of stimulation can be used to promote learning in humans. The next step will be to test if performance can also be improved in humans with compromised cognitive ability, such as in older people with memory impairments.
Collapse
Affiliation(s)
- Tomi Waselius
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Weiyong Xu
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Julia Isabella Sparre
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Markku Penttonen
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Miriam S Nokia
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
33
|
Raithel CU, Gottfried JA. Using your nose to find your way: Ethological comparisons between human and non-human species. Neurosci Biobehav Rev 2021; 128:766-779. [PMID: 34214515 PMCID: PMC8359807 DOI: 10.1016/j.neubiorev.2021.06.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 06/10/2021] [Accepted: 06/25/2021] [Indexed: 02/08/2023]
Abstract
Olfaction is arguably the least valued among our sensory systems, and its significance for human behavior is often neglected. Spatial navigation represents no exception to the rule: humans are often characterized as purely visual navigators, a view that undermines the contribution of olfactory cues. Accordingly, research investigating whether and how humans use olfaction to navigate space is rare. In comparison, research on olfactory navigation in non-human species is abundant, and identifies behavioral strategies along with neural mechanisms characterizing the use of olfactory cues during spatial tasks. Using an ethological approach, our review draws from studies on olfactory navigation across species to describe the adaptation of strategies under the influence of selective pressure. Mammals interact with spatial environments by abstracting multisensory information into cognitive maps. We thus argue that olfactory cues, alongside inputs from other sensory modalities, play a crucial role in spatial navigation for mammalian species, including humans; that is, odors constitute one of the many building blocks in the formation of cognitive maps.
Collapse
Affiliation(s)
- Clara U Raithel
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Hamilton Walk, Stemmler Hall, Room G10, Philadelphia, PA, 19104, USA; Department of Psychology, School of Arts and Sciences, University of Pennsylvania, 425 S. University Avenue, Stephen A. Levin Building, Philadelphia, PA, 19104, USA.
| | - Jay A Gottfried
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Hamilton Walk, Stemmler Hall, Room G10, Philadelphia, PA, 19104, USA; Department of Psychology, School of Arts and Sciences, University of Pennsylvania, 425 S. University Avenue, Stephen A. Levin Building, Philadelphia, PA, 19104, USA
| |
Collapse
|
34
|
Tsushima Y, Nishino Y, Ando H. Olfactory Stimulation Modulates Visual Perception Without Training. Front Neurosci 2021; 15:642584. [PMID: 34408620 PMCID: PMC8364961 DOI: 10.3389/fnins.2021.642584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Considerable research shows that olfactory stimulations affect other modalities in high-level cognitive functions such as emotion. However, little known fact is that olfaction modulates low-level perception of other sensory modalities. Although some studies showed that olfaction had influenced on the other low-level perception, all of them required specific experiences like perceptual training. To test the possibility that olfaction modulates low-level perception without training, we conducted a series of psychophysical and neuroimaging experiments. From the results of a visual task in which participants reported the speed of moving dots, we found that participants perceived the slower motions with a lemon smell and the faster motions with a vanilla smell, without any specific training. In functional magnetic resonance imaging (fMRI) studies, brain activities in the visual cortices [V1 and human middle temporal area (hMT)] changed based on the type of olfactory stimulation. Our findings provide us with the first direct evidence that olfaction modulates low-level visual perception without training, thereby indicating that olfactory-visual effect is not an acquired behavior but an innate behavior. The present results show us with a new crossmodal effect between olfaction and vision, and bring a unique opportunity to reconsider some fundamental roles of olfactory function.
Collapse
Affiliation(s)
- Yoshiaki Tsushima
- National Institute of Information and Communications Technology, Center for Information and Neural Networks, Osaka, Japan
| | - Yurie Nishino
- National Institute of Information and Communications Technology, Center for Information and Neural Networks, Osaka, Japan
| | - Hiroshi Ando
- National Institute of Information and Communications Technology, Universal Communication Research Institute, Kyoto, Japan
| |
Collapse
|
35
|
Yi X, Yi S, Deng Y, Wang M, Ju M. High-valued seeds are remembered better: evidence for item-based spatial memory of scatter-hoarding rodents. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Patino J, Karagas NE, Chandra S, Thakur N, Stimming EF. Olfactory Dysfunction in Huntington's Disease. J Huntingtons Dis 2021; 10:413-422. [PMID: 34719504 PMCID: PMC8673514 DOI: 10.3233/jhd-210497] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Olfactory dysfunction is a common symptom in patients with neurodegenerative disorders, including Huntington's disease (HD). Understanding its pathophysiology is important in establishing a preventive and therapeutic plan. In this literature review, we cover the physiology of olfaction, its role in neurodegeneration, and its characteristics in patients with HD. In the general population, olfactory dysfunction is present in 3.8-5.8%and the prevalence increases significantly in those older than 80 years. For HD, data regarding prevalence rates are lacking and the scales used have been inconsistent or have been restructured due to concerns about cross-cultural understanding. Pathogenic huntingtin deposits have been found in the olfactory bulb of individuals with HD, although no studies have correlated this with the grade of olfactory impairment. Olfactory dysfunction is present in both premanifest and manifest patients with HD, showing a progressive decline over time with more severe deficits at advanced stages. No specific treatment for olfactory impairment in HD has been proposed; identifying and avoiding potential medications that cause olfactory dysfunction, as well as general safety recommendations remain the basis of the therapeutic strategy.
Collapse
Affiliation(s)
- Jorge Patino
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- HDSA Center of Excellence, The University of Texas Health Science Center at Houston,, Houston, TX, USA
| | - Nicholas E. Karagas
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shivika Chandra
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- HDSA Center of Excellence, The University of Texas Health Science Center at Houston,, Houston, TX, USA
| | - Nivedita Thakur
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- HDSA Center of Excellence, The University of Texas Health Science Center at Houston,, Houston, TX, USA
| | - Erin Furr Stimming
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- HDSA Center of Excellence, The University of Texas Health Science Center at Houston,, Houston, TX, USA
| |
Collapse
|
37
|
Majid A. Human Olfaction at the Intersection of Language, Culture, and Biology. Trends Cogn Sci 2020; 25:111-123. [PMID: 33349546 DOI: 10.1016/j.tics.2020.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022]
Abstract
The human sense of smell can accomplish astonishing feats, yet there remains a prevailing belief that olfactory language is deficient. Numerous studies with English speakers support this view: there are few terms for odors, odor talk is infrequent, and naming odors is difficult. However, this is not true across the world. Many languages have sizeable smell lexicons - smell is even grammaticalized. In addition, for some cultures smell talk is more frequent and odor naming easier. This linguistic variation is as yet unexplained but could be the result of ecological, cultural, or genetic factors or a combination thereof. Different ways of talking about smells may shape aspects of olfactory cognition too. Critically, this variation sheds new light on this important sensory modality.
Collapse
Affiliation(s)
- Asifa Majid
- Department of Psychology, University of York, Heslington, York, UK.
| |
Collapse
|
38
|
Yan X, Whitcroft KL, Hummel T. Olfaction: Sensitive indicator of inflammatory burden in chronic rhinosinusitis. Laryngoscope Investig Otolaryngol 2020; 5:992-1002. [PMID: 33364387 PMCID: PMC7752087 DOI: 10.1002/lio2.485] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/14/2020] [Accepted: 10/16/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Olfactory dysfunction has a high prevalence in chronic rhinosinusitis (CRS) patients and significantly affects quality of life. CRS is recognized as a complex disorder encompassing heterogeneous inflammatory processes in the nose and paranasal sinuses. Olfactory dysfunction in CRS patients is associated with the level of inflammatory mediators and the efficiency of inflammatory control. Learning about the association between CRS-related inflammation and olfactory function will provide clues to the pathogenesis of CRS. STRUCTURE The first section of this review describes the assessment of olfactory function using various measures, from ratings to MR based imaging. Then, we discuss the conductive and inflammatory mechanisms related to olfactory dysfunction in CRS: olfaction is associated with certain inflammatory patterns and is potentially a marker of CRS subtype. Finally, we review anti-inflammatory therapies including conservative and surgical approaches, and their effectiveness in olfactory dysfunction in CRS. CONCLUSION Assessment of olfactory function should be considered in the clinical evaluation of CRS patients, not only for detecting and quantifying patients' symptom, but also because it appears to be useful to objectively assess the efficacy of CRS treatment over time. In addition, olfaction can be expected to expand the library of CRS phenotypes and endotypes and, hence, pave the way for more precise, tailored treatment options.
Collapse
Affiliation(s)
- Xiaoguang Yan
- Smell and Taste Clinic, Department of OtorhinolaryngologyTU DresdenDresdenGermany
| | - Katherine Lisa Whitcroft
- Smell and Taste Clinic, Department of OtorhinolaryngologyTU DresdenDresdenGermany
- UCL Ear Institute, University College LondonLondonUK
| | - Thomas Hummel
- Smell and Taste Clinic, Department of OtorhinolaryngologyTU DresdenDresdenGermany
| |
Collapse
|
39
|
Yi S, Wang M, Ju M, Yi X. Olfaction alters spatial memory strategy of scatter-hoarding animals. Integr Zool 2020; 16:128-135. [PMID: 33136309 DOI: 10.1111/1749-4877.12498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although it has been suggested that olfaction is closely interconnected with hippocampal systems, whether olfaction regulates spatial memory strategy remains never known. Furthermore, no study has examined how olfaction mediates spatial memory established on the external objects, for example, caches made by scatter-hoarding animals. Here, we experimentally induced nondestructive and reversible olfaction loss of a scatter-hoarding animal Leopoldamys edwardsi, to test whether and how olfaction regulates spatial memory to mediate cache recovery and pilferage. Our results showed that the normal L. edwardsi preferred to pilfer caches of others rather than to recover their own using accurate spatial memory (35.7% vs. 18.6%). Anosmic L. edwardsi preferred to recover the caches they made prior to olfaction loss rather than to pilfer from others relied on spatial memory (54.2% vs. 36.0%). However, L. edwardsi with anosmia showed no preference either to the caches they established after olfaction loss or caches made by others (25.8% vs. 29.1%). These collectively indicate that olfaction loss has a potential to affect new memory formation but not previously established spatial memory on caches. Our study first showed that olfaction modified spatial memory strategy in cache recovery and pilferage behaviors of scatter-hoarding animals. We suggest that future studies pay more attention to the evolution of olfaction and its relationship with spatial memory strategy.
Collapse
Affiliation(s)
- Sijie Yi
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Minghui Wang
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Mengyao Ju
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Xianfeng Yi
- College of Life Sciences, Qufu Normal University, Qufu, China
| |
Collapse
|
40
|
Hwang BY, Mampre D, Penn R, Anderson WS, Kang J, Kamath V. Olfactory Testing in Temporal Lobe Epilepsy: a Systematic Review. Curr Neurol Neurosci Rep 2020; 20:65. [PMID: 33169232 DOI: 10.1007/s11910-020-01083-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2020] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW Olfactory testing is a potentially safe, cost-effective, bedside evaluation tool for diagnosis, monitoring, and risk assessment for surgery in temporal lobe epilepsy (TLE) patients, but testing methods and relevant olfactory domains are not standardized. We conducted a systematic review to evaluate olfactory tests in TLE and summarize the results of the literature. RECENT FINDINGS Olfactory tests varied significantly in odorant administration tools and devices, target odorants, evaluation timing, and grading scales. The Smell Threshold Test and University of Pennsylvania Smell Identification Test were the most validated single-domain tests for odor detection and odor identification, respectively. For multi-domain tests, Odor Memory/Discrimination Test and the Sniffin' Sticks test were the most validated. Results of olfactory tests in TLE are presented by domain. Rigorous validation, standardization, and comparative analysis of existing olfactory tests by domain is urgently needed to establish the utility and efficacy of olfactory testing in TLE.
Collapse
Affiliation(s)
- Brian Y Hwang
- Division of Functional Neurosurgery, Department of Neurosurgery, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Meyer 8-181, Baltimore, MD, 21287, USA.
| | - David Mampre
- Division of Functional Neurosurgery, Department of Neurosurgery, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Meyer 8-181, Baltimore, MD, 21287, USA
| | - Rachel Penn
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - William S Anderson
- Division of Functional Neurosurgery, Department of Neurosurgery, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Meyer 8-181, Baltimore, MD, 21287, USA
| | - Joon Kang
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Vidyulata Kamath
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
41
|
Hamburger K, Knauff M. Odors Can Serve as Landmarks in Human Wayfinding. Cogn Sci 2020; 43:e12798. [PMID: 31742755 DOI: 10.1111/cogs.12798] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/16/2019] [Accepted: 10/03/2019] [Indexed: 12/16/2022]
Abstract
Scientists have shown that many non-human animals such as ants, dogs, or rats are very good at using smells to find their way through their environments. But are humans also capable of navigating through their environment based on olfactory cues? There is not much research on this topic, a gap that the present research seeks to bridge. We here provide one of the first empirical studies investigating the possibility of using olfactory cues as landmarks in human wayfinding. Forty subjects participated in a piloting study to determine the olfactory material for the main experiment. Then, 24 subjects completed a wayfinding experiment with 12 odors as orientation cues. Our results are astonishing: Participants were rather good at what we call "odor-based wayfinding." This indicates that the ability of humans to use olfactory cues for navigation is often underestimated. We discuss two different cognitive explanations and rule out the idea that our results are just an instance of sequential learning. Rather, we argue that humans can enrich their cognitive map of the environment with olfactory landmarks and may use them for wayfinding.
Collapse
Affiliation(s)
- Kai Hamburger
- Experimental Psychology and Cognitive Science, Justus Liebig University
| | - Markus Knauff
- Experimental Psychology and Cognitive Science, Justus Liebig University
| |
Collapse
|
42
|
Gore S, Ukhanov K, Herbivo C, Asad N, Bobkov YV, Martens JR, Dore TM. Photoactivatable Odorants for Chemosensory Research. ACS Chem Biol 2020; 15:2516-2528. [PMID: 32865973 DOI: 10.1021/acschembio.0c00541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The chemosensory system of any animal relies on a vast array of detectors tuned to distinct chemical cues. Odorant receptors and the ion channels of the TRP family are all uniquely expressed in olfactory tissues in a species-specific manner. Great effort has been made to characterize the molecular and pharmacological properties of these proteins. Nevertheless, most of the natural ligands are highly hydrophobic molecules that are not amenable to controlled delivery. We sought to develop photoreleasable, biologically inactive odorants that could be delivered to the target receptor or ion channel and effectively activated by a short light pulse. Chemically distinct ligands eugenol, benzaldehyde, 2-phenethylamine, ethanethiol, butane-1-thiol, and 2,2-dimethylethane-1-thiol were modified by covalently attaching the photoremovable protecting group (8-cyano-7-hydroxyquinolin-2-yl)methyl (CyHQ). The CyHQ derivatives were shown to release the active odorant upon illumination with 365 and 405 nm light. We characterized their bioactivity by measuring activation of recombinant TRPV1 and TRPA1 ion channels expressed in HEK 293 cells and the electroolfactogram (EOG) response from intact mouse olfactory epithelium (OE). Illumination with 405 nm light was sufficient to robustly activate TRP channels within milliseconds of the light pulse. Photoactivation of channels was superior to activation by conventional bath application of the ligands. Photolysis of the CyHQ-protected odorants efficiently activated an EOG response in a dose-dependent manner with kinetics similar to that evoked by the vaporized odorant amyl acetate (AAc). We conclude that CyHQ-based, photoreleasable odorants can be successfully implemented in chemosensory research.
Collapse
Affiliation(s)
- Sangram Gore
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Kirill Ukhanov
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida 32610, United States
- Center for Smell and Taste, University of Florida, Gainesville, Florida 32610, United States
| | - Cyril Herbivo
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Naeem Asad
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Yuriy V. Bobkov
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida 32610, United States
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, United States
| | - Jeffrey R. Martens
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida 32610, United States
- Center for Smell and Taste, University of Florida, Gainesville, Florida 32610, United States
| | - Timothy M. Dore
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
43
|
Foraging minds in modern environments: High-calorie and savory-taste biases in human food spatial memory. Appetite 2020; 152:104718. [DOI: 10.1016/j.appet.2020.104718] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/27/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022]
|
44
|
Pelletier G, Fellows LK. Value Neglect: A Critical Role for Ventromedial Frontal Lobe in Learning the Value of Spatial Locations. Cereb Cortex 2020; 30:3632-3643. [PMID: 32133511 DOI: 10.1093/cercor/bhz331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Whether you are a gazelle bounding to the richest tract of grassland or a return customer heading to the freshest farm stand at a crowded market, the ability to learn the value of spatial locations is important in adaptive behavior. The ventromedial frontal lobe (VMF) is implicated in value-based decisions between objects and in flexibly learning to choose between objects based on feedback. However, it is unclear if this region plays a material-general role in reward learning. Here, we tested whether VMF is necessary for learning the value of spatial locations. People with VMF damage were compared with healthy participants and a control group with frontal damage sparing VMF in an incentivized spatial search task. Participants chose among spatial targets distributed among distractors, rewarded with an expected value that varied along the right-left axis of the screen. People with VMF damage showed a weaker tendency to reap reward in contralesional hemispace. In some individuals, this impairment could be dissociated from the ability to make value-based decisions between objects, assessed separately. This is the first evidence that the VMF is critically involved in reward-guided spatial search and offers a novel perspective on the relationships between value, spatial attention, and decision-making.
Collapse
Affiliation(s)
- Gabriel Pelletier
- Department of Neurology & Neurosurgery, McGill Univesity, Montreal, Quebec, Canada.,Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Lesley K Fellows
- Department of Neurology & Neurosurgery, McGill Univesity, Montreal, Quebec, Canada.,Montreal Neurological Institute, Montreal, Quebec, Canada
| |
Collapse
|
45
|
Sodums DJ, Bohbot VD. Negative correlation between grey matter in the hippocampus and caudate nucleus in healthy aging. Hippocampus 2020; 30:892-908. [PMID: 32384195 DOI: 10.1002/hipo.23210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 01/18/2023]
Abstract
Neurobiological changes that occur with aging include a reduction in function and volume of the hippocampus. These changes were associated with corresponding memory deficits in navigation tasks. However, navigation can involve different strategies that are dependent on the hippocampus and caudate nucleus. The proportion of people using hippocampus-dependent spatial strategies decreases across the lifespan. As such, the decrease in spatial strategies, and corresponding increase in caudate nucleus-dependent response strategies with age, may play a role in the observed neurobiological changes in the hippocampus. Furthermore, we previously showed a negative correlation between grey matter in the hippocampus and caudate nucleus/striatum in mice, young adults, and in individuals diagnosed with Alzheimer's disease. As such, we hypothesized that this negative relationship between the two structures would be present during normal aging. The aim of the current study was to investigate this gap in the literature by studying the relationship between grey matter in the hippocampus and caudate nucleus of the striatum, in relation to each other and to navigation strategies, during healthy aging. Healthy older adults (N = 39) were tested on the Concurrent Spatial Discrimination Learning Task (CSDLT), a virtual radial task that dissociates between spatial and response strategies. A regression of strategies against structural MRIs showed for the first time in older adults that the response strategy was associated with higher amounts of grey matter in the caudate nucleus. As expected, the spatial strategy correlated with grey matter in the hippocampus, which was negatively correlated with grey matter in the caudate nucleus. Interestingly, a sex difference emerged showing that among older adult response learners, women have the least amount of grey matter in the hippocampus, which is a known risk for Alzheimer's disease. This difference was absent among spatial learners. These results are discussed in the context of the putative protective role of spatial memory against grey matter loss in the hippocampus, especially in women.
Collapse
Affiliation(s)
- Devin J Sodums
- Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Véronique D Bohbot
- Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| |
Collapse
|
46
|
Habitual use of GPS negatively impacts spatial memory during self-guided navigation. Sci Rep 2020; 10:6310. [PMID: 32286340 PMCID: PMC7156656 DOI: 10.1038/s41598-020-62877-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/04/2020] [Indexed: 12/04/2022] Open
Abstract
Global Positioning System (GPS) navigation devices and applications have become ubiquitous over the last decade. However, it is unclear whether using GPS affects our own internal navigation system, or spatial memory, which critically relies on the hippocampus. We assessed the lifetime GPS experience of 50 regular drivers as well as various facets of spatial memory, including spatial memory strategy use, cognitive mapping, and landmark encoding using virtual navigation tasks. We first present cross-sectional results that show that people with greater lifetime GPS experience have worse spatial memory during self-guided navigation, i.e. when they are required to navigate without GPS. In a follow-up session, 13 participants were retested three years after initial testing. Although the longitudinal sample was small, we observed an important effect of GPS use over time, whereby greater GPS use since initial testing was associated with a steeper decline in hippocampal-dependent spatial memory. Importantly, we found that those who used GPS more did not do so because they felt they had a poor sense of direction, suggesting that extensive GPS use led to a decline in spatial memory rather than the other way around. These findings are significant in the context of society’s increasing reliance on GPS.
Collapse
|
47
|
The Impact of Street Space Perception Factors on Elderly Health in High-Density Cities in Macau—Analysis Based on Street View Images and Deep Learning Technology. SUSTAINABILITY 2020. [DOI: 10.3390/su12051799] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The urban space environment has been proven to be related to the health of the elderly. However, as a high-density city, Macau’s limited urban space must cope with the growing population and the arrival of an aging society. In the existing studies, less attention has been paid to Macau, especially the relationship between Macanese elderly and urban space. This study uses Baidu Street View (BSV) on the Macau Peninsula and conducts field surveys to obtain street view data to evaluate the openness, greenness, interface coverage, and road area ratio of street space and its association with the physical and mental health of the elderly and social health. The results show that the data truly reflect the overall street space conditions on the Macau Peninsula. The street openness, greenery rate, and interface enclosure are all related to the elderly in various evaluations in areas with a higher population dependency index and aging index. Human space perception is related to health gain, and road area ratio is weaker than other indicators. The research results have certain policy implications and have practical significance for city managers and designers.
Collapse
|
48
|
Young BD, Escalon JA, Mathew D. Odors: from chemical structures to gaseous plumes. Neurosci Biobehav Rev 2020; 111:19-29. [PMID: 31931034 DOI: 10.1016/j.neubiorev.2020.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
Abstract
We are immersed within an odorous sea of chemical currents that we parse into individual odors with complex structures. Odors have been posited as determined by the structural relation between the molecules that compose the chemical compounds and their interactions with the receptor site. But, naturally occurring smells are parsed from gaseous odor plumes. To give a comprehensive account of the nature of odors the chemosciences must account for these large distributed entities as well. We offer a focused review of what is known about the perception of odor plumes for olfactory navigation and tracking, which we then connect to what is known about the role odorants play as properties of the plume in determining odor identity with respect to odor quality. We end by motivating our central claim that more research needs to be conducted on the role that odorants play within the odor plume in determining odor identity.
Collapse
Affiliation(s)
- Benjamin D Young
- Philosophy and Neuroscience, University of Nevada, 1664 N Virginia St, Reno, NV 89557, United States.
| | | | - Dennis Mathew
- Biology and Neuroscience, University of Nevada, Reno, United States.
| |
Collapse
|
49
|
Dahmani L, Courcot B, Near J, Patel R, Amaral RSC, Chakravarty MM, Bohbot VD. Fimbria-Fornix Volume Is Associated With Spatial Memory and Olfactory Identification in Humans. Front Syst Neurosci 2020; 13:87. [PMID: 32009912 PMCID: PMC6971190 DOI: 10.3389/fnsys.2019.00087] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/23/2019] [Indexed: 11/13/2022] Open
Abstract
White matter pathways that surround the hippocampus comprise its afferent and efferent connections, and are therefore crucial in mediating the function of the hippocampus. We recently demonstrated a role for the hippocampus in both spatial memory and olfactory identification in humans. In the current study, we focused our attention on the fimbria-fornix white matter bundle and investigated its relationship with spatial memory and olfactory identification. We administered a virtual navigation task and an olfactory identification task to 55 young healthy adults and measured the volume of the fimbria-fornix. We found that the volume of the right fimbria-fornix and its subdivisions is correlated with both navigational learning and olfactory identification in those who use hippocampus-based spatial memory strategies, and not in those who use caudate nucleus-based navigation strategies. These results are consistent with our recent finding that spatial memory and olfaction rely on similar neural networks and structures.
Collapse
Affiliation(s)
- Louisa Dahmani
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Blandine Courcot
- Douglas Brain Imaging Center, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Jamie Near
- Douglas Brain Imaging Center, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Raihaan Patel
- Douglas Brain Imaging Center, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Robert S C Amaral
- Douglas Brain Imaging Center, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - M Mallar Chakravarty
- Douglas Brain Imaging Center, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Véronique D Bohbot
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
50
|
Strauch C, Manahan-Vaughan D. Orchestration of Hippocampal Information Encoding by the Piriform Cortex. Cereb Cortex 2020; 30:135-147. [PMID: 31220213 PMCID: PMC7029697 DOI: 10.1093/cercor/bhz077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 01/03/2023] Open
Abstract
The hippocampus utilizes olfactospatial information to encode sensory experience by means of synaptic plasticity. Odor exposure is also a potent impetus for hippocampus-dependent memory retrieval. Here, we explored to what extent the piriform cortex directly impacts upon hippocampal information processing and storage. In behaving rats, test-pulse stimulation of the anterior piriform cortex (aPC) evoked field potentials in the dentate gyrus (DG). Patterned stimulation of the aPC triggered both long-term potentiation (LTP > 24 h) and short-term depression (STD), in a frequency-dependent manner. Dual stimulation of the aPC and perforant path demonstrated subordination of the aPC response, which was nonetheless completely distinct in profile to perforant path-induced DG plasticity. Correspondingly, patterned aPC stimulation resulted in somatic immediate early gene expression in the DG that did not overlap with responses elicited by perforant path stimulation. Our results support that the piriform cortex engages in specific control of hippocampal information processing and encoding. This process may underlie the unique role of olfactory cues in information encoding and retrieval of hippocampus-dependent associative memories.
Collapse
Affiliation(s)
- Christina Strauch
- Department of Neurophysiology, Medical Faculty
- International Graduate School for Neuroscience, Ruhr University Bochum, Universitaetsstr. Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty
- International Graduate School for Neuroscience, Ruhr University Bochum, Universitaetsstr. Bochum, Germany
| |
Collapse
|