1
|
Houghton M, Houldsworth A. Investigating the potential of oncolytic viruses in the treatment of melanoma: where do we go from here? SKIN HEALTH AND DISEASE 2025; 5:102-113. [PMID: 40365251 PMCID: PMC12068489 DOI: 10.1093/skinhd/vzaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 05/15/2025]
Abstract
Oncolytic viruses (OVs) can destroy cancer cells without harming healthy cells. This review explores the mechanisms by which OVs operate and the methods of delivering them. Melanoma is a common type of skin cancer with increasing prevalence in the UK; therefore, finding effective strategies to combat the disease is paramount. To understand the potential of OVs in treating melanoma, different types of viruses will be reviewed. Talimogene laherparepvec (T-VEC) is the only OV to be approved for treating melanoma; this review aims to understand the efficacy of T-VEC as a monotherapy and combined with other treatments. There is substantial evidence to support the use of OVs in treating melanoma by synthesizing the current perspectives of their use where they proved to be effective in clinical trials, as monotherapies and in combination with other treatments, as well as exciting innovative ventures using novel virus species. Gaps are also highlighted in the research, such as determining the influence that cancer gene mutational status has on how the tumour cells react to treatment, a concept that should also be considered in future research.
Collapse
Affiliation(s)
- Michaela Houghton
- Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | | |
Collapse
|
2
|
Zhong L, Gan L, Wang B, Wu T, Yao F, Gong W, Peng H, Deng Z, Xiao G, Liu X, Na J, Xia D, Yu X, Zhang Z, Xiang B, Huo Y, Yan D, Dong Z, Fang F, Ma Y, Jin G, Su D, Liu X, Li Q, Liao H, Tang C, He J, Tang Z, Zhang S, Qiu B, Yang Z, Yang L, Chen Z, Zeng M, Feng R, Jiao J, Liao Y, Wang T, Wu L, Mi Z, Liu Z, Shi S, Zhang K, Shi W, Zhao Y. Hyperacute rejection-engineered oncolytic virus for interventional clinical trial in refractory cancer patients. Cell 2025; 188:1119-1136.e23. [PMID: 39826543 DOI: 10.1016/j.cell.2024.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 10/01/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
Recently, oncolytic virus (OV) therapy has shown great promise in treating malignancies. However, intravenous safety and inherent lack of immunity are two significant limitations in clinical practice. Herein, we successfully developed a recombinant Newcastle disease virus with porcine α1,3GT gene (NDV-GT) triggering hyperacute rejection. We demonstrated its feasibility in preclinical studies. The intravenous NDV-GT showed superior ability to eradicate tumor cells in our innovative CRISPR-mediated primary hepatocellular carcinoma monkeys. Importantly, the interventional clinical trial treating 20 patients with relapsed/refractory metastatic cancer (Chinese Clinical Trial Registry of WHO, ChiCTR2000031980) showed a high rate (90.00%) of disease control and durable responses, without serious adverse events and clinically functional neutralizing antibodies, further suggesting that immunogenicity is minimal under these conditions and demonstrating the feasibility of NDV-GT for immunovirotherapy. Collectively, our results demonstrate the high safety and efficacy of intravenous NDV-GT, thus providing an innovative technology for OV therapy in oncological therapeutics and beyond.
Collapse
Affiliation(s)
- Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Lu Gan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Tao Wu
- The First People's Hospital of Changde City, Changde, Hunan 415000, China
| | - Fei Yao
- Department of Oncology, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, China
| | - Wenlin Gong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Hongmei Peng
- The First People's Hospital of Changde City, Changde, Hunan 415000, China
| | - Zhiming Deng
- The First People's Hospital of Changde City, Changde, Hunan 415000, China
| | - Guoyou Xiao
- Department of Nuclear Medicine, The Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Desong Xia
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, The Affiliated Tumor Hospital, Fudan University, Shanghai 200032, China
| | - Zhikun Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, The Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yu Huo
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Dan Yan
- Department of Oncology, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, China
| | - Zhixin Dong
- Department of Oncology, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, China
| | - Fang Fang
- Department of Oncology, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, China
| | - Yun Ma
- Department of Pathology, The Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Guanqiao Jin
- Department of Radiology, The Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Danke Su
- Department of Radiology, The Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiuli Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Qiang Li
- Department of Radiology, The Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Hai Liao
- Department of Radiology, The Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Chao Tang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jian He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhiping Tang
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shilai Zhang
- Department of Nuclear Medicine, The Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Bingqing Qiu
- Department of Nuclear Medicine, The Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhi Yang
- Department of Nuclear Medicine, The Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lihui Yang
- Fundamental Nursing Teaching and Research Office, Nursing College of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ziqin Chen
- The First People's Hospital of Changde City, Changde, Hunan 415000, China
| | - Mengsi Zeng
- The First People's Hospital of Changde City, Changde, Hunan 415000, China
| | - Ronghua Feng
- The First People's Hospital of Changde City, Changde, Hunan 415000, China
| | - Jiege Jiao
- Yuandan Biotechnology (Hainan) Co., Ltd., Haikou, Hainan 570100, China
| | - Yuan Liao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Tinghua Wang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Liangliang Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhengcheng Mi
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ziqun Liu
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Si Shi
- Department of Pancreatic Surgery, The Affiliated Tumor Hospital, Fudan University, Shanghai 200032, China
| | - Kun Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Wei Shi
- Department of Oncology, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, China.
| | - Yongxiang Zhao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
3
|
Xiao X, Wu Y, Jie Z, Lin L, Li Y, Hu W, Li Y, Zhong S. Akkermansia Muciniphila supplementation improves hyperlipidemia, cardiac function, and gut microbiota in high fat fed apolipoprotein E-deficient mice. Prostaglandins Other Lipid Mediat 2024; 175:106906. [PMID: 39265779 DOI: 10.1016/j.prostaglandins.2024.106906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Hyperlipidemia, obesity and gut dysbiosis are pivotal risk factors for atherosclerotic cardiovascular disease (ACVD). Supplementation of Akkermansia muciniphila (AKK) has also been proven to be effective in the prevention and treatment of obesity and other metabolic disorders. Here we found that AKK was more abundant in healthy control than ACVD patients via metagenomic sequencing on fecal samples. Subsequently, we investigated the role and underlying mechanism of AKK on obesity-associated atherosclerosis. AKK intervention partially reversed the exacerbation of atherosclerotic lesion formation in ApoE-/- mice by improving dyslipidemia. Interestingly, replenishment with AKK significantly enhanced cardiac function and reduced the body weight. It also reduced pro-inflammatory cytokine IL-6 and increased anti-inflammatory IL-10 in the circulation. Additionally, AKK colonization dramatically regulated gut microbiota and increased the abundance of Lactobacillaceae. Our findings have provided novel insights into the therapeutic potential of AKK as a beneficial microbe for treating atherosclerotic-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Xiao Xiao
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yuanyuan Wu
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Zhuye Jie
- BGI-Shenzhen, Shenzhen 518083, PR China; Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen 518083, PR China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, Copenhagen 2100, Denmark
| | - Lu Lin
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yangchen Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Weixian Hu
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
| | - Yong Li
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China.
| | - Shilong Zhong
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
4
|
Yan D, Li G, Yuan Y, Li H, Cao H, Dai Y, Li Y, Zhang Z, Li F, Fang Y, Gao Q. SOCS3 inhibiting JAK-STAT pathway enhances oncolytic adenovirus efficacy by potentiating viral replication and T-cell activation. Cancer Gene Ther 2024; 31:397-409. [PMID: 38102464 DOI: 10.1038/s41417-023-00710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Oncolytic viruses (OVs) are emerging as a potentially useful treatment for malignancies due to the capabilities of direct oncolysis and immune induction. Improving the replication of OVs is an effective approach to enhance the oncolytic effects. Here, we observed that cancer cells with deficiencies in JAK-STAT pathway showed greater sensitivity to oncolytic adenovirus (oAd), and JAK inhibitor could enhance the replication of oAd. Therefore, we constructed a novel oAd expressing SOCS3, a major negative regulator of JAK-STAT pathway, and confirmed that oAd-SOCS3 exhibited a more significant antitumor effect than oAd-Ctrl both in vitro and in vivo. Mechanistically, SOCS3 inhibited the activation of JAK-STAT pathway, resulting in stronger tumor selective replication of oAd and downregulated expression of PD-L1 on cancer cells as well. Both benefits could collectively awaken antitumor immunity. This study highlights the importance of JAK-STAT pathway in viral replication and confirms the treatment of oAd-SOCS3 in potential clinical applications.
Collapse
Affiliation(s)
- Danmei Yan
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Guannan Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuan Yuan
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Huayi Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Heng Cao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yilin Dai
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ying Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zeyu Zhang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Fei Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yong Fang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Qinglei Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
5
|
Huang C, Lai W, Mao S, Song D, Zhang J, Xiao X. Quercetin-induced degradation of RhoC suppresses hepatocellular carcinoma invasion and metastasis. Cancer Med 2024; 13:e7082. [PMID: 38457248 PMCID: PMC10923047 DOI: 10.1002/cam4.7082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/25/2024] [Accepted: 02/18/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Tumor metastasis and recurrence are major causes of mortality in patients with hepatocellular carcinoma (HCC) that is still lack of effective therapeutic targets and drugs. Previous reports implied that ras homolog family member C (RhoC) plays a toxic role on metastasis and proliferation of cancer. METHODS In this research, the correlation between RhoC and metastasis ability was confirmed by in vitro experiments and TCGA database. We explored whether quercetin could inhibit cell migration or invasion by transwell assay. Real-time PCR, overexpression and ubiquitination assay, etc. were applied in mechanism study. Primary HCC cells and animal models including patient-derived xenografts (PDXs) were employed to evaluate the anti-metastasis effects of quercetin. RESULTS Clinical relevance and in vitro experiments further confirmed the level of RhoC was positively correlated with invasion and metastasis ability of HCC. Then we uncovered that quercetin could attenuate invasion and metastasis of HCC by downregulating RhoC's level in vitro, in vivo and PDXs. Furthermore, mechanistic investigations displayed quercetin hindered the E3 ligase expression of SMAD specific E3 ubiquitin protein ligase 2 (SMURF2) leading to enhancement of RhoC's ubiquitination and proteasomal degradation. CONCLUSIONS Our research has revealed the novel mechanisms quercetin regulates degradation of RhoC level by targeting SMURF2 and identified quercetin may be a potential compound for HCC therapy.
Collapse
Affiliation(s)
- Chunlong Huang
- Department of Hepatobiliary Surgery, The first affiliated hospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Weihua Lai
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdongChina
| | - Shuai Mao
- Department of Hepatobiliary Surgery, The first affiliated hospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Deli Song
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Jihong Zhang
- Department of Hepatobiliary Surgery, The first affiliated hospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Xiao Xiao
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
6
|
Wang G, Cao J, Gui M, Huang P, Zhang L, Qi R, Chen R, Lin L, Han Q, Lin Y, Chen T, He P, Ma J, Fu R, Hong J, Wu Q, Yu H, Chen J, Huang C, Zhang T, Yuan Q, Zhang J, Chen Y, Xia N. The potential of swine pseudorabies virus attenuated vaccine for oncolytic therapy against malignant tumors. J Exp Clin Cancer Res 2023; 42:284. [PMID: 37891570 PMCID: PMC10604416 DOI: 10.1186/s13046-023-02848-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/01/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Oncolytic viruses are now well recognized as potential immunotherapeutic agents against cancer. However, the first FDA-approved oncolytic herpes simplex virus 1 (HSV-1), T-VEC, showed limited benefits in some patients in clinical trials. Thus, the identification of novel oncolytic viruses that can strengthen oncolytic virus therapy is warranted. Here, we identified a live-attenuated swine pseudorabies virus (PRV-LAV) as a promising oncolytic agent with broad-spectrum antitumor activity in vitro and in vivo. METHODS PRV cytotoxicity against tumor cells and normal cells was tested in vitro using a CCK8 cell viability assay. A cell kinase inhibitor library was used to screen for key targets that affect the proliferation of PRV-LAV. The potential therapeutic efficacy of PRV-LAV was tested against syngeneic tumors in immunocompetent mice, and against subcutaneous xenografts of human cancer cell lines in nude mice. Cytometry by time of flight (CyTOF) and flow cytometry were used to uncover the immunological mechanism of PRV-LAV treatment in regulating the tumor immune microenvironment. RESULTS Through various tumor-specific analyses, we show that PRV-LAV infects cancer cells via the NRP1/EGFR signaling pathway, which is commonly overexpressed in cancer. Further, we show that PRV-LAV kills cancer cells by inducing endoplasmic reticulum (ER) stress. Moreover, PRV-LAV is responsible for reprogramming the tumor microenvironment from immunologically naïve ("cold") to inflamed ("hot"), thereby increasing immune cell infiltration and restoring CD8+ T cell function against cancer. When delivered in combination with immune checkpoint inhibitors (ICIs), the anti-tumor response is augmented, suggestive of synergistic activity. CONCLUSIONS PRV-LAV can infect cancer cells via NRP1/EGFR signaling and induce cancer cells apoptosis via ER stress. PRV-LAV treatment also restores CD8+ T cell function against cancer. The combination of PRV-LAV and immune checkpoint inhibitors has a significant synergistic effect. Overall, these findings point to PRV-LAV as a serious potential candidate for the treatment of NRP1/EGFR pathway-associated tumors.
Collapse
Affiliation(s)
- Guosong Wang
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Jiali Cao
- Department of Laboratory Medicine, Fujian Key Clinical Specialty of Laboratory Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, People's Republic of China
| | - Mengxuan Gui
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Pengfei Huang
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Liang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Ruoyao Qi
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Ruiqi Chen
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Lina Lin
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Qiangyuan Han
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Yanhua Lin
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Tian Chen
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Peiqing He
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Jian Ma
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Rao Fu
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Junping Hong
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Qian Wu
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Hai Yu
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Junyu Chen
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Chenghao Huang
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China.
| | - Tianying Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China.
| | - Quan Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China.
| | - Jun Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China.
| | - Yixin Chen
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China.
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China.
| |
Collapse
|
7
|
Cui B, Song L, Wang Q, Li K, He Q, Wu X, Gao F, Liu M, An C, Gao Q, Hu C, Hao X, Dong F, Zhou J, Liu D, Song Z, Yan X, Zhang J, Bai Y, Mao Q, Yang X, Liang Z. Non-small cell lung cancers (NSCLCs) oncolysis using coxsackievirus B5 and synergistic DNA-damage response inhibitors. Signal Transduct Target Ther 2023; 8:366. [PMID: 37743418 PMCID: PMC10518312 DOI: 10.1038/s41392-023-01603-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/18/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
With the continuous in-depth study of the interaction mechanism between viruses and hosts, the virus has become a promising tool in cancer treatment. In fact, many oncolytic viruses with selectivity and effectiveness have been used in cancer therapy. Human enterovirus is one of the most convenient sources to generate oncolytic viruses, however, the high seroprevalence of some enteroviruses limits its application which urges to exploit more oncolytic enteroviruses. In this study, coxsackievirus B5/Faulkner (CV-B5/F) was screened for its potential oncolytic effect against non-small cell lung cancers (NSCLCs) through inducing apoptosis and autophagy. For refractory NSCLCs, DNA-dependent protein kinase (DNA-PK) or ataxia telangiectasia mutated protein (ATM) inhibitors can synergize with CV-B5/F to promote refractory cell death. Here, we showed that viral infection triggered endoplasmic reticulum (ER) stress-related pro-apoptosis and autophagy signals, whereas repair for double-stranded DNA breaks (DSBs) contributed to cell survival which can be antagonized by inhibitor-induced cell death, manifesting exacerbated DSBs, apoptosis, and autophagy. Mechanistically, PERK pathway was activated by the combination of CV-B5/F and inhibitor, and the irreversible ER stress-induced exacerbated cell death. Furthermore, the degradation of activated STING by ERphagy promoted viral replication. Meanwhile, no treatment-related deaths due to CV-B5/F and/or inhibitors occurred. Conclusively, our study identifies an oncolytic CV-B5/F and the synergistic effects of inhibitors of DNA-PK or ATM, which is a potential therapy for NSCLCs.
Collapse
Affiliation(s)
- Bopei Cui
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, China
| | - Lifang Song
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, China
| | - Qian Wang
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Kelei Li
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
- Beijing Minhai Biotechnology Co., Ltd, Beijing, China
| | - Qian He
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Xing Wu
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Fan Gao
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Mingchen Liu
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Chaoqiang An
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
- Beijing Minhai Biotechnology Co., Ltd, Beijing, China
| | - Qiushuang Gao
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Chaoying Hu
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Xiaotian Hao
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Fangyu Dong
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
- Taibang Biologic Group, Beijing, China
| | | | - Dong Liu
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
- Changchun Institute of Biological Products Co., Ltd, Changchun, China
| | - Ziyang Song
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
- Shanghai Institute of Biological Products Co., Ltd, Shanghai, China
| | - Xujia Yan
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
- Changchun Institute of Biological Products Co., Ltd, Changchun, China
| | - Jialu Zhang
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Yu Bai
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Qunying Mao
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China.
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, China.
- China National Biotec Group Company Limited, Beijing, China.
| | - Zhenglun Liang
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China.
| |
Collapse
|
8
|
Guo L, Hu C, Liu Y, Chen X, Song D, Shen R, Liu Z, Jia X, Zhang Q, Gao Y, Deng Z, Zuo T, Hu J, Zhu W, Cai J, Yan G, Liang J, Lin Y. Directed natural evolution generates a next-generation oncolytic virus with a high potency and safety profile. Nat Commun 2023; 14:3410. [PMID: 37296165 PMCID: PMC10256765 DOI: 10.1038/s41467-023-39156-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Oncolytic viruses (OVs) represent a type of encouraging multi-mechanistic drug for the treatment of cancer. However, attenuation of virulence, which is generally required for the development of OVs based on pathogenic viral backbones, is frequently accompanied by a compromised killing effect on tumor cells. By exploiting the property of viruses to evolve and adapt in cancer cells, we perform directed natural evolution on refractory colorectal cancer cell HCT-116 and generate a next-generation oncolytic virus M1 (NGOVM) with an increase in the oncolytic effect of up to 9690-fold. The NGOVM has a broader antitumor spectrum and a more robust oncolytic effect in a range of solid tumors. Mechanistically, two critical mutations are identified in the E2 and nsP3 genes, which accelerate the entry of M1 virus by increasing its binding to the Mxra8 receptor and antagonize antiviral responses by inhibiting the activation of PKR and STAT1 in tumor cells, respectively. Importantly, the NGOVM is well tolerated in both rodents and nonhuman primates. This study implies that directed natural evolution is a generalizable approach for developing next-generation OVs with an expanded scope of application and high safety.
Collapse
Affiliation(s)
- Li Guo
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Cheng Hu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yang Liu
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoyu Chen
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Deli Song
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Runling Shen
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhanzhen Liu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Xudong Jia
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qinfen Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuanzhu Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhezhi Deng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, China
| | - Tao Zuo
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Jun Hu
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenbo Zhu
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jing Cai
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guangmei Yan
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiankai Liang
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yuan Lin
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital-Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
9
|
Xu W, Yan P, Zhou Z, Yao J, Pan H, Jiang L, Bo Z, Ni B, Sun M, Gao S, Huan C. HDAC6 Triggers the ATM-Dependent DNA Damage Response To Promote PRV Replication. Microbiol Spectr 2023; 11:e0213222. [PMID: 36951571 PMCID: PMC10101138 DOI: 10.1128/spectrum.02132-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 03/01/2023] [Indexed: 03/24/2023] Open
Abstract
Pseudorabies virus (PRV) infection is modulated by various cellular host factors. In this study, we investigated the role of histone deacetylase 6 (HDAC6) in this process. We determined HDAC6 expression in vitro and performed gene knockout, pharmacological inhibition analyses, immunofluorescence assays, and statistical analyses. We found that the pharmacological and genetic inhibition of HDAC6 significantly decreased PRV replication, whereas its overexpression promoted PRV replication. Additionally, we demonstrated that PRV infection can induce the phosphorylation of histone H2AX and lead to DNA damage response (DDR), and the ataxia telangiectasia mutated (ATM) inhibitor KU55933 inhibits DDR and PRV infection. Mechanistically, the HDAC6 inhibitor tubacin and HDAC6 knockout can decrease DDR. The results of this study suggested that HDAC6 may be a crucial factor in PRV-induced ATM-dependent DDR to promote PRV replication. IMPORTANCE Pseudorabies virus (PRV) is a member of the subfamily Alphaherpesvirinae of the family Herpesviridae. PRV infection in swine can lead to high morbidity and mortality of swine, causing huge economic losses. In particular, PRV variants can cause severe damage to the nervous and respiratory systems of humans, revealing that PRV may be a potential zoonotic pathogen. Vaccines for PRV have been developed that can delay or reduce the epidemic, but they currently cannot eliminate this disease completely. Therefore, studies should investigate new targets for the prevention and control of PRV infection. In this study, we demonstrated that HDAC6 can induce ataxia telangiectasia mutated-dependent DNA damage response to foster PRV replication, indicating that HDAC6 is a therapeutic target for PRV infection.
Collapse
Affiliation(s)
- Weiyin Xu
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Ping Yan
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Ziyan Zhou
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Jingting Yao
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Haochun Pan
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Luyao Jiang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Zongyi Bo
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Bo Ni
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Mingxia Sun
- Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Song Gao
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Changchao Huan
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
Fang C, Xiao G, Wang T, Song L, Peng B, Xu B, Zhang K. Emerging Nano-/Biotechnology Drives Oncolytic Virus-Activated and Combined Cancer Immunotherapy. RESEARCH 2023; 6:0108. [PMID: 37040283 PMCID: PMC10079287 DOI: 10.34133/research.0108] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/15/2023] [Indexed: 04/05/2023]
Abstract
Oncolytic viruses (OVs) as one promising antitumor methods have made important contributions to tumor immunotherapy, which arouse increasing attention. They provide the dual mechanisms including direct killing effect toward tumor cells and immune activation for elevating antitumor responses, which have been proved in many preclinical studies. Especially, natural or genetically modified viruses as clinical immune preparations have emerged as a new promising approach objective to oncology treatment. The approval of talimogene laherparepvec (T-VEC) by the U.S. Food and Drug Administration (FDA) for the therapy of advanced melanoma could be considered as a milestone achievement in the clinical translation of OV. In this review, we first discussed the antitumor mechanisms of OVs with an emphasis on targeting, replication, and propagation. We further outlined the state of the art of current OVs in tumor and underlined the activated biological effects especially including immunity. More significantly, the enhanced immune responses based on OVs were systematically discussed from different perspectives such as combination with immunotherapy, genetic engineering of OVs, integration with nanobiotechnology or nanoparticles, and antiviral response counteraction, where their principles were shed light on. The development of OVs in the clinics was also highlighted to analyze the actuality and concerns of different OV applications in clinical trials. At last, the future perspectives and challenges of OVs as an already widely accepted treatment means were discussed. This review will provide a systematic review and deep insight into OV development and also offer new opportunities and guidance pathways to drive the further clinical translation.
Collapse
Affiliation(s)
- Chao Fang
- Central Laboratory and Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine,
Tongji University, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Gaozhe Xiao
- National Center for International Research of Bio-targeting Theranostics,
Guangxi Medical University, No. 22 Shuangyong Road 22, Nanning, Guangxi 530021, China
| | - Taixia Wang
- Central Laboratory and Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine,
Tongji University, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Li Song
- Central Laboratory and Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine,
Tongji University, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Bo Peng
- Central Laboratory and Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine,
Tongji University, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Bin Xu
- Department of Urology, Shanghai Ninth People’s Hospital,
Shanghai Jiaotong University School of Medicine, No. 639 Zhizaoju Road, Huangpu, Shanghai 200011, China
| | - Kun Zhang
- Central Laboratory and Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine,
Tongji University, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
- National Center for International Research of Bio-targeting Theranostics,
Guangxi Medical University, No. 22 Shuangyong Road 22, Nanning, Guangxi 530021, China
| |
Collapse
|
11
|
Liu Y, Xu C, Xiao X, Chen Y, Wang X, Liu W, Tan Y, Zhu W, Hu J, Liang J, Yan G, Lin Y, Cai J. Overcoming resistance to oncolytic virus M1 by targeting PI3K-γ in tumor-associated myeloid cells. Mol Ther 2022; 30:3677-3693. [PMID: 35552024 PMCID: PMC9734023 DOI: 10.1016/j.ymthe.2022.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 04/21/2022] [Accepted: 05/07/2022] [Indexed: 02/07/2023] Open
Abstract
Oncolytic viruses (OVs) have become a category of promising anticancer immunotherapeutic agents over the last decade. However, the fact that many individuals fail to respond to OVs highlights the importance of defining the barely known immunosuppressive mechanisms that lead to treatment resistance. Here we found that the immunosuppression mediated by tumor-associated myeloid cells (TAMCs) directly quenches the antitumor effect of oncolytic virus M1 (OVM). OVM induces myeloid cells to migrate into tumors and strengthens their immunosuppressive phenotypes. Mechanically, tumor cells treated with OVM secrete interleukin-6 (IL-6) to activate the phosphatidylinositol 3-kinase (PI3K)-γ/Akt axis in TAMCs, promoting infiltration of TAMCs and aggravating their inhibition on cytotoxic CD8+ T lymphocytes. Pharmacologically targeting PI3K-γ relieves TAMC-mediated immunosuppression and enhances the efficacy of OVM. Additional treatment with immune checkpoint antibodies eradicates multiple refractory solid tumors and induces potent long-term antitumor immune memory. Our findings indicate that OVM functions as a double-edged sword in antitumor immunity and provide insights into the rationale for liberating T cell-mediated antitumor activity by abolishing TAMC-mediated immunosuppression.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Cuiying Xu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoting Xiao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yinting Chen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaobo Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenfeng Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yaqian Tan
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510080, China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun Hu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiankai Liang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuan Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Jing Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
12
|
Current landscape and perspective of oncolytic viruses and their combination therapies. Transl Oncol 2022; 25:101530. [PMID: 36095879 PMCID: PMC9472052 DOI: 10.1016/j.tranon.2022.101530] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
Oncolytic virotherapy has become an important branch of cancer immunotherapy in clinical practice. Multiple viruses can be engineered to be OVs and armed with anticancer genes to enhance their efficacy. OVs can reshape TME and produce synergistic anticancer efficacy when combined with other therapies. Safety and effectiveness are the main direction of future research and development of OVs.
Oncolytic virotherapy has become an important strategy in cancer immunotherapy. Oncolytic virus (OV) can reshape the tumor microenvironment (TME) through its replication-mediated oncolysis and transgene-produced anticancer effect, inducing an antitumor immune response and creating favorable conditions for the combination of other therapeutic measures. Extensive preclinical and clinical data have suggested that OV-based combination therapy has definite efficacy and promising prospects. Recently, several clinical trials of oncolytic virotherapy combined with immunotherapy have made breakthroughs. This review comprehensively elaborates the OV types and their targeting mechanisms, the selection of anticancer genes armed in OVs, and the therapeutic modes of action and strategies of OVs to provide a theoretical basis for the better design and construction of OVs and the optimization of OV-based therapeutic strategies.
Collapse
|
13
|
Zhu Z, McGray AJR, Jiang W, Lu B, Kalinski P, Guo ZS. Improving cancer immunotherapy by rationally combining oncolytic virus with modulators targeting key signaling pathways. Mol Cancer 2022; 21:196. [PMID: 36221123 PMCID: PMC9554963 DOI: 10.1186/s12943-022-01664-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Oncolytic viruses (OVs) represent a new class of multi-modal immunotherapies for cancer, with OV-elicited antitumor immunity being key to their overall therapeutic efficacy. Currently, the clinical effectiveness of OV as monotherapy remains limited, and thus investigators have been exploring various combinations with other anti-cancer agents and demonstrated improved therapeutic efficacy. As cancer cells have evolved to alter key signaling pathways for enhanced cell proliferation, cancer progression and metastasis, these cellular and molecular changes offer promising targets for rational cancer therapy design. In this regard, key molecules in relevant signaling pathways for cancer cells or/and immune cells, such as EGFR-KRAS (e.g., KRASG12C), PI3K-AKT-mTOR, ERK-MEK, JAK-STAT, p53, PD-1-PD-L1, and epigenetic, or immune pathways (e.g., histone deacetylases, cGAS-STING) are currently under investigation and have the potential to synergize with OV to modulate the immune milieu of the tumor microenvironment (TME), thereby improving and sustaining antitumor immunity. As many small molecule modulators of these signaling pathways have been developed and have shown strong therapeutic potential, here we review key findings related to both OV-mediated immunotherapy and the utility of small molecule modulators of signaling pathways in immuno-oncology. Then, we focus on discussion of the rationales and potential strategies for combining OV with selected modulators targeting key cellular signaling pathways in cancer or/and immune cells to modulate the TME and enhance antitumor immunity and therapeutic efficacy. Finally, we provide perspectives and viewpoints on the application of novel experimental systems and technologies that can propel this exciting branch of medicine into a bright future.
Collapse
Affiliation(s)
- Zhi Zhu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - A J Robert McGray
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Weijian Jiang
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Binfeng Lu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pawel Kalinski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | - Zong Sheng Guo
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA. .,Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
14
|
Guo D, Xiao J, Liang J, Fan J, Hou P, Li X, Zhang H, Li K, Bu L, Li P, He M, Zhong Y, Guo L, Jia P, Xiao Q, Wu J, Peng H, Li C, Xing F. CDK4/6 inhibition enhances oncolytic virus efficacy by potentiating tumor-selective cell killing and T cell activation in refractory glioblastoma. Cancer Res 2022; 82:3359-3374. [DOI: 10.1158/0008-5472.can-21-3656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/29/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022]
Abstract
Abstract
Glioblastoma multiforme (GBM) is among the most aggressive human cancers. Although oncolytic virus (OV) therapy has been proposed as a potential approach to treat GBM, it frequently fails because GBM cells are usually nonpermissive to OV. Here, we describe a dual-step drug screen for identifying chemical enhancers of oncolytic virus in GBM. From a high-throughput screen of 1416 FDA-approved drugs, an inhibitor of CDK4/6 was identified as the top enhancer, selectively increasing potency of two OV strains, VSVΔ51 and Zika virus. Mechanistically, CDK4/6 inhibition promoted autophagic degradation of MAVS, resulting in impaired antiviral responses and enhanced tumor-selective replication of VSVΔ51 in vitro and in vivo. CDK4/6 inhibition cooperated with VSVΔ51 to induce severe DNA damage stress and amplify oncolysis. In GBM xenograft models, combined treatment with CDK4/6 inhibitor and VSVΔ51 significantly inhibited tumor growth and prolonged the survival of tumor-bearing mice. Further investigation revealed that CDK4/6 inhibitor and VSVΔ51 synergistically induced immunogenic cell death and boosted anti-tumor immunity. Together, this study features a promising approach of treating aggressive GBM through the combination of CDK4/6 inhibitor with OV.
Collapse
Affiliation(s)
- Deyin Guo
- Sun Yat-sen University, Guangzhou, China
| | | | | | - Junjie Fan
- Sun Yat-sen University, Guangzhou, China
| | - Panpan Hou
- Sun Yat-sen University, Guangzhou, China
| | - Xiaodong Li
- Guangzhou Medical University, Guangzhou, United States
| | | | - Kai Li
- Sun Yat-sen University, China
| | - Lang Bu
- First Affiliated Hospital of Sun Yat-sen University, guangzhou, guangdong, China
| | - Ping Li
- Sun Yat-sen University, Guangzhou, China
| | - Miao He
- Sun Yat-sen University, Guangzhou, China
| | | | - Liping Guo
- Sun Yat-sen University, Guangzhou, China
| | | | | | - Junyu Wu
- Sun Yat-sen University, Guangzhou, China
| | - Hong Peng
- Sun Yat-sen University, Guangzhou, China
| | - Chunmei Li
- Sun Yat-sen University, Guangzhou, China
| | - Fan Xing
- Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Identification of the receptor of oncolytic virus M1 as a therapeutic predictor for multiple solid tumors. Signal Transduct Target Ther 2022; 7:100. [PMID: 35393389 PMCID: PMC8989880 DOI: 10.1038/s41392-022-00921-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/29/2022] [Accepted: 02/10/2022] [Indexed: 11/08/2022] Open
Abstract
Over the last decade, oncolytic virus (OV) therapy has shown its promising potential in tumor treatment. The fact that not every patient can benefit from it highlights the importance for defining biomarkers that help predict patients' responses. As particular self-amplifying biotherapeutics, the anti-tumor effects of OVs are highly dependent on the host factors for viral infection and replication. By using weighted gene co-expression network analysis (WGCNA), we found matrix remodeling associated 8 (MXRA8) is positively correlated with the oncolysis induced by oncolytic virus M1 (OVM). Consistently, MXRA8 promotes the oncolytic efficacy of OVM in vitro and in vivo. Moreover, the interaction of MXRA8 and OVM studied by single-particle cryo-electron microscopy (cryo-EM) showed that MXRA8 directly binds to this virus. Therefore, MXRA8 acts as the entry receptor of OVM. Pan-cancer analysis showed that MXRA8 is abundant in most solid tumors and is highly expressed in tumor tissues compared with adjacent normal ones. Further study in cancer cell lines and patient-derived tumor tissues revealed that the tumor selectivity of OVM is predominantly determined by a combinational effect of the cell membrane receptor MXRA8 and the intracellular factor, zinc-finger antiviral protein (ZAP). Taken together, our study may provide a novel dual-biomarker for precision medicine in OVM therapy.
Collapse
|
16
|
Ye Z, Shi Y, Lees-Miller SP, Tainer JA. Function and Molecular Mechanism of the DNA Damage Response in Immunity and Cancer Immunotherapy. Front Immunol 2021; 12:797880. [PMID: 34970273 PMCID: PMC8712645 DOI: 10.3389/fimmu.2021.797880] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
The DNA damage response (DDR) is an organized network of multiple interwoven components evolved to repair damaged DNA and maintain genome fidelity. Conceptually the DDR includes damage sensors, transducer kinases, and effectors to maintain genomic stability and accurate transmission of genetic information. We have recently gained a substantially improved molecular and mechanistic understanding of how DDR components are interconnected to inflammatory and immune responses to stress. DDR shapes both innate and adaptive immune pathways: (i) in the context of innate immunity, DDR components mainly enhance cytosolic DNA sensing and its downstream STimulator of INterferon Genes (STING)-dependent signaling; (ii) in the context of adaptive immunity, the DDR is needed for the assembly and diversification of antigen receptor genes that is requisite for T and B lymphocyte development. Imbalances between DNA damage and repair impair tissue homeostasis and lead to replication and transcription stress, mutation accumulation, and even cell death. These impacts from DDR defects can then drive tumorigenesis, secretion of inflammatory cytokines, and aberrant immune responses. Yet, DDR deficiency or inhibition can also directly enhance innate immune responses. Furthermore, DDR defects plus the higher mutation load in tumor cells synergistically produce primarily tumor-specific neoantigens, which are powerfully targeted in cancer immunotherapy by employing immune checkpoint inhibitors to amplify immune responses. Thus, elucidating DDR-immune response interplay may provide critical connections for harnessing immunomodulatory effects plus targeted inhibition to improve efficacy of radiation and chemotherapies, of immune checkpoint blockade, and of combined therapeutic strategies.
Collapse
Affiliation(s)
- Zu Ye
- Department of Molecular and Cellular Oncology, and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yin Shi
- Department of Immunology, Zhejiang University School of Medicine, Hangzhou, China
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Susan P. Lees-Miller
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - John A. Tainer
- Department of Molecular and Cellular Oncology, and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
17
|
Hu J, Chen C, Lu R, Zhang Y, Wang Y, Hu Q, Li W, Wang S, Jing O, Yi H, Zhang W, Chen L, Huang W, Luo J, McLeod HL, Xu R, He Y. β-Adrenergic Receptor Inhibitor and Oncolytic Herpesvirus Combination Therapy Shows Enhanced Antitumoral and Antiangiogenic Effects on Colorectal Cancer. Front Pharmacol 2021; 12:735278. [PMID: 34721024 PMCID: PMC8554205 DOI: 10.3389/fphar.2021.735278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/30/2021] [Indexed: 12/28/2022] Open
Abstract
Oncolytic viruses (OVs) are considered a promising therapeutic alternative for cancer. However, despite the development of novel OVs with improved efficacy and tumor selectivity, their limited efficacy as monotherapeutic agents remains a significant challenge. This study extended our previously observed combination effects of propranolol, a nonselective β-blocker, and the T1012G oncolytic virus into colorectal cancer models. A cell viability assay showed that cotreatment could induce synergistic killing effects on human and murine colorectal cell lines. Moreover, cotreatment caused sustained tumor regression compared with T1012G monotherapy or propranolol monotherapy in human HCT116 and murine MC38 tumor models. The propranolol activity was not via a direct effect on viral replication in vitro or in vivo. Western blotting showed that cotreatment significantly enhanced the expression of cleaved caspase-3 in HCT116 and MC38 cells compared with the propranolol or T1012G alone. In addition, propranolol or T1012G treatment induced a 35.06% ± 0.53% or 35.49% ± 2.68% reduction in VEGF secretion in HUVECs (p < 0.01/p < 0.01). Cotreatment further inhibited VEGF secretion compared with the monotherapies (compared with propranolol treatment: 75.06% ± 1.50% decrease, compared with T1012G treatment: 74.91% ± 0.68%; p<0.001, p < 0.001). Consistent with the in vitro results, in vivo data showed that cotreatment could reduce Ki67 and enhance cleaved caspase 3 and CD31 expression in human HCT116 and murine MC38 xenografts. In summary, β-blockers could improve the therapeutic potential of OVs by enhancing oncolytic virus-mediated killing of colorectal cancer cells and colorectal tumors.
Collapse
Affiliation(s)
- Jiali Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Cuiyu Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Ruitao Lu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yu Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Yang Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Qian Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Wanting Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Shiyu Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Ouyang Jing
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Hanying Yi
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Ling Chen
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Weihua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jia Luo
- Department of Hepatobiliary and Intestinal Surgery, Hunan Cancer Hospital, Changsha, China
| | - Howard L McLeod
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Geriatric Oncology Consortium, Tampa, FL, United States
| | - Ran Xu
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yijing He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
18
|
Resistance Mechanisms Influencing Oncolytic Virotherapy, a Systematic Analysis. Vaccines (Basel) 2021; 9:vaccines9101166. [PMID: 34696274 PMCID: PMC8537623 DOI: 10.3390/vaccines9101166] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Resistance to therapy is a frequently observed phenomenon in the treatment of cancer, and as with other cancer therapeutics, therapies based on oncolytic viruses also face the challenges of resistance, such as humoral and cellular antiviral responses, and tumor-associated interferon-mediated resistance. In order to identify additional mechanisms of resistance that may contribute to therapeutic failure, we developed a systematic search strategy for studies published in PubMed. We analyzed 6143 articles on oncolytic virotherapy and found that approximately 8% of these articles use resistance terms in the abstract and/or title. Of these 439 articles, 87 were original research. Most of the findings reported pertain to resistance mediated by tumor-cell-dependent interferon signaling. Yet, mechanisms such as epigenetic modifications, hypoxia-mediated inhibition, APOBEC-mediated resistance, virus entry barriers, and spatiotemporal restriction to viral spread, although not frequently assessed, were demonstrated to play a major role in resistance. Similarly, our results suggest that the stromal compartment consisting of, but not limited to, myeloid cells, fibroblasts, and epithelial cells requires more study in relation to therapy resistance using oncolytic viruses. Thus, our findings emphasize the need to assess the stromal compartment and to identify novel mechanisms that play an important role in conferring resistance to oncolytic virotherapy.
Collapse
|
19
|
Molinaro C, Martoriati A, Cailliau K. Proteins from the DNA Damage Response: Regulation, Dysfunction, and Anticancer Strategies. Cancers (Basel) 2021; 13:3819. [PMID: 34359720 PMCID: PMC8345162 DOI: 10.3390/cancers13153819] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022] Open
Abstract
Cells respond to genotoxic stress through a series of complex protein pathways called DNA damage response (DDR). These monitoring mechanisms ensure the maintenance and the transfer of a correct genome to daughter cells through a selection of DNA repair, cell cycle regulation, and programmed cell death processes. Canonical or non-canonical DDRs are highly organized and controlled to play crucial roles in genome stability and diversity. When altered or mutated, the proteins in these complex networks lead to many diseases that share common features, and to tumor formation. In recent years, technological advances have made it possible to benefit from the principles and mechanisms of DDR to target and eliminate cancer cells. These new types of treatments are adapted to the different types of tumor sensitivity and could benefit from a combination of therapies to ensure maximal efficiency.
Collapse
Affiliation(s)
| | | | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| |
Collapse
|
20
|
Zhang J, Liu Y, Tan J, Zhang Y, Wong CW, Lin Z, Liu X, Sander M, Yang X, Liang L, Song D, Dan J, Zhou Y, Cai J, Lin Y, Liang J, Hu J, Yan G, Zhu W. Necroptotic virotherapy of oncolytic alphavirus M1 cooperated with Doxorubicin displays promising therapeutic efficacy in TNBC. Oncogene 2021; 40:4783-4795. [PMID: 34155344 DOI: 10.1038/s41388-021-01869-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/03/2021] [Accepted: 05/21/2021] [Indexed: 11/08/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive molecular subtype among breast tumors and remains a challenge even for the most current therapeutic regimes. Here, we demonstrate that oncolytic alphavirus M1 effectively kills both TNBC and non-TNBC. ER-stress and apoptosis pathways are responsible for the cell death in non-TNBC as reported in other cancer types, yet the cell death in TNBC does not depend on these pathways. Transcriptomic analysis reveals that the M1 virus activates necroptosis in TNBC, which can be pharmacologically blocked by necroptosis inhibitors. By screening a library of clinically available compounds commonly used for breast cancer treatment, we find that Doxorubicin enhances the oncolytic effect of the M1 virus by up to 100-fold specifically in TNBC in vitro, and significantly stalls the tumor growth of TNBC in vivo, through promoting intratumoral virus replication and further triggering apoptosis in addition to necroptosis. These findings reveal a novel antitumor mechanism and a new combination regimen of the M1 oncolytic virus in TNBC, and highlight a need to bridge molecular diagnosis with virotherapy.
Collapse
Affiliation(s)
- Jiayu Zhang
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ying Liu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
| | - Jingyi Tan
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yanming Zhang
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chun-Wa Wong
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ziqing Lin
- Guangzhou Virotech Pharmaceutical Co., Ltd, #3 Lanyue Road, Science Park, Guangzhou, 510663, China
| | - Xincheng Liu
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Max Sander
- Guangzhou Virotech Pharmaceutical Co., Ltd, #3 Lanyue Road, Science Park, Guangzhou, 510663, China
| | - Xiaozhi Yang
- Guangzhou Virotech Pharmaceutical Co., Ltd, #3 Lanyue Road, Science Park, Guangzhou, 510663, China
| | - Lebin Liang
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Deli Song
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jia Dan
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuwei Zhou
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jing Cai
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuan Lin
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiankai Liang
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun Hu
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guangmei Yan
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenbo Zhu
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
21
|
Liu W, Liu Y, Hu C, Xu C, Chen J, Chen Y, Cai J, Yan G, Zhu W. Cytotoxic T lymphocyte-associated protein 4 antibody aggrandizes antitumor immune response of oncolytic virus M1 via targeting regulatory T cells. Int J Cancer 2021; 149:1369-1384. [PMID: 34086978 DOI: 10.1002/ijc.33703] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 12/28/2022]
Abstract
Oncolytic virotherapies are perceived as remarkable immunotherapies coming into view and represent highly promising cancer treatments, yet to figure out its specific immune responses and underlying barriers remains critical. Albeit recent studies have demonstrated that oncolytic viruses (OVs) could fine tune tumor microenvironment (TME) to elicit tumor suppression mainly due to effective T-cell responses, the interaction between suppressive T cells and OVs is barely undetermined. Herein, we found that regulatory T cells (Treg cells) were increased in the TME following systemic administration of oncolytic virus M1 along with the higher expression of relative cytokines and chemokines in both mouse RM-1 prostatic carcinoma model and mouse B16F10 melanoma model. Besides, Treg cells expressed high levels of CD25 post-M1 treatment, and its suppressive effect on CD8+ T cells was also elevated. Depletion of Treg cells in M1-treated groups significantly reinforced antitumor effect of M1. Specific targeting of Treg cells using cytotoxic T lymphocyte-associated protein 4 (CTLA-4) antibody (Ab) in combination with M1 treatment elicited a more profound tumor suppression and longer overall survival time than M1 alone in both tumor models. Moreover, CTLA-4 Ab further aggrandized antitumor immune response elicited by M1, including increased infiltration of CD45+ immune cells and CD8+ or CD4+ T lymphocytes, decreased ratio of Treg cells to CD4+ T lymphocytes, the intensified lymphocytotoxicity and elevated secretion of cytotoxic cytokines like interferon-γ, granzyme B and perforin. Therefore, our findings constituted a suggestive evidence that targeting Treg cells in M1-based oncolytic virotherapy may achieve a highly response in clinical cancer research.
Collapse
Affiliation(s)
- Wenfeng Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yang Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Cheng Hu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Cuiying Xu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiehong Chen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yinting Chen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jing Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Sun S, Liu Y, He C, Hu W, Liu W, Huang X, Wu J, Xie F, Chen C, Wang J, Lin Y, Zhu W, Yan G, Cai J, Li S. Combining NanoKnife with M1 oncolytic virus enhances anticancer activity in pancreatic cancer. Cancer Lett 2021; 502:9-24. [PMID: 33444691 DOI: 10.1016/j.canlet.2020.12.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/26/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
NanoKnife, a nonthermal ablation technique also termed irreversible electroporation (IRE), has been adopted in locally advanced pancreatic cancer (LAPC) treatment. However, reversible electroporation (RE) caused by heterogeneous electric field magnitude leads to inadequate ablation and tumor recurrence. Alphavirus M1 has been identified as a novel natural oncolytic virus which is nonpathogenic and with high tumor selectivity. This study evaluated improvements to therapeutic efficacy through combination therapy incorporating NanoKnife and M1 virus. We showed that IRE triggered reactive oxygen species (ROS)-dependent apoptosis in pancreatic cancer cells (PCCs) mediated by phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) pathway suppression. When NanoKnife was combined with M1 virus, the therapeutic efficacy was synergistically enhanced. The combinatorial treatment further inhibited tumor proliferation and prolonged the survival of orthotopic pancreatic cancer (PC)-bearing immunocompetent mice. In depth, NanoKnife enhanced the oncolytic effect of M1 by promoting its infection. The combination turned immune-silent tumors into immune-inflamed tumors characterized by T cell activation. Clinicopathologic analysis of specific M1 oncolytic biomarkers indicated the potential of the combination regimen. The combinatorial therapy represents a promising therapeutic efficacy and may ultimately improve the prognosis of patients with LAPC.
Collapse
Affiliation(s)
- Shuxin Sun
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Yang Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Chaobin He
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Wanming Hu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Wenfeng Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Xin Huang
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Jiali Wu
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Fengxiao Xie
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Chen Chen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Jun Wang
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Yuan Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Jing Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| | - Shengping Li
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China.
| |
Collapse
|
23
|
Kana SI, Essani K. Immuno-Oncolytic Viruses: Emerging Options in the Treatment of Colorectal Cancer. Mol Diagn Ther 2021; 25:301-313. [PMID: 33713031 DOI: 10.1007/s40291-021-00517-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 12/18/2022]
Abstract
Colorectal cancer is the third most common neoplasm in the world and the third leading cause of cancer-related deaths in the USA. A safer and more effective therapeutic intervention against this malignant carcinoma is called for given the limitations and toxicities associated with the currently available treatment modalities. Immuno-oncolytic or oncolytic virotherapy, the use of viruses to selectively or preferentially kill cancer cells, has emerged as a potential anticancer treatment modality. Oncolytic viruses act as double-edged swords against the tumors through the direct cytolysis of cancer cells and the induction of antitumor immunity. A number of such viruses have been tested against colorectal cancer, in both preclinical and clinical settings, and many have produced promising results. Oncolytic virotherapy has also shown synergistic antitumor efficacy in combination with conventional treatment regimens. In this review, we describe the status of this therapeutic approach against colorectal cancer at both preclinical and clinical levels. Successes with and the challenges of using oncolytic viruses, both as monotherapy and in combination therapy, are also highlighted.
Collapse
Affiliation(s)
- Sadia Islam Kana
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008-5410, USA
| | - Karim Essani
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008-5410, USA.
| |
Collapse
|
24
|
Sunitinib inhibits RNase L by destabilizing its active dimer conformation. Biochem J 2021; 477:3387-3399. [PMID: 32830849 DOI: 10.1042/bcj20200260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/27/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
The pseudokinase (PK) RNase L is a functional ribonuclease and plays important roles in human innate immunity. The ribonuclease activity of RNase L can be regulated by the kinase inhibitor sunitinib. The combined use of oncolytic virus and sunitinib has been shown to exert synergistic effects in anticancer therapy. In this study, we aimed to uncover the mechanism of action through which sunitinib inhibits RNase L. We solved the crystal structures of RNase L in complex with sunitinib and its analogs toceranib and SU11652. Our results showed that sunitinib bound to the ATP-binding pocket of RNase L. Unexpectedly, the αA helix linking the ankyrin repeat-domain and the PK domain affected the binding mode of sunitinib and resulted in an unusual flipped orientation relative to other structures in PDB. Molecular dynamics simulations and dynamic light scattering results support that the binding of sunitinib in the PK domain destabilized the dimer conformation of RNase L and allosterically inhibited its ribonuclease activity. Our study suggested that dimer destabilization could be an effective strategy for the discovery of RNase L inhibitors and that targeting the ATP-binding pocket in the PK domain of RNase L was an efficient approach for modulating its ribonuclease activity.
Collapse
|
25
|
Jin KT, Du WL, Liu YY, Lan HR, Si JX, Mou XZ. Oncolytic Virotherapy in Solid Tumors: The Challenges and Achievements. Cancers (Basel) 2021; 13:cancers13040588. [PMID: 33546172 PMCID: PMC7913179 DOI: 10.3390/cancers13040588] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022] Open
Abstract
Oncolytic virotherapy (OVT) is a promising approach in cancer immunotherapy. Oncolytic viruses (OVs) could be applied in cancer immunotherapy without in-depth knowledge of tumor antigens. The capability of genetic modification makes OVs exciting therapeutic tools with a high potential for manipulation. Improving efficacy, employing immunostimulatory elements, changing the immunosuppressive tumor microenvironment (TME) to inflammatory TME, optimizing their delivery system, and increasing the safety are the main areas of OVs manipulations. Recently, the reciprocal interaction of OVs and TME has become a hot topic for investigators to enhance the efficacy of OVT with less off-target adverse events. Current investigations suggest that the main application of OVT is to provoke the antitumor immune response in the TME, which synergize the effects of other immunotherapies such as immune-checkpoint blockers and adoptive cell therapy. In this review, we focused on the effects of OVs on the TME and antitumor immune responses. Furthermore, OVT challenges, including its moderate efficiency, safety concerns, and delivery strategies, along with recent achievements to overcome challenges, are thoroughly discussed.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China; (K.-T.J.); (Y.-Y.L.)
| | - Wen-Lin Du
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China;
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Yu-Yao Liu
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China; (K.-T.J.); (Y.-Y.L.)
| | - Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China;
| | - Jing-Xing Si
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
- Correspondence: (J.-X.S.); (X.-Z.M.); Tel./Fax: +86-571-85893781 (J.-X.S.); +86-571-85893985 (X.-Z.M.)
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
- Correspondence: (J.-X.S.); (X.-Z.M.); Tel./Fax: +86-571-85893781 (J.-X.S.); +86-571-85893985 (X.-Z.M.)
| |
Collapse
|
26
|
Muhuri M, Gao G. Oncolytic Virus Alphavirus M1: A New and Promising Weapon to Fight Cancer. Hum Gene Ther 2021; 32:136-137. [PMID: 33621140 DOI: 10.1089/hum.2021.29150.mmu] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Manish Muhuri
- Horae Gene Therapy Center.,Department of Microbiology and Physiological Systems.,VIDE Program
| | - Guangping Gao
- Horae Gene Therapy Center.,Department of Microbiology and Physiological Systems.,Li Weibo Institute for Rare Diseases Research; University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
27
|
Cai J, Yan G. The Identification and Development of a Novel Oncolytic Virus: Alphavirus M1. Hum Gene Ther 2021; 32:138-149. [PMID: 33261513 DOI: 10.1089/hum.2020.271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Oncolytic virotherapy represents an ideal therapeutic platform for cancer in which natural or engineered viruses selectively replicate in and destroy tumor cells, whereas sparing normal cells. Oncolytic virotherapy is considered as a key contributor in modern immunotherapy. However, several challenges remain with regard to exploiting the potential of oncolytic viruses, such as the lack of biomarkers for precise treatment, the difficulty of systemic administration because of pre-existing neutralizing antibodies to popular oncolytic viral vectors in human serum and the lack of mature lyophilization technology for convenient transport and preservation of viral preparations. The M1 strain, which was isolated on Hainan Island of China in the 1960s, is a member of the alphavirus genus Togaviridae family. It was identified as a novel oncolytic virus in 2014. During the development of M1 virus, many challenges have been overcome: several biomarkers have been identified for precise treatment; systematic administration of M1 is suitable and feasible because of the extremely low percentage of pre-existing neutralizing antibodies in the general population, and a lyophilized powder that maintains high biological stability has been developed. This review provides an encyclopedia of studies supporting M1 as an oncolytic virus, including the biological characteristics, tumor selectivity and its mechanism, tumor killing mechanism, combination therapy, and nonclinical pharmacokinetics of M1 virus. The future development direction of oncolytic virus M1 is also discussed at the end of the review.
Collapse
Affiliation(s)
- Jing Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Liu Y, Li K, Zhu WB, Zhang H, Huang WT, Liu XC, Lin Y, Cai J, Yan GM, Qiu JG, Peng L, Liang JK, Hu C. Suppression of CCDC6 sensitizes tumor to oncolytic virus M1. Neoplasia 2020; 23:158-168. [PMID: 33338804 PMCID: PMC7749300 DOI: 10.1016/j.neo.2020.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022] Open
Abstract
Oncolytic virus is an effective therapeutic strategy for cancer treatment, which exploits natural or manipulated viruses to selectively target and kill cancer cells. However, the innate antiviral system of cancer cells may resistant to the treatment of oncolytic virus. M1 virus is a newly identified oncolytic virus belonging to alphavirus species, but the molecular mechanisms underlying its anticancer activity are largely unknown. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays. RNA seq analysis was used to analyze the gene alternation after M1 virus infection. Small interfering RNAs transfection for gene knockdown was used for gene functional tests. Caspase-3/7 activity was detected by Caspase-Glo Assay Systems. A mice model of orthotopic bladder tumor was established to determine the oncolytic effectiveness of the M1 virus. The expression of cleaved-Caspase 3 as well as Ki-67 in tumor cells were detected by immunohistochemical analysis. To further define the molecular factors involved in M1 virus-mediated biological function, we knocked down genes related to alphavirus’ activity and found that CCDC6 plays an important role in the oncolytic activity of M1 virus. Moreover, knocked down of CCDC6 augments the reproduction of M1 virus and resulted in endoplasmic reticulum (ER) stress-induced cell apoptosis in vitro as well as in vivo orthotopic bladder cancer model. Our research provides a rational new target for developing new compounds to promote the efficacy of oncolytic virus therapy.
Collapse
Affiliation(s)
- Ying Liu
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Guangzhou, China
| | - Ke Li
- Department of Urology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wen-Bo Zhu
- Department of Pharmacology, Sun Yat-sen University, Guangzhou, China
| | - Hao Zhang
- Department of Urology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wen-Tao Huang
- Department of Urology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xin-Cheng Liu
- Department of Pharmacology, Sun Yat-sen University, Guangzhou, China
| | - Yuan Lin
- Department of Pharmacology, Sun Yat-sen University, Guangzhou, China
| | - Jing Cai
- Department of Pharmacology, Sun Yat-sen University, Guangzhou, China
| | - Guang-Mei Yan
- Department of Pharmacology, Sun Yat-sen University, Guangzhou, China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jian-Guang Qiu
- Department of Urology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liang Peng
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian-Kai Liang
- Department of Pharmacology, Sun Yat-sen University, Guangzhou, China.
| | - Cheng Hu
- Department of Urology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
29
|
Cai J, Lin K, Cai W, Lin Y, Liu X, Guo L, Zhang J, Xu W, Lin Z, Wong CW, Sander M, Hu J, Yan G, Zhu W, Liang J. Tumors driven by RAS signaling harbor a natural vulnerability to oncolytic virus M1. Mol Oncol 2020; 14:3153-3168. [PMID: 33037696 PMCID: PMC7718955 DOI: 10.1002/1878-0261.12820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/18/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Oncolytic viruses are potent anticancer agents that replicate within and kill cancer cells rather than normal cells, and their selectivity is largely determined by oncogenic mutations. M1, a novel oncolytic virus strain, has been shown to target cancer cells, but the relationship between its cancer selectivity and oncogenic signaling pathways is poorly understood. Here, we report that RAS mutation promotes the replication and oncolytic effect of M1 in cancer, and we further provide evidence that the inhibition of the RAS/RAF/MEK signaling axis suppresses M1 infection and the subsequent cytopathic effects. Transcriptome analysis revealed that the inhibition of RAS signaling upregulates the type I interferon antiviral response, and further RNA interference screen identified CDKN1A as a key downstream factor that inhibits viral infection. Gain- and loss-of-function experiments confirmed that CDKN1A inhibited the replication and oncolytic effect of M1 virus. Subsequent TCGA data mining and tissue microarray (TMA) analysis revealed that CDKN1A is commonly deficient in human cancers, suggesting extensive clinical application prospects for M1. Our report indicates that virotherapy is feasible for treating undruggable RAS-driven cancers and provides reliable biomarkers for personalized cancer therapy.
Collapse
Affiliation(s)
- Jing Cai
- Department of PharmacologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Kaiying Lin
- Department of PharmacologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Wei Cai
- Department of PharmacologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yuan Lin
- Department of PharmacologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Xincheng Liu
- Department of PharmacologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Li Guo
- Department of PharmacologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Jifu Zhang
- Guangzhou Virotech Pharmaceutical Co., Ltd.GuangzhouChina
| | - Wencang Xu
- Guangzhou Virotech Pharmaceutical Co., Ltd.GuangzhouChina
| | - Ziqing Lin
- Guangzhou Virotech Pharmaceutical Co., Ltd.GuangzhouChina
| | - Chun Wa Wong
- Department of PharmacologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Max Sander
- Guangzhou Virotech Pharmaceutical Co., Ltd.GuangzhouChina
| | - Jun Hu
- Department of PharmacologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Guangmei Yan
- Department of PharmacologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Wenbo Zhu
- Department of PharmacologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Jiankai Liang
- Department of PharmacologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
30
|
Cai J, Zhu W, Lin Y, Hu J, Liu X, Xu W, Liu Y, Hu C, He S, Gong S, Yan G, Liang J. Lonidamine potentiates the oncolytic efficiency of M1 virus independent of hexokinase 2 but via inhibition of antiviral immunity. Cancer Cell Int 2020; 20:532. [PMID: 33292203 PMCID: PMC7607643 DOI: 10.1186/s12935-020-01598-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/06/2020] [Indexed: 12/28/2022] Open
Abstract
Background Viruses are obligate parasites that depend on host cells to provide the energy and molecular precursors necessary for successful infection. The main component of virus-induced metabolic reprogramming is the activation of glycolysis, which provides biomolecular resources for viral replication. However, little is known about the crosstalk between oncolytic viruses and host glycolytic processes. Methods A MTT assay was used to detect M1 virus-induced cell killing. Flow cytometry was used to monitor infection of M1 virus expressing the GFP reporter gene. qPCR and western blotting were used to detect gene expression. RNA sequencing was performed to evaluate gene expression under different drug treatments. Scanning electron microscopy was performed to visualize the endoplasmic reticulum (ER). Caspase activity was detected. Last, a mouse xenograft model was established to evaluate the antitumor effect in vivo. Most data were analyzed with a two-tailed Student’s t test or one-way ANOVA with Dunnett’s test for pairwise comparisons. Tumor volumes were analyzed by repeated measures of ANOVA. The Wilcoxon signed-rank test was used to compare nonnormally distributed data. Results Here, we showed that the glucose analog 2-deoxy-d-glucose (2-DG) inhibited infection by M1 virus, which we identified as a novel type of oncolytic virus, and decreased its oncolytic effect, indicating the dependence of M1 replication on glycolysis. In contrast, lonidamine, a reported hexokinase 2 (HK2) inhibitor, enhanced the infection and oncolytic effect of M1 virus independent of HK2. Further transcriptomic analysis revealed that downregulation of the antiviral immune response contributes to the lonidamine-mediated potentiation of the infection and oncolytic effect of M1 virus, and that MYC is the key factor in the pool of antiviral immune response factors inhibited by lonidamine. Moreover, lonidamine potentiated the irreversible ER stress-mediated apoptosis induced by M1 virus. Enhancement of M1′s oncolytic effect by lonidamine was also identified in vivo. Conclusions This research demonstrated the dependence of M1 virus on glycolysis and identified a candidate synergist for M1 virotherapy.
Collapse
Affiliation(s)
- Jing Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, 510080, China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, 510080, China
| | - Yuan Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, 510080, China
| | - Jun Hu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, 510080, China
| | - Xincheng Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, 510080, China
| | - Wencang Xu
- Guangzhou Virotech Pharmaceutical Co., Ltd., Guangzhou, 510663, China
| | - Ying Liu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Cheng Hu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Songmin He
- Guangzhou Virotech Pharmaceutical Co., Ltd., Guangzhou, 510663, China
| | - Shoufang Gong
- Guangzhou Virotech Pharmaceutical Co., Ltd., Guangzhou, 510663, China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, 510080, China
| | - Jiankai Liang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, 510080, China.
| |
Collapse
|
31
|
Gilchrist VH, Jémus-Gonzalez E, Said A, Alain T. Kinase inhibitors with viral oncolysis: Unmasking pharmacoviral approaches for cancer therapy. Cytokine Growth Factor Rev 2020; 56:83-93. [PMID: 32690442 DOI: 10.1016/j.cytogfr.2020.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/28/2022]
Abstract
There are more than 500 kinases in the human genome, many of which are oncogenic once constitutively activated. Fortunately, numerous hyperactive kinases are druggable, and several targeted small molecule kinase inhibitors have demonstrated impressive clinical benefits in cancer treatment. However, their often cytostatic rather than cytotoxic effect on cancer cells, and the development of resistance mechanisms, remain significant limitations to these targeted therapies. Oncolytic viruses are an emerging class of immunotherapeutic agents with a specific oncotropic nature and excellent safety profile, highlighting them as a promising alternative to conventional therapeutic modalities. Nonetheless, the clinical efficacy of oncolytic virotherapy is challenged by immunological and physical barriers that limit viral delivery, replication, and spread within tumours. Several of these barriers are often associated with oncogenic kinase activity and, in some cases, worsened by the action of oncolytic viruses on kinase signaling during infection. What if inhibiting these kinases could potentiate the cancer-lytic and anti-tumour immune stimulating properties of oncolytic virotherapies? This could represent a paradigm shift in the use of specific kinase inhibitors in the clinic and provide a novel therapeutic approach to the treatment of cancers. A phase III clinical trial combining the oncolytic Vaccinia virus Pexa-Vec with the kinase inhibitor Sorafenib was initiated. While this trial failed to show any benefits over Sorafenib monotherapy in patients with advanced liver cancer, several pre-clinical studies demonstrate that targeting kinases combined with oncolytic viruses have synergistic effects highlighting this strategy as a unique avenue to cancer therapy. Herein, we review the combinations of oncolytic viruses with kinase inhibitors reported in the literature and discuss the clinical opportunities that represent these pharmacoviral approaches.
Collapse
Affiliation(s)
- Victoria Heather Gilchrist
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| | - Estephanie Jémus-Gonzalez
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada
| | - Aida Said
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
32
|
Zhang Y, Ye M, Huang F, Wang S, Wang H, Mou X, Wang Y. Oncolytic Adenovirus Expressing ST13 Increases Antitumor Effect of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Against Pancreatic Ductal Adenocarcinoma. Hum Gene Ther 2020; 31:891-903. [PMID: 32475172 DOI: 10.1089/hum.2020.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oncolytic adenoviruses (OAds) are promising agents for cancer therapy, representing a novel therapeutic strategy for pancreatic ductal adenocarcinoma (PDAC). However, there are challenges associated with the successful use of an OAd alone, involving the security of the viral vector and screening of an effective antitumor gene. In the present study, a novel OAd CD55-ST13-tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was constructed in which the dual therapeutic genes ST13 and TRAIL were inserted, featuring the carcinoembryonic antigen (CEA) as a promoter to control E1A and deletion of the 55 kDa E1B gene. ST13, known as a colorectal cancer suppressor gene, exhibited lower expression in PDAC than in tumor-adjacent tissues and was associated with poor prognosis in PDAC patients. In vitro studies demonstrated that CD55-ST13-TRAIL was effective in promoting the expression of ST13 and TRAIL in CEA-positive pancreatic cancer cells. Moreover, CD55-ST13-TRAIL exhibited a synergistic effect toward tumor cell death compared with CD55-ST13 alone or CD55-TRAIL alone, and inhibited tumor cell proliferation and induced cell apoptosis dependent on caspase pathways in PDAC cells. Furthermore, xenograft experiments in a mouse model indicated that CD55-ST13-TRAIL significantly inhibited tumor growth and improved the survival of animals with xenografts. The findings demonstrate that oncolytic virotherapy under the control of the promoter CEA enables safe and efficient treatment of PDAC, and suggest that it represents a promising candidate for the treatment of metastatic diseases.
Collapse
Affiliation(s)
- Youni Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Miaojuan Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Fang Huang
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, P.R. China
| | - Shibing Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, P.R. China
| | - Huiju Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, P.R. China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, P.R. China
| | - Yigang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| |
Collapse
|
33
|
DNA-PK in human malignant disorders: Mechanisms and implications for pharmacological interventions. Pharmacol Ther 2020; 215:107617. [PMID: 32610116 DOI: 10.1016/j.pharmthera.2020.107617] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
The DNA-PK holoenzyme is a fundamental element of the DNA damage response machinery (DDR), which is responsible for cellular genomic stability. Consequently, and predictably, over the last decades since its identification and characterization, numerous pre-clinical and clinical studies reported observations correlating aberrant DNA-PK status and activity with cancer onset, progression and responses to therapeutic modalities. Notably, various studies have established in recent years the role of DNA-PK outside the DDR network, corroborating its role as a pleiotropic complex involved in transcriptional programs that operate biologic processes as epithelial to mesenchymal transition (EMT), hypoxia, metabolism, nuclear receptors signaling and inflammatory responses. In particular tumor entities as prostate cancer, immense research efforts assisted mapping and describing the overall signaling networks regulated by DNA-PK that control metastasis and tumor progression. Correspondingly, DNA-PK emerges as an obvious therapeutic target in cancer and data pertaining to various pharmacological approaches have been published, largely in context of combination with DNA-damaging agents (DDAs) that act by inflicting DNA double strand breaks (DSBs). Currently, new generation inhibitors are tested in clinical trials. Several excellent reviews have been published in recent years covering the biology of DNA-PK and its role in cancer. In the current article we are aiming to systematically describe the main findings on DNA-PK signaling in major cancer types, focusing on both preclinical and clinical reports and present a detailed current status of the DNA-PK inhibitors repertoire.
Collapse
|
34
|
Zhang X, Wang H, Sun Y, Qi M, Li W, Zhang Z, Zhang XE, Cui Z. Enterovirus A71 Oncolysis of Malignant Gliomas. Mol Ther 2020; 28:1533-1546. [PMID: 32304669 PMCID: PMC7264442 DOI: 10.1016/j.ymthe.2020.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/25/2020] [Accepted: 04/04/2020] [Indexed: 12/13/2022] Open
Abstract
Malignant gliomas, the most lethal type of primary brain tumor, continue to be a major therapeutic challenge. Here, we found that enterovirus A71 (EV-A71) can be developed as a novel oncolytic agent against malignant gliomas. EV-A71 preferentially infected and killed malignant glioma cells relative to normal glial cells. The virus receptor human scavenger receptor class B, member 2 (SCARB2), and phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1)-mediated cell death were involved in EV-A71-induced oncolysis. In mice with implanted subcutaneous gliomas, intraneoplastic inoculation of EV-A71 caused significant tumor growth inhibition. Furthermore, in mice bearing intracranial orthotopic gliomas, intraneoplastic inoculation of EV-A71 substantially prolonged survival. By insertion of brain-specific microRNA-124 (miR124) response elements into the viral genome, we improved the tumor specificity of EV-A71 oncolytic therapy by reducing its neurotoxicity while maintaining its replication potential and oncolytic capacity in gliomas. Our study reveals that EV-A71 is a potent oncolytic agent against malignant gliomas and may have a role in treating this tumor in the clinical setting.
Collapse
Affiliation(s)
- Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hanzhong Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yuhan Sun
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mi Qi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhiping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
35
|
Malfitano AM, Di Somma S, Iannuzzi CA, Pentimalli F, Portella G. Virotherapy: From single agents to combinatorial treatments. Biochem Pharmacol 2020; 177:113986. [PMID: 32330494 DOI: 10.1016/j.bcp.2020.113986] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
Abstract
Virotherpay is emerging as a promising strategy against cancer, and three oncolytic viruses (OVs) have gained approval in different countries for the treatment of several cancer types. Beyond the capability to selectively infect, replicate and lyse cancer cells, OVs act through a multitude of events, including modification of the tumour micro/macro-environment as well as a complex modulation of the anti-tumour immune response by activation of danger signals and immunogenic cell death pathways. Most OVs show limited effects, depending on the viral platform and the interactions with the host. OVs used as monotherapy only in a minority of patients elicited a full response. Better outcomes were obtained using OVs in combination with other treatments, such as immune therapy or chemotherapy, suggesting that the full potential of OVs can be unleashed in combination with other treatment modalities. Here, we report the main described combination of OVs with conventional chemotherapeutic agents: platinum salts, mitotic inhibitors, anthracyclines and other antibiotics, anti-metabolites, alkylating agents and topoisomerase inhibitors. Additionally, our work provides an overview of OV combination with targeted therapies: histone deacetylase inhibitors, kinase inhibitors, monoclonal antibodies, inhibitors of DNA repair, inhibitors of the proteasome complex and statins that demonstrated enhanced OV anti-neoplastic activity. Although further studies are required to assess the best combinations to translate the results in the clinic, it is clear that combined therapies, acting with complementary mechanisms of action might be useful to target cancer lesions resistant to currently available treatments.
Collapse
Affiliation(s)
- Anna Maria Malfitano
- Dipartimento di Scienze Mediche Traslazionali, Università Federico II Napoli, Italy
| | - Sarah Di Somma
- Dipartimento di Scienze Mediche Traslazionali, Università Federico II Napoli, Italy
| | | | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Giuseppe Portella
- Dipartimento di Scienze Mediche Traslazionali, Università Federico II Napoli, Italy.
| |
Collapse
|
36
|
Li L, Liu S, Han D, Tang B, Ma J. Delivery and Biosafety of Oncolytic Virotherapy. Front Oncol 2020; 10:475. [PMID: 32373515 PMCID: PMC7176816 DOI: 10.3389/fonc.2020.00475] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
In recent years, oncolytic virotherapy has emerged as a promising anticancer therapy. Oncolytic viruses destroy cancer cells, without damaging normal tissues, through virus self-replication and antitumor immunity responses, showing great potential for cancer treatment. However, the clinical guidelines for administering oncolytic virotherapy remain unclear. Delivery routes for oncolytic virotherapy to patients vary in existing studies, depending on the tumor sites and the objective of studies. Moreover, the biosafety of oncolytic virotherapy, including mainly uncontrolled adverse events and long-term complications, remains a serious concern that needs to be accurately measured. This review provides a comprehensive and detailed overview of the delivery and biosafety of oncolytic virotherapy.
Collapse
Affiliation(s)
- Lizhi Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
| | - Shixin Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
| | - Duoduo Han
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
| | - Bin Tang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jian Ma
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, National Health Commission Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China
| |
Collapse
|
37
|
Development of oncolytic virotherapy: from genetic modification to combination therapy. Front Med 2020; 14:160-184. [PMID: 32146606 PMCID: PMC7101593 DOI: 10.1007/s11684-020-0750-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/14/2020] [Indexed: 12/17/2022]
Abstract
Oncolytic virotherapy (OVT) is a novel form of immunotherapy using natural or genetically modified viruses to selectively replicate in and kill malignant cells. Many genetically modified oncolytic viruses (OVs) with enhanced tumor targeting, antitumor efficacy, and safety have been generated, and some of which have been assessed in clinical trials. Combining OVT with other immunotherapies can remarkably enhance the antitumor efficacy. In this work, we review the use of wild-type viruses in OVT and the strategies for OV genetic modification. We also review and discuss the combinations of OVT with other immunotherapies.
Collapse
|
38
|
Nicolai S, Mahen R, Raschellà G, Marini A, Pieraccioli M, Malewicz M, Venkitaraman AR, Melino G. ZNF281 is recruited on DNA breaks to facilitate DNA repair by non-homologous end joining. Oncogene 2020; 39:754-766. [PMID: 31570788 PMCID: PMC6976523 DOI: 10.1038/s41388-019-1028-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/19/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023]
Abstract
Efficient repair of DNA double-strand breaks (DSBs) is of critical importance for cell survival. Although non-homologous end joining (NHEJ) is the most used DSBs repair pathway in the cells, how NHEJ factors are sequentially recruited to damaged chromatin remains unclear. Here, we identify a novel role for the zinc-finger protein ZNF281 in participating in the ordered recruitment of the NHEJ repair factor XRCC4 at damage sites. ZNF281 is recruited to DNA lesions within seconds after DNA damage through a mechanism dependent on its DNA binding domain and, at least in part, on poly-ADP ribose polymerase (PARP) activity. ZNF281 binds XRCC4 through its zinc-finger domain and facilitates its recruitment to damaged sites. Consequently, depletion of ZNF281 impairs the efficiency of the NHEJ repair pathway and decreases cell viability upon DNA damage. Survival analyses from datasets of commonly occurring human cancers show that higher levels of ZNF281 correlate with poor prognosis of patients treated with DNA-damaging therapies. Thus, our results define a late ZNF281-dependent regulatory step of NHEJ complex assembly at DNA lesions and suggest additional possibilities for cancer patients' stratification and for the development of personalised therapeutic strategies.
Collapse
Affiliation(s)
- Sara Nicolai
- Medical Research Council, Toxicology Unit, University of Cambridge, Leicester, LE1 9HN, UK
| | - Robert Mahen
- Medical Research Council, Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
| | | | - Alberto Marini
- Medical Research Council, Toxicology Unit, University of Cambridge, Leicester, LE1 9HN, UK
| | - Marco Pieraccioli
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Michal Malewicz
- Medical Research Council, Toxicology Unit, University of Cambridge, Leicester, LE1 9HN, UK
| | - Ashok R Venkitaraman
- Medical Research Council, Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Gerry Melino
- Medical Research Council, Toxicology Unit, University of Cambridge, Leicester, LE1 9HN, UK.
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|