1
|
Lebedev E, Smutin D, Timkin P, Kotelnikov D, Taldaev A, Panushev N, Adonin L. The eusocial non-code: Unveiling the impact of noncoding RNAs on Hymenoptera eusocial evolution. Noncoding RNA Res 2025; 11:48-59. [PMID: 39736856 PMCID: PMC11683303 DOI: 10.1016/j.ncrna.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/14/2024] [Accepted: 10/27/2024] [Indexed: 01/01/2025] Open
Abstract
Eusociality, characterized by reproductive division of labor, cooperative brood care, and multi-generational cohabitation, represents a pinnacle of complex social evolution, most notably manifested within the Hymenoptera order including bees, ants, and wasps. The molecular underpinnings underlying these sophisticated social structures remain an enigma, with noncoding RNAs (ncRNAs) emerging as crucial regulatory players. This article delves into the roles of ncRNAs in exerting epigenetic control during the development and maintenance of Hymenopteran eusociality. We consolidate current findings on various classes of ncRNAs, underscoring their influence on gene expression regulation pertinent to caste differentiation, developmental plasticity, and behavioral modulation. Evidence is explored supporting the hypothesis that ncRNAs contribute to epigenetic landscapes fostering eusocial traits through genomic regulation. They are likely to play an important role in eusociality "point of no return". Critical analysis is provided on the functional insights garnered from ncRNA profiles correlated with caste-specific phenotypes, specifical for phylogenetic branches and transitional sociality models, drawing from comparative genomics and transcriptomics studies. Overall, ncRNA provides a missed understanding of both "genetic toolkit" and "unique genes" hypotheses of eusociality development. Moreover, it points to gaps in current knowledge, advocating for integrative approaches combining genomics, proteomics, and epigenetics to decipher the complexity of eusociality. Understanding the ncRNA contributions offers not only a window into the molecular intricacies of Hymenoptera sociality but also extends our comprehension of how complex biological systems evolve and function.
Collapse
Affiliation(s)
- Egor Lebedev
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003, Tyumen, Russia
| | - Daniil Smutin
- Faculty of Information Technology and Programming, ITMO University, St.-Petersburg, 197101, Russia
| | - Pavel Timkin
- All-russian Research Institute of Soybean, 675027, Blagoveschensk, Russia
| | - Danil Kotelnikov
- All-russian Research Institute of Soybean, 675027, Blagoveschensk, Russia
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - Amir Taldaev
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - Nick Panushev
- Bioinformatics Institute, 197342, St.-Petersburg, Russia
| | - Leonid Adonin
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003, Tyumen, Russia
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
- Federal State Budget-Financed Educational Institution of Higher Education The Bonch-Bruevich Saint Petersburg State University of Telecommunications, Saint-Petersburg, 193232, Russia
| |
Collapse
|
2
|
Peled O, Greenbaum G, Bloch G. Diversification of social complexity following a major evolutionary transition in bees. Curr Biol 2025; 35:981-993.e5. [PMID: 39933519 DOI: 10.1016/j.cub.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/16/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025]
Abstract
How social complexity evolved remains a long-standing enigma. In most animal groups, social complexity is typically classified into a few discrete classes. This approach is oversimplified and constrains our inference of social evolution to a narrow trajectory consisting of transitions between classes. Such categorical classifications also limit quantitative studies on the molecular and environmental drivers of social complexity. The recent accumulation of relevant quantitative data has set the stage to overcome these limitations. Here, we propose a data-driven, high-dimensional approach for studying the full diversity of social phenotypes. We curated and analyzed a comprehensive dataset encompassing 17 social traits across 80 species and studied the evolution of social complexity in bees. We found that honey bees, stingless bees, and bumble bees underwent a major evolutionary transition ∼80 mya, inconsistent with the stepwise progression of the social ladder conceptual framework. This major evolutionary transition was followed by a phase of substantial phenotypic diversification of social complexity. Other bee lineages display a continuum of social complexity, ranging from solitary to simple societies, but do not reach the levels of social complexity seen in honey bees, stingless bees, and bumble bees. Bee evolution, therefore, provides a remarkable demonstration of a macroevolutionary process in which a major transition removed biological constraints and opened novel evolutionary opportunities, driving the exploration of the landscape of social phenotypes. Our approach can be extended to incorporate additional data types and readily applied to illuminate the evolution of social complexity in other animal groups.
Collapse
Affiliation(s)
- Ohad Peled
- Department of Ecology, Evolution, and Behavior, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Gili Greenbaum
- Department of Ecology, Evolution, and Behavior, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.
| | - Guy Bloch
- Department of Ecology, Evolution, and Behavior, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.
| |
Collapse
|
3
|
VanKuren NW, Buerkle NP, Lu W, Westerman EL, Im AK, Massardo D, Southcott L, Palmer SE, Kronforst MR. Genetic, developmental, and neural changes underlying the evolution of butterfly mate preference. PLoS Biol 2025; 23:e3002989. [PMID: 40067994 DOI: 10.1371/journal.pbio.3002989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/18/2024] [Indexed: 03/28/2025] Open
Abstract
Many studies have linked genetic variation to behavior, but few connect to the intervening neural circuits that underlie the arc from sensation to action. Here, we used a combination of genome-wide association (GWA), developmental gene expression, and photoreceptor electrophysiology to investigate the architecture of mate choice behavior in Heliconius cydno butterflies, a clade where males identify preferred mates based on wing color patterns. We first found that the GWA variants most strongly associated with male mate choice were tightly linked to the gene controlling wing color in the K locus, consistent with previous mapping efforts. RNA-seq across developmental time points then showed that seven genes near the top GWA peaks were differentially expressed in the eyes, optic lobes, or central brain of white and yellow H. cydno males, many of which have known functions in the development and maintenance of synaptic connections. In the visual system of these butterflies, we identified a striking physiological difference between yellow and white males that could provide an evolutionarily labile circuit motif in the eye to rapidly switch behavioral preference. Using single-cell electrophysiology recordings, we found that some ultraviolet (UV)-sensitive photoreceptors receive inhibition from long-wavelength photoreceptors in the male eye. Surprisingly, the proportion of inhibited UV photoreceptors was strongly correlated with male wing color, suggesting a difference in the early stages of visual processing that could plausibly influence courtship decisions. We discuss potential links between candidate genes and this physiological signature, and suggest future avenues for experimental work. Taken together, our results support the idea that alterations to the evolutionarily labile peripheral nervous system, driven by genetic and gene expression differences, can significantly and rapidly alter essential behaviors.
Collapse
Affiliation(s)
- Nicholas W VanKuren
- Department of Ecology & Evolution, The University of Chicago, Chicago Illinois, United States of America
| | - Nathan P Buerkle
- Department of Organismal Biology & Anatomy, The University of Chicago, Chicago, Illinois, United States of America
| | - Wei Lu
- Department of Ecology & Evolution, The University of Chicago, Chicago Illinois, United States of America
| | - Erica L Westerman
- Department of Ecology & Evolution, The University of Chicago, Chicago Illinois, United States of America
| | - Alexandria K Im
- Department of Ecology & Evolution, The University of Chicago, Chicago Illinois, United States of America
| | - Darli Massardo
- Department of Ecology & Evolution, The University of Chicago, Chicago Illinois, United States of America
| | - Laura Southcott
- Department of Ecology & Evolution, The University of Chicago, Chicago Illinois, United States of America
| | - Stephanie E Palmer
- Department of Organismal Biology & Anatomy, The University of Chicago, Chicago, Illinois, United States of America
- Department of Physics, The University of Chicago, Chicago, Illinois, United States of America
| | - Marcus R Kronforst
- Department of Ecology & Evolution, The University of Chicago, Chicago Illinois, United States of America
| |
Collapse
|
4
|
Brenman-Suttner DB, Rehan SM, Zayed A. Exploring the genetics of social behaviour in C. calcarata. Sci Rep 2025; 15:5580. [PMID: 39955334 PMCID: PMC11830030 DOI: 10.1038/s41598-025-89870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
Studies investigating social evolution often focus on species that are obligately eusocial, where presumably all of the adaptive genetic changes associated with sociality have already been completed. To fully understand eusociality, we must study species with facultative social behaviour. The small carpenter bee Ceratina calcarata is an ideal model for studying the genetics and molecular biology of eusocial evolution as it can exhibit both subsocial behaviour with parental care and social behaviour facilitated by the altruistic dwarf eldest daughter. Here, we sequenced the genomes of subsocial and social C. calcarata to identify mutations and genes associated with social behaviour and used these data to test several hypotheses related to the evolution of eusociality. Many single nucleotide polymorphisms that had high levels of genetic differentiation (Fst) between social and subsocial C. calcarata were in or near genes or regions important for regulating gene expression. These results are consistent with the Genetic Toolkit Hypothesis of eusocial evolution. Our findings suggest that the low behavioural complexity observed in C. calcarata may involve modulation of existing regulatory genes and gene networks to generate phenotypes associated with social behaviour.
Collapse
Affiliation(s)
| | - Sandra M Rehan
- Department of Biology, York University, Toronto, ON, Canada
| | - Amro Zayed
- Department of Biology, York University, Toronto, ON, Canada.
| |
Collapse
|
5
|
Antioch I, Larnaudie S, Lafon I, Devaud JM, Rampon C, Jeanson R. Adult brain neurogenesis does not account for behavioral differences between solitary and social bees. JOURNAL OF INSECT PHYSIOLOGY 2025; 160:104737. [PMID: 39672536 DOI: 10.1016/j.jinsphys.2024.104737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/04/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
In many taxa, increasing attention is being paid to how group living shapes the expression of brain plasticity and behavioural flexibility. In eusocial insects, the lifelong commitment of workers and queens to a reproductive or non-reproductive caste is accompanied by a loss of behavioural totipotency, and often, by the expression of a limited behavioural repertoire in workers due to their specialisation. On the other hand, individuals of solitary species have a broader behavioural repertoire as they have to perform all the tasks themselves. This raises the question of whether solitary and social insects differ in their levels of brain plasticity. One mechanism found in both invertebrates and vertebrates to contribute to brain plasticity is adult neurogenesis. It is a mechanism by which adult-born neurons are generated, differentiated and functionally integrated in the brain circuits during adulthood. In this study, we compared the solitary bee Osmia bicornis and the eusocial bee Apis mellifera. We focused on the mushroom bodies which are higher-order integration centres in the insect brain. Based on their known behavioural repertoire, our prediction was that both solitary and social bees would exhibit neurogenesis in the brain until the pupal stage, but that this capacity would persist only in adult solitary bees. However, our results do not validate this prediction, as they indicate that no cells are produced in the mushroom bodies or other areas of the adult solitary bee brain.
Collapse
Affiliation(s)
- Iulia Antioch
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Sarah Larnaudie
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Isabelle Lafon
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Jean-Marc Devaud
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Raphaël Jeanson
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France.
| |
Collapse
|
6
|
Jones BM, Webb AE, Geib SM, Sim S, Schweizer RM, Branstetter MG, Evans JD, Kocher SD. Repeated Shifts in Sociality Are Associated With Fine-tuning of Highly Conserved and Lineage-Specific Enhancers in a Socially Flexible Bee. Mol Biol Evol 2024; 41:msae229. [PMID: 39487572 PMCID: PMC11568387 DOI: 10.1093/molbev/msae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Comparative genomic studies of social insects suggest that changes in gene regulation are associated with evolutionary transitions in social behavior, but the activity of predicted regulatory regions has not been tested empirically. We used self-transcribing active regulatory region sequencing, a high-throughput enhancer discovery tool, to identify and measure the activity of enhancers in the socially variable sweat bee, Lasioglossum albipes. We identified over 36,000 enhancers in the L. albipes genome from 3 social and 3 solitary populations. Many enhancers were identified in only a subset of L. albipes populations, revealing rapid divergence in regulatory regions within this species. Population-specific enhancers were often proximal to the same genes across populations, suggesting compensatory gains and losses of regulatory regions may preserve gene activity. We also identified 1,182 enhancers with significant differences in activity between social and solitary populations, some of which are conserved regulatory regions across species of bees. These results indicate that social trait variation in L. albipes is associated with the fine-tuning of ancient enhancers as well as lineage-specific regulatory changes. Combining enhancer activity with population genetic data revealed variants associated with differences in enhancer activity and identified a subset of differential enhancers with signatures of selection associated with social behavior. Together, these results provide the first empirical map of enhancers in a socially flexible bee and highlight links between cis-regulatory variation and the evolution of social behavior.
Collapse
Affiliation(s)
- Beryl M Jones
- Department of Ecology and Evolutionary Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Entomology, University of Kentucky, Lexington, KY 40508, USA
| | - Andrew E Webb
- Department of Ecology and Evolutionary Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Scott M Geib
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, HI 96720, USA
| | - Sheina Sim
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, HI 96720, USA
| | - Rena M Schweizer
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Pollinating Insects Research Unit, Utah State University, Logan, UT 84322, USA
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Michael G Branstetter
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Pollinating Insects Research Unit, Utah State University, Logan, UT 84322, USA
| | - Jay D Evans
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Bee Research Laboratory BARC-E, Beltsville, MD 20705, USA
| | - Sarah D Kocher
- Department of Ecology and Evolutionary Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
7
|
Brenman-Suttner D, Zayed A. An integrative genomic toolkit for studying the genetic, evolutionary, and molecular underpinnings of eusociality in insects. CURRENT OPINION IN INSECT SCIENCE 2024; 65:101231. [PMID: 38977215 DOI: 10.1016/j.cois.2024.101231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
While genomic resources for social insects have vastly increased over the past two decades, we are still far from understanding the genetic and molecular basis of eusociality. Here, we briefly review three scientific advancements that, when integrated, can be highly synergistic for advancing our knowledge of the genetics and evolution of eusocial traits. Population genomics provides a natural way to quantify the strength of natural selection on coding and regulatory sequences, highlighting genes that have undergone adaptive evolution during the evolution or maintenance of eusociality. Genome-wide association studies (GWAS) can be used to characterize the complex genetic architecture underlying eusocial traits and identify candidate causal variants. Concurrently, CRISPR/Cas9 enables the precise manipulation of gene function to both validate genotype-phenotype associations and study the molecular biology underlying interesting traits. While each approach has its own advantages and disadvantages, which we discuss herein, we argue that their combination will ultimately help us better understand the genetics and evolution of eusocial behavior. Specifically, by triangulating across these three different approaches, researchers can directly identify and study loci that have a causal association with key phenotypes and have evidence of positive selection over the relevant timescales associated with the evolution and maintenance of eusociality in insects.
Collapse
Affiliation(s)
| | - Amro Zayed
- Department of Biology, York University, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Huang X, Li Q, Xu Y, Li A, Wang S, Chen Y, Zhang C, Zhang X, Wang H, Lv C, Sun B, Li S, Kang L, Chen B. A neural m 6A pathway regulates behavioral aggregation in migratory locusts. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1242-1254. [PMID: 38478296 DOI: 10.1007/s11427-023-2476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/07/2023] [Indexed: 06/07/2024]
Abstract
RNA N6-methyladenosine (m6A), as the most abundant modification of messenger RNA, can modulate insect behaviors, but its specific roles in aggregation behaviors remain unexplored. Here, we conducted a comprehensive molecular and physiological characterization of the individual components of the methyltransferase and demethylase in the migratory locust Locusta migratoria. Our results demonstrated that METTL3, METTL14 and ALKBH5 were dominantly expressed in the brain and exhibited remarkable responses to crowding or isolation. The individual knockdown of methyltransferases (i.e., METTL3 and METTL14) promoted locust movement and conspecific attraction, whereas ALKBH5 knockdown induced a behavioral shift toward the solitary phase. Furthermore, global transcriptome profiles revealed that m6A modification could regulate the orchestration of gene expression to fine tune the behavioral aggregation of locusts. In summary, our in vivo characterization of the m6A functions in migratory locusts clearly demonstrated the crucial roles of the m6A pathway in effectively modulating aggregation behaviors.
Collapse
Affiliation(s)
- Xianliang Huang
- School of Life Science, Institutes of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Qing Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanan Xu
- Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Ang Li
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shanzheng Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yusheng Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunrui Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xia Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cong Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Baofa Sun
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shaoqin Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Le Kang
- School of Life Science, Institutes of Life Science and Green Development, Hebei University, Baoding, 071002, China.
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Bing Chen
- School of Life Science, Institutes of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| |
Collapse
|
9
|
Rittschof CC, Denny AS. The Impacts of Early-Life Experience on Bee Phenotypes and Fitness. Integr Comp Biol 2023; 63:808-824. [PMID: 36881719 DOI: 10.1093/icb/icad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Across diverse animal species, early-life experiences have lifelong impacts on a variety of traits. The scope of these impacts, their implications, and the mechanisms that drive these effects are central research foci for a variety of disciplines in biology, from ecology and evolution to molecular biology and neuroscience. Here, we review the role of early life in shaping adult phenotypes and fitness in bees, emphasizing the possibility that bees are ideal species to investigate variation in early-life experience and its consequences at both individual and population levels. Bee early life includes the larval and pupal stages, critical time periods during which factors like food availability, maternal care, and temperature set the phenotypic trajectory for an individual's lifetime. We discuss how some common traits impacted by these experiences, including development rate and adult body size, influence fitness at the individual level, with possible ramifications at the population level. Finally, we review ways in which human alterations to the landscape may impact bee populations through early-life effects. This review highlights aspects of bees' natural history and behavioral ecology that warrant further investigation with the goal of understanding how environmental disturbances threaten these vulnerable species.
Collapse
Affiliation(s)
- Clare C Rittschof
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Center North, Lexington, KY 40546, USA
| | - Amanda S Denny
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Center North, Lexington, KY 40546, USA
| |
Collapse
|
10
|
Omufwoko KS, Cronin AL, Nguyen TTH, Webb AE, Traniello IM, Kocher SD. Developmental transcriptomes predict adult social behaviors in the socially flexible sweat bee, Lasioglossum baleicum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553238. [PMID: 37645955 PMCID: PMC10462039 DOI: 10.1101/2023.08.14.553238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Natural variation can provide important insights into the genetic and environmental factors that shape social behavior and its evolution. The sweat bee, Lasioglossum baleicum , is a socially flexible bee capable of producing both solitary and eusocial nests. We demonstrate that within a single nesting aggregation, soil temperatures are a strong predictor of the social structure of nests. Sites with warmer temperatures in the spring have a higher frequency of social nests than cooler sites, perhaps because warmer temperatures provide a longer reproductive window for those nests. To identify the molecular correlates of this behavioral variation, we generated a de novo genome assembly for L. baleicum , and we used transcriptomic profiling to compare adults and developing offspring from eusocial and solitary nests. We find that adult, reproductive females have similar expression profiles regardless of social structure in the nest, but that there are strong differences between reproductive females and workers from social nests. We also find substantial differences in the transcriptomic profiles of stage-matched pupae from warmer, social-biased sites compared to cooler, solitary-biased sites. These transcriptional differences are strongly predictive of adult reproductive state, suggesting that the developmental environment may set the stage for adult behaviors in L. baleicum . Together, our results help to characterize the molecular mechanisms shaping variation in social behavior and highlight a potential role of environmental tuning during development as a factor shaping adult behavior and physiology in this socially flexible bee.
Collapse
|
11
|
Van Cleve J. Evolutionarily stable strategy analysis and its links to demography and genetics through invasion fitness. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210496. [PMID: 36934754 PMCID: PMC10024993 DOI: 10.1098/rstb.2021.0496] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/07/2023] [Indexed: 03/21/2023] Open
Abstract
Evolutionarily stable strategy (ESS) analysis pioneered by Maynard Smith and Price took off in part because it often does not require explicit assumptions about the genetics and demography of a population in contrast to population genetic models. Though this simplicity is useful, it obscures the degree to which ESS analysis applies to populations with more realistic genetics and demography: for example, how does ESS analysis handle complexities such as kin selection, group selection and variable environments when phenotypes are affected by multiple genes? In this paper, I review the history of the ESS concept and show how early uncertainty about the method lead to important mathematical theory linking ESS analysis to general population genetic models. I use this theory to emphasize the link between ESS analysis and the concept of invasion fitness. I give examples of how invasion fitness can measure kin selection, group selection and the evolution of linked modifier genes in response to variable environments. The ESSs in these examples depend crucially on demographic and genetic parameters, which highlights how ESS analysis will continue to be an important tool in understanding evolutionary patterns as new models address the increasing abundance of genetic and long-term demographic data in natural populations. This article is part of the theme issue 'Half a century of evolutionary games: a synthesis of theory, application and future directions'.
Collapse
Affiliation(s)
- Jeremy Van Cleve
- Department of Biology, University of Kentucky, Lexington, KY 40506 USA
| |
Collapse
|
12
|
Jones BM, Rubin BER, Dudchenko O, Kingwell CJ, Traniello IM, Wang ZY, Kapheim KM, Wyman ES, Adastra PA, Liu W, Parsons LR, Jackson SR, Goodwin K, Davidson SM, McBride MJ, Webb AE, Omufwoko KS, Van Dorp N, Otárola MF, Pham M, Omer AD, Weisz D, Schraiber J, Villanea F, Wcislo WT, Paxton RJ, Hunt BG, Aiden EL, Kocher SD. Convergent and complementary selection shaped gains and losses of eusociality in sweat bees. Nat Ecol Evol 2023; 7:557-569. [PMID: 36941345 PMCID: PMC11610481 DOI: 10.1038/s41559-023-02001-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/18/2023] [Indexed: 03/23/2023]
Abstract
Sweat bees have repeatedly gained and lost eusociality, a transition from individual to group reproduction. Here we generate chromosome-length genome assemblies for 17 species and identify genomic signatures of evolutionary trade-offs associated with transitions between social and solitary living. Both young genes and regulatory regions show enrichment for these molecular patterns. We also identify loci that show evidence of complementary signals of positive and relaxed selection linked specifically to the convergent gains and losses of eusociality in sweat bees. This includes two pleiotropic proteins that bind and transport juvenile hormone (JH)-a key regulator of insect development and reproduction. We find that one of these proteins is primarily expressed in subperineurial glial cells that form the insect blood-brain barrier and that brain levels of JH vary by sociality. Our findings are consistent with a role of JH in modulating social behaviour and suggest that eusocial evolution was facilitated by alteration of the proteins that bind and transport JH, revealing how an ancestral developmental hormone may have been co-opted during one of life's major transitions. More broadly, our results highlight how evolutionary trade-offs have structured the molecular basis of eusociality in these bees and demonstrate how both directional selection and release from constraint can shape trait evolution.
Collapse
Affiliation(s)
- Beryl M Jones
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Benjamin E R Rubin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Callum J Kingwell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Ian M Traniello
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Z Yan Wang
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Karen M Kapheim
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
- Department of Biology, Utah State University, Logan, UT, USA
| | - Eli S Wyman
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Per A Adastra
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Weijie Liu
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Lance R Parsons
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - S RaElle Jackson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Shawn M Davidson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Matthew J McBride
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Andrew E Webb
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Kennedy S Omufwoko
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Nikki Van Dorp
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Mauricio Fernández Otárola
- Biodiversity and Tropical Ecology Research Center (CIBET) and School of Biology, University of Costa Rica, San José, Costa Rica
| | - Melanie Pham
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Arina D Omer
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - David Weisz
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Joshua Schraiber
- Department of Biology, Temple University, Philadelphia, PA, USA
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA, USA
| | - Fernando Villanea
- Department of Biology, Temple University, Philadelphia, PA, USA
- Department of Anthropology, University of Colorado Boulder, Boulder, CO, USA
| | - William T Wcislo
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Robert J Paxton
- Institute of Biology, Martin-Luther University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
| | - Brendan G Hunt
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Sarah D Kocher
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
13
|
Wyatt CDR, Bentley MA, Taylor D, Favreau E, Brock RE, Taylor BA, Bell E, Leadbeater E, Sumner S. Social complexity, life-history and lineage influence the molecular basis of castes in vespid wasps. Nat Commun 2023; 14:1046. [PMID: 36828829 PMCID: PMC9958023 DOI: 10.1038/s41467-023-36456-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/31/2023] [Indexed: 02/26/2023] Open
Abstract
A key mechanistic hypothesis for the evolution of division of labour in social insects is that a shared set of genes co-opted from a common solitary ancestral ground plan (a genetic toolkit for sociality) regulates caste differentiation across levels of social complexity. Using brain transcriptome data from nine species of vespid wasps, we test for overlap in differentially expressed caste genes and use machine learning models to predict castes using different gene sets. We find evidence of a shared genetic toolkit across species representing different levels of social complexity. We also find evidence of additional fine-scale differences in predictive gene sets, functional enrichment and rates of gene evolution that are related to level of social complexity, lineage and of colony founding. These results suggest that the concept of a shared genetic toolkit for sociality may be too simplistic to fully describe the process of the major transition to sociality.
Collapse
Affiliation(s)
- Christopher Douglas Robert Wyatt
- Centre for Biodiversity and Environment Research, Dept Genetics, Evolution & Environment, University College London, London, WC1E 6BT, UK.
| | - Michael Andrew Bentley
- Centre for Biodiversity and Environment Research, Dept Genetics, Evolution & Environment, University College London, London, WC1E 6BT, UK
| | - Daisy Taylor
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Emeline Favreau
- Centre for Biodiversity and Environment Research, Dept Genetics, Evolution & Environment, University College London, London, WC1E 6BT, UK
| | - Ryan Edward Brock
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| | - Benjamin Aaron Taylor
- Centre for Biodiversity and Environment Research, Dept Genetics, Evolution & Environment, University College London, London, WC1E 6BT, UK
| | - Emily Bell
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Ellouise Leadbeater
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Seirian Sumner
- Centre for Biodiversity and Environment Research, Dept Genetics, Evolution & Environment, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
14
|
Lo YC, Blamires SJ, Liao CP, Tso IM. Nocturnal and diurnal predator and prey interactions with crab spider color polymorphs. Behav Ecol Sociobiol 2023. [DOI: 10.1007/s00265-023-03291-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
15
|
Zhang D, Niu ZQ, Luo AR, Orr MC, Ferrari RR, Jin JF, Wu QT, Zhang F, Zhu CD. Testing the systematic status of Homalictus and Rostrohalictus with weakened cross-vein groups within Halictini (Hymenoptera: Halictidae) using low-coverage whole-genome sequencing. INSECT SCIENCE 2022; 29:1819-1833. [PMID: 35289982 DOI: 10.1111/1744-7917.13034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The halictid genus Lasioglossum, as one of the most species-rich bee groups with persistently contentious subgeneric boundaries, is one of the most challenging bee groups from a systematic standpoint. An enduring question is the relationship of Lasioglossum and Homalictus, whether all halictine bees with weakened distal wing venation comprise one or multiple genera. Here, we analyzed the phylogenetic relationships among the subgroups within Lasioglossum s.l. based on thousands of single-copy orthologs and ultraconserved elements, which were extracted from 23 newly sequenced low-coverage whole genomes alongside a published genome (22 ingroups plus 2 outgroups). Both marker sets provided consistent results across maximum likelihood and coalescent-based species tree approaches. The phylogenetic and topology test results show that the Lasioglossum and Hemihalictus series are reciprocally monophyletic and Homalictus and Rostrohalictus are valid subgenera of Lasioglossum. Consequently, we lower Homalictus to subgenus status within Lasioglossum again, and we also raise Rostrohalictus to subgenus status from its prior synonymy with subgenus Hemihalictus. Lasioglossum przewalskyi is also transferred to the subgenus Hemihalictus. Ultimately, we redefine Lasioglossum to include all halictine bees with weakened distal wing venation.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ze-Qing Niu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - A-Rong Luo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| | - Michael C Orr
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| | - Rafael R Ferrari
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jian-Feng Jin
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qing-Tao Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Chao-Dong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Tong C, Avilés L, Rayor LS, Mikheyev AS, Linksvayer TA. Genomic signatures of recent convergent transitions to social life in spiders. Nat Commun 2022; 13:6967. [PMID: 36414623 PMCID: PMC9681848 DOI: 10.1038/s41467-022-34446-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
The transition from solitary to social life is a major phenotypic innovation, but its genetic underpinnings are largely unknown. To identify genomic changes associated with this transition, we compare the genomes of 22 spider species representing eight recent and independent origins of sociality. Hundreds of genes tend to experience shifts in selection during the repeated transition to social life. These genes are associated with several key functions, such as neurogenesis, behavior, and metabolism, and include genes that previously have been implicated in animal social behavior and human behavioral disorders. In addition, social species have elevated genome-wide rates of molecular evolution associated with relaxed selection caused by reduced effective population size. Altogether, our study provides unprecedented insights into the genomic signatures of social evolution and the specific genetic changes that repeatedly underpin the evolution of sociality. Our study also highlights the heretofore unappreciated potential of transcriptomics using ethanol-preserved specimens for comparative genomics and phylotranscriptomics.
Collapse
Affiliation(s)
- Chao Tong
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Leticia Avilés
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Linda S Rayor
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander S Mikheyev
- Evolutionary Genomics Group, Research School of Biology, Australian National University, Canberra, 0200, Australia
| | - Timothy A Linksvayer
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
17
|
Traniello JF, Linksvayer TA, Coto ZN. Social complexity and brain evolution: insights from ant neuroarchitecture and genomics. CURRENT OPINION IN INSECT SCIENCE 2022; 53:100962. [PMID: 36028191 DOI: 10.1016/j.cois.2022.100962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Brain evolution is hypothesized to be driven by requirements to adaptively respond to environmental cues and social signals. Diverse models describe how sociality may have influenced eusocial insect-brain evolution, but specific impacts of social organization and other selective forces on brain architecture have been difficult to distinguish. Here, we evaluate predictions derived from and/or inferences made by models of social organization concerning the effects of individual and collective behavior on brain size, structure, and function using results of neuroanatomical and genomic studies. In contrast to the predictions of some models, we find that worker brains in socially complex species have great behavioral and cognitive capacity. We also find that colony size, the evolution of worker physical castes, and task specialization affect brain size and mosaicism, supporting the idea that sensory, processing and motor requirements for behavioral performance select for adaptive allometries of functionally specialized brain centers. We review available transcriptomic and comparative genomic studies seeking to elucidate the molecular pathways functionally associated with social life and the genetic changes that occurred during the evolution of social complexity. We discuss ways forward, using comparative neuroanatomy, transcriptomics, and comparative genomics, to distinguish among multiple alternative explanations for the relationship between the evolution of neural systems and social complexity.
Collapse
Affiliation(s)
- James Fa Traniello
- Department of Biology, Boston University, Boston, MA, USA; Graduate Program in Neuroscience, Boston University, Boston, MA, USA.
| | | | - Zachary N Coto
- Department of Biology, Boston University, Boston, MA, USA
| |
Collapse
|
18
|
Differential Gene Expression Correlates with Behavioural Polymorphism during Collective Behaviour in Cockroaches. Animals (Basel) 2022; 12:ani12182354. [PMID: 36139214 PMCID: PMC9495117 DOI: 10.3390/ani12182354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary It is currently well accepted that animals differ from one another in their behaviour and tendency to perform actions, a property we refer to as animal personality. In group-living animals, variation in animal personality can be important to determine group survival, as it determines how individuals interact with each other and with their environment. However, we have little knowledge of the proximal mechanisms underlying personality, particularly in group-living organisms. Here, we investigate the relationship between gene expression and two behavioural types (bold and shy) in a gregarious species: the American cockroach. Our results show that bold individuals have upregulated genes with functions associated with sensory activity (phototaxis and odour detection) and aggressive/dominant behaviour, and suggest that social context can modulate gene expression related to bold/shy characteristics. This work could help identify genes important in the earliest stages of group living and social life, and provides a first step toward establishing cockroaches as a focal group for the study of the evolution of sociality. Abstract Consistent inter-individual variation in the propensity to perform different tasks (animal personality) can contribute significantly to the success of group-living organisms. The distribution of different personalities in a group influences collective actions and therefore how these organisms interact with their environment. However, we have little understanding of the proximate mechanisms underlying animal personality in animal groups, and research on this theme has often been biased towards organisms with advanced social systems. The goal of this study is to investigate the mechanistic basis for personality variation during collective behaviour in a species with rudimentary societies: the American cockroach. We thus use an approach which combines experimental classification of individuals into behavioural phenotypes (‘bold’ and ‘shy’ individuals) with comparative gene expression. Our analyses reveal differences in gene expression between behavioural phenotypes and suggest that social context may modulate gene expression related to bold/shy characteristics. We also discuss how cockroaches could be a valuable model for the study of genetic mechanisms underlying the early steps in the evolution of social behaviour and social complexity. This study provides a first step towards a better understanding of the molecular mechanisms associated with differences in boldness and behavioural plasticity in these organisms.
Collapse
|
19
|
Abstract
The question of the heritability of behavior has been of long fascination to scientists and the broader public. It is now widely accepted that most behavioral variation has a genetic component, although the degree of genetic influence differs widely across behaviors. Starting with Mendel's remarkable discovery of "inheritance factors," it has become increasingly clear that specific genetic variants that influence behavior can be identified. This goal is not without its challenges: Unlike pea morphology, most natural behavioral variation has a complex genetic architecture. However, we can now apply powerful genome-wide approaches to connect variation in DNA to variation in behavior as well as analyses of behaviorally related variation in brain gene expression, which together have provided insights into both the genetic mechanisms underlying behavior and the dynamic relationship between genes and behavior, respectively, in a wide range of species and for a diversity of behaviors. Here, we focus on two systems to illustrate both of these approaches: the genetic basis of burrowing in deer mice and transcriptomic analyses of division of labor in honey bees. Finally, we discuss the troubled relationship between the field of behavioral genetics and eugenics, which reminds us that we must be cautious about how we discuss and contextualize the connections between genes and behavior, especially in humans.
Collapse
Affiliation(s)
- Hopi E. Hoekstra
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
- HHMI, Harvard University, Cambridge, MA 02138
| | - Gene E. Robinson
- Department of Entomology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Neuroscience Program, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
20
|
Saleh NW, Henske J, Ramírez SR. Experimental disruption of social structure reveals totipotency in the orchid bee, Euglossa dilemma. Evolution 2022; 76:1529-1545. [PMID: 35589274 DOI: 10.1111/evo.14513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 01/22/2023]
Abstract
Eusociality has evolved multiple times across the insect phylogeny. Social insects with greater levels of social complexity tend to exhibit specialized castes with low levels of individual phenotypic plasticity. In contrast, species with simple social groups may consist of totipotent individuals that transition among behavioral and reproductive states. However, recent work has shown that in simple social groups, there can still be constraint on individual plasticity, caused by differences in maternal nourishment or social interaction. It is not well understood how these constraints arise, ultimately leading to the evolution of nonreproductive workers. Some species of orchid bees form social groups of a dominant and-one to two subordinate helpers where all individuals are reproductive. Females can also disperse to start their own nest as a solitary foundress, which includes a nonreproductive phase characterized by ovary inactivation, not typically expressed by subordinates. Little is known about individual flexibility across these trajectories. Here, using the orchid bee Euglossa dilemma, we assess the plasticity of subordinate helpers, finding that they are capable of the same behavioral, physiological, transcriptomic, and chemical changes seen in foundresses. Our results suggest that the lack of nonreproductive workers in E. dilemma is not due to a lack of subordinate plasticity.
Collapse
Affiliation(s)
- Nicholas W Saleh
- Entomology and Nematology Department, Fort Lauderdale Research and Education Center, University of Florida, Davie, Florida, USA.,Center for Population Biology, University of California, Davis, California, USA
| | - Jonas Henske
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr University Bochum, Bochum, Germany
| | - Santiago R Ramírez
- Center for Population Biology, University of California, Davis, California, USA
| |
Collapse
|
21
|
da Silva J. Gene dynamics of haplodiploidy favor eusociality in the Hymenoptera. Evolution 2022; 76:1546-1555. [PMID: 35609895 PMCID: PMC9543898 DOI: 10.1111/evo.14518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 03/09/2022] [Indexed: 01/22/2023]
Abstract
The problem of whether haplodiploidy is responsible for the frequent evolution of eusociality in the Hymenoptera remains unresolved. The little-known "protected invasion hypothesis" posits that because a male will transmit a new allele for alloparental care to all his daughters under haplodiploidy, such an allele has a higher probability of spreading to fixation under haplodiploidy than under diploidy. This mechanism is investigated using the mating system and lifecycles ancestral to eusocial lineages. It is shown that although haplodiploidy increases the probability of fixation of a new allele, the effect is cancelled by a higher probability of the allele arising in a diploid population. However, the same effect of male haploidy results in a 30% lower threshold amount of reproductive help by a worker necessary to favor eusociality if the sex ratio of dispersing first-brood offspring remains even. This occurs because when first-brood daughters become workers, the sex ratio of dispersing first-brood offspring becomes male-biased, selecting for an overall female-biased first-brood sex ratio. Through this mechanism, haplodiploidy may favor eusociality in the absence of a female-biased sex ratio in dispersing reproductive offspring. The gene-centric approach used here reveals the critical role of male haploidy in structuring the social group.
Collapse
Affiliation(s)
- Jack da Silva
- School of Biological SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
22
|
Crone MK, Biddinger DJ, Grozinger CM. Wild Bee Nutritional Ecology: Integrative Strategies to Assess Foraging Preferences and Nutritional Requirements. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.847003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bees depend on flowering plants for their nutrition, and reduced availability of floral resources is a major driver of declines in both managed and wild bee populations. Understanding the nutritional needs of different bee species, and how these needs are met by the varying nutritional resources provided by different flowering plant taxa, can greatly inform land management recommendations to support bee populations and their associated ecosystem services. However, most bee nutrition research has focused on the three most commonly managed and commercially reared bee taxa—honey bees, bumble bees, and mason bees—with fewer studies focused on wild bees and other managed species, such as leafcutting bees, stingless bees, and alkali bees. Thus, we have limited information about the nutritional requirements and foraging preferences of the vast majority of bee species. Here, we discuss the approaches traditionally used to understand bee nutritional ecology: identification of floral visitors of selected focal plant species, evaluation of the foraging preferences of adults in selected focal bee species, evaluation of the nutritional requirements of focal bee species (larvae or adults) in controlled settings, and examine how these methods may be adapted to study a wider range of bee species. We also highlight emerging technologies that have the potential to greatly facilitate studies of the nutritional ecology of wild bee species, as well as evaluate bee nutritional ecology at significantly larger spatio-temporal scales than were previously feasible. While the focus of this review is on bee species, many of these techniques can be applied to other pollinator taxa as well.
Collapse
|
23
|
Abstract
The honeybee possesses a limited number of bacterial phylotypes that play essential roles in host metabolism, hormonal signaling, and feeding behavior. However, the contribution of individual gut members in shaping honeybee brain profiles remains unclear. By generating gnotobiotic bees which were mono-colonized by a single gut bacterium, we revealed that different species regulated specific modules of metabolites in the hemolymph. Circulating metabolites involved in carbohydrate and glycerophospholipid metabolism pathways were mostly regulated by Gilliamella, while Lactobacillus Firm4 and Firm5 mainly altered amino acid metabolism pathways. We then analyzed the brain transcriptomes of bees mono-colonized with these three bacteria. These showed distinctive gene expression profiles, and genes related to olfactory functions and labor division were upregulated by Lactobacillus. Interestingly, differentially spliced genes in the brains of gnotobiotic bees largely overlapped with those of bees unresponsive to social stimuli. The differentially spliced genes were enriched in pathways involved in neural development and synaptic transmission. We showed that gut bacteria altered neurotransmitter levels in the brain. In particular, dopamine and serotonin, which show inhibitory effects on the sensory sensitivity of bees, were downregulated in bacteria-colonized bees. The proboscis extension response showed that a normal gut microbiota is essential for the taste-related behavior of honeybees, suggesting the contribution of potential interactions among different gut species to the host's physiology. Our findings provide fundamental insights into the diverse functions of gut bacteria which likely contribute to honeybee neurological processes. IMPORTANCE The honeybee possesses a simple and host-restricted gut community that contributes to the metabolic health of its host, while the effects of bacterial symbionts on host neural functions remain elusive. We found that the colonization of specific bee gut bacteria regulates distinct circulating metabolites enriched in carbohydrate, amino acid, and glycerophospholipid metabolic pathways. The brains of bees colonized with different gut members display distinct transcriptomic profiles of genes crucial for bee behaviors and division of labor. Alternative splicing of genes related to disordered bee behaviors is also mediated. The presence of gut bacteria promotes sucrose sensitivity with major neurotransmitters being regulated in the brain. Our findings demonstrate how individual bee gut species affect host behaviors, highlighting the gut-brain connections important for honeybee neurobiological and physiological states.
Collapse
|
24
|
Cook CN, Freeman AR, Liao JC, Mangiamele LA. The Philosophy of Outliers: Reintegrating Rare Events Into Biological Science. Integr Comp Biol 2022; 61:2191-2198. [PMID: 34283241 PMCID: PMC9076997 DOI: 10.1093/icb/icab166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Individual variation in morphology, physiology, and behavior has been a topic of great interest in the biological sciences. While scientists realize the importance of understanding diversity in individual phenotypes, historically the "minority" results (i.e., outlier observations or rare events) of any given experiment have been dismissed from further analysis. We need to reframe how we view "outliers" to improve our understanding of biology. These rare events are often treated as problematic or spurious, when they can be real rare events or individuals driving evolution in a population. It is our perspective that to understand what outliers can tell us in our data, we need to: (1) Change how we think about our data philosophically, (2) Fund novel collaborations using science "weavers" in our national funding agencies, and (3) Bridge long-term field and lab studies to reveal these outliers in action. By doing so, we will improve our understanding of variation and evolution. We propose that this shift in culture towards more integrative science will incorporate diverse teams, citizen scientists and local naturalists, and change how we teach future students.
Collapse
Affiliation(s)
- Chelsea N Cook
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Angela R Freeman
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - James C Liao
- Department of Biology, Whitney Laboratory for Marine Bioscience, University of Florida, Gainesville, FL 32611, USA
| | - Lisa A Mangiamele
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| |
Collapse
|
25
|
Gartland LA, Firth JA, Laskowski KL, Jeanson R, Ioannou CC. Sociability as a personality trait in animals: methods, causes and consequences. Biol Rev Camb Philos Soc 2021; 97:802-816. [PMID: 34894041 DOI: 10.1111/brv.12823] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023]
Abstract
Within animal populations there is variation among individuals in their tendency to be social, where more sociable individuals associate more with other individuals. Consistent inter-individual variation in 'sociability' is considered one of the major axes of personality variation in animals along with aggressiveness, activity, exploration and boldness. Not only is variation in sociability important in terms of animal personalities, but it holds particular significance for, and can be informed by, two other topics of major interest: social networks and collective behaviour. Further, knowledge of what generates inter-individual variation in social behaviour also holds applied implications, such as understanding disorders of social behaviour in humans. In turn, research using non-human animals in the genetics, neuroscience and physiology of these disorders can inform our understanding of sociability. For the first time, this review brings together insights across these areas of research, across animal taxa from primates to invertebrates, and across studies from both the laboratory and field. We show there are mixed results in whether and how sociability correlates with other major behavioural traits. Whether and in what direction these correlations are observed may differ with individual traits such as sex and body condition, as well as ecological conditions. A large body of evidence provides the proximate mechanisms for why individuals vary in their social tendency. Evidence exists for the importance of genes and their expression, chemical messengers, social interactions and the environment in determining an individual's social tendency, although the specifics vary with species and other variables such as age, and interactions amongst these proximate factors. Less well understood is how evolution can maintain consistent variation in social tendencies within populations. Shifts in the benefits and costs of social tendencies over time, as well as the social niche hypothesis, are currently the best supported theories for how variation in sociability can evolve and be maintained in populations. Increased exposure to infectious diseases is the best documented cost of a greater social tendency, and benefits include greater access to socially transmitted information. We also highlight that direct evidence for more sociable individuals being safer from predators is lacking. Variation in sociability is likely to have broad ecological consequences, but beyond its importance in the spread of infectious diseases, direct evidence is limited to a few examples related to dispersal and invasive species biology. Overall, our knowledge of inter-individual variation in sociability is highly skewed towards the proximate mechanisms. Our review also demonstrates, however, that considering research from social networks and collective behaviour greatly enriches our understanding of sociability, highlighting the need for greater integration of these approaches into future animal personality research to address the imbalance in our understanding of sociability as a personality trait.
Collapse
Affiliation(s)
- Lizzy A Gartland
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, U.K
| | - Josh A Firth
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, OX1 3SZ, U.K
| | - Kate L Laskowski
- Department of Evolution and Ecology, University of California Davis, Davis, CA, 95616, U.S.A
| | - Raphael Jeanson
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, CNRS, UPS, Université de Toulouse, 31062, Toulouse, France
| | - Christos C Ioannou
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, U.K
| |
Collapse
|
26
|
Abstract
Although indirect selection through relatives (kin selection) can explain the evolution of effectively sterile offspring that act as helpers at the nest (eusociality) in the ants, bees, and stinging wasps (aculeate Hymenoptera), the genetic, ecological, and life history conditions that favor transitions to eusociality are poorly understood. In this study, ancestral state reconstruction on recently published phylogenies was used to identify the independent transitions to eusociality in each of the taxonomic families that exhibit eusociality. Semisociality, in which a single nest co-foundress monopolizes reproduction, often precedes eusociality outside the vespid wasps. Such a route to eusociality, which is consistent with groups consisting of a mother and her daughters (subsocial) at some stage and ancestral monogamy, is favored by the haplodiploid genetic sex determination of the Hymenoptera (diploid females and haploid males) and thus may explain why eusociality is common in the Hymenoptera. Ancestral states were also reconstructed for life history characters that have been implicated in the origins of eusociality. A loss of larval diapause during unfavorable seasons or conditions precedes, or coincides with, all but one transition to eusociality. This pattern is confirmed using phylogenetic tests of associations between state transition rates for sweat bees and apid bees. A loss of larval diapause may simply reflect the subsocial route to eusociality since subsociality is defined as females interacting with their adult daughters. A loss of larval diapause and a gain of subsociality may be associated with an extended breeding season that permits the production of at least two broods, which is necessary for helpers to evolve. Adult diapause may also lower the selective barrier to a first-brood daughter becoming a helper. Obligate eusociality meets the definition of a major evolutionary transition, and such transitions have occurred five times in the Hymenoptera.
Collapse
|
27
|
Liu Y, Henkel J, Beaurepaire A, Evans JD, Neumann P, Huang Q. Comparative genomics suggests local adaptations in the invasive small hive beetle. Ecol Evol 2021; 11:15780-15791. [PMID: 34824789 PMCID: PMC8601931 DOI: 10.1002/ece3.8242] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 01/01/2023] Open
Abstract
Invasive species are a major driver of ecological and environmental changes that affect human health, food security, and natural biodiversity. The success and impact of biological invasions depend on adaptations to novel abiotic and biotic selective pressures. However, the molecular mechanisms underlying adaptations in invasive parasitic species are inadequately understood. Small hive beetles, Aethina tumida, are parasites of bee nests. Originally endemic to sub-Saharan Africa, they are now found nearly globally. Here, we investigated the molecular bases of the adaptations to novel environments underlying their invasion routes. Genomes of historic and recent adults A. tumida from both the endemic and introduced ranges were compared. Analysis of gene-environment association identified 3049 candidate loci located in 874 genes. Functional annotation showed a significant bias toward genes linked to growth and reproduction. One of the genes from the apoptosis pathway encodes an "ecdysone-related protein," which is a crucial regulator in controlling body size in response to environmental cues for holometabolous insects during cell death and renewal. Genes whose proteins regulate organ size, ovary activation, and oviposition were also detected. Functions of these enriched pathways parallel behavioral differences between introduced and native A. tumida populations, which may reflect patterns of local adaptation. The results considerably improve our understanding of the underlying mechanisms and ecological factors driving adaptations of invasive species. Deep functional investigation of these identified loci will help clarify the mechanisms of local adaptation in A. tumida.
Collapse
Affiliation(s)
- Yuanzhen Liu
- Vetsuisse FacultyInstitute of Bee HealthUniversity of BernBernSwitzerland
| | - Jan Henkel
- Vetsuisse FacultyInstitute of GeneticsUniversity of BernBernSwitzerland
| | - Alexis Beaurepaire
- Vetsuisse FacultyInstitute of Bee HealthUniversity of BernBernSwitzerland
| | - Jay D. Evans
- USDA‐ARS Beltsville Bee Research LaboratoryBeltsvilleMarylandUSA
| | - Peter Neumann
- Vetsuisse FacultyInstitute of Bee HealthUniversity of BernBernSwitzerland
- AgroscopeSwiss Bee Research CentreBernSwitzerland
| | - Qiang Huang
- Honeybee Research InstituteJiangxi Agricultural UniversityNanchangChina
| |
Collapse
|
28
|
Harpur BA, Rehan SM. Connecting social polymorphism to single nucleotide polymorphism: population genomics of the small carpenter bee, Ceratina australensis. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
How do social insects expand and adapt to new ranges and how does sociality per se contribute to their success (or failure)? These questions can become tractable with the use of population genomics. We explored the population genomics of the socially polymorphic small carpenter bee, Ceratina australensis, across its range in eastern and southern Australia to search for evidence of selection and identify loci associated with social nesting. We sampled and sequenced fully the genomes of 54 socially and solitarily nesting C. australensis within Queensland, Victoria and South Australia, yielding 2 061 234 single nucleotide polymorphisms across the genome. We found strong evidence of population-specific selection and evidence of genetic variants associated with social nesting behaviour. Both the sets of associated loci and differentially expressed ‘social’ genes had evidence of positive selection, suggesting that alleles at genes associated with social nesting might provide different fitness benefits.
Collapse
Affiliation(s)
- Brock A Harpur
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | - Sandra M Rehan
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
29
|
Andrews KR, Epstein B, Leslie MS, Fiedler P, Morin PA, Hoelzel AR. Genomic signatures of divergent selection are associated with social behaviour for spinner dolphin ecotypes. Mol Ecol 2021; 30:1993-2008. [PMID: 33645853 DOI: 10.1111/mec.15865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/16/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022]
Abstract
Understanding the genomic basis of adaptation is critical for understanding evolutionary processes and predicting how species will respond to environmental change. Spinner dolphins in the eastern tropical Pacific (ETP) present a unique system for studying adaptation. Within this large geographical region are four spinner dolphin ecotypes with weak neutral genetic divergence and no obvious barriers to gene flow, but strong spatial variation in morphology, behaviour and habitat. These ecotypes have large population sizes, which could reduce the effects of drift and facilitate selection. To identify genomic regions putatively under divergent selective pressures between ecotypes, we used genome scans with 8994 RADseq single nucleotide polymorphisms (SNPs) to identify population differentiation outliers and genotype-environment association outliers. Gene ontology enrichment analyses indicated that outlier SNPs from both types of analyses were associated with multiple genes involved in social behaviour and hippocampus development, including 15 genes associated with the human social disorder autism. Evidence for divergent selection on social behaviour is supported by previous evidence that these spinner dolphin ecotypes differ in mating systems and associated social behaviours. In particular, three of the ETP ecotypes probably have a polygynous mating system characterized by strong premating competition among males, whereas the fourth ecotype probably has a polygynandrous mating system characterized by strong postmating competition such as sperm competition. Our results provide evidence that selection for social behaviour may be an evolutionary force driving diversification of spinner dolphins in the ETP, potentially as a result of divergent sexual selection associated with different mating systems. Future studies should further investigate the potential adaptive role of the candidate genes identified here, and could probably find further signatures of selection using whole genome sequence data.
Collapse
Affiliation(s)
- Kimberly R Andrews
- School of Biosciences, Durham University, Durham, UK.,Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID, USA
| | - Brendan Epstein
- Department of Plant & Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | | | - Paul Fiedler
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, USA
| | - Phillip A Morin
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, USA
| | - A Rus Hoelzel
- School of Biosciences, Durham University, Durham, UK
| |
Collapse
|
30
|
Hawley DM, Gibson AK, Townsend AK, Craft ME, Stephenson JF. Bidirectional interactions between host social behaviour and parasites arise through ecological and evolutionary processes. Parasitology 2021; 148:274-288. [PMID: 33092680 PMCID: PMC11010184 DOI: 10.1017/s0031182020002048] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
An animal's social behaviour both influences and changes in response to its parasites. Here we consider these bidirectional links between host social behaviours and parasite infection, both those that occur from ecological vs evolutionary processes. First, we review how social behaviours of individuals and groups influence ecological patterns of parasite transmission. We then discuss how parasite infection, in turn, can alter host social interactions by changing the behaviour of both infected and uninfected individuals. Together, these ecological feedbacks between social behaviour and parasite infection can result in important epidemiological consequences. Next, we consider the ways in which host social behaviours evolve in response to parasites, highlighting constraints that arise from the need for hosts to maintain benefits of sociality while minimizing fitness costs of parasites. Finally, we consider how host social behaviours shape the population genetic structure of parasites and the evolution of key parasite traits, such as virulence. Overall, these bidirectional relationships between host social behaviours and parasites are an important yet often underappreciated component of population-level disease dynamics and host-parasite coevolution.
Collapse
Affiliation(s)
- Dana M. Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA24061, USA
| | - Amanda K. Gibson
- Department of Biology, University of Virginia, Charlottesville, VA22903, USA
| | | | - Meggan E. Craft
- Department of Veterinary Population Medicine and Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN55108, USA
| | - Jessica F. Stephenson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA15260, USA
| |
Collapse
|
31
|
Expanding evolutionary neuroscience: insights from comparing variation in behavior. Neuron 2021; 109:1084-1099. [PMID: 33609484 DOI: 10.1016/j.neuron.2021.02.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 01/01/2023]
Abstract
Neuroscientists have long studied species with convenient biological features to discover how behavior emerges from conserved molecular, neural, and circuit level processes. With the advent of new tools, from viral vectors and gene editing to automated behavioral analyses, there has been a recent wave of interest in developing new, "nontraditional" model species. Here, we advocate for a complementary approach to model species development, that is, model clade development, as a way to integrate an evolutionary comparative approach with neurobiological and behavioral experiments. Capitalizing on natural behavioral variation in and investing in experimental tools for model clades will be a valuable strategy for the next generation of neuroscience discovery.
Collapse
|
32
|
Obiero GF, Pauli T, Geuverink E, Veenendaal R, Niehuis O, Große-Wilde E. Chemoreceptor Diversity in Apoid Wasps and Its Reduction during the Evolution of the Pollen-Collecting Lifestyle of Bees (Hymenoptera: Apoidea). Genome Biol Evol 2021; 13:6117318. [PMID: 33484563 PMCID: PMC8011036 DOI: 10.1093/gbe/evaa269] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Chemoreceptors help insects to interact with their environment, to detect and assess food sources and oviposition sites, and to aid in intra- and interspecific communication. In Hymenoptera, species of eusocial lineages possess large chemoreceptor gene repertoires compared with solitary species, possibly because of their additional need to recognize nest-mates and caste. However, a critical piece of information missing so far has been the size of chemoreceptor gene repertoires of solitary apoid wasps. Apoid wasps are a paraphyletic group of almost exclusively solitary Hymenoptera phylogenetically positioned between ant and bee, both of which include eusocial species. We report the chemosensory-related gene repertoire sizes of three apoid wasps: Ampulex compressa, Cerceris arenaria, and Psenulus fuscipennis. We annotated genes encoding odorant (ORs), gustatory, and ionotropic receptors and chemosensory soluble proteins and odorant-binding proteins in transcriptomes of chemosensory tissues of the above three species and in early draft genomes of two species, A. compressa and C. arenaria. Our analyses revealed that apoid wasps possess larger OR repertoires than any bee lineage, that the last common ancestor of Apoidea possessed a considerably larger OR repertoire (∼160) than previously estimated (73), and that the expansion of OR genes in eusocial bees was less extensive than previously assumed. Intriguingly, the evolution of pollen-collecting behavior in the stem lineage of bees was associated with a notable loss of OR gene diversity. Thus, our results support the view that herbivorous Hymenoptera tend to possess smaller OR repertoires than carnivorous, parasitoid, or kleptoparasitic species.
Collapse
Affiliation(s)
- George F Obiero
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany.,School of Biological and Life Sciences, The Technical University of Kenya, Nairobi, Kenya
| | - Thomas Pauli
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University of Freiburg, Germany
| | - Elzemiek Geuverink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | | | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University of Freiburg, Germany
| | - Ewald Große-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany.,EXTEMIT-K, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Praha-Suchdol, Czech Republic
| |
Collapse
|
33
|
Hubbard CB, Gerry AC. Genetic evaluation and characterization of behavioral resistance to imidacloprid in the house fly. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 171:104741. [PMID: 33357563 DOI: 10.1016/j.pestbp.2020.104741] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Insecticide resistance in pest populations is an increasing problem in both urban and rural settings due to over-application of insecticides and lack of rotation among insecticidal chemical classes. The house fly (Musca domestica L.) is a cosmopolitan pest fly species implicated in the transmission of numerous pathogens. The evolution of insecticide resistance long has been documented in house flies, with resistance reported to all major insecticide classes. House fly resistance to imidacloprid, the most widely used neonicotinoid insecticide available for fly control, has evolved in field populations through both physiological and behavioral mechanisms. Previous studies have characterized and mapped the genetic changes that confer physiological resistance to imidacloprid, but no study have examined the genetics involved in behavioral resistance to imidacloprid to date. In the current study, several approaches were utilized to characterize the genetics and inheritance of behavioral resistance to imidacloprid in the house fly. These include behavioral observation analyses, preference assays, and the use of genetic techniques for the identification of house fly chromosome(s) carrying factors. Behavioral resistance was mapped to autosomes 1 and 4. Inheritance of resistance was shown to be neither fully dominant nor recessive. Factors on autosomes 1 and 4 independently conferred contact-dependent avoidance of imidacloprid and a feeding preference for sugar alone or for sugar with dinotefuran, another neonicotinoid insecticide, over imidacloprid. This study serves as the first linkage analysis of a behavioral trait in the house fly, and provides new avenues for research regarding inherited behavior in the house fly and other animals.
Collapse
Affiliation(s)
- Caleb B Hubbard
- Department of Entomology, University of California, Riverside, CA 92521, USA.
| | - Alec C Gerry
- Department of Entomology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
34
|
Ruiz-Ortiz J, Tollkuhn J. Specificity in sociogenomics: Identifying causal relationships between genes and behavior. Horm Behav 2021; 127:104882. [PMID: 33121994 PMCID: PMC7855425 DOI: 10.1016/j.yhbeh.2020.104882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 01/26/2023]
Abstract
There has been rapid growth in the use of transcriptomic analyses to study the interplay between gene expression and behavior. Experience can modify gene expression in the brain, leading to changes in internal state and behavioral displays, while gene expression variation between species is thought to specify many innate behavior differences. However, providing a causal association between a gene and a given behavior remains challenging as it is difficult to determine when and where a gene contributes to the function of a behaviorally-relevant neuronal population. Moreover, given that there are fewer genetic tools available for non-traditional model organisms, transcriptomic approaches have been largely limited to profiling of bulk tissue, which can obscure the contributions of subcortical brain regions implicated in multiple behaviors. Here, we discuss how emerging single cell technologies combined with methods offering additional spatial and connectivity information can give us insight about the genetic profile of specific cells involved in the neural circuit of target social behaviors. We also emphasize how these techniques are broadly adaptable to non-traditional model organisms. We propose that, ultimately, a combination of these approaches applied throughout development will be key to discerning how genes shape the formation of social behavior circuits.
Collapse
Affiliation(s)
- Jenelys Ruiz-Ortiz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | |
Collapse
|
35
|
Walsh JT, Garnier S, Linksvayer TA. Ant Collective Behavior Is Heritable and Shaped by Selection. Am Nat 2020; 196:541-554. [PMID: 33064586 DOI: 10.1086/710709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractCollective behaviors are widespread in nature and usually assumed to be strongly shaped by natural selection. However, the degree to which variation in collective behavior is heritable and has fitness consequences-the two prerequisites for evolution by natural selection-is largely unknown. We used a new pharaoh ant (Monomorium pharaonis) mapping population to estimate the heritability, genetic correlations, and fitness consequences of three collective behaviors (foraging, aggression, and exploration), as well as of body size, sex ratio, and caste ratio. Heritability estimates for the collective behaviors were moderate, ranging from 0.17 to 0.32, but lower than our estimates for the heritability of caste ratio, sex ratio, and body size of new workers, queens, and males. Moreover, variation in collective behaviors among colonies was phenotypically correlated, suggesting that selection may shape multiple colony collective behaviors simultaneously. Finally, we found evidence for directional selection that was similar in strength to estimates of selection in natural populations. Altogether, our study begins to elucidate the genetic architecture of collective behavior and is one of the first studies to demonstrate that it is shaped by selection.
Collapse
|
36
|
Amoroso CR, Antonovics J. Evolution of behavioural resistance in host-pathogen systems. Biol Lett 2020; 16:20200508. [PMID: 32933405 DOI: 10.1098/rsbl.2020.0508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Behavioural resistance to parasites is widespread in animals, yet little is known about the evolutionary dynamics that have shaped these strategies. We show that theory developed for the evolution of physiological parasite resistance can only be applied to behavioural resistance under limited circumstances. We find that accounting explicitly for the behavioural processes, including the detectability of infected individuals, leads to novel dynamics that are strongly dependent on the nature of the costs and benefits of social interactions. As with physiological resistance, evolutionary dynamics of behavioural resistance can also lead to mixed strategies that balance these costs and benefits.
Collapse
Affiliation(s)
- Caroline R Amoroso
- Department of Biology, University of Virginia, Charlottesville, VA 22902 USA
| | - Janis Antonovics
- Department of Biology, University of Virginia, Charlottesville, VA 22902 USA
| |
Collapse
|
37
|
Yadav C, Smith ML, Yack JE. Transcriptome analysis of a social caterpillar, Drepana arcuata: De novo assembly, functional annotation and developmental analysis. PLoS One 2020; 15:e0234903. [PMID: 32569288 PMCID: PMC7307738 DOI: 10.1371/journal.pone.0234903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
The masked birch caterpillar, Drepana arcuata, provides an excellent opportunity to study mechanisms mediating developmental changes in social behaviour. Larvae transition from being social to solitary during the 3rd instar, concomitant with shifts in their use of acoustic communication. In this study we characterize the transcriptome of D. arcuata to initiate sociogenomic research of this lepidopteran insect. We assembled and annotated the combined larval transcriptome of “social” early and “solitary” late instars using next generation Illumina sequencing, and used this transcriptome to conduct differential gene expression analysis of the two behavioural phenotypes. A total of 211,012,294 reads generated by RNA sequencing were assembled into 231,348 transcripts and 116,079 unigenes for the functional annotation of the transcriptome. Expression analysis revealed 3300 transcripts that were differentially expressed between early and late instars, with a large proportion associated with development and metabolic processes. We independently validated differential expression patterns of selected transcripts using RT-qPCR. The expression profiles of social and solitary larvae revealed differentially expressed transcripts coding for gene products that have been previously reported to influence social behaviour in other insects (e.g. cGMP- and cAMP- dependent kinases, and bioamine receptors). This study provides the first transcriptomic resources for a lepidopteran species belonging to the superfamily Drepanoidea, and gives insight into genetic factors mediating grouping behaviour in insects.
Collapse
Affiliation(s)
- Chanchal Yadav
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Myron L. Smith
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Jayne E. Yack
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
38
|
Walsh J, Pontieri L, d'Ettorre P, Linksvayer TA. Ant cuticular hydrocarbons are heritable and associated with variation in colony productivity. Proc Biol Sci 2020; 287:20201029. [PMID: 32517627 DOI: 10.1098/rspb.2020.1029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In social insects, cuticular hydrocarbons function in nest-mate recognition and also provide a waxy barrier against desiccation, but basic evolutionary features, including the heritability of hydrocarbon profiles and how they are shaped by natural selection are largely unknown. We used a new pharaoh ant (Monomorium pharaonis) laboratory mapping population to estimate the heritability of individual cuticular hydrocarbons, genetic correlations between hydrocarbons, and fitness consequences of phenotypic variation in the hydrocarbons. Individual hydrocarbons had low to moderate estimated heritability, indicating that some compounds provide more information about genetic relatedness and can also better respond to natural selection. Strong genetic correlations between compounds are likely to constrain independent evolutionary trajectories, which is expected, given that many hydrocarbons share biosynthetic pathways. Variation in cuticular hydrocarbons was associated with variation in colony productivity, with some hydrocarbons experiencing strong directional selection. Altogether, this study builds on our knowledge of the genetic architecture of the social insect hydrocarbon profile and indicates that hydrocarbon variation is shaped by natural selection.
Collapse
Affiliation(s)
- Justin Walsh
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luigi Pontieri
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology (LEEC), University of Paris 13, Sorbonne Paris Cité, France
| | | |
Collapse
|
39
|
Barcelo-Serra M, Gordo O, Gonser RA, Tuttle EM. Behavioural polymorphism in wintering white-throated sparrows, Zonotrichia albicollis. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Liberti J, Engel P. The gut microbiota - brain axis of insects. CURRENT OPINION IN INSECT SCIENCE 2020; 39:6-13. [PMID: 32078985 DOI: 10.1016/j.cois.2020.01.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 05/14/2023]
Abstract
Research on the connections between gut microbes and the neurophysiology and behavior of their animal hosts has grown exponentially in just a few years. Most studies have focused on mammalian models as their relevance to human health is widely established. However, evidence is accumulating that insect behavior may be governed by molecular mechanisms that are partly homologous to those of mammals, and therefore relevant for the understanding of their behavioral dysfunctions. Social insects in particular may provide experimentally amenable models to disentangle the contributions of individual bacterial symbionts to the gut microbiota - brain axis. In this review, we summarize findings from recent research on the neurological and behavioral effects of the gut microbiota of insects and propose an integrated approach to unravel the extended behavioral phenotypes of gut microbes in the honey bee.
Collapse
Affiliation(s)
- Joanito Liberti
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland; Department of Ecology & Evolution, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
41
|
Friedman DA, Johnson BR, Linksvayer TA. Distributed physiology and the molecular basis of social life in eusocial insects. Horm Behav 2020; 122:104757. [PMID: 32305342 DOI: 10.1016/j.yhbeh.2020.104757] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 12/24/2022]
Abstract
The traditional focus of physiological and functional genomic research is on molecular processes that play out within a single multicellular organism. In the colonial (eusocial) insects such as ants, bees, and termites, molecular and behavioral responses of interacting nestmates are tightly linked, and key physiological processes are regulated at the scale of the colony. Such colony-level physiological processes regulate nestmate physiology in a distributed fashion, through various social communication mechanisms. As a result of physiological decentralization over evolutionary time, organismal mechanisms, for example related to pheromone detection, hormone signaling, and neural signaling pathways, are deployed in novel contexts to influence nestmate and colony traits. Here we explore how functional genomic, physiological, and behavioral studies can benefit from considering the traits of eusocial insects in this light. We highlight functional genomic work exploring how nestmate-level and colony-level traits arise and are influenced by interactions among physiologically-specialized nestmates of various developmental stages. We also consider similarities and differences between nestmate-level (organismal) and colony-level (superorganismal) physiological processes, and make specific hypotheses regarding the physiology of eusocial taxa. Integrating theoretical models of distributed systems with empirical functional genomics approaches will be useful in addressing fundamental questions related to the evolution of eusociality and collective behavior in natural systems.
Collapse
Affiliation(s)
- D A Friedman
- University of California, Davis, Department of Entomology, Davis, CA 95616, United States of America.
| | - B R Johnson
- University of California, Davis, Department of Entomology, Davis, CA 95616, United States of America
| | - T A Linksvayer
- University of Pennsylvania, Department of Biology, Pennsylvania, PA 19104, United States of America
| |
Collapse
|
42
|
Smith SD, Pennell MW, Dunn CW, Edwards SV. Phylogenetics is the New Genetics (for Most of Biodiversity). Trends Ecol Evol 2020; 35:415-425. [DOI: 10.1016/j.tree.2020.01.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
|
43
|
Abstract
Nervous systems allow animals to acutely respond and behaviorally adapt to changes and recurring patterns in their environment at multiple timescales-from milliseconds to years. Behavior is further shaped at intergenerational timescales by genetic variation, drift, and selection. This sophistication and flexibility of behavior makes it challenging to measure behavior consistently in individual subjects and to compare it across individuals. In spite of these challenges, careful behavioral observations in nature and controlled measurements in the laboratory, combined with modern technologies and powerful genetic approaches, have led to important discoveries about the way genetic variation shapes behavior. A critical mass of genes whose variation is known to modulate behavior in nature is finally accumulating, allowing us to recognize emerging patterns. In this review, we first discuss genetic mapping approaches useful for studying behavior. We then survey how variation acts at different levels-in environmental sensation, in internal neuronal circuits, and outside the nervous system altogether-and then discuss the sources and types of molecular variation linked to behavior and the mechanisms that shape such variation. We end by discussing remaining questions in the field.
Collapse
Affiliation(s)
- Natalie Niepoth
- Zuckerman Mind Brain Behavior Institute and Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027, USA; ,
| | - Andres Bendesky
- Zuckerman Mind Brain Behavior Institute and Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027, USA; ,
| |
Collapse
|
44
|
The Genetics of Male Pheromone Preference Difference Between Drosophila melanogaster and Drosophila simulans. G3-GENES GENOMES GENETICS 2020; 10:401-415. [PMID: 31748379 PMCID: PMC6945012 DOI: 10.1534/g3.119.400780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Species of flies in the genus Drosophila differ dramatically in their preferences for mates, but little is known about the genetic or neurological underpinnings of this evolution. Recent advances have been made to our understanding of one case: pheromone preference evolution between the species D. melanogaster and D. simulans. Males of both species are very sensitive to the pheromone 7,11-HD that is present only on the cuticle of female D. melanogaster. In one species this cue activates courtship, and in the other it represses it. This change in valence was recently shown to result from the modification of central processing neurons, rather than changes in peripherally expressed receptors, but nothing is known about the genetic changes that are responsible. In the current study, we show that a 1.35 Mb locus on the X chromosome has a major effect on male 7,11-HD preference. Unfortunately, when this locus is divided, the effect is largely lost. We instead attempt to filter the 159 genes within this region using our newfound understanding of the neuronal underpinnings of this phenotype to identify and test candidate genes. We present the results of these tests, and discuss the difficulty of identifying the genetic architecture of behavioral traits and the potential of connecting these genetic changes to the neuronal modifications that elicit different behaviors.
Collapse
|
45
|
Shell WA, Rehan SM. Social modularity: conserved genes and regulatory elements underlie caste-antecedent behavioural states in an incipiently social bee. Proc Biol Sci 2019; 286:20191815. [PMID: 31771475 PMCID: PMC6939254 DOI: 10.1098/rspb.2019.1815] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022] Open
Abstract
The evolutionary origins of advanced eusociality, one of the most complex forms of phenotypic plasticity in nature, have long been a focus within the field of sociobiology. Although eusocial insects are known to have evolved from solitary ancestors, sociogenomic research among incipiently social taxa has only recently provided empirical evidence supporting theories that modular regulation and deeply conserved genes may play important roles in both the evolutionary emergence and elaboration of insect sociality. There remains, however, a paucity of data to further test the biological reality of these and other evolutionary theories among taxa in the earliest stages of social evolution. Here, we present brain transcriptomic data from the incipiently social small carpenter bee, Ceratina calcarata, which captures patterns of cis-regulation and gene expression associated with female maturation, and underlying two well-defined behavioural states, foraging and guarding, concurrently demonstrated by mothers and daughters during early autumn. We find that an incipiently social nest environment may dramatically affect gene expression. We further reveal foraging and guarding behaviours to be putatively caste-antecedent states in C. calcarata, and offer strong empirical support for the operation of modular regulation, involving deeply conserved and differentially expressed genes in the expression of early social forms.
Collapse
Affiliation(s)
- Wyatt A. Shell
- Department of Biological Sciences, University of New Hampshire, 38 Academic Way, Durham, NH 03824, USA
| | - Sandra M. Rehan
- Department of Biological Sciences, University of New Hampshire, 38 Academic Way, Durham, NH 03824, USA
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, CanadaM3 J 1P3
| |
Collapse
|
46
|
Hines HM, Rahman SR. Evolutionary genetics in insect phenotypic radiations: the value of a comparative genomic approach. CURRENT OPINION IN INSECT SCIENCE 2019; 36:90-95. [PMID: 31541856 DOI: 10.1016/j.cois.2019.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Expanding genome sequencing and transgenic technologies are enabling the discovery of genes driving phenotypic diversity across insect taxa. Limitations in downstream functional genetic approaches, however, have been an obstacle for developing non-model systems for evolutionary genetics. Phenotypically diverse radiations, such as those exhibiting convergence and divergence as a result of mimicry, are ideal for evolutionary genetics as they can lead to insights using comparative genomic approaches alone. The varied and repeated instances of phenotypes in highly polymorphic systems allow assessment of whether similar loci are repeatedly targeted by selection and can inform how alleles sort across lineages. Comparative genomics of these taxa can be used to decipher components of gene regulatory networks, dissect regulatory regions, and validate genes.
Collapse
Affiliation(s)
- Heather M Hines
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, 16802, USA.
| | - Sarthok Rasique Rahman
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, 16802, USA
| |
Collapse
|
47
|
Smallegange IM, Rhebergen FT, Stewart KA. Cross-level considerations for explaining selection pressures and the maintenance of genetic variation in condition-dependent male morphs. CURRENT OPINION IN INSECT SCIENCE 2019; 36:66-73. [PMID: 31499417 DOI: 10.1016/j.cois.2019.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/11/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Condition-dependent expression of alternative male morphologies (AMMs) exists in many arthropods. Understanding their coexistence requires answering (at least) two questions: (i) what are the ecological selection pressures that maintain condition-dependent plasticity of AMM expression, and (ii) what maintains the associated genetic variation? Focusing on acarid mites, we show that the questions should not be conflated. We argue how, instead, answers should be sought by testing phenotype-level (question 1) or genotype-level (question 2) hypotheses. We illustrate that energy allocation restrictions and physiological trade-offs are likely to play a crucial role in AMM expression in acarid mites. We thus conclude that these aspects require specific attention in identifying selection pressures maintaining condition-dependent plasticity, and evolutionary processes that maintain genetic variation in condition-dependent phenotypic plasticity.
Collapse
Affiliation(s)
- Isabel M Smallegange
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, The Netherlands.
| | - Flor T Rhebergen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, The Netherlands
| | - Kathryn A Stewart
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, The Netherlands
| |
Collapse
|
48
|
Dang V, Cohanim AB, Fontana S, Privman E, Wang J. Has gene expression neofunctionalization in the fire ant antennae contributed to queen discrimination behavior? Ecol Evol 2019; 9:12754-12766. [PMID: 31788211 PMCID: PMC6875580 DOI: 10.1002/ece3.5748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Queen discrimination behavior in the fire ant Solenopsis invicta maintains its two types of societies: colonies with one (monogyne) or many (polygyne) queens, yet the underlying genetic mechanism is poorly understood. This behavior is controlled by two supergene alleles, SB and Sb, with ~600 genes. Polygyne workers, having either the SB/SB or SB/Sb genotype, accept additional SB/Sb queens into their colonies but kill SB/SB queens. In contrast, monogyne workers, all SB/SB, reject all additional queens regardless of genotype. Because the SB and Sb alleles have suppressed recombination, determining which genes within the supergene mediate this differential worker behavior is difficult. We hypothesized that the alternate worker genotypes sense queens differently because of the evolution of differential expression of key genes in their main sensory organ, the antennae. To identify such genes, we sequenced RNA from four replicates of pooled antennae from three classes of workers: monogyne SB/SB, polygyne SB/SB, and polygyne SB/Sb. We identified 81 differentially expressed protein-coding genes with 13 encoding potential chemical metabolism or perception proteins. We focused on the two odorant perception genes: an odorant receptor SiOR463 and an odorant-binding protein SiOBP12. We found that SiOR463 has been lost in the Sb genome. In contrast, SiOBP12 has an Sb-specific duplication, SiOBP12b', which is expressed in the SB/Sb worker antennae, while both paralogs are expressed in the body. Comparisons with another fire ant species revealed that SiOBP12b' antennal expression is specific to S. invicta and suggests that queen discrimination may have evolved, in part, through expression neofunctionalization.
Collapse
Affiliation(s)
- Viet‐Dai Dang
- Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
- Biodiversity Taiwan International Graduate Program, Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
- Department of ZoologySouthern Institute of EcologyVietnam Academy of Science and TechnologyHochiminhVietnam
| | - Amir B. Cohanim
- Department of Evolutionary and Environmental BiologyInstitute of EvolutionUniversity of HaifaHaifaIsrael
| | - Silvia Fontana
- Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
- Biodiversity Taiwan International Graduate Program, Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Eyal Privman
- Department of Evolutionary and Environmental BiologyInstitute of EvolutionUniversity of HaifaHaifaIsrael
| | - John Wang
- Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
| |
Collapse
|
49
|
Arsenault SV, Glastad KM, Hunt BG. Leveraging technological innovations to investigate evolutionary transitions to eusociality. CURRENT OPINION IN INSECT SCIENCE 2019; 34:27-32. [PMID: 31247414 DOI: 10.1016/j.cois.2019.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/19/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
The study of the major transition to eusociality presents several challenges to researchers, largely resulting from the importance of complex behavioral phenotypes and the shift from individual to group level selection. These challenges are being met with corresponding technological improvements. Advances in resource development for non-model taxa, behavioral tracking, nucleic acid sequencing, and reverse genetics are facilitating studies of hypotheses that were previously intractable. These innovations are resulting in the development of new model systems tailored to the exploration of specific behavioral phenotypes and the querying of underlying molecular mechanisms that drive eusocial behaviors. Here, we present a brief overview of how methodological innovations are advancing our understanding of the evolution of eusociality.
Collapse
Affiliation(s)
- Samuel V Arsenault
- Department of Entomology, University of Georgia, Athens, GA 30602, United States
| | - Karl M Glastad
- Department of Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Brendan G Hunt
- Department of Entomology, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
50
|
Linksvayer TA, Johnson BR. Re-thinking the social ladder approach for elucidating the evolution and molecular basis of insect societies. CURRENT OPINION IN INSECT SCIENCE 2019; 34:123-129. [PMID: 31401545 DOI: 10.1016/j.cois.2019.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/21/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
The evolution of large insect societies is a major evolutionary transition that occurred in the long-extinct ancestors of termites, ants, corbiculate bees, and vespid wasps. Researchers have long used 'social ladder thinking': assuming progressive stepwise phenotypic evolution and asserting that extant species with simple societies (e.g. some halictid bees) represent the ancestors of species with complex societies, and thus provide insight into general early steps of eusocial evolution. We discuss how this is inconsistent with data and modern evolutionary 'tree thinking'. Phylogenetic comparative methods with broad sampling provide the best means to make rigorous inferences about ancestral traits and evolutionary transitions that occurred within each lineage, and to determine whether consistent phenotypic and genomic changes occurred across independent lineages.
Collapse
Affiliation(s)
| | - Brian R Johnson
- Department of Entomology and Nematology, University of California Davis, United States
| |
Collapse
|