1
|
Li J, Dang SM, Sengupta S, Schurmann P, Dost AFM, Moye AL, Trovero MF, Ahmed S, Paschini M, Bhetariya PJ, Bronson R, Ho Sui SJ, Kim CF. Organoid modeling reveals the tumorigenic potential of the alveolar progenitor cell state. EMBO J 2025; 44:1804-1828. [PMID: 39930268 PMCID: PMC11914084 DOI: 10.1038/s44318-025-00376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/19/2025] Open
Abstract
Cancers display cellular, genetic and epigenetic heterogeneity, complicating disease modeling. Multiple cell states defined by gene expression have been described in lung adenocarcinoma (LUAD). However, the functional contributions of cell state and the regulatory programs that control chromatin and gene expression in the early stages of tumor initiation are not well understood. Using single-cell RNA and ATAC sequencing in Kras/p53-driven tumor organoids, we identified two major cellular states: one more closely resembling alveolar type 2 (AT2) cells (SPC-high), and the other with epithelial-mesenchymal-transition (EMT)-associated gene expression (Hmga2-high). Each state exhibited distinct transcription factor networks, with SPC-high cells associated with TFs regulating AT2 fate and Hmga2-high cells enriched in Wnt- and NFκB-related TFs. CD44 was identified as a marker for the Hmga2-high state, enabling functional comparison of the two populations. Organoid assays and orthotopic transplantation revealed that SPC-high, CD44-negative cells exhibited higher tumorigenic potential within the lung microenvironment. These findings highlight the utility of organoids in understanding chromatin regulation in early tumorigenesis and identifying novel early-stage therapeutic targets in Kras-driven LUAD.
Collapse
Affiliation(s)
- Jingyun Li
- Stem Cell Program, Divisions of Hematology/Oncology and Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Susanna M Dang
- Stem Cell Program, Divisions of Hematology/Oncology and Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Shreoshi Sengupta
- Stem Cell Program, Divisions of Hematology/Oncology and Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Paul Schurmann
- Stem Cell Program, Divisions of Hematology/Oncology and Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Antonella F M Dost
- Stem Cell Program, Divisions of Hematology/Oncology and Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Aaron L Moye
- Stem Cell Program, Divisions of Hematology/Oncology and Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Maria F Trovero
- Stem Cell Program, Divisions of Hematology/Oncology and Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Sidrah Ahmed
- Stem Cell Program, Divisions of Hematology/Oncology and Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Margherita Paschini
- Stem Cell Program, Divisions of Hematology/Oncology and Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Preetida J Bhetariya
- Harvard Chan Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Roderick Bronson
- Rodent Histopathology Core, Harvard Medical School, Boston, MA, 02115, USA
| | - Shannan J Ho Sui
- Harvard Chan Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Carla F Kim
- Stem Cell Program, Divisions of Hematology/Oncology and Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Rodent Histopathology Core, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
2
|
Zhang Y, Su M, Chen Y, Cui L, Xia W, Xu R, Xue D, Zhang X, Feng X. EHMT2-mediated R-loop formation promotes the malignant progression of prostate cancer via activating Aurora B. Clin Transl Med 2025; 15:e70164. [PMID: 39763034 PMCID: PMC11705492 DOI: 10.1002/ctm2.70164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Chromosomal instability (CIN), a hallmark of cancer, is commonly linked to poor prognosis in high-grade prostate cancer (PCa). Paradoxically, excessively high levels of CIN may impair cancer cell viability. Consequently, understanding how tumours adapt to CIN is critical for identifying novel therapeutic targets. METHODS Bioinformatic analyses were conducted to identify genes overexpressed in PCa tissues using The Cancer Genome Atlas (TCGA) and GEO datasets. Western blotting and immunohistochemistry assays were applied to determine the expression levels of euchromatic histone lysine methyltransferase 2 (EHMT2), pT232-Aurora B and Cullin 3 (CUL3). The proliferation of cells was measured through CCK-8 tests, clonogenesis and subcutaneous xenografts of human PCa cells in BALB/c nude mice. Live cell imaging, immunofluorescence (IF) and flow cytometry were used to confirm the role of EHMT2 in PCa cell mitosis. Co-immunoprecipitation, Western blotting and IF assays further elucidated the underlying molecular mechanisms. RESULTS EHMT2 was highly expressed in metastatic PCa tissues exhibiting elevated CIN and was strongly associated with adverse clinical outcomes in patients with PCa. Silencing EHMT2 impaired cell division, inducing G2/M-phase arrest and mitotic catastrophe in PCa cells. Mechanistically, EHMT2 is indispensable to ensure the full activation of Aurora B through centromeric R-loop-driven ATR-CHK1 pathway, with EHMT2 protein expression peaking during the G2/M-phase. Moreover, CUL3 was identified as a binding partner of EHMT2, mediating its polyubiquitination and destabilising its protein levels. CONCLUSIONS This study reveals a CUL3-EHMT2-Aurora B regulatory axis that safeguards accurate chromosome segregation in PCa cells, supporting the potential therapeutic application of EHMT2 inhibitors. KEY POINTS Euchromatic histone lysine methyltransferase 2 (EHMT2) is overexpressed in advanced prostate cancer, restraining catastrophic chromosomal instability (CIN) and enhancing cell fitness. EHMT2 functions via the centromeric R-loop-driven ATR-CHK1-Aurora B pathway to promote chromosomal stability. EHMT2 confers enzalutamide resistance via activating Aurora B. Cullin 3 (CUL3) promotes EHMT2 destabilisation via deubiquitination.
Collapse
Affiliation(s)
- Yuyang Zhang
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Institute of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationAnhui Medical UniversityHefeiAnhuiChina
| | - Mingqin Su
- Department of PathologyThe Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical UniversityHefeiAnhuiChina
| | - Yiming Chen
- Department of UrologyThe Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
- Department of UrologyThe First People's Hospital of ChangzhouChangzhouJiangsuChina
| | - Li Cui
- Department of UrologyThe Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
- Department of UrologyThe First People's Hospital of ChangzhouChangzhouJiangsuChina
| | - Wei Xia
- Department of UrologyThe Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
- Department of UrologyThe First People's Hospital of ChangzhouChangzhouJiangsuChina
| | - Renfang Xu
- Department of UrologyThe Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
- Department of UrologyThe First People's Hospital of ChangzhouChangzhouJiangsuChina
| | - Dong Xue
- Department of UrologyThe Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
- Department of UrologyThe First People's Hospital of ChangzhouChangzhouJiangsuChina
| | - Xiansheng Zhang
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Institute of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationAnhui Medical UniversityHefeiAnhuiChina
| | - Xingliang Feng
- Department of UrologyThe Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
- Department of UrologyThe First People's Hospital of ChangzhouChangzhouJiangsuChina
| |
Collapse
|
3
|
Fan L, Lin Y, Fu Y, Wang J. Small cell lung cancer with liver metastases: from underlying mechanisms to treatment strategies. Cancer Metastasis Rev 2024; 44:5. [PMID: 39585433 DOI: 10.1007/s10555-024-10220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024]
Abstract
Small cell lung cancer (SCLC) represents an aggressive neuroendocrine (NE) tumor within the pulmonary region, characterized by very poor prognoses. Druggable targets for SCLC remain limited, thereby constraining treatment options available to patients. Immuno-chemotherapy has emerged as a pivotal therapeutic strategy for extensive-stage SCLC (ES-SCLC), yet it fails to confer significant efficacy in cases involving liver metastases (LMs) originating from SCLC. Therefore, our attention is directed towards the challenging subset of SCLC patients with LMs. Disease progression of LM-SCLC patients is affected by various factors in the tumor microenvironment (TME), including immune cells, blood vessels, inflammatory mediators, metabolites, and NE substances. Beyond standard immuno-chemotherapy, ongoing efforts to manage LMs in SCLC encompass anti-angiogenic therapy, radiotherapy, microwave ablation (MWA) / radiofrequency ablation (RFA), trans-arterial chemoembolization (TACE), and systemic therapies in conjunction with local interventions. Prospective experimental and clinical investigations into SCLC should prioritize precise and individualized approaches to enhance the prognosis across distinct patient cohorts.
Collapse
Affiliation(s)
- Linjie Fan
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yiwen Lin
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yunjie Fu
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jie Wang
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
4
|
Pan S, Yuan T, Xia Y, Yu W, Zhou X, Cheng F. Role of Histone Modifications in Kidney Fibrosis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:888. [PMID: 38929505 PMCID: PMC11205584 DOI: 10.3390/medicina60060888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024]
Abstract
Chronic kidney disease (CKD) is characterized by persistent kidney dysfunction, ultimately resulting in end-stage renal disease (ESRD). Renal fibrosis is a crucial pathological feature of CKD and ESRD. However, there is no effective treatment for this condition. Despite the complex molecular mechanisms involved in renal fibrosis, increasing evidence highlights the crucial role of histone modification in its regulation. The reversibility of histone modifications offers promising avenues for therapeutic strategies to block or reverse renal fibrosis. Therefore, a comprehensive understanding of the regulatory implications of histone modifications in fibrosis may provide novel insights into more effective and safer therapeutic approaches. This review highlights the regulatory mechanisms and recent advances in histone modifications in renal fibrosis, particularly histone methylation and histone acetylation. The aim is to explore the potential of histone modifications as targets for treating renal fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.P.); (T.Y.); (Y.X.); (W.Y.)
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.P.); (T.Y.); (Y.X.); (W.Y.)
| |
Collapse
|
5
|
Velez J, Han Y, Yim H, Yang P, Deng Z, Park KS, Kabir M, Kaniskan HÜ, Xiong Y, Jin J. Discovery of the First-in-Class G9a/GLP PROTAC Degrader. J Med Chem 2024; 67:6397-6409. [PMID: 38602846 PMCID: PMC11069390 DOI: 10.1021/acs.jmedchem.3c02394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Aberrantly expressed lysine methyltransferases G9a and GLP, which catalyze mono- and dimethylation of histone H3 lysine 9 (H3K9), have been implicated in numerous cancers. Recent studies have uncovered both catalytic and noncatalytic oncogenic functions of G9a/GLP. As such, G9a/GLP catalytic inhibitors have displayed limited anticancer activity. Here, we report the discovery of the first-in-class G9a/GLP proteolysis targeting chimera (PROTAC) degrader 10 (MS8709), as a potential anticancer therapeutic. 10 induces G9a/GLP degradation in a concentration-, time-, and ubiquitin-proteasome system (UPS)-dependent manner. Futhermore, 10 does not alter the mRNA expression of G9a/GLP and is selective for G9a/GLP over other methyltransferases. Moreover, 10 displays superior cell growth inhibition to the parent G9a/GLP inhibitor UNC0642 in prostate, leukemia, and lung cancer cells and has suitable mouse pharmacokinetic properties for in vivo efficacy studies. Overall, 10 is a valuable chemical biology tool to further investigate the functions of G9a/GLP and a potential therapeutic for treating G9a/GLP-dependent cancers.
Collapse
Affiliation(s)
- Julia Velez
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Yulin Han
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Hyerin Yim
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Peiyi Yang
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Zhijie Deng
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Md Kabir
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
6
|
HUANG Z, LI B, WANG Y, XUE J, WEI Z, LIANG N, LI S. [Application and Research Progress of Lung Cancer Organoid in Precision Medicine
for Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:276-282. [PMID: 38769830 PMCID: PMC11110296 DOI: 10.3779/j.issn.1009-3419.2024.106.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Indexed: 05/22/2024]
Abstract
The continuous advancement of molecular detection technology has greatly propelled the development of precision medicine for lung cancer. However, tumor heterogeneity is closely associated with tumor metastasis, recurrence, and drug resistance. Additionally, different lung cancer patients with the same genetic mutation may exhibit varying treatment responses to different therapeutic strategies. Therefore, the development of modern precision medicine urgently requires the precise formulation of personalized treatment strategies through personalized tumor models. Lung cancer organoid (LCO) can highly simulate the biological characteristics of tumor in vivo, facilitating the application of innovative drugs such as antibody-drug conjugate in precision medicine for lung cancer. With the development of co-culture model of LCO with tumor microenvironment and tissue engineering technology such as microfluidic chip, LCO can better preserve the biological characteristics and functions of tumor tissue, further improving high-throughput and automated drug sensitivity experiment. In this review, we combine the latest research progress to summarize the application progress and challenges of LCO in precision medicine for lung cancer.
.
Collapse
|
7
|
Zhang L, Zhang X, Shi Y, Ni Y, Fei J, Jin Z, Li W, Wang X, Wu N. Role and potential therapeutic value of histone methyltransferases in drug resistance mechanisms in lung cancer. Front Oncol 2024; 14:1376916. [PMID: 38525426 PMCID: PMC10957659 DOI: 10.3389/fonc.2024.1376916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Lung cancer, ranking second globally in both incidence and high mortality among common malignant tumors, presents a significant challenge with frequent occurrences of drug resistance despite the continuous emergence of novel therapeutic agents. This exacerbates disease progression, tumor recurrence, and ultimately leads to poor prognosis. Beyond acquired resistance due to genetic mutations, mounting evidence suggests a critical role of epigenetic mechanisms in this process. Numerous studies have indicated abnormal expression of Histone Methyltransferases (HMTs) in lung cancer, with the abnormal activation of certain HMTs closely linked to drug resistance. HMTs mediate drug tolerance in lung cancer through pathways involving alterations in cellular metabolism, upregulation of cancer stem cell-related genes, promotion of epithelial-mesenchymal transition, and enhanced migratory capabilities. The use of HMT inhibitors also opens new avenues for lung cancer treatment, and targeting HMTs may contribute to reversing drug resistance. This comprehensive review delves into the pivotal roles and molecular mechanisms of HMTs in drug resistance in lung cancer, offering a fresh perspective on therapeutic strategies. By thoroughly examining treatment approaches, it provides new insights into understanding drug resistance in lung cancer, supporting personalized treatment, fostering drug development, and propelling lung cancer therapy into novel territories.
Collapse
Affiliation(s)
- Linxiang Zhang
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xueying Zhang
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yan Shi
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yuhan Ni
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jiaojiao Fei
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhixin Jin
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wenjuan Li
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaojing Wang
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Nan Wu
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
8
|
Velez J, Han Y, Yim H, Yang P, Deng Z, Park KS, Kabir M, Kaniskan HÜ, Xiong Y, Jin J. Discovery of the First-in-class G9a/GLP PROTAC Degrader. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582210. [PMID: 38464025 PMCID: PMC10925177 DOI: 10.1101/2024.02.26.582210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Aberrantly expressed lysine methyltransferases G9a and GLP, which catalyze mono- and di-methylation of histone H3 lysine 9 (H3K9), have been implicated in numerous cancers. Recent studies have uncovered both catalytic and non-catalytic oncogenic functions of G9a/GLP. As such, G9a/GLP catalytic inhibitors have displayed limited anticancer activity. Here, we report the discovery of the first-in-class G9a/GLP proteolysis targeting chimera (PROTAC) degrader, 10 (MS8709), as a potential anticancer therapeutic. 10 induces G9a/GLP degradation in a concentration-, time, and ubiquitin-proteasome system (UPS)-dependent manner, does not alter the mRNA expression of G9a/GLP and is selective for G9a/GLP over other methyltransferases. Moreover, 10 displays superior cell growth inhibition to the parent G9a/GLP inhibitor UNC0642 in prostate, leukemia, and lung cancer cells and has suitable mouse pharmacokinetic properties for in vivo efficacy studies. Overall, 10 is a valuable chemical biology tool to further investigate the functions of G9a/GLP and a potential therapeutic for treating G9a/GLP-dependent cancers.
Collapse
Affiliation(s)
- Julia Velez
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yulin Han
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hyerin Yim
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peiyi Yang
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhijie Deng
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kwang-su Park
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Current address: College of Pharmacy, Keimyung University, Daegu 704-701, South Korea
| | - Md Kabir
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - H. Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
9
|
Chen F, Naughton KJ, Lee JH, Brainson CF. Using 3-Dimensional Cultures to Propagate Genetically Modified Lung Organoids. Methods Mol Biol 2024; 2805:19-30. [PMID: 39008172 DOI: 10.1007/978-1-0716-3854-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Transformed lung organoids have extensive applications in lung cancer modeling and drug screening. Traditional two-dimensional (2D) cultures fail to propagate a large subpopulation of murine primary tumors in vitro. However, three-dimensional (3D) air-liquid interface (ALI) cultures, which are employed to grow normal lung organoids, can be used to efficiently culture cancerous lung tumor cells. Here, we detail a procedure for cultivating genetically modified lung organoids in 3D-ALI cultures. This protocol contains two parts. The first part describes how to transduce lung epithelial cells, which are either freshly sorted from lungs or from actively growing murine organoids, with virus in order to modify gene expression. The target lung cells are incubated with virus for 1-2 h for transduction. Then, the transduced cells are thoroughly washed and mixed with stromal support cells and Matrigel and are loaded into transwell inserts for culture and validated for genetic modifications through downstream assays. The second part describes how to isolate tumor cells growing orthotopically in genetically engineered mouse models to produce organoid cell lines that can be used for ex vivo drug discovery assays. For this protocol, tumors are isolated from lungs of mice, finely chopped and washed. Then, tumor chunks are mixed with Matrigel for 3D-ALI culture. Finally, organoids budding from tumor chunks are trypsinized and passaged to establish an organoid line. Together these two protocols provide a promising platform to study the genesis, progression, and treatment of lung cancer.
Collapse
Affiliation(s)
- Fan Chen
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, P. R. China
| | - Kassandra J Naughton
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Joo-Hyeon Lee
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Christine F Brainson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA.
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
10
|
Pascual G, Majem B, Benitah SA. Targeting lipid metabolism in cancer metastasis. Biochim Biophys Acta Rev Cancer 2024; 1879:189051. [PMID: 38101461 DOI: 10.1016/j.bbcan.2023.189051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
This review delves into the most recent research on the metabolic adaptability of cancer cells and examines how their metabolic functions can impact their progression into metastatic forms. We emphasize the growing significance of lipid metabolism and dietary lipids within the tumor microenvironment, underscoring their influence on tumor progression. Additionally, we present an outline of the interplay between metabolic processes and the epigenome of cancer cells, underscoring the importance regarding the metastatic process. Lastly, we examine the potential of targeting metabolism as a therapeutic approach in combating cancer progression, shedding light on innovative drugs/targets currently undergoing preclinical evaluation.
Collapse
Affiliation(s)
- Gloria Pascual
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Blanca Majem
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
11
|
Rowbotham SP, Pessina P, Garcia-de-Alba C, Jensen J, Nguyen Y, Yoon J, Li J, Wong IG, Fahey C, Moye AL, Chongsaritsinsuk J, Bronson R, Ho Sui SJ, Kim CF. Age-associated H3K9me2 loss alters the regenerative equilibrium between murine lung alveolar and bronchiolar progenitors. Dev Cell 2023; 58:2974-2991.e6. [PMID: 37977149 PMCID: PMC10873032 DOI: 10.1016/j.devcel.2023.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/18/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
The lung contains multiple progenitor cell types, but how their responses are choreographed during injury repair and whether this changes with age is poorly understood. We report that histone H3 lysine 9 di-methylation (H3K9me2), mediated by the methyltransferase G9a, regulates the dynamics of distal lung epithelial progenitor cells and that this regulation deteriorates with age. In aged mouse lungs, H3K9me2 loss coincided with fewer alveolar type 2 (AT2) cell progenitors and reduced alveolar regeneration but increased the frequency and activity of multipotent bronchioalveolar stem cells (BASCs) and bronchiolar progenitor club cells. H3K9me2 depletion in young mice decreased AT2 progenitor activity and impaired alveolar injury repair. Conversely, H3K9me2 depletion increased chromatin accessibility of bronchiolar cell genes, increased BASC frequency, and accelerated bronchiolar cell injury repair. These findings indicate that during aging, the epigenetic regulation that coordinates lung progenitor cells' regenerative responses becomes dysregulated, aiding our understanding of age-related susceptibility to lung disease.
Collapse
Affiliation(s)
- Samuel P Rowbotham
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children's Hospital Boston, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Patrizia Pessina
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children's Hospital Boston, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Carolina Garcia-de-Alba
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children's Hospital Boston, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jake Jensen
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children's Hospital Boston, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Yvonne Nguyen
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children's Hospital Boston, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Joon Yoon
- Harvard Chan Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Jingyun Li
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children's Hospital Boston, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Irene G Wong
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children's Hospital Boston, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Caroline Fahey
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children's Hospital Boston, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron L Moye
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children's Hospital Boston, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Joann Chongsaritsinsuk
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children's Hospital Boston, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Roderick Bronson
- Rodent Histopathology Core, Harvard Medical School, Boston, MA 02115, USA
| | - Shannan J Ho Sui
- Harvard Chan Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Carla F Kim
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children's Hospital Boston, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
12
|
Vini R, Lekshmi A, Ravindran S, Thulaseedharan JV, Sujathan K, Rajavelu A, Sreeja S. 27-Hydroxycholesterol represses G9a expression via oestrogen receptor alpha in breast cancer. J Cell Mol Med 2023; 27:2744-2755. [PMID: 37614064 PMCID: PMC10494299 DOI: 10.1111/jcmm.17882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023] Open
Abstract
27-hydroxycholesterol (27-HC) is a cholesterol metabolite and the first discovered endogenous selective estrogen receptor modulator (SERM) that has been shown to have proliferative and metastatic activity in breast cancer. However, whether 27-HC metabolite modulates the epigenetic signatures in breast cancer and its progression remains unclear. The current study, reports that 27-HC represses the expression of euchromatic histone lysine methyltransferase G9a, further reducing di-methylation at H3K9 in a subset of genes. We also observed reduced occupancy of ERα at the G9a promoter, indicating that 27-HC negatively regulates the ERα occupancy on the G9a promoter and functions as a transcriptional repressor. Further, ChIP-sequencing for the H3K9me2 mark has demonstrated that 27-HC treatment reduces the H3K9me2 mark on subset of genes linked to cancer progression, proliferation, and metastasis. We observed upregulation of these genes following 27-HC treatment which further confirms the loss of methylation at these genes. Immunohistochemical analysis with breast cancer patient tissues indicated a positive correlation between G9a expression and CYP7B1, a key enzyme of 27-HC catabolism. Overall, this study reports that 27-HC represses G9a expression via ERα and reduces the levels of H3K9me2 on a subset of genes, including the genes that aid in breast tumorigenesis and invasion further, increasing its expression in the breast cancer cells.
Collapse
Affiliation(s)
- Ravindran Vini
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB)ThiruvananthapuramIndia
- Research CentreUniversity of KeralaThiruvananthapuramIndia
| | - Asha Lekshmi
- Laboratory of Cytogenetics and Molecular DiagnosticsDivision of Cancer Research, Regional Cancer CentreThiruvananthapuramIndia
| | - Swathy Ravindran
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB)ThiruvananthapuramIndia
| | - Jissa Vinoda Thulaseedharan
- Achutha Menon Centre for Health Science Studies (AMCHSS)Sree Chitra Tirunal Institute for Medical Sciences and TechnologyThiruvananthapuramIndia
| | - Kunjuraman Sujathan
- Laboratory of Cytogenetics and Molecular DiagnosticsDivision of Cancer Research, Regional Cancer CentreThiruvananthapuramIndia
- Health Software Technology Group, Centre for Development of Advanced Computing (CDAC)ThiruvananthapuramIndia
| | - Arumugam Rajavelu
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB)ThiruvananthapuramIndia
- Department of Biotechnology, Bhupat & Jyoti Mehta School of BiosciencesIndian Institute of Technology MadrasChennaiIndia
| | - Sreeharshan Sreeja
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB)ThiruvananthapuramIndia
| |
Collapse
|
13
|
Yoodee S, Thongboonkerd V. Epigenetic regulation of epithelial-mesenchymal transition during cancer development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 380:1-61. [PMID: 37657856 DOI: 10.1016/bs.ircmb.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Epithelial-mesenchymal transition (EMT) plays essential roles in promoting malignant transformation of epithelial cells, leading to cancer progression and metastasis. During EMT-induced cancer development, a wide variety of genes are dramatically modified, especially down-regulation of epithelial-related genes and up-regulation of mesenchymal-related genes. Expression of other EMT-related genes is also modified during the carcinogenic process. Especially, epigenetic modifications are observed in the EMT-related genes, indicating their involvement in cancer development. Mechanically, epigenetic modifications of histone, DNA, mRNA and non-coding RNA stably change the EMT-related gene expression at transcription and translation levels. Herein, we summarize current knowledge on epigenetic regulatory mechanisms observed in EMT process relate to cancer development in humans. The better understanding of epigenetic regulation of EMT during cancer development may lead to improvement of drug design and preventive strategies in cancer therapy.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
14
|
Li J, Dang SM, Schurmann P, Dost AF, Moye AL, Paschini M, Bhetariya PJ, Bronson R, Sui SJH, Kim CF. Organoid modeling reveals the tumorigenic potential of the alveolar progenitor cell state. RESEARCH SQUARE 2023:rs.3.rs-2663901. [PMID: 36993454 PMCID: PMC10055547 DOI: 10.21203/rs.3.rs-2663901/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Alveolar type 2 (AT2) cells, the epithelial progenitor cells of the distal lung, are known to be the prominent cell of origin for lung adenocarcinoma. The regulatory programs that control chromatin and gene expression in AT2 cells during the early stages of tumor initiation are not well understood. Here, we dissected the response of AT2 cells to Kras activation and p53 loss (KP) using combined single cell RNA and ATAC sequencing in an established tumor organoid system. Multi-omic analysis showed that KP tumor organoid cells exhibit two major cellular states: one more closely resembling AT2 cells (SPC-high) and another with loss of AT2 identity (hereafter, Hmga2-high). These cell states are characterized by unique transcription factor (TF) networks, with SPC-high states associated with TFs known to regulate AT2 cell fate during development and homeostasis, and distinct TFs associated with the Hmga2-high state. CD44 was identified as a marker of the Hmga2-high state, and was used to separate organoid cultures for functional comparison of these two cell states. Organoid assays and orthotopic transplantation studies indicated that SPC-high cells have higher tumorigenic capacity in the lung microenvironment compared to Hmga2-high cells. These findings highlight the utility of understanding chromatin regulation in the early oncogenic versions of epithelial cells, which may reveal more effective means to intervene the progression of Kras-driven lung cancer.
Collapse
Affiliation(s)
- Jingyun Li
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children’s Hospital Boston, Boston MA 02115 USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Susanna M. Dang
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children’s Hospital Boston, Boston MA 02115 USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Paul Schurmann
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children’s Hospital Boston, Boston MA 02115 USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Antonella F.M. Dost
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children’s Hospital Boston, Boston MA 02115 USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron L. Moye
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children’s Hospital Boston, Boston MA 02115 USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Margherita Paschini
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children’s Hospital Boston, Boston MA 02115 USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Preetida J Bhetariya
- Harvard Chan Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Roderick Bronson
- Rodent Histopathology Core, Harvard Medical School, Boston, MA 02115, USA
| | - Shannan J. Ho Sui
- Harvard Chan Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Carla F. Kim
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children’s Hospital Boston, Boston MA 02115 USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
15
|
Li XG, Niu C, Lu P, Wan HW, Jin WD, Wang CX, Mao WY, Zhang ZP, Zhang WF, Li B. Screening and identification of hub-gene associated with brain metastasis in breast cancer. Medicine (Baltimore) 2023; 102:e32771. [PMID: 36800575 PMCID: PMC9935999 DOI: 10.1097/md.0000000000032771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND The presence of breast cancer in the brain, also known as brain metastasis (BMS), is the primary reason for a bad prognosis in cases of breast cancer. Breast cancer is the most prevalent malignant tumor seen in women in developing nations. At present, there is no effective method to inhibit brain metastasis of breast cancer. Therefore, it is necessary to conduct a systematic study on BMS of breast cancer, which will not provide ideas and sites for follow-up studies on the treatment and inhibition of BMS. METHODS In this study, data set GSE43837 was screened from gene expression omnibus database, and then R language tool was used for differential analysis of its expression spectrum, The gene ontology functional enrichment and Kyoto encyclopedia of genes and genomes signal pathway enrichment analyses, as well as the interactive gene retrieval tool for hub-gene analysis, were performed. RESULTS According to the findings, the primary genes linked to breast cancer brain metastases are those that involve interactions between cytokines and their respective receptors and between neuroactive ligands and their respective receptors. The majority of the gene ontology enrichment took place in the extracellular structural tissues, the extracellular matrix tissues, and the second message-mediated signaling. We were able to identify 8 genes that are linked to breast cancer spreading to the brain. The gene score for matrix metallopeptidase1 (MMP-1) was the highest among them, and the genes MMP10, tumor necrosis factor alpha-inducible protein 8, collagen type I alpha 2 chain, vascular cell adhesion molecule 1, and TNF superfamily member 11 were all connected to 1 another in an interaction way. CONCLUSIONS There is a possibility that the 8 key genes that were identified in this research are connected to the progression of BMS in breast cancer. Among them, MMP1 is 1 that has the potential to have a role in the diagnosis and treatment of BMS in breast cancer.
Collapse
Affiliation(s)
- Xiao-Gang Li
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, China
| | - Chao Niu
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, China
| | - Ping Lu
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, China
| | - Hong-Wei Wan
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, China
| | - Wen-Di Jin
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, China
| | - Chun-Xiao Wang
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, China
| | - Wen-Yuan Mao
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, China
| | - Zhi-Ping Zhang
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, China
| | - Wan-Fu Zhang
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, China
| | - Bo Li
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, China
- * Correspondence: Bo Li, Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming 650021, China (e-mail: )
| |
Collapse
|
16
|
The application of patient-derived organoid in the research of lung cancer. Cell Oncol (Dordr) 2023; 46:503-519. [PMID: 36696006 DOI: 10.1007/s13402-023-00771-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/16/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Lung cancer is the most common cancer and the leading cause of cancer-related death worldwide. However, mechanisms of its progression remained unclear and new treatments against this disease are rapidly emerging. As a novel preclinical model, patient-derived organoid (PDO) can also be established from the patient's tumor tissue and cultured in the laboratory, which preserves the key biological characteristics of the original tumor. Compared to the patient-derived xenograft (PDX) model of lung cancer, the culture success rate is improved, and the time and cost of model establishment are largely reduced. PDO is also expected to provide a more individual model to predict the efficacy of anti-cancer treatment in vitro. This paper summarizes the current application of PDO in the translational research of lung cancer.
Collapse
|
17
|
Roy A, Niharika, Chakraborty S, Mishra J, Singh SP, Patra SK. Mechanistic aspects of reversible methylation modifications of arginine and lysine of nuclear histones and their roles in human colon cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:261-302. [PMID: 37019596 DOI: 10.1016/bs.pmbts.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Developmental proceedings and maintenance of cellular homeostasis are regulated by the precise orchestration of a series of epigenetic events that eventually control gene expression. DNA methylation and post-translational modifications (PTMs) of histones are well-characterized epigenetic events responsible for fine-tuning gene expression. PTMs of histones bear molecular logic of gene expression at chromosomal territory and have become a fascinating field of epigenetics. Nowadays, reversible methylation on histone arginine and lysine is gaining increasing attention as a significant PTM related to reorganizing local nucleosomal structure, chromatin dynamics, and transcriptional regulation. It is now well-accepted and reported that histone marks play crucial roles in colon cancer initiation and progression by encouraging abnormal epigenomic reprogramming. It is becoming increasingly clear that multiple PTM marks at the N-terminal tails of the core histones cross-talk with one another to intricately regulate DNA-templated biological processes such as replication, transcription, recombination, and damage repair in several malignancies, including colon cancer. These functional cross-talks provide an additional layer of message, which spatiotemporally fine-tunes the overall gene expression regulation. Nowadays, it is evident that several PTMs instigate colon cancer development. How colon cancer-specific PTM patterns or codes are generated and how they affect downstream molecular events are uncovered to some extent. Future studies would address more about epigenetic communication, and the relationship between histone modification marks to define cellular functions in depth. This chapter will comprehensively highlight the importance of histone arginine and lysine-based methylation modifications and their functional cross-talk with other histone marks from the perspective of colon cancer development.
Collapse
|
18
|
Wu J, Feng J, Zhang Q, He Y, Xu C, Wang C, Li W. Epigenetic regulation of stem cells in lung cancer oncogenesis and therapy resistance. Front Genet 2023; 14:1120815. [PMID: 37144123 PMCID: PMC10151750 DOI: 10.3389/fgene.2023.1120815] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/22/2023] [Indexed: 05/06/2023] Open
Abstract
Epigenetics plays an important role in regulating stem cell signaling, as well as in the oncogenesis of lung cancer and therapeutic resistance. Determining how to employ these regulatory mechanisms to treat cancer is an intriguing medical challenge. Lung cancer is caused by signals that cause aberrant differentiation of stem cells or progenitor cells. The different pathological subtypes of lung cancer are determined by the cells of origin. Additionally, emerging studies have demonstrated that the occurrence of cancer treatment resistance is connected to the hijacking of normal stem cell capability by lung cancer stem cells, especially in the processes of drug transport, DNA damage repair, and niche protection. In this review, we summarize the principles of the epigenetic regulation of stem cell signaling in relation to the emergence of lung cancer and resistance to therapy. Furthermore, several investigations have shown that the tumor immune microenvironment in lung cancer affects these regulatory pathways. And ongoing experiments on epigenetics-related therapeutic strategies provide new insight for the treatment of lung cancer in the future.
Collapse
Affiliation(s)
- Jiayang Wu
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiaming Feng
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Qiran Zhang
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Yazhou He
- Department of oncology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chuan Xu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
- *Correspondence: Weimin Li, ; Chengdi Wang,
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
- *Correspondence: Weimin Li, ; Chengdi Wang,
| |
Collapse
|
19
|
Yang Y, Zhang M, Wang Y. The roles of histone modifications in tumorigenesis and associated inhibitors in cancer therapy. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:277-290. [PMID: 39036551 PMCID: PMC11256729 DOI: 10.1016/j.jncc.2022.09.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Histone modifications are key factors in chromatin packaging, and are responsible for gene regulation during cell fate determination and development. Abnormal alterations in histone modifications potentially affect the stability of the genome and disrupt gene expression patterns, leading to many diseases, including cancer. In recent years, mounting evidence has shown that various histone modifications altered by aberrantly expressed modifier enzymes contribute to tumor development and metastasis through the induction of epigenetic, transcriptional, and phenotypic changes. In this review, we will discuss the existing histone modifications, both well-studied and rare ones, and their roles in solid tumors and hematopoietic cancers, to identify the molecular pathways involved and investigate targeted therapeutic drugs to reorganize the chromatin and enhance cancer treatment efficiency. Finally, clinical inhibitors of histone modifications are summarized to better understand the developmental stage of cancer therapy in using these drugs to inhibit the histone modification enzymes.
Collapse
Affiliation(s)
| | | | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Khan FH, Bhat BA, Sheikh BA, Tariq L, Padmanabhan R, Verma JP, Shukla AC, Dowlati A, Abbas A. Microbiome dysbiosis and epigenetic modulations in lung cancer: From pathogenesis to therapy. Semin Cancer Biol 2022; 86:732-742. [PMID: 34273520 DOI: 10.1016/j.semcancer.2021.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/25/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
The lung microbiome plays an essential role in maintaining healthy lung function, including host immune homeostasis. Lung microbial dysbiosis or disruption of the gut-lung axis can contribute to lung carcinogenesis by causing DNA damage, inducing genomic instability, or altering the host's susceptibility to carcinogenic insults. Thus far, most studies have reported the association of microbial composition in lung cancer. Mechanistic studies describing host-microbe interactions in promoting lung carcinogenesis are limited. Considering cancer as a multifaceted disease where epigenetic dysregulation plays a critical role, epigenetic modifying potentials of microbial metabolites and toxins and their roles in lung tumorigenesis are not well studied. The current review explains microbial dysbiosis and epigenetic aberrations in lung cancer and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Faizan Haider Khan
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | | | | | - Lubna Tariq
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Roshan Padmanabhan
- Department of Medicine, Case Western Reserve University, and University Hospital, Cleveland, OH, 44106, USA
| | - Jay Prakash Verma
- Institute of Environment and Sustainable Development, Banaras Hindu University Varanasi, India
| | | | - Afshin Dowlati
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA; University Hospitals Seidman Cancer Center, Cleveland, OH, 44106, USA; Developmental Therapeutics Program, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44116, USA
| | - Ata Abbas
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA; Developmental Therapeutics Program, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44116, USA.
| |
Collapse
|
21
|
Qian Y, Ao M, Li B, Kuang Z, Wang X, Cao Y, Li J, Qiu Y, Guo K, Fang M, Wu Z. Design and synthesis of N-(1-(6-(substituted phenyl)-pyridazin-3-yl)-piperidine-3-yl)-amine derivatives as JMJD6 inhibitors. Bioorg Chem 2022; 129:106119. [PMID: 36116323 DOI: 10.1016/j.bioorg.2022.106119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/24/2022]
Abstract
JMJD6 is a member of the JmjC domain-containing family and has been identified as a promising therapeutic target for treating estrogen-induced and triple-negative breast cancer. To develop novel anti-breast cancer agents, we synthesized a class of N-(1-(6-(substituted phenyl)-pyridazine-3-yl)-piperidine-3-yl)-amine derivatives as potential JMJD6 inhibitors. Among them, the anti-cancer compound A29 was an excellent JMJD6 binder (KD = 0.75 ± 0.08 μM). It could upregulate the mRNA and protein levels of p53 and its downstream effectors p21 and PUMA by inhibiting JMJD6. Besides, A29 displayed potent anti-proliferative activities against tested breast cancer cells by the induction of cell apoptosis and cell cycle arrest. Significantly, A29 also promoted a remarkable reduction in tumor growth, with a TGI value of 66.6% (50 mg/kg, i.p.). Taken together, our findings suggest that A29 is a potent JMJD6 inhibitor bearing a new scaffold acting as a promising drug candidate for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yuqing Qian
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China; School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China
| | - Mingtao Ao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China; School of Pharmacy, Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Hubei University of Science and Technology, Xianning, Hubei 437100 China
| | - Boqun Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhijian Kuang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xiumei Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yin Cao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Jiayi Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yingkun Qiu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Kaiqiang Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Meijuan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Zhen Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
22
|
Zhang Y, Zheng B, Lou K, Xu X, Xu Y. Methylation patterns of Lys9 and Lys27 on histone H3 correlate with patient outcome and tumor progression in lung cancer. Ann Diagn Pathol 2022; 61:152045. [PMID: 36115104 DOI: 10.1016/j.anndiagpath.2022.152045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUNDS Histone methylation is recognized as an important component of the epigenetic mechanisms of cancer initiation and progression. Previous studies have demonstrated that aberrant alterations in histone methylation are associated with lung cancer. However, novel and specific epigenetic biomarkers for monitoring lung adenocarcinoma remain unknown. METHODS A retrospective clinicopathological analysis was performed on 71 lung adenocarcinoma (LUAD) patients who received complete ablative surgical treatment. Tissue arrays were made from the paraffin-embedded LUAD tumor tissues, and these, together with corresponding normal tissues, were examined through immunohistochemistry for several markers: histone 3 lysine 9 di-methylation (H3K9me2), histone 3 lysine 9 tri-methylation (H3K9me3), and histone 3 lysine 27 tri-methylation (H3K27me3). The expression level of each marker was analyzed according to the histological classification and clinical prognosis data. RESULTS Compared with peri-cancerous tissues, cancerous tissues distinctly expressed higher proportions of H3K9me2, H3K9me3, and H3K27me3. A higher expression pattern of H3K27me3 was associated with the poorly differentiation and unfavorable prognosis in LUAD. Based on histological types, it was found that the H3K27me3 level of patients with micropapillary type is high, and it is related to worse prognosis. CONCLUSIONS The findings of this study show that the H3K27me3 and micropapillary type are malignant clinical factors of LUAD. H3K27me3 reduction is a novel epigenetic biomarker for defining high-risk LUAD and predicting worse prognosis. Immunohistochemical evaluation of H3K27me3 expression is an economic, easily available, and readily adaptable method.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pathology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Bihui Zheng
- Department of Pathology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Kexin Lou
- Department of Pathology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xinyu Xu
- Department of Pathology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| | - Youtao Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
23
|
Pribluda A, Daemen A, Lima AN, Wang X, Hafner M, Poon C, Modrusan Z, Katakam AK, Foreman O, Eastham J, Hung J, Haley B, Garcia JT, Jackson EL, Junttila MR. EHMT2 methyltransferase governs cell identity in the lung and is required for KRAS G12D tumor development and propagation. eLife 2022; 11:57648. [PMID: 35983994 PMCID: PMC9439681 DOI: 10.7554/elife.57648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
Lung development, integrity and repair rely on precise Wnt signaling, which is corrupted in diverse diseases, including cancer. Here, we discover that EHMT2 methyltransferase regulates Wnt signaling in the lung by controlling the transcriptional activity of chromatin-bound β-catenin, through a non-histone substrate in mouse lung. Inhibition of EHMT2 induces transcriptional, morphologic, and molecular changes consistent with alveolar type 2 (AT2) lineage commitment. Mechanistically, EHMT2 activity functions to support regenerative properties of KrasG12D tumors and normal AT2 cells—the predominant cell of origin of this cancer. Consequently, EHMT2 inhibition prevents KrasG12D lung adenocarcinoma (LUAD) tumor formation and propagation and disrupts normal AT2 cell differentiation. Consistent with these findings, low gene EHMT2 expression in human LUAD correlates with enhanced AT2 gene expression and improved prognosis. These data reveal EHMT2 as a critical regulator of Wnt signaling, implicating Ehmt2 as a potential target in lung cancer and other AT2-mediated lung pathologies.
Collapse
Affiliation(s)
- Ariel Pribluda
- Discovery Biology, Surrozen, South San Francisco, United States
| | - Anneleen Daemen
- Computational biology, Oric Pharma, South San Francisco, United States
| | - Anthony Nelson Lima
- Department of Translational Oncology, Genentech, Inc, South San Francisco, United States
| | - Xi Wang
- Department of Translational Oncology, Genentech, Inc, South San Francisco, United States
| | - Marc Hafner
- Department of Bioinformatics and Computational Biology, Genentech, Inc, South San Francisco, United States
| | - Chungkee Poon
- Department of Immunology, Genentech, Inc, South San Francisco, United States
| | - Zora Modrusan
- Department of Molecular Biology, Genentech, Inc, South San Francisco, United States
| | | | - Oded Foreman
- Department of Pathology, Genentech, Inc, South San Francisco, United States
| | - Jefferey Eastham
- Department of Pathology, Genentech, Inc, South San Francisco, United States
| | - Jefferey Hung
- Department of Pathology, Genentech, Inc, South San Francisco, United States
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, Inc, South San Francisco, United States
| | - Julia T Garcia
- Department of Genetics, Stanford University, Stanford, United States
| | | | | |
Collapse
|
24
|
Zhao Z, Wang S, Zucknick M, Aittokallio T. Tissue-specific identification of multi-omics features for pan-cancer drug response prediction. iScience 2022; 25:104767. [PMID: 35992090 PMCID: PMC9385562 DOI: 10.1016/j.isci.2022.104767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022] Open
Abstract
Current statistical models for drug response prediction and biomarker identification fall short in leveraging the shared and unique information from various cancer tissues and multi-omics profiles. We developed mix-lasso model that introduces an additional sample group penalty term to capture tissue-specific effects of features on pan-cancer response prediction. The mix-lasso model takes into account both the similarity between drug responses (i.e., multi-task learning), and the heterogeneity between multi-omics data (multi-modal learning). When applied to large-scale pharmacogenomics dataset from Cancer Therapeutics Response Portal, mix-lasso enabled accurate drug response predictions and identification of tissue-specific predictive features in the presence of various degrees of missing data, drug-drug correlations, and high-dimensional and correlated genomic and molecular features that often hinder the use of statistical approaches in drug response modeling. Compared to tree lasso model, mix-lasso identified a smaller number of tissue-specific features, hence making the model more interpretable and stable for drug discovery applications. Pan-cancer cell lines provide a test bench for exploring gene-drug relationships Multi-omics data were integrated with pharmacological profiles for joint modeling Mix-lasso identifies tissue-specific biomarkers predictive of multi-drug responses Mix-lasso provides small number of stable features for drug discovery applications
Collapse
Affiliation(s)
- Zhi Zhao
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Norway
- Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Norway
| | - Shixiong Wang
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Norway
| | - Manuela Zucknick
- Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Norway
- Corresponding author
| | - Tero Aittokallio
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Norway
- Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Norway
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland
- Corresponding author
| |
Collapse
|
25
|
Cao YC, Shan SK, Guo B, Li CC, Li FXZ, Zheng MH, Xu QS, Wang Y, Lei LM, Tang KX, Ou-Yang WL, Duan JY, Wu YY, Ullah MHE, Zhou ZA, Xu F, Lin X, Wu F, Liao XB, Yuan LQ. Histone Lysine Methylation Modification and Its Role in Vascular Calcification. Front Endocrinol (Lausanne) 2022; 13:863708. [PMID: 35784574 PMCID: PMC9243330 DOI: 10.3389/fendo.2022.863708] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/06/2022] [Indexed: 01/10/2023] Open
Abstract
Histone methylation is an epigenetic change mediated by histone methyltransferase, and has been connected to the beginning and progression of several diseases. The most common ailments that affect the elderly are cardiovascular and cerebrovascular disorders. They are the leading causes of death, and their incidence is linked to vascular calcification (VC). The key mechanism of VC is the transformation of vascular smooth muscle cells (VSMCs) into osteoblast-like phenotypes, which is a highly adjustable process involving a variety of complex pathophysiological processes, such as metabolic abnormalities, apoptosis, oxidative stress and signalling pathways. Many researchers have investigated the mechanism of VC and related targets for the prevention and treatment of cardiovascular and cerebrovascular diseases. Their findings revealed that histone lysine methylation modification may play a key role in the various stages of VC. As a result, a thorough examination of the role and mechanism of lysine methylation modification in physiological and pathological states is critical, not only for identifying specific molecular markers of VC and new therapeutic targets, but also for directing the development of new related drugs. Finally, we provide this review to discover the association between histone methylation modification and VC, as well as diverse approaches with which to investigate the pathophysiology of VC and prospective treatment possibilities.
Collapse
Affiliation(s)
- Ye-Chi Cao
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li-Min Lei
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ke-Xin Tang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Lu Ou-Yang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Yue Duan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yun-Yun Wu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Muhammad Hasnain Ehsan Ullah
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Ang Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Bo Liao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
26
|
Ang GCK, Gupta A, Surana U, Yap SXL, Taneja R. Potential Therapeutics Targeting Upstream Regulators and Interactors of EHMT1/2. Cancers (Basel) 2022; 14:2855. [PMID: 35740522 PMCID: PMC9221123 DOI: 10.3390/cancers14122855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Euchromatin histone lysine methyltransferases (EHMTs) are epigenetic regulators responsible for silencing gene transcription by catalyzing H3K9 dimethylation. Dysregulation of EHMT1/2 has been reported in multiple cancers and is associated with poor clinical outcomes. Although substantial insights have been gleaned into the downstream targets and pathways regulated by EHMT1/2, few studies have uncovered mechanisms responsible for their dysregulated expression. Moreover, EHMT1/2 interacting partners, which can influence their function and, therefore, the expression of target genes, have not been extensively explored. As none of the currently available EHMT inhibitors have made it past clinical trials, understanding upstream regulators and EHMT protein complexes may provide unique insights into novel therapeutic avenues in EHMT-overexpressing cancers. Here, we review our current understanding of the regulators and interacting partners of EHMTs. We also discuss available therapeutic drugs that target the upstream regulators and binding partners of EHMTs and could potentially modulate EHMT function in cancer progression.
Collapse
Affiliation(s)
- Gareth Chin Khye Ang
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Amogh Gupta
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
| | - Uttam Surana
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Shirlyn Xue Ling Yap
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Reshma Taneja
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
| |
Collapse
|
27
|
Ichikawa Y, Takahashi H, Chinen Y, Arita A, Sekido Y, Hata T, Ogino T, Miyoshi N, Uemura M, Yamamoto H, Mizushima T, Doki Y, Eguchi H. Low G9a expression is a tumor progression factor of colorectal cancer via IL-8 promotion. Carcinogenesis 2022; 43:797-807. [PMID: 35640269 DOI: 10.1093/carcin/bgac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/15/2022] [Accepted: 05/26/2022] [Indexed: 11/14/2022] Open
Abstract
The histone methyltransferase G9a is expressed in various types of cancer cells, including colorectal cancer (CRC) cells. Interleukin (IL)-8, also known as C-X-C motif chemokine ligand 8 (CXCL8), is a chemokine that plays a pleiotropic function in the regulation of inflammatory responses and cancer development. Here, we examined the relationship between G9a and IL-8 and the clinical relevance of this association. We immunohistochemically analyzed 235 resected CRC samples to correlate clinical features. Samples with high G9a expression had better overall survival and relapse-free survival than those with low G9a expression. Univariate and multivariate analyses demonstrated that low G9a expression remained a significant independent prognostic factor for increased disease recurrence and decreased survival (P<0.05). G9a was expressed at high levels in commercially available CRC cell lines HCT116 and HT29. Knockdown of G9a by siRNA, shRNA, or the G9a-specific inhibitor BIX01294 upregulated IL-8 expression. The number of spheroids was significantly increased in HCT116 cells with stably suppressed G9a expression, and the number of spheroids was significantly decreased in HCT116 cells with stably suppressed IL-8 expression. Thus, the suppression of IL-8 by G9a may result in a better prognosis in CRC cases with high G9a expression. Furthermore, G9a may suppress cancer stemness and increase chemosensitivity by controlling IL-8. Therefore, G9a is a potential novel marker for predicting CRC prognosis, and therapeutic targeting of G9a in CRC should be contraversial.
Collapse
Affiliation(s)
- Yoshitoshi Ichikawa
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshinao Chinen
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Asami Arita
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuki Sekido
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tsuyoshi Hata
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Norikatsu Miyoshi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hirofumi Yamamoto
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
28
|
Yang S, Huang Y, Zhao Q. Epigenetic Alterations and Inflammation as Emerging Use for the Advancement of Treatment in Non-Small Cell Lung Cancer. Front Immunol 2022; 13:878740. [PMID: 35514980 PMCID: PMC9066637 DOI: 10.3389/fimmu.2022.878740] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022] Open
Abstract
Lung cancer remains one of the most common malignancies in the world. Nowadays, the most common lung cancer is non-small cell lung cancer (NSCLC), namely, adenocarcinoma, squamous cell carcinoma, and large cell lung carcinoma. Epigenetic alterations that refer to DNA methylation, histone modifications, and noncoding RNA expression, are now suggested to drive the genesis and development of NSCLC. Additionally, inflammation-related tumorigenesis also plays a vital role in cancer research and efforts have been attempted to reverse such condition. During the occurrence and development of inflammatory diseases, the immune component of inflammation may cause epigenetic changes, but it is not always certain whether the immune component itself or the stimulated host cells cause epigenetic changes. Moreover, the links between epigenetic alterations and cancer-related inflammation and their influences on the human cancer are not clear so far. Therefore, the connection between epigenetic drivers, inflammation, and NSCLC will be summarized. Investigation on such topic is most likely to shed light on the molecular and immunological mechanisms of epigenetic and inflammatory factors and promote the application of epigenetics in the innovative diagnostic and therapeutic strategies for NSCLC.
Collapse
Affiliation(s)
- Shuo Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Shuo Yang, ; Yang Huang, ; Qi Zhao,
| | - Yang Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Shuo Yang, ; Yang Huang, ; Qi Zhao,
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau SAR, China
- *Correspondence: Shuo Yang, ; Yang Huang, ; Qi Zhao,
| |
Collapse
|
29
|
Athar F, Templeman NM. C. elegans as a model organism to study female reproductive health. Comp Biochem Physiol A Mol Integr Physiol 2022; 266:111152. [PMID: 35032657 DOI: 10.1016/j.cbpa.2022.111152] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
Female reproductive health has been historically understudied and underfunded. Here, we present the advantages of using a free-living nematode, Caenorhabditis elegans, as an animal system to study fundamental aspects of female reproductive health. C. elegans is a powerful high-throughput model organism that shares key genetic and physiological similarities with humans. In this review, we highlight areas of pressing medical and biological importance in the 21st century within the context of female reproductive health. These include the decline in female reproductive capacity with increasing chronological age, reproductive dysfunction arising from toxic environmental insults, and cancers of the reproductive system. C. elegans has been instrumental in uncovering mechanistic insights underlying these processes, and has been valuable for developing and testing therapeutics to combat them. Adopting a convenient model organism such as C. elegans for studying reproductive health will encourage further research into this field, and broaden opportunities for making advancements into evolutionarily conserved mechanisms that control reproductive function.
Collapse
Affiliation(s)
- Faria Athar
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nicole M Templeman
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.
| |
Collapse
|
30
|
SETDB1-like MET-2 promotes transcriptional silencing and development independently of its H3K9me-associated catalytic activity. Nat Struct Mol Biol 2022; 29:85-96. [PMID: 35102319 PMCID: PMC8850192 DOI: 10.1038/s41594-021-00712-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/02/2021] [Indexed: 12/30/2022]
Abstract
Transcriptionally silenced heterochromatin bearing methylation of histone H3 on lysine 9 (H3K9me) is critical for maintaining organismal viability and tissue integrity. Here we show that in addition to ensuring H3K9me, MET-2, the Caenorhabditis elegans homolog of the SETDB1 histone methyltransferase, has a noncatalytic function that contributes to gene repression. Subnuclear foci of MET-2 coincide with H3K9me deposition, yet these foci also form when MET-2 is catalytically deficient and H3K9me is compromised. Whereas met-2 deletion triggers a loss of silencing and increased histone acetylation, foci of catalytically deficient MET-2 maintain silencing of a subset of genes, blocking acetylation on H3K9 and H3K27. In normal development, this noncatalytic MET-2 activity helps to maintain fertility. Under heat stress MET-2 foci disperse, coinciding with increased acetylation and transcriptional derepression. Our study suggests that the noncatalytic, focus-forming function of this SETDB1-like protein and its intrinsically disordered cofactor LIN-65 is physiologically relevant. Genetic and genome-wide analysis of a catalytically deficient SETDB1-like enzyme, MET-2, in Caenorhabditiselegans reveals that MET-2 promotes transcriptional silencing and fertility through both H3K9 methylation and focus formation, which blocks histone acetylation.
Collapse
|
31
|
Nachiyappan A, Gupta N, Taneja R. EHMT1/EHMT2 in EMT, Cancer Stemness and Drug Resistance: Emerging Evidence and Mechanisms. FEBS J 2021; 289:1329-1351. [PMID: 34954891 DOI: 10.1111/febs.16334] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/25/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022]
Abstract
Metastasis, therapy failure and tumor recurrence are major clinical challenges in cancer. The interplay between tumor initiating cells (TICs) and Epithelial-Mesenchymal transition (EMT) drives tumor progression and spread. Recent advances have highlighted the involvement of epigenetic deregulation in these processes. The Euchromatin Histone Lysine Methyltransferase 1 (EHMT1) and Euchromatin Histone Lysine Methyltransferase 2 (EHMT2) that primarily mediate histone 3 lysine 9 di-methylation (H3K9me2), as well as methylation of non-histone proteins, are now recognized to be aberrantly expressed in many cancers. Their deregulated expression is associated with EMT, cellular plasticity and therapy resistance. In this review, we summarize evidence of their myriad roles in cancer metastasis, stemness and drug resistance. We discuss cancer-type specific molecular targets, context-dependent mechanisms and future directions of research in targeting EHMT1/EHMT2 for the treatment of cancer.
Collapse
Affiliation(s)
- Alamelu Nachiyappan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593
| | - Neelima Gupta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593.,Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 117593
| |
Collapse
|
32
|
Arnal-Estapé A, Foggetti G, Starrett JH, Nguyen DX, Politi K. Preclinical Models for the Study of Lung Cancer Pathogenesis and Therapy Development. Cold Spring Harb Perspect Med 2021; 11:a037820. [PMID: 34518338 PMCID: PMC8634791 DOI: 10.1101/cshperspect.a037820] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Experimental preclinical models have been a cornerstone of lung cancer translational research. Work in these model systems has provided insights into the biology of lung cancer subtypes and their origins, contributed to our understanding of the mechanisms that underlie tumor progression, and revealed new therapeutic vulnerabilities. Initially patient-derived lung cancer cell lines were the main preclinical models available. The landscape is very different now with numerous preclinical models for research each with unique characteristics. These include genetically engineered mouse models (GEMMs), patient-derived xenografts (PDXs) and three-dimensional culture systems ("organoid" cultures). Here we review the development and applications of these models and describe their contributions to lung cancer research.
Collapse
Affiliation(s)
- Anna Arnal-Estapé
- Department of Pathology
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | - Don X Nguyen
- Department of Pathology
- Department of Internal Medicine (Section of Medical Oncology)
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Katerina Politi
- Department of Pathology
- Department of Internal Medicine (Section of Medical Oncology)
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
33
|
Emerging role of G9a in cancer stemness and promises as a therapeutic target. Oncogenesis 2021; 10:76. [PMID: 34775469 PMCID: PMC8590690 DOI: 10.1038/s41389-021-00370-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
The histone methyltransferase G9a is well-documented for its implication in neoplastic growth. However, recent investigations have demonstrated a key involvement of this chromatin writer in maintaining the self-renewal and tumor-initiating capacities of cancer stem cells (CSCs). Direct inhibition of G9a’s catalytic activity was reported as a promising therapeutic target in multiple preclinical studies. Yet, none of the available pharmacological inhibitors of G9a activity have shown success at the early stages of clinical testing. Here, we discuss central findings of oncogenic expression and activation of G9a in CSCs from different origins, as well as the impact of the suppression of G9a histone methyltransferase activity in such contexts. We will explore the challenges posed by direct and systemic inhibition of G9a activity in the perspective of clinical translation of documented small molecules. Finally, we will discuss recent advances in drug discovery as viable strategies to develop context-specific drugs, selectively targeting G9a in CSC populations.
Collapse
|
34
|
Methylation Modification, Alternative Splicing, and Noncoding RNA Play a Role in Cancer Metastasis through Epigenetic Regulation. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4061525. [PMID: 34660788 PMCID: PMC8514273 DOI: 10.1155/2021/4061525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022]
Abstract
Metastasis is the leading cause of cancer-related deaths. Understanding the pathogenesis of metastasis at the molecular levels is of great significance for cancer research. However, the molecular diagnosis or treatment of cancer metastasis is limited. Accumulating and growing evidence shows that epigenetic changes are present in all human cancers, and epigenetic regulation is an indispensable factor to promote tumor metastasis. With the deepening of research and the advancement of technology, the function and mechanism of epigenetic regulation, including DNA methylation, histone/RNA modification, and precursor messenger RNA alternative splicing and noncoding RNAs, has become more increasingly clear. At present, the application of epigenetic therapies in tumor treatment is becoming a feasible therapeutic route. In this review, we looked for the key molecules in epigenetic regulation and discuss their relative regulating mechanisms in cancer metastasis. Furthermore, we highlight promising therapeutic strategies, including monitoring serum DNA for diagnostic purposes and early phase clinical trial therapies that target DNA and histone methylation. This may also be beneficial in finding new targets for further prognosis and diagnosis of cancer metastasis.
Collapse
|
35
|
Poulard C, Noureddine LM, Pruvost L, Le Romancer M. Structure, Activity, and Function of the Protein Lysine Methyltransferase G9a. Life (Basel) 2021; 11:life11101082. [PMID: 34685453 PMCID: PMC8541646 DOI: 10.3390/life11101082] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022] Open
Abstract
G9a is a lysine methyltransferase catalyzing the majority of histone H3 mono- and dimethylation at Lys-9 (H3K9), responsible for transcriptional repression events in euchromatin. G9a has been shown to methylate various lysine residues of non-histone proteins and acts as a coactivator for several transcription factors. This review will provide an overview of the structural features of G9a and its paralog called G9a-like protein (GLP), explore the biochemical features of G9a, and describe its post-translational modifications and the specific inhibitors available to target its catalytic activity. Aside from its role on histone substrates, the review will highlight some non-histone targets of G9a, in order gain insight into their role in specific cellular mechanisms. Indeed, G9a was largely described to be involved in embryonic development, hypoxia, and DNA repair. Finally, the involvement of G9a in cancer biology will be presented.
Collapse
Affiliation(s)
- Coralie Poulard
- Cancer Research Cancer of Lyon, Université de Lyon, F-69000 Lyon, France; (L.M.N.); (L.P.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Correspondence:
| | - Lara M. Noureddine
- Cancer Research Cancer of Lyon, Université de Lyon, F-69000 Lyon, France; (L.M.N.); (L.P.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences, Lebanese University, Hadat-Beirut 90565, Lebanon
| | - Ludivine Pruvost
- Cancer Research Cancer of Lyon, Université de Lyon, F-69000 Lyon, France; (L.M.N.); (L.P.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Muriel Le Romancer
- Cancer Research Cancer of Lyon, Université de Lyon, F-69000 Lyon, France; (L.M.N.); (L.P.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| |
Collapse
|
36
|
SPOP mutation induces DNA methylation via stabilizing GLP/G9a. Nat Commun 2021; 12:5716. [PMID: 34588438 PMCID: PMC8481544 DOI: 10.1038/s41467-021-25951-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/06/2021] [Indexed: 12/31/2022] Open
Abstract
Mutations in SPOP E3 ligase gene are reportedly associated with genome-wide DNA hypermethylation in prostate cancer (PCa) although the underlying mechanisms remain elusive. Here, we demonstrate that SPOP binds and promotes polyubiquitination and degradation of histone methyltransferase and DNMT interactor GLP. SPOP mutation induces stabilization of GLP and its partner protein G9a and aberrant upregulation of global DNA hypermethylation in cultured PCa cells and primary PCa specimens. Genome-wide DNA methylome analysis shows that a subset of tumor suppressor genes (TSGs) including FOXO3, GATA5, and NDRG1, are hypermethylated and downregulated in SPOP-mutated PCa cells. DNA methylation inhibitor 5-azacytidine effectively reverses expression of the TSGs examined, inhibits SPOP-mutated PCa cell growth in vitro and in mice, and enhances docetaxel anti-cancer efficacy. Our findings reveal the GLP/G9a-DNMT module as a mediator of DNA hypermethylation in SPOP-mutated PCa. They suggest that SPOP mutation could be a biomarker for effective treatment of PCa with DNA methylation inhibitor alone or in combination with taxane chemotherapeutics. The molecular mechanism underlying the DNA hypermethylation phenotype observed in the SPOP-mutant prostate cancers is unclear. Here, the authors show that mutant SPOP induces global aberrant DNA methylation patterns through GLP/G9a and renders prostate cancer cells susceptible to DNA demethylating agents.
Collapse
|
37
|
Zhu W, Jiang H, Xie S, Xiao H, Liu Q, Chen N, Wan P, Lu S. Downregulation of PPA2 expression correlates with poor prognosis of kidney renal clear cell carcinoma. PeerJ 2021; 9:e12086. [PMID: 34567842 PMCID: PMC8428262 DOI: 10.7717/peerj.12086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/07/2021] [Indexed: 11/23/2022] Open
Abstract
Background Kidney renal clear cell carcinoma (KIRC) is the most common subtype of kidney cancer. Inorganic pyrophosphatase (PPA2) is an enzyme that catalyzes the hydrolysis of pyrophosphate to inorganic phosphate; few studies have reported its significance in cancers. Therefore, we aimed to explore the prognostic value of PPA2 in KIRC. Methods PPA2 expression was detected via immunohistochemistry in a tissue chip containing specimens from 150 patients with KIRC. We evaluated the correlation between PPA2 expression, clinicopathological characteristics, and survival. Data from online databases and another cohort (paraffin-embedded specimens from 10 patients with KIRC) were used for external validation. Results PPA2 expression was significantly lower in KIRC tissues than in normal renal tissues (p < 0.0001). Low expression of PPA2 was significantly associated with a high histologic grade and poor prognosis. The differential expression of PPA2 was validated at the gene and protein levels. Multivariate Cox regression analysis showed that PPA2 expression was an independent prognostic factor in patients with KIRC. Gene set enrichment analysis suggested that decreased expression of PPA2 might be related to the epithelial-mesenchymal transition in KIRC. Conclusions Our study demonstrated that PPA2 is an important energy metabolism-associated biomarker correlated with a favorable prognosis in KIRC.
Collapse
Affiliation(s)
- Wenbiao Zhu
- Department of Pathology, Meizhou People's Hospital, Meizhou, Guangdong, China
| | - Huiming Jiang
- Department of Urology, Meizhou People's Hospital, Meizhou, Guangdong, China
| | - Shoucheng Xie
- Department of Pathology, Meizhou People's Hospital, Meizhou, Guangdong, China
| | - Huanqin Xiao
- Department of Pathology, Meizhou People's Hospital, Meizhou, Guangdong, China
| | - Qinghua Liu
- Department of Pathology, Meizhou People's Hospital, Meizhou, Guangdong, China
| | - Nanhui Chen
- Department of Urology, Meizhou People's Hospital, Meizhou, Guangdong, China
| | - Pei Wan
- Department of Urology, Meizhou People's Hospital, Meizhou, Guangdong, China
| | - Shanming Lu
- Department of Pathology, Meizhou People's Hospital, Meizhou, Guangdong, China
| |
Collapse
|
38
|
Trager MH, Sah B, Chen Z, Liu L. Control of Breast Cancer Pathogenesis by Histone Methylation and the Hairless Histone Demethylase. Endocrinology 2021; 162:6259332. [PMID: 33928351 PMCID: PMC8237996 DOI: 10.1210/endocr/bqab088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 12/19/2022]
Abstract
Breast cancer is a highly heterogeneous disease, encompassing many subtypes that have distinct origins, behaviors, and prognoses. Although traditionally seen as a genetic disease, breast cancer is now also known to involve epigenetic abnormalities. Epigenetic regulators, such as DNA methyltransferases and histone-modifying enzymes, play essential roles in gene regulation and cancer development. Dysregulation of epigenetic regulator activity has been causally linked with breast cancer pathogenesis. Hairless (HR) encodes a 130-kDa transcription factor that is essential for development and tissue homeostasis. Its role in transcription regulation is partly mediated by its interaction with multiple nuclear receptors, including thyroid hormone receptor, retinoic acid receptor-related orphan receptors, and vitamin D receptor. HR has been studied primarily in epidermal development and homeostasis. Hr-mutant mice are highly susceptible to ultraviolet- or carcinogen-induced skin tumors. Besides its putative tumor suppressor function in skin, loss of HR function has also been implicated in increased leukemia susceptibility and promotes the growth of melanoma and brain cancer cells. HR has also been demonstrated to function as a histone H3 lysine 9 demethylase. Recent genomics studies have identified HR mutations in a variety of human cancers, including breast cancer. The anticancer function and mechanism of action by HR in mammary tissue remains to be investigated. Here, we review the emerging role of HR, its histone demethylase activity and histone methylation in breast cancer development, and potential for epigenetic therapy.
Collapse
Affiliation(s)
- Megan H Trager
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, USA
| | - Bindeshwar Sah
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | - Zhongming Chen
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55912, USA
| | - Liang Liu
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55912, USA
- Correspondence: Liang Liu, PhD, The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA.
| |
Collapse
|
39
|
Katainen R, Donner I, Räisänen M, Berta D, Kuosmanen A, Kaasinen E, Hietala M, Aaltonen LA. Novel germline variant in the histone demethylase and transcription regulator KDM4C induces a multi-cancer phenotype. J Med Genet 2021; 59:644-651. [PMID: 34281993 PMCID: PMC9252859 DOI: 10.1136/jmedgenet-2021-107747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/25/2021] [Indexed: 11/10/2022]
Abstract
Background Genes involved in epigenetic regulation are central for chromatin structure and gene expression. Specific mutations in these might promote carcinogenesis in several tissue types. Methods We used exome, whole-genome and Sanger sequencing to detect rare variants shared by seven affected individuals in a striking early-onset multi-cancer family. The only variant that segregated with malignancy resided in a histone demethylase KDM4C. Consequently, we went on to study the epigenetic landscape of the mutation carriers with ATAC, ChIP (chromatin immunoprecipitation) and RNA-sequencing from lymphoblastoid cell lines to identify possible pathogenic effects. Results A novel variant in KDM4C, encoding a H3K9me3 histone demethylase and transcription regulator, was found to segregate with malignancy in the family. Based on Roadmap Epigenomics Project data, differentially accessible chromatin regions between the variant carriers and controls enrich to normally H3K9me3-marked chromatin. We could not detect a difference in global H3K9 trimethylation levels. However, carriers of the variant seemed to have more trimethylated H3K9 at transcription start sites. Pathway analyses of ChIP-seq and differential gene expression data suggested that genes regulated through KDM4C interaction partner EZH2 and its interaction partner PLZF are aberrantly expressed in mutation carriers. Conclusions The apparent dysregulation of H3K9 trimethylation and KDM4C-associated genes in lymphoblastoid cells supports the hypothesis that the KDM4C variant is causative of the multi-cancer susceptibility in the family. As the variant is ultrarare, located in the conserved catalytic JmjC domain and predicted pathogenic by the majority of available in silico tools, further studies on the role of KDM4C in cancer predisposition are warranted.
Collapse
Affiliation(s)
- Riku Katainen
- Applied Tumor Genomics Research Program and Department of Medical and Clinical Genetics, University of Helsinki Faculty of Medicine, Helsinki, Finland
| | - Iikki Donner
- Applied Tumor Genomics Research Program and Department of Medical and Clinical Genetics, University of Helsinki Faculty of Medicine, Helsinki, Finland
| | - Maritta Räisänen
- Applied Tumor Genomics Research Program and Department of Medical and Clinical Genetics, University of Helsinki Faculty of Medicine, Helsinki, Finland
| | - Davide Berta
- Applied Tumor Genomics Research Program and Department of Medical and Clinical Genetics, University of Helsinki Faculty of Medicine, Helsinki, Finland
| | - Anna Kuosmanen
- Applied Tumor Genomics Research Program and Department of Medical and Clinical Genetics, University of Helsinki Faculty of Medicine, Helsinki, Finland
| | - Eevi Kaasinen
- Applied Tumor Genomics Research Program and Department of Medical and Clinical Genetics, University of Helsinki Faculty of Medicine, Helsinki, Finland
| | - Marja Hietala
- Department of Clinical Genetics, TYKS Turku University Hospital and University of Turku Institute of Biomedicine, Turku, Finland
| | - Lauri A Aaltonen
- Applied Tumor Genomics Research Program and Department of Medical and Clinical Genetics, University of Helsinki Faculty of Medicine, Helsinki, Finland
| |
Collapse
|
40
|
Li Y, Chen Z, Cao K, Zhang L, Ma Y, Yu S, Jin H, Liu X, Li W. G9a Regulates Cell Sensitivity to Radiotherapy via Histone H3 Lysine 9 Trimethylation and CCDC8 in Lung Cancer. Onco Targets Ther 2021; 14:3721-3728. [PMID: 34140780 PMCID: PMC8203200 DOI: 10.2147/ott.s296937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose To investigate the role and underlying mechanism of G9a and CCDC8 in lung cancer radioresistance. Methods Western blotting assays were used for G9a, CCDC8, H3K9me3 expression detection. MTT assays and clone formation assays were used for measuring cell proliferation activities. Flow cytometry assays were used for cell apoptosis detection. The enrichment of H3K9me3 in CCDC8 promoter was measured by chromatin immunoprecipitation assay. Results G9a and G9a-mediated H3K9me3 are upregulated in radioresistant lung cancer cells (A549/IR cell and XWLC-05/IR cell). Blocking G9a not only promotes radiosensitivity of A549/IR cell and XWLC-05/IR cell but also reduces aggressive behavior of radioresistant A549 cell/IR and XWLC-05/IR cell. In addition, G9a-controlled H3K9me3 is able to binding to the promoter of tumor suppressor gene CCDC8 and suppresses CCDC8 expression. CCDC8 dysregulation is responsible for G9a-mediated radioresistance of A549/IR cell and XWLC-05/IR cell. Conclusion G9a and H3K9me3 contribute to the lung cancer radioresistance via modulating CCDC8 expression.
Collapse
Affiliation(s)
- Yunfen Li
- Department of Radiotherapy, Third Affiliated Hospital of Kunming Medical, Yunnan Cancer Hospital, Kunming City, Yunnan Province, People's Republic of China.,Department of Oncology, Yunnan Boya Hospital, Kunming City, Yunnan Province, People's Republic of China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, People's Republic of China.,Department of Medicine, Lizhu Pharmaceutical Group Co., Ltd., Zhuhai City, Guangdong Province, People's Republic of China
| | - Zhengting Chen
- Department of Radiotherapy, Third Affiliated Hospital of Kunming Medical, Yunnan Cancer Hospital, Kunming City, Yunnan Province, People's Republic of China
| | - Ke Cao
- Department of Radiotherapy, Third Affiliated Hospital of Kunming Medical, Yunnan Cancer Hospital, Kunming City, Yunnan Province, People's Republic of China
| | - Lan Zhang
- Department of Radiotherapy, Third Affiliated Hospital of Kunming Medical, Yunnan Cancer Hospital, Kunming City, Yunnan Province, People's Republic of China
| | - Yuhui Ma
- Department of Radiotherapy, Third Affiliated Hospital of Kunming Medical, Yunnan Cancer Hospital, Kunming City, Yunnan Province, People's Republic of China
| | - Shuhui Yu
- Department of Radiotherapy, Third Affiliated Hospital of Kunming Medical, Yunnan Cancer Hospital, Kunming City, Yunnan Province, People's Republic of China
| | - Hanyu Jin
- Department of Radiotherapy, Third Affiliated Hospital of Kunming Medical, Yunnan Cancer Hospital, Kunming City, Yunnan Province, People's Republic of China
| | - Xiaoling Liu
- Department of Radiotherapy, Third Affiliated Hospital of Kunming Medical, Yunnan Cancer Hospital, Kunming City, Yunnan Province, People's Republic of China
| | - Wenhui Li
- Department of Radiotherapy, Third Affiliated Hospital of Kunming Medical, Yunnan Cancer Hospital, Kunming City, Yunnan Province, People's Republic of China
| |
Collapse
|
41
|
Kanne J, Hussong M, Isensee J, Muñoz-López Á, Wolffgramm J, Heß F, Grimm C, Bessonov S, Meder L, Wang J, Reinhardt HC, Odenthal M, Hucho T, Büttner R, Summerer D, Schweiger MR. Pericentromeric Satellite III transcripts induce etoposide resistance. Cell Death Dis 2021; 12:530. [PMID: 34031359 PMCID: PMC8144429 DOI: 10.1038/s41419-021-03810-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 03/04/2021] [Accepted: 05/10/2021] [Indexed: 02/05/2023]
Abstract
Non-coding RNA from pericentromeric satellite repeats are involved in stress-dependent splicing processes, maintenance of heterochromatin, and are required to protect genome stability. Here we show that the long non-coding satellite III RNA (SatIII) generates resistance against the topoisomerase IIa (TOP2A) inhibitor etoposide in lung cancer. Because heat shock conditions (HS) protect cells against the toxicity of etoposide, and SatIII is significantly induced under HS, we hypothesized that the protective effect could be traced back to SatIII. Using genome methylation profiles of patient-derived xenograft mouse models we show that the epigenetic modification of the SatIII DNA locus and the resulting SatIII expression predict chemotherapy resistance. In response to stress, SatIII recruits TOP2A to nuclear stress bodies, which protects TOP2A from a complex formation with etoposide and results in decreased DNA damage after treatment. We show that BRD4 inhibitors reduce the expression of SatIII, restoring etoposide sensitivity.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Cell Cycle Proteins/antagonists & inhibitors
- Centromere/genetics
- Centromere/metabolism
- DNA Methylation/physiology
- DNA Topoisomerases, Type II/drug effects
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Etoposide/therapeutic use
- Gene Expression Regulation, Neoplastic/drug effects
- HEK293 Cells
- HeLa Cells
- Humans
- Male
- Mice, Inbred NOD
- Mice, SCID
- Poly-ADP-Ribose Binding Proteins/drug effects
- Poly-ADP-Ribose Binding Proteins/genetics
- Poly-ADP-Ribose Binding Proteins/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/physiology
- Transcription Factors/antagonists & inhibitors
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Julian Kanne
- Institute for Translational Epigenetics, University Hospital of Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Michelle Hussong
- Institute for Translational Epigenetics, University Hospital of Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Jörg Isensee
- Translational Pain Research, Department of Anaesthesiology and Intensive Care Medicine, University Hospital Cologne, Faculty of Medicine, University Cologne, Cologne, Germany
| | - Álvaro Muñoz-López
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Jan Wolffgramm
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Felix Heß
- Institute for Translational Epigenetics, University Hospital of Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- Rheinische Fachhochschule Cologne, Cologne, Germany
| | - Christina Grimm
- Institute for Translational Epigenetics, University Hospital of Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Sergey Bessonov
- Institute for Translational Epigenetics, University Hospital of Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- Department I of Internal Medicine, University Hospital Cologne, Medical Faculty, Cologne, Germany
| | - Lydia Meder
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department I of Internal Medicine, University Hospital Cologne, Medical Faculty, Cologne, Germany
| | - Jie Wang
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Institute of Pathology, University Hospital of Cologne, Medical Faculty, Cologne, Germany
| | - H Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, German Cancer Consortium (DKTK partner site Essen), Essen, Germany
| | - Margarete Odenthal
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Institute of Pathology, University Hospital of Cologne, Medical Faculty, Cologne, Germany
- Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne, Germany
| | - Tim Hucho
- Translational Pain Research, Department of Anaesthesiology and Intensive Care Medicine, University Hospital Cologne, Faculty of Medicine, University Cologne, Cologne, Germany
| | - Reinhard Büttner
- Institute of Pathology, University Hospital of Cologne, Medical Faculty, Cologne, Germany
| | - Daniel Summerer
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Michal R Schweiger
- Institute for Translational Epigenetics, University Hospital of Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
42
|
Mabe NW, Garcia NMG, Wolery SE, Newcomb R, Meingasner RC, Vilona BA, Lupo R, Lin CC, Chi JT, Alvarez JV. G9a Promotes Breast Cancer Recurrence through Repression of a Pro-inflammatory Program. Cell Rep 2021; 33:108341. [PMID: 33147463 PMCID: PMC7656293 DOI: 10.1016/j.celrep.2020.108341] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/30/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Dysregulated gene expression is a common feature of cancer and may underlie some aspects of tumor progression, including tumor relapse. Here, we show that recurrent mammary tumors exhibit global changes in gene expression and histone modifications and acquire dependence on the G9a histone methyltransferase. Genetic ablation of G9a delays tumor recurrence, and pharmacologic inhibition of G9a slows the growth of recurrent tumors. Mechanistically, G9a activity is required to silence pro-inflammatory cytokines, including tumor necrosis factor (TNF), through H3K9 methylation at gene promoters. G9a inhibition induces re-expression of these cytokines, leading to p53 activation and necroptosis. Recurrent tumors upregulate receptor interacting protein kinase-3 (RIPK3) expression and are dependent upon RIPK3 activity. High RIPK3 expression renders recurrent tumors sensitive to necroptosis following G9a inhibition. These findings demonstrate that G9a-mediated silencing of pro-necroptotic proteins is a critical step in tumor recurrence and suggest that G9a is a targetable dependency in recurrent breast cancer.
Collapse
Affiliation(s)
- Nathaniel W Mabe
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Nina Marie G Garcia
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Shayna E Wolery
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Rachel Newcomb
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Ryan C Meingasner
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Brittany A Vilona
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Ryan Lupo
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Chao-Chieh Lin
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University, Durham, NC 27710, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University, Durham, NC 27710, USA
| | - James V Alvarez
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
43
|
Zhou M, Zhang X, Liu C, Nie D, Li S, Lai P, Jin Y. Targeting protein lysine methyltransferase G9A impairs self-renewal of chronic myelogenous leukemia stem cells via upregulation of SOX6. Oncogene 2021; 40:3564-3577. [PMID: 33931742 DOI: 10.1038/s41388-021-01799-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/25/2021] [Accepted: 04/14/2021] [Indexed: 01/23/2023]
Abstract
The application of tyrosine kinase inhibitors (TKIs) in clinic has revolutionized chronic myelogenous leukemia (CML) treatment, but fails to eliminate leukemia stem cells (LSCs), which are considered as roots of drug resistance and disease relapse. Thus, eradication of LSCs may be a promising strategy for curing CML. In this study, we found that protein lysine methyltransferase G9A was overexpressed in CML LSCs. The upregulation of G9A by BCR-ABL was independent on its tyrosine kinase activity. Knockdown of G9A by shRNAs or pharmacological inhibition of G9A by UNC0642 significantly suppressed survival and impaired self-renewal capacity of CML LSCs. Inhibition of G9a eradicated LSCs in CML mice driven by BCR-ABL gene and dramatically prolonged survival of the mice. Ex vivo treatment with G9A inhibitor inhibited long-term engraftment of CML CD34+ cells in immunodeficient mice. Mechanically, tumor suppressor SOX6 was identified as a direct target of G9A in CML LSCs by RNA-seq analysis. Silencing Sox6 at least partially rescued G9a knockdown-mediated LSCs elimination in vivo. Our findings improve the understanding of LSC regulation network and validate G9A as a therapeutic target in CML LSCs. Targeting G9A may be considered as an additional strategy for the treatment of patients with CML.
Collapse
Affiliation(s)
- Min Zhou
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiuli Zhang
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| | - Chang Liu
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Danian Nie
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuyi Li
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| | - Peilong Lai
- Department of Hematology, Guangdong General Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanli Jin
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China.
| |
Collapse
|
44
|
Epigenetic Mechanisms Are Involved in the Oncogenic Properties of ZNF518B in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13061433. [PMID: 33801071 PMCID: PMC8004037 DOI: 10.3390/cancers13061433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The ZNF518B gene, which is up-regulated in colorectal cancer, plays a role in metastasis, but neither the mechanisms involved in this process nor the role of the different isoforms of the gene are known. Here we show that the ratio of these isoforms is related to the relapsing of the disease, and that the protein ZNF518B interacts with enzymes able to introduce epigenetic changes, which may affect the activity of many genes. We also report a list of genes affected in common by ZNF518B and by two of those related enzymes, namely, G9A and EZH2. An in-depth analysis of five of those genes revealed that ZNF518B is involved in the recruitment of the enzymes and in the deposition of the corresponding epigenetic marks. The results highlight the relevance of epigenetic changes in cancer development, and open the possibility of developing therapeutic approaches, as the introduction of epigenetic modifications is reversible. Abstract The ZNF518B gene, which is up-regulated in colorectal cancer, plays a role in cell dissemination and metastasis. It encodes a zinc-finger protein, which interacts with histone methyltransferases G9A and EZH2. The expression of the two major mRNA isoforms 1 (coding for the full protein) and 2 was quantified by RT-qPCR in a cohort of 66 patients. The effects of silencing ZNF518B on the transcriptome of DLD1 and HCT116 cells were analysed by Clariom-S assays and validated by RT-qPCR. The recruitment of methyltransferases and the presence of H3K27me3 were studied by chromatin immunoprecipitation (ChIP). The ratio (isoform 2)/(isoform 1) negatively correlated with the relapsing of disease. The study of the transcriptome of DLD1 and HCT116 cells revealed that many genes affected by silencing ZNF518B are related to cancer. After crossing these results with the list of genes affected by silencing the histone methyltransferases (retrieved in silico), five genes were selected. ChIP analysis revealed that the recruitment of EZH2 is ZNF518B-dependent in KAT2B, RGS4 and EFNA5; the level of H3K27me3 changes in accordance. G9A also binds RGS4 and PADI3 in a ZNF518B-dependent manner. The results highlight the importance of epigenetics in cancer and open a novel therapeutic possibility, as inhibition of histone methyltransferases may reverse the disease-linked histone marks.
Collapse
|
45
|
Sun T, Zhang K, Pangeni RP, Wu J, Li W, Du Y, Guo Y, Chaurasiya S, Arvanitis L, Raz DJ. G9a Promotes Invasion and Metastasis of Non-Small Cell Lung Cancer through Enhancing Focal Adhesion Kinase Activation via NF-κB Signaling Pathway. Mol Cancer Res 2021; 19:429-440. [PMID: 33298547 PMCID: PMC8785801 DOI: 10.1158/1541-7786.mcr-20-0557] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/15/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022]
Abstract
Potential roles of euchromatic histone methyltransferase 2 (EHMT2 or G9a) in invasion and metastasis are not well understood in non-small cell lung cancer (NSCLC). Here, we investigated the effect and underlying mechanisms of G9a and therapeutic implications of targeting G9a in the invasion and metastasis of NSCLC. Overexpression of G9a significantly enhanced in vitro proliferation and invasion, while knockdown of G9a drastically suppressed in vivo growth and metastasis of A549 and H1299 NSCLC cells. Knockdown or inhibition of G9a significantly decreased the expression of focal adhesion kinase (FAK) protein and activation of FAK pathway. In addition, defactinib, a potent FAK inhibitor, partially abolished the G9a-enhanced invasion in these NSCLC cells. Furthermore, targeting G9a was found to suppress NF-κB transcriptional activity in NSCLC cells through stabilizing NF-κB inhibitor alpha (IκBα), while an NF-κB inhibitor Parthenilide partially abolished the G9a-enhanced FAK activation, which suggests that G9a-enhanced invasion and activation of FAK is mediated by elevated NF-κB activity. Notably, a strong positive correlation between the IHC staining of G9a and phosphorylated FAK proteins was identified in H1299 xenografts and 159 cases of NSCLC tissues (R = 0.408). IMPLICATIONS: The findings of this study strongly demonstrate that G9a may promote invasion and metastasis of NSCLC cells by enhancing FAK signaling pathway via elevating NF-κB transcriptional activity, indicating potential significance and therapeutic implications of these pathways in the invasion and metastasis of NSCLCs that overexpress G9a protein.
Collapse
Affiliation(s)
- Ting Sun
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, California
- Laboratory of Surgery, the General Hospital of Ningxia Medical University, Yinchuan, China
| | - Keqiang Zhang
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, California.
| | - Rajendra P Pangeni
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, California
| | - Jun Wu
- Division of Comparative Medicine, City of Hope National Medical Center, Duarte, California
| | - Wendong Li
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, California
| | - Yong Du
- Laboratory of Surgery, the General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yuming Guo
- Division of Comparative Medicine, City of Hope National Medical Center, Duarte, California
| | | | - Leonidas Arvanitis
- Department of Pathology, City of Hope National Medical Center, Duarte, California
| | - Dan J Raz
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, California.
| |
Collapse
|
46
|
Bhat KP, Ümit Kaniskan H, Jin J, Gozani O. Epigenetics and beyond: targeting writers of protein lysine methylation to treat disease. Nat Rev Drug Discov 2021; 20:265-286. [PMID: 33469207 DOI: 10.1038/s41573-020-00108-x] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Protein lysine methylation is a crucial post-translational modification that regulates the functions of both histone and non-histone proteins. Deregulation of the enzymes or 'writers' of protein lysine methylation, lysine methyltransferases (KMTs), is implicated in the cause of many diseases, including cancer, mental health disorders and developmental disorders. Over the past decade, significant advances have been made in developing drugs to target KMTs that are involved in histone methylation and epigenetic regulation. The first of these inhibitors, tazemetostat, was recently approved for the treatment of epithelioid sarcoma and follicular lymphoma, and several more are in clinical and preclinical evaluation. Beyond chromatin, the many KMTs that regulate protein synthesis and other fundamental biological processes are emerging as promising new targets for drug development to treat diverse diseases.
Collapse
Affiliation(s)
- Kamakoti P Bhat
- Department of Biology, Stanford University, Stanford, CA, USA
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
47
|
Padeken J, Methot S, Zeller P, Delaney CE, Kalck V, Gasser SM. Argonaute NRDE-3 and MBT domain protein LIN-61 redundantly recruit an H3K9me3 HMT to prevent embryonic lethality and transposon expression. Genes Dev 2021; 35:82-101. [PMID: 33303642 PMCID: PMC7778263 DOI: 10.1101/gad.344234.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022]
Abstract
The establishment and maintenance of chromatin domains shape the epigenetic memory of a cell, with the methylation of histone H3 lysine 9 (H3K9me) defining transcriptionally silent heterochromatin. We show here that the C. elegans SET-25 (SUV39/G9a) histone methyltransferase (HMT), which catalyzes H3K9me1, me2 and me3, can establish repressed chromatin domains de novo, unlike the SETDB1 homolog MET-2. Thus, SET-25 is needed to silence novel insertions of RNA or DNA transposons, and repress tissue-specific genes de novo during development. We identify two partially redundant pathways that recruit SET-25 to its targets. One pathway requires LIN-61 (L3MBTL2), which uses its four MBT domains to bind the H3K9me2 deposited by MET-2. The second pathway functions independently of MET-2 and involves the somatic Argonaute NRDE-3 and small RNAs. This pathway targets primarily highly conserved RNA and DNA transposons. These redundant SET-25 targeting pathways (MET-2-LIN-61-SET-25 and NRDE-3-SET-25) ensure repression of intact transposons and de novo insertions, while MET-2 can act alone to repress simple and satellite repeats. Removal of both pathways in the met-2;nrde-3 double mutant leads to the loss of somatic H3K9me2 and me3 and the synergistic derepression of transposons in embryos, strongly elevating embryonic lethality.
Collapse
Affiliation(s)
- Jan Padeken
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Stephen Methot
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Peter Zeller
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
- Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Colin E Delaney
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Veronique Kalck
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
- Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
48
|
Saha N, Muntean AG. Insight into the multi-faceted role of the SUV family of H3K9 methyltransferases in carcinogenesis and cancer progression. Biochim Biophys Acta Rev Cancer 2020; 1875:188498. [PMID: 33373647 DOI: 10.1016/j.bbcan.2020.188498] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022]
Abstract
Growing evidence implicates histone H3 lysine 9 methylation in tumorigenesis. The SUV family of H3K9 methyltransferases, which include G9a, GLP, SETDB1, SETDB2, SUV39H1 and SUV39H2 deposit H3K9me1/2/3 marks at euchromatic and heterochromatic regions, catalyzed by their conserved SET domain. In cancer, this family of enzymes can be deregulated by genomic alterations and transcriptional mis-expression leading to alteration of transcriptional programs. In solid and hematological malignancies, studies have uncovered pro-oncogenic roles for several H3K9 methyltransferases and accordingly, small molecule inhibitors are being tested as potential therapies. However, emerging evidence demonstrate onco-suppressive roles for these enzymes in cancer development as well. Here, we review the role H3K9 methyltransferases play in tumorigenesis focusing on gene targets and biological pathways affected due to misregulation of these enzymes. We also discuss molecular mechanisms regulating H3K9 methyltransferases and their influence on cancer. Finally, we describe the impact of H3K9 methylation on therapy induced resistance in carcinoma. Converging evidence point to multi-faceted roles for H3K9 methyltransferases in development and cancer that encourages a deeper understanding of these enzymes to inform novel therapy.
Collapse
Affiliation(s)
- Nirmalya Saha
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America
| | - Andrew G Muntean
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America.
| |
Collapse
|
49
|
Xavier PLP, Müller S, Fukumasu H. Epigenetic Mechanisms in Canine Cancer. Front Oncol 2020; 10:591843. [PMID: 33194754 PMCID: PMC7646326 DOI: 10.3389/fonc.2020.591843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/05/2020] [Indexed: 01/18/2023] Open
Abstract
A plethora of data has highlighted the role of epigenetics in the development of cancer. Initiation and progression of different cancer types are associated with a variety of changes of epigenetic mechanisms, including aberrant DNA methylation, histone modifications, and miRNA expression. At the same time, advances in the available epigenetic tools allow to investigate and reverse these epigenetic changes and form the basis for the development of anticancer drugs in human oncology. Although human and canine cancer shares several common features, only recently that studies emerged investigating the epigenetic landscape in canine cancer and applying epigenetic modulators to canine cancer. This review focuses on the existing studies involving epigenetic changes in different types of canine cancer and the use of small-molecule inhibitors in canine cancer cells.
Collapse
Affiliation(s)
- Pedro Luiz Porfirio Xavier
- Laboratory of Comparative and Translational Oncology (LOCT), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Brazil
| | - Susanne Müller
- Structural Genomics Consortium and Institute of Pharmaceutical Chemistry, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Heidge Fukumasu
- Laboratory of Comparative and Translational Oncology (LOCT), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Brazil
| |
Collapse
|
50
|
Chopra A, Cho WC, Willmore WG, Biggar KK. Hypoxia-Inducible Lysine Methyltransferases: G9a and GLP Hypoxic Regulation, Non-histone Substrate Modification, and Pathological Relevance. Front Genet 2020; 11:579636. [PMID: 33088284 PMCID: PMC7495024 DOI: 10.3389/fgene.2020.579636] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/13/2020] [Indexed: 12/29/2022] Open
Abstract
Oxygen sensing is inherent among most animal lifeforms and is critical for organism survival. Oxygen sensing mechanisms collectively trigger cellular and physiological responses that enable adaption to a reduction in ideal oxygen levels. The major mechanism by which oxygen-responsive changes in the transcriptome occur are mediated through the hypoxia-inducible factor (HIF) pathway. Upon reduced oxygen conditions, HIF activates hypoxia-responsive gene expression programs. However, under normal oxygen conditions, the activity of HIF is regularly suppressed by cellular oxygen sensors; prolyl-4 and asparaginyl hydroxylases. Recently, these oxygen sensors have also been found to suppress the function of two lysine methyltransferases, G9a and G9a-like protein (GLP). In this manner, the methyltransferase activity of G9a and GLP are hypoxia-inducible and thus present a new avenue of low-oxygen signaling. Furthermore, G9a and GLP elicit lysine methylation on a wide variety of non-histone proteins, many of which are known to be regulated by hypoxia. In this article we aim to review the effects of oxygen on G9a and GLP function, non-histone methylation events inflicted by these methyltransferases, and the clinical relevance of these enzymes in cancer.
Collapse
Affiliation(s)
- Anand Chopra
- Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - William G. Willmore
- Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Kyle K. Biggar
- Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
- Department of Biology, Carleton University, Ottawa, ON, Canada
| |
Collapse
|