1
|
Frigerio C, Galli M, Castelli S, Da Prada A, Clerici M. Control of Replication Stress Response by Cytosolic Fe-S Cluster Assembly (CIA) Machinery. Cells 2025; 14:442. [PMID: 40136691 PMCID: PMC11941123 DOI: 10.3390/cells14060442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
Accurate DNA replication is essential for the maintenance of genome stability and the generation of healthy offspring. When DNA replication is challenged, signals accumulate at blocked replication forks that elicit a multifaceted cellular response, orchestrating DNA replication, DNA repair and cell cycle progression. This replication stress response promotes the recovery of DNA replication, maintaining chromosome integrity and preventing mutations. Defects in this response are linked to heightened genetic instability, which contributes to tumorigenesis and genetic disorders. Iron-sulfur (Fe-S) clusters are emerging as important cofactors in supporting the response to replication stress. These clusters are assembled and delivered to target proteins that function in the cytosol and nucleus via the conserved cytosolic Fe-S cluster assembly (CIA) machinery and the CIA targeting complex. This review summarizes recent advances in understanding the structure and function of the CIA machinery in yeast and mammals, emphasizing the critical role of Fe-S clusters in the replication stress response.
Collapse
Affiliation(s)
| | | | | | | | - Michela Clerici
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy; (C.F.); (M.G.); (S.C.); (A.D.P.)
| |
Collapse
|
2
|
Song L, Xie H, Fan H, Zhang Y, Cheng Z, Chen J, Guo Y, Zhang S, Zhou X, Li Z, Liao H, Han J, Huang J, Zhou J, Fang D, Liu T. Dynamic control of RNA-DNA hybrid formation orchestrates DNA2 activation at stalled forks by RNAPII and DDX39A. Mol Cell 2025; 85:506-522.e7. [PMID: 39706186 DOI: 10.1016/j.molcel.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/17/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
Stalled replication forks, susceptible to nucleolytic threats, necessitate protective mechanisms involving pivotal factors such as the tumor suppressors BRCA1 and BRCA2. Here, we demonstrate that, upon replication stress, RNA polymerase II (RNAPII) is recruited to stalled forks, actively promoting the transient formation of RNA-DNA hybrids. These hybrids act as safeguards, preventing premature engagement by the DNA2 nuclease and uncontrolled DNA2-mediated degradation of nascent DNA. Furthermore, we provide evidence that DExD box polypeptide 39A (DDX39A), serving as an RNA-DNA resolver, unwinds these structures and facilitates regulated DNA2 access to stalled forks. This orchestrated process enables controlled DNA2-dependent stalled fork processing and restart. Finally, we reveal that loss of DDX39A enhances stalled fork protection in BRCA1/2-deficient cells, consequently conferring chemoresistance. Our results suggest that the dynamic regulation of RNA-DNA hybrid formation at stalled forks by RNAPII and DDX39A precisely governs the timing of DNA2 activation, contributing to stalled fork protection, processing, and restart, ultimately promoting genome stability.
Collapse
Affiliation(s)
- Lizhi Song
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China; Department of Cell Biology, Zhejiang University School of Medicine, 310058 Hangzhou, China; MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China
| | - Haihua Xie
- Department of Cell Biology, Zhejiang University School of Medicine, 310058 Hangzhou, China
| | - Haonan Fan
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China
| | - Yanjun Zhang
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000 Yiwu, China
| | - Zixiu Cheng
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China
| | - Junliang Chen
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000 Shaoxing, China
| | - Yuzun Guo
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000 Shaoxing, China
| | - Shudi Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China
| | - Xinyu Zhou
- Department of Cell Biology, Zhejiang University School of Medicine, 310058 Hangzhou, China
| | - Zhaoshuang Li
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China
| | - Haoxiang Liao
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China
| | - Jinhua Han
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310030 Hangzhou, China
| | - Jun Huang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China; MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000 Shaoxing, China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China
| | - Dong Fang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China
| | - Ting Liu
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China; Department of Cell Biology, Zhejiang University School of Medicine, 310058 Hangzhou, China.
| |
Collapse
|
3
|
Gao J, Proffitt D, Marecki J, Protacio R, Wahls W, Byrd A, Raney K. Two residues in the DNA binding site of Pif1 helicase are essential for nuclear functions but dispensable for mitochondrial respiratory growth. Nucleic Acids Res 2024; 52:6543-6557. [PMID: 38752483 PMCID: PMC11194084 DOI: 10.1093/nar/gkae403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024] Open
Abstract
Pif1 helicase functions in both the nucleus and mitochondria. Pif1 tightly couples ATP hydrolysis, single-stranded DNA translocation, and duplex DNA unwinding. We investigated two Pif1 variants (F723A and T464A) that have each lost one site of interaction of the protein with the DNA substrate. Both variants exhibit minor reductions in affinity for DNA and ATP hydrolysis but have impaired DNA unwinding activity. However, these variants translocate on single-stranded DNA faster than the wildtype enzyme and can slide on the DNA substrate in an ATP-independent manner. This suggests they have lost their grip on the DNA, interfering with coupling ATP hydrolysis to translocation and unwinding. Yeast expressing these variants have increased gross chromosomal rearrangements, increased telomere length, and can overcome the lethality of dna2Δ, similar to phenotypes of yeast lacking Pif1. However, unlike pif1Δ mutants, they are viable on glycerol containing media and maintain similar mitochondrial DNA copy numbers as Pif1 wildtype. Overall, our data indicate that a tight grip of the trailing edge of the Pif1 enzyme on the DNA couples ATP hydrolysis to DNA translocation and DNA unwinding. This tight grip appears to be essential for the Pif1 nuclear functions tested but is dispensable for mitochondrial respiratory growth.
Collapse
Affiliation(s)
- Jun Gao
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| | - David R Proffitt
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| | - John C Marecki
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| | - Reine U Protacio
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| | - Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| |
Collapse
|
4
|
Martins DJ, Di Lazzaro Filho R, Bertola DR, Hoch NC. Rothmund-Thomson syndrome, a disorder far from solved. FRONTIERS IN AGING 2023; 4:1296409. [PMID: 38021400 PMCID: PMC10676203 DOI: 10.3389/fragi.2023.1296409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Rothmund-Thomson syndrome (RTS) is a rare autosomal recessive disorder characterized by a range of clinical symptoms, including poikiloderma, juvenile cataracts, short stature, sparse hair, eyebrows/eyelashes, nail dysplasia, and skeletal abnormalities. While classically associated with mutations in the RECQL4 gene, which encodes a DNA helicase involved in DNA replication and repair, three additional genes have been recently identified in RTS: ANAPC1, encoding a subunit of the APC/C complex; DNA2, which encodes a nuclease/helicase involved in DNA repair; and CRIPT, encoding a poorly characterized protein implicated in excitatory synapse formation and splicing. Here, we review the clinical spectrum of RTS patients, analyze the genetic basis of the disease, and discuss molecular functions of the affected genes, drawing some novel genotype-phenotype correlations and proposing avenues for future studies into this enigmatic disorder.
Collapse
Affiliation(s)
- Davi Jardim Martins
- Genomic Stability Unit, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Ricardo Di Lazzaro Filho
- Center for Human Genome Studies, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Dasa Genômica/Genera, Genômica, São Paulo, Brazil
| | - Debora Romeo Bertola
- Center for Human Genome Studies, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Genetics Unit, Department of Pediatrics, Faculty of Medicine, Children’s Institute, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Nícolas Carlos Hoch
- Genomic Stability Unit, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Gali VK, Monerawela C, Laksir Y, Hiraga SI, Donaldson AD. Checkpoint phosphorylation sites on budding yeast Rif1 protect nascent DNA from degradation by Sgs1-Dna2. PLoS Genet 2023; 19:e1011044. [PMID: 37956214 PMCID: PMC10681312 DOI: 10.1371/journal.pgen.1011044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/27/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
In budding yeast the Rif1 protein is important for protecting nascent DNA at blocked replication forks, but the mechanism has been unclear. Here we show that budding yeast Rif1 must interact with Protein Phosphatase 1 to protect nascent DNA. In the absence of Rif1, removal of either Dna2 or Sgs1 prevents nascent DNA degradation, implying that Rif1 protects nascent DNA by targeting Protein Phosphatase 1 to oppose degradation by the Sgs1-Dna2 nuclease-helicase complex. This functional role for Rif1 is conserved from yeast to human cells. Yeast Rif1 was previously identified as a target of phosphorylation by the Tel1/Mec1 checkpoint kinases, but the importance of this phosphorylation has been unclear. We find that nascent DNA protection depends on a cluster of Tel1/Mec1 consensus phosphorylation sites in the Rif1 protein sequence, indicating that the intra-S phase checkpoint acts to protect nascent DNA through Rif1 phosphorylation. Our observations uncover the pathway by which budding yeast Rif1 stabilises newly synthesised DNA, highlighting the crucial role Rif1 plays in maintaining genome stability from lower eukaryotes to humans.
Collapse
Affiliation(s)
- Vamsi Krishna Gali
- Chromosome & Cellular Dynamics Section, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Chandre Monerawela
- Chromosome & Cellular Dynamics Section, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Yassine Laksir
- Chromosome & Cellular Dynamics Section, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Shin-Ichiro Hiraga
- Chromosome & Cellular Dynamics Section, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Anne D Donaldson
- Chromosome & Cellular Dynamics Section, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| |
Collapse
|
6
|
Liu W, Polaczek P, Roubal I, Meng Y, Choe WC, Caron MC, Sedgeman C, Xi Y, Liu C, Wu Q, Zheng L, Masson JY, Shen B, Campbell J. FANCD2 and RAD51 recombinase directly inhibit DNA2 nuclease at stalled replication forks and FANCD2 acts as a novel RAD51 mediator in strand exchange to promote genome stability. Nucleic Acids Res 2023; 51:9144-9165. [PMID: 37526271 PMCID: PMC10516637 DOI: 10.1093/nar/gkad624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 06/17/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023] Open
Abstract
FANCD2 protein, a key coordinator and effector of the interstrand crosslink repair pathway, is also required to prevent excessive nascent strand degradation at hydroxyurea-induced stalled forks. The RAD51 recombinase has also been implicated in regulation of resection at stalled replication forks. The mechanistic contributions of these proteins to fork protection are not well understood. Here, we used purified FANCD2 and RAD51 to study how each protein regulates DNA resection at stalled forks. We characterized three mechanisms of FANCD2-mediated fork protection: (1) The N-terminal domain of FANCD2 inhibits the essential DNA2 nuclease activity by directly binding to DNA2 accounting for over-resection in FANCD2 defective cells. (2) Independent of dimerization with FANCI, FANCD2 itself stabilizes RAD51 filaments to inhibit multiple nucleases, including DNA2, MRE11 and EXO1. (3) Unexpectedly, we uncovered a new FANCD2 function: by stabilizing RAD51 filaments, FANCD2 acts to stimulate the strand exchange activity of RAD51. Our work biochemically explains non-canonical mechanisms by which FANCD2 and RAD51 protect stalled forks. We propose a model in which the strand exchange activity of FANCD2 provides a simple molecular explanation for genetic interactions between FANCD2 and BRCA2 in the FA/BRCA fork protection pathway.
Collapse
Affiliation(s)
- Wenpeng Liu
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Piotr Polaczek
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ivan Roubal
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yuan Meng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Won-chae Choe
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marie-Christine Caron
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Carl A Sedgeman
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yu Xi
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Changwei Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Qiong Wu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Judith L Campbell
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
7
|
Zhai B, Zhang S, Li B, Zhang J, Yang X, Tan Y, Wang Y, Tan T, Yang X, Chen B, Tian Z, Cao Y, Huang Q, Gao J, Wang S, Zhang L. Dna2 removes toxic ssDNA-RPA filaments generated from meiotic recombination-associated DNA synthesis. Nucleic Acids Res 2023; 51:7914-7935. [PMID: 37351599 PMCID: PMC10450173 DOI: 10.1093/nar/gkad537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
During the repair of DNA double-strand breaks (DSBs), de novo synthesized DNA strands can displace the parental strand to generate single-strand DNAs (ssDNAs). Many programmed DSBs and thus many ssDNAs occur during meiosis. However, it is unclear how these ssDNAs are removed for the complete repair of meiotic DSBs. Here, we show that meiosis-specific depletion of Dna2 (dna2-md) results in an abundant accumulation of RPA and an expansion of RPA from DSBs to broader regions in Saccharomyces cerevisiae. As a result, DSB repair is defective and spores are inviable, although the levels of crossovers/non-crossovers seem to be unaffected. Furthermore, Dna2 induction at pachytene is highly effective in removing accumulated RPA and restoring spore viability. Moreover, the depletion of Pif1, an activator of polymerase δ required for meiotic recombination-associated DNA synthesis, and Pif1 inhibitor Mlh2 decreases and increases RPA accumulation in dna2-md, respectively. In addition, blocking DNA synthesis during meiotic recombination dramatically decreases RPA accumulation in dna2-md. Together, our findings show that meiotic DSB repair requires Dna2 to remove ssDNA-RPA filaments generated from meiotic recombination-associated DNA synthesis. Additionally, we showed that Dna2 also regulates DSB-independent RPA distribution.
Collapse
Affiliation(s)
- Binyuan Zhai
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Shuxian Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Bo Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Jiaming Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xuan Yang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yingjin Tan
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ying Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Taicong Tan
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiao Yang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Beiyi Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
| | - Zhongyu Tian
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
| | - Yanding Cao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qilai Huang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Jinmin Gao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Shunxin Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Liangran Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
8
|
Choudhary R, Niska-Blakie J, Adhil M, Liberi G, Achar YJ, Giannattasio M, Foiani M. Sen1 and Rrm3 ensure permissive topological conditions for replication termination. Cell Rep 2023; 42:112747. [PMID: 37405920 DOI: 10.1016/j.celrep.2023.112747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/17/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Replication forks terminate at TERs and telomeres. Forks that converge or encounter transcription generate topological stress. Combining genetics, genomics, and transmission electron microscopy, we find that Rrm3hPif1 and Sen1hSenataxin helicases assist termination at TERs; Sen1 specifically acts at telomeres. rrm3 and sen1 genetically interact and fail to terminate replication, exhibiting fragility at termination zones (TERs) and telomeres. sen1rrm3 accumulates RNA-DNA hybrids and X-shaped gapped or reversed converging forks at TERs; sen1, but not rrm3, builds up RNA polymerase II (RNPII) at TERs and telomeres. Rrm3 and Sen1 restrain Top1 and Top2 activities, preventing toxic accumulation of positive supercoil at TERs and telomeres. We suggest that Rrm3 and Sen1 coordinate the activities of Top1 and Top2 when forks encounter transcription head on or codirectionally, respectively, thus preventing the slowing down of DNA and RNA polymerases. Hence Rrm3 and Sen1 are indispensable to generate permissive topological conditions for replication termination.
Collapse
Affiliation(s)
- Ramveer Choudhary
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Joanna Niska-Blakie
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Mohamood Adhil
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Giordano Liberi
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza," CNR, Pavia, Italy
| | | | - Michele Giannattasio
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Marco Foiani
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy.
| |
Collapse
|
9
|
Zhang T, Rawal Y, Jiang H, Kwon Y, Sung P, Greenberg RA. Break-induced replication orchestrates resection-dependent template switching. Nature 2023; 619:201-208. [PMID: 37316655 PMCID: PMC10937050 DOI: 10.1038/s41586-023-06177-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 05/05/2023] [Indexed: 06/16/2023]
Abstract
Break-induced telomere synthesis (BITS) is a RAD51-independent form of break-induced replication that contributes to alternative lengthening of telomeres1,2. This homology-directed repair mechanism utilizes a minimal replisome comprising proliferating cell nuclear antigen (PCNA) and DNA polymerase-δ to execute conservative DNA repair synthesis over many kilobases. How this long-tract homologous recombination repair synthesis responds to complex secondary DNA structures that elicit replication stress remains unclear3-5. Moreover, whether the break-induced replisome orchestrates additional DNA repair events to ensure processivity is also unclear. Here we combine synchronous double-strand break induction with proteomics of isolated chromatin segments (PICh) to capture the telomeric DNA damage response proteome during BITS1,6. This approach revealed a replication stress-dominated response, highlighted by repair synthesis-driven DNA damage tolerance signalling through RAD18-dependent PCNA ubiquitination. Furthermore, the SNM1A nuclease was identified as the major effector of ubiquitinated PCNA-dependent DNA damage tolerance. SNM1A recognizes the ubiquitin-modified break-induced replisome at damaged telomeres, and this directs its nuclease activity to promote resection. These findings show that break-induced replication orchestrates resection-dependent lesion bypass, with SNM1A nuclease activity serving as a critical effector of ubiquitinated PCNA-directed recombination in mammalian cells.
Collapse
Affiliation(s)
- Tianpeng Zhang
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yashpal Rawal
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Haoyang Jiang
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Roger A Greenberg
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Sun H, Ma L, Tsai YF, Abeywardana T, Shen B, Zheng L. Okazaki fragment maturation: DNA flap dynamics for cell proliferation and survival. Trends Cell Biol 2023; 33:221-234. [PMID: 35879148 PMCID: PMC9867784 DOI: 10.1016/j.tcb.2022.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 01/24/2023]
Abstract
Unsuccessful processing of Okazaki fragments leads to the accumulation of DNA breaks which are associated with many human diseases including cancer and neurodegenerative disorders. Recently, Okazaki fragment maturation (OFM) has received renewed attention regarding how unprocessed Okazaki fragments are sensed and repaired, and how inappropriate OFM impacts on genome stability and cell viability, especially in cancer cells. We provide an overview of the highly efficient and faithful canonical OFM pathways and their regulation of genomic integrity and cell survival. We also discuss how cells induce alternative error-prone OFM processes to promote cell survival in response to environmental stresses. Such stress-induced OFM processes may be important mechanisms driving mutagenesis, cellular evolution, and resistance to radio/chemotherapy and targeted therapeutics in human cancers.
Collapse
Affiliation(s)
- Haitao Sun
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Lingzi Ma
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Ya-Fang Tsai
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Tharindu Abeywardana
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA.
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
11
|
Malone EG, Thompson MD, Byrd AK. Role and Regulation of Pif1 Family Helicases at the Replication Fork. Int J Mol Sci 2022; 23:ijms23073736. [PMID: 35409096 PMCID: PMC8998199 DOI: 10.3390/ijms23073736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Pif1 helicases are a multifunctional family of DNA helicases that are important for many aspects of genomic stability in the nucleus and mitochondria. Pif1 helicases are conserved from bacteria to humans. Pif1 helicases play multiple roles at the replication fork, including promoting replication through many barriers such as G-quadruplex DNA, the rDNA replication fork barrier, tRNA genes, and R-loops. Pif1 helicases also regulate telomerase and promote replication termination, Okazaki fragment maturation, and break-induced replication. This review highlights many of the roles and regulations of Pif1 at the replication fork that promote cellular health and viability.
Collapse
Affiliation(s)
- Emory G. Malone
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.G.M.); (M.D.T.)
| | - Matthew D. Thompson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.G.M.); (M.D.T.)
| | - Alicia K. Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.G.M.); (M.D.T.)
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: ; Tel.: +1-501-526-6488
| |
Collapse
|
12
|
Shen J, Zhao Y, Pham NT, Li Y, Zhang Y, Trinidad J, Ira G, Qi Z, Niu H. Deciphering the mechanism of processive ssDNA digestion by the Dna2-RPA ensemble. Nat Commun 2022; 13:359. [PMID: 35042867 PMCID: PMC8766458 DOI: 10.1038/s41467-021-27940-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Single-stranded DNA (ssDNA) commonly occurs as intermediates in DNA metabolic pathways. The ssDNA binding protein, RPA, not only protects the integrity of ssDNA, but also directs the downstream factor that signals or repairs the ssDNA intermediate. However, it remains unclear how these enzymes/factors outcompete RPA to access ssDNA. Using the budding yeast Saccharomyces cerevisiae as a model system, we find that Dna2 — a key nuclease in DNA replication and repair — employs a bimodal interface to act with RPA both in cis and in trans. The cis-activity makes RPA a processive unit for Dna2-catalyzed ssDNA digestion, where RPA delivers its bound ssDNA to Dna2. On the other hand, activity in trans is mediated by an acidic patch on Dna2, which enables it to function with a sub-optimal amount of RPA, or to overcome DNA secondary structures. The trans-activity mode is not required for cell viability, but is necessary for effective double strand break (DSB) repair. RPA protects the integrity of single stranded DNA during DNA repair processes. Here the authors show how RPA actively participates in DNA transactions through its interactions with the endonuclease Dna2.
Collapse
Affiliation(s)
- Jiangchuan Shen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Yiling Zhao
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Nhung Tuyet Pham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuxi Li
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Yixiang Zhang
- Department of Chemistry, Biological Mass Spectrometry Facility, Indiana University, Bloomington, IN, 47405, USA
| | - Jonathan Trinidad
- Department of Chemistry, Biological Mass Spectrometry Facility, Indiana University, Bloomington, IN, 47405, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhi Qi
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Hengyao Niu
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
13
|
Distinct RPA domains promote recruitment and the helicase-nuclease activities of Dna2. Nat Commun 2021; 12:6521. [PMID: 34764291 PMCID: PMC8586334 DOI: 10.1038/s41467-021-26863-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/21/2021] [Indexed: 01/25/2023] Open
Abstract
The Dna2 helicase-nuclease functions in concert with the replication protein A (RPA) in DNA double-strand break repair. Using ensemble and single-molecule biochemistry, coupled with structure modeling, we demonstrate that the stimulation of S. cerevisiae Dna2 by RPA is not a simple consequence of Dna2 recruitment to single-stranded DNA. The large RPA subunit Rfa1 alone can promote the Dna2 nuclease activity, and we identified mutations in a helix embedded in the N-terminal domain of Rfa1 that specifically disrupt this capacity. The same RPA mutant is instead fully functional to recruit Dna2 and promote its helicase activity. Furthermore, we found residues located on the outside of the central DNA-binding OB-fold domain Rfa1-A, which are required to promote the Dna2 motor activity. Our experiments thus unexpectedly demonstrate that different domains of Rfa1 regulate Dna2 recruitment, and its nuclease and helicase activities. Consequently, the identified separation-of-function RPA variants are compromised to stimulate Dna2 in the processing of DNA breaks. The results explain phenotypes of replication-proficient but radiation-sensitive RPA mutants and illustrate the unprecedented functional interplay of RPA and Dna2. An enzymatic ensemble including Dna2 functions in DNA end resection; the function of the single-stranded DNA binding protein RPA in this complex has been underappreciated. Here the authors employ molecular modeling, biochemistry, and single molecule biophysics to reveal RPA directly promotes Dna2 recruitment, nuclease and helicase activities.
Collapse
|
14
|
Koussa NC, Smith DJ. Post-replicative nick translation occurs on the lagging strand during prolonged depletion of DNA ligase I in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2021; 11:6298594. [PMID: 34849819 PMCID: PMC8496332 DOI: 10.1093/g3journal/jkab205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/09/2021] [Indexed: 01/23/2023]
Abstract
During lagging-strand synthesis, strand-displacement synthesis by DNA polymerase delta (Pol ∂), coupled to nucleolytic cleavage of DNA flap structures, produces a nick-translation reaction that replaces the DNA at the 5′ end of the preceding Okazaki fragment. Previous work following depletion of DNA ligase I in Saccharomyces cerevisae suggests that DNA-bound proteins, principally nucleosomes and the transcription factors Abf1/Rap1/Reb1, pose a barrier to Pol ∂ synthesis and thereby limit the extent of nick translation in vivo. However, the extended ligase depletion required for these experiments could lead to ongoing, non-physiological nick translation. Here, we investigate nick translation by analyzing Okazaki fragments purified after transient nuclear depletion of DNA ligase I in synchronized or asynchronous Saccharomyces cerevisiae cultures. We observe that, even with a short ligase depletion, Okazaki fragment termini are enriched around nucleosomes and Abf1/Reb1/Rap1-binding sites. However, protracted ligase depletion leads to a global change in the location of these termini, moving them toward nucleosome dyads from a more upstream location and further enriching termini at Abf1/Reb1/Rap1-binding sites. In addition, we observe an under-representation of DNA derived from DNA polymerase alpha—the polymerase that initiates Okazaki fragment synthesis—around the sites of Okazaki termini obtained from very brief ligase depletion. Our data suggest that, while nucleosomes and transcription factors do limit strand-displacement synthesis by Pol ∂ in vivo, post-replicative nick translation can occur at unligated Okazaki fragment termini such that previous analyses represent an overestimate of the extent of nick translation occurring during normal lagging-strand synthesis.
Collapse
Affiliation(s)
- Natasha C Koussa
- Department of Biology, New York University, New York, NY 10003, USA
| | - Duncan J Smith
- Department of Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
15
|
Thakar T, Moldovan GL. The emerging determinants of replication fork stability. Nucleic Acids Res 2021; 49:7224-7238. [PMID: 33978751 PMCID: PMC8287955 DOI: 10.1093/nar/gkab344] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022] Open
Abstract
A universal response to replication stress is replication fork reversal, where the nascent complementary DNA strands are annealed to form a protective four-way junction allowing forks to avert DNA damage while replication stress is resolved. However, reversed forks are in turn susceptible to nucleolytic digestion of the regressed nascent DNA arms and rely on dedicated mechanisms to protect their integrity. The most well studied fork protection mechanism involves the BRCA pathway and its ability to catalyze RAD51 nucleofilament formation on the reversed arms of stalled replication forks. Importantly, the inability to prevent the degradation of reversed forks has emerged as a hallmark of BRCA deficiency and underlies genome instability and chemosensitivity in BRCA-deficient cells. In the past decade, multiple factors underlying fork stability have been discovered. These factors either cooperate with the BRCA pathway, operate independently from it to augment fork stability in its absence, or act as enablers of fork degradation. In this review, we examine these novel determinants of fork stability, explore the emergent conceptual underpinnings underlying fork protection, as well as the impact of fork protection on cellular viability and cancer therapy.
Collapse
Affiliation(s)
- Tanay Thakar
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
16
|
Branzei D, Szakal B. DNA helicases in homologous recombination repair. Curr Opin Genet Dev 2021; 71:27-33. [PMID: 34271541 DOI: 10.1016/j.gde.2021.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022]
Abstract
Helicases are in the spotlight of DNA metabolism and are critical for DNA repair in all domains of life. At their biochemical core, they bind and hydrolyze ATP, converting this energy to translocate unidirectionally, with different strand polarities and substrate binding specificities, along one strand of a nucleic acid. In doing so, DNA and RNA helicases separate duplex strands or remove nucleoprotein complexes, affecting DNA repair and the architecture of replication forks. In this review, we focus on recent advances on the roles and regulations of DNA helicases in homologous recombination repair, a critical pathway for mending damaged chromosomes and for ensuring genome integrity.
Collapse
Affiliation(s)
- Dana Branzei
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy; Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Via Abbiategrasso 207, 27100, Pavia, Italy.
| | - Barnabas Szakal
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| |
Collapse
|
17
|
DNA2 in Chromosome Stability and Cell Survival-Is It All about Replication Forks? Int J Mol Sci 2021; 22:ijms22083984. [PMID: 33924313 PMCID: PMC8069077 DOI: 10.3390/ijms22083984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 01/16/2023] Open
Abstract
The conserved nuclease-helicase DNA2 has been linked to mitochondrial myopathy, Seckel syndrome, and cancer. Across species, the protein is indispensable for cell proliferation. On the molecular level, DNA2 has been implicated in DNA double-strand break (DSB) repair, checkpoint activation, Okazaki fragment processing (OFP), and telomere homeostasis. More recently, a critical contribution of DNA2 to the replication stress response and recovery of stalled DNA replication forks (RFs) has emerged. Here, we review the available functional and phenotypic data and propose that the major cellular defects associated with DNA2 dysfunction, and the links that exist with human disease, can be rationalized through the fundamental importance of DNA2-dependent RF recovery to genome duplication. Being a crucial player at stalled RFs, DNA2 is a promising target for anti-cancer therapy aimed at eliminating cancer cells by replication-stress overload.
Collapse
|
18
|
Falquet B, Ölmezer G, Enkner F, Klein D, Challa K, Appanah R, Gasser SM, Rass U. Disease-associated DNA2 nuclease-helicase protects cells from lethal chromosome under-replication. Nucleic Acids Res 2020; 48:7265-7278. [PMID: 32544229 PMCID: PMC7367196 DOI: 10.1093/nar/gkaa524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/21/2020] [Accepted: 06/09/2020] [Indexed: 01/28/2023] Open
Abstract
DNA2 is an essential nuclease–helicase implicated in DNA repair, lagging-strand DNA synthesis, and the recovery of stalled DNA replication forks (RFs). In Saccharomyces cerevisiae, dna2Δ inviability is reversed by deletion of the conserved helicase PIF1 and/or DNA damage checkpoint-mediator RAD9. It has been suggested that Pif1 drives the formation of long 5′-flaps during Okazaki fragment maturation, and that the essential function of Dna2 is to remove these intermediates. In the absence of Dna2, 5′-flaps are thought to accumulate on the lagging strand, resulting in DNA damage-checkpoint arrest and cell death. In line with Dna2’s role in RF recovery, we find that the loss of Dna2 results in severe chromosome under-replication downstream of endogenous and exogenous RF-stalling. Importantly, unfaithful chromosome replication in Dna2-mutant cells is exacerbated by Pif1, which triggers the DNA damage checkpoint along a pathway involving Pif1’s ability to promote homologous recombination-coupled replication. We propose that Dna2 fulfils its essential function by promoting RF recovery, facilitating replication completion while suppressing excessive RF restart by recombination-dependent replication (RDR) and checkpoint activation. The critical nature of Dna2’s role in controlling the fate of stalled RFs provides a framework to rationalize the involvement of DNA2 in Seckel syndrome and cancer.
Collapse
Affiliation(s)
- Benoît Falquet
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Gizem Ölmezer
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Franz Enkner
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Dominique Klein
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Kiran Challa
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Rowin Appanah
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Ulrich Rass
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| |
Collapse
|
19
|
Sparks MA, Burgers PM, Galletto R. Pif1, RPA, and FEN1 modulate the ability of DNA polymerase δ to overcome protein barriers during DNA synthesis. J Biol Chem 2020; 295:15883-15891. [PMID: 32913126 DOI: 10.1074/jbc.ra120.015699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/09/2020] [Indexed: 01/20/2023] Open
Abstract
Successful DNA replication requires carefully regulated mechanisms to overcome numerous obstacles that naturally occur throughout chromosomal DNA. Scattered across the genome are tightly bound proteins, such as transcription factors and nucleosomes, that are necessary for cell function, but that also have the potential to impede timely DNA replication. Using biochemically reconstituted systems, we show that two transcription factors, yeast Reb1 and Tbf1, and a tightly positioned nucleosome, are strong blocks to the strand displacement DNA synthesis activity of DNA polymerase δ. Although the block imparted by Tbf1 can be overcome by the DNA-binding activity of the single-stranded DNA-binding protein RPA, efficient DNA replication through either a Reb1 or a nucleosome block occurs only in the presence of the 5'-3' DNA helicase Pif1. The Pif1-dependent stimulation of DNA synthesis across strong protein barriers may be beneficial during break-induced replication where barriers are expected to pose a problem to efficient DNA bubble migration. However, in the context of lagging strand DNA synthesis, the efficient disruption of a nucleosome barrier by Pif1 could lead to the futile re-replication of newly synthetized DNA. In the presence of FEN1 endonuclease, the major driver of nick translation during lagging strand replication, Pif1-dependent stimulation of DNA synthesis through a nucleosome or Reb1 barrier is prevented. By cleaving the short 5' tails generated during strand displacement, FEN1 eliminates the entry point for Pif1. We propose that this activity would protect the cell from potential DNA re-replication caused by unwarranted Pif1 interference during lagging strand replication.
Collapse
Affiliation(s)
- Melanie A Sparks
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri USA
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri USA.
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri USA.
| |
Collapse
|
20
|
Appanah R, Jones D, Falquet B, Rass U. Limiting homologous recombination at stalled replication forks is essential for cell viability: DNA2 to the rescue. Curr Genet 2020; 66:1085-1092. [PMID: 32909097 PMCID: PMC7599155 DOI: 10.1007/s00294-020-01106-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022]
Abstract
The disease-associated nuclease–helicase DNA2 has been implicated in DNA end-resection during DNA double-strand break repair, Okazaki fragment processing, and the recovery of stalled DNA replication forks (RFs). Its role in Okazaki fragment processing has been proposed to explain why DNA2 is indispensable for cell survival across organisms. Unexpectedly, we found that DNA2 has an essential role in suppressing homologous recombination (HR)-dependent replication restart at stalled RFs. In the absence of DNA2-mediated RF recovery, excessive HR-restart of stalled RFs results in toxic levels of abortive recombination intermediates that lead to DNA damage-checkpoint activation and terminal cell-cycle arrest. While HR proteins protect and restart stalled RFs to promote faithful genome replication, these findings show how HR-dependent replication restart is actively constrained by DNA2 to ensure cell survival. These new insights disambiguate the effects of DNA2 dysfunction on cell survival, and provide a framework to rationalize the association of DNA2 with cancer and the primordial dwarfism disorder Seckel syndrome based on its role in RF recovery.
Collapse
Affiliation(s)
- Rowin Appanah
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - David Jones
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Benoît Falquet
- Friedrich Miescher Institute for Biomedical Research, 4058, Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, 4056, Basel, Switzerland
| | - Ulrich Rass
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK.
| |
Collapse
|
21
|
Zacheja T, Toth A, Harami GM, Yang Q, Schwindt E, Kovács M, Paeschke K, Burkovics P. Mgs1 protein supports genome stability via recognition of G-quadruplex DNA structures. FASEB J 2020; 34:12646-12662. [PMID: 32748509 DOI: 10.1096/fj.202000886r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/19/2020] [Accepted: 07/10/2020] [Indexed: 01/02/2023]
Abstract
The integrity of the genetic material is crucial for every organism. One intrinsic attack to genome stability is stalling of the replication fork which can result in DNA breakage. Several factors, such as DNA lesions or the formation of stable secondary structures (eg, G-quadruplexes) can lead to replication fork stalling. G-quadruplexes (G4s) are well-characterized stable secondary DNA structures that can form within specific single-stranded DNA sequence motifs and have been shown to block/pause the replication machinery. In most genomes several helicases have been described to regulate G4 unfolding to preserve genome integrity, however, different experiments raise the hypothesis that processing of G4s during DNA replication is more complex and requires additional, so far unknown, proteins. Here, we show that the Saccharomyces cerevisiae Mgs1 protein robustly binds to G4 structures in vitro and preferentially acts at regions with a strong potential to form G4 structures in vivo. Our results suggest that Mgs1 binds to G4-forming sites and has a role in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Theresa Zacheja
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Agnes Toth
- Biological Research Centre, Institute of Genetics, Szeged, Hungary.,Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gabor M Harami
- ELTE-MTA Momentum Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Qianlu Yang
- Department of Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Eike Schwindt
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Mihály Kovács
- ELTE-MTA Momentum Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany.,Department of Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Peter Burkovics
- Biological Research Centre, Institute of Genetics, Szeged, Hungary
| |
Collapse
|
22
|
Charaka V, Tiwari A, Pandita RK, Hunt CR, Pandita TK. Role of HP1β during spermatogenesis and DNA replication. Chromosoma 2020; 129:215-226. [PMID: 32651609 DOI: 10.1007/s00412-020-00739-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 11/25/2022]
Abstract
Heterochromatin protein 1β (HP1β), encoded by the Cbx1 gene, has been functionally linked to chromatin condensation, transcriptional regulation, and DNA damage repair. Here we report that testis-specific Cbx1 conditional knockout (Cbx1 cKO) impairs male germ cell development in mice. Depletion of HP1β negatively affected sperm maturation and increased seminiferous tubule degeneration in Cbx1 cKO mice. In addition, the spermatogonia have elevated γ-H2AX foci levels as do Cbx1 deficient mouse embryonic fibroblasts (MEFs) as compared to wild-type (WT) control MEFs. The increase in γ-H2AX foci in proliferating Cbx1 cKO cells indicates defective replication-dependent DNA damage repair. Depletion or loss of HP1β from human cells and MEFs increased DNA replication fork stalling and firing of new origins of replication, indicating defective DNA synthesis. Taken together, these results suggest that loss of HP1β in proliferating cells leads to DNA replication defects with associated DNA damage that impact spermatogenesis.
Collapse
Affiliation(s)
- Vijay Charaka
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Anjana Tiwari
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Raj K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, 77030, USA
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Clayton R Hunt
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Tej K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
23
|
Morafraile EC, Bugallo A, Carreira R, Fernández M, Martín-Castellanos C, Blanco MG, Segurado M. Exo1 phosphorylation inhibits exonuclease activity and prevents fork collapse in rad53 mutants independently of the 14-3-3 proteins. Nucleic Acids Res 2020; 48:3053-3070. [PMID: 32020204 PMCID: PMC7102976 DOI: 10.1093/nar/gkaa054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 01/04/2023] Open
Abstract
The S phase checkpoint is crucial to maintain genome stability under conditions that threaten DNA replication. One of its critical functions is to prevent Exo1-dependent fork degradation, and Exo1 is phosphorylated in response to different genotoxic agents. Exo1 seemed to be regulated by several post-translational modifications in the presence of replicative stress, but the specific contribution of checkpoint-dependent phosphorylation to Exo1 control and fork stability is not clear. We show here that Exo1 phosphorylation is Dun1-independent and Rad53-dependent in response to DNA damage or dNTP depletion, and in both situations Exo1 is similarly phosphorylated at multiple sites. To investigate the correlation between Exo1 phosphorylation and fork stability, we have generated phospho-mimic exo1 alleles that rescue fork collapse in rad53 mutants as efficiently as exo1-nuclease dead mutants or the absence of Exo1, arguing that Rad53-dependent phosphorylation is the mayor requirement to preserve fork stability. We have also shown that this rescue is Bmh1–2 independent, arguing that the 14-3-3 proteins are dispensable for fork stabilization, at least when Exo1 is downregulated. Importantly, our results indicated that phosphorylation specifically inhibits the 5' to 3'exo-nuclease activity, suggesting that this activity of Exo1 and not the flap-endonuclease, is the enzymatic activity responsible of the collapse of stalled replication forks in checkpoint mutants.
Collapse
Affiliation(s)
- Esther C Morafraile
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain
| | - Alberto Bugallo
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain
| | - Raquel Carreira
- Departamento de Bioquímica y Biología Molecular, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS) - Instituto de Investigación Sanitaria (IDIS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María Fernández
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain
| | | | - Miguel G Blanco
- Departamento de Bioquímica y Biología Molecular, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS) - Instituto de Investigación Sanitaria (IDIS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mónica Segurado
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain.,Departamento de Microbiología y Genética, Campus Miguel de Unamuno, Universidad de Salamanca, Salamanca 37007, Spain
| |
Collapse
|
24
|
Thakar T, Leung W, Nicolae CM, Clements KE, Shen B, Bielinsky AK, Moldovan GL. Ubiquitinated-PCNA protects replication forks from DNA2-mediated degradation by regulating Okazaki fragment maturation and chromatin assembly. Nat Commun 2020; 11:2147. [PMID: 32358495 PMCID: PMC7195461 DOI: 10.1038/s41467-020-16096-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Upon genotoxic stress, PCNA ubiquitination allows for replication of damaged DNA by recruiting lesion-bypass DNA polymerases. However, PCNA is also ubiquitinated during normal S-phase progression. By employing 293T and RPE1 cells deficient in PCNA ubiquitination, generated through CRISPR/Cas9 gene editing, here, we show that this modification promotes cellular proliferation and suppression of genomic instability under normal growth conditions. Loss of PCNA-ubiquitination results in DNA2-dependent but MRE11-independent nucleolytic degradation of nascent DNA at stalled replication forks. This degradation is linked to defective gap-filling in the wake of the replication fork and incomplete Okazaki fragment maturation, which interferes with efficient PCNA unloading by ATAD5 and subsequent nucleosome deposition by CAF-1. Moreover, concomitant loss of PCNA-ubiquitination and the BRCA pathway results in increased nascent DNA degradation and PARP inhibitor sensitivity. In conclusion, we show that by ensuring efficient Okazaki fragment maturation, PCNA-ubiquitination protects fork integrity and promotes the resistance of BRCA-deficient cells to PARP-inhibitors.
Collapse
Affiliation(s)
- Tanay Thakar
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Wendy Leung
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Kristen E Clements
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
25
|
Maestroni L, Audry J, Luciano P, Coulon S, Géli V, Corda Y. RPA and Pif1 cooperate to remove G-rich structures at both leading and lagging strand. Cell Stress 2020; 4:48-63. [PMID: 32190820 PMCID: PMC7063842 DOI: 10.15698/cst2020.03.214] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In Saccharomyces cerevisiae, the absence of Pif1 helicase induces the instability of G4-containing CEB1 minisatellite during leading strand but not lagging strand replication. We report that RPA and Pif1 cooperate to maintain CEB1 stability when the G4 forming strand is either on the leading or lagging strand templates. At the leading strand, RPA acts in the same pathway as Pif1 to maintain CEB1 stability. Consistent with this result, RPA co-precipitates with Pif1. This association between Pif1 and RPA is affected by the rfa1-D228Y mutation that lowers the affinity of RPA in particular for G-rich single-stranded DNA. At the lagging strand, in contrast to pif1Δ, the rfa1-D228Y mutation strongly increases the frequency of CEB1 rearrangements. We explain that Pif1 is dispensable at the lagging strand DNA by the ability of RPA by itself to prevent formation of stable G-rich secondary structures during lagging strand synthesis. Remarkably, overexpression of Pif1 rescues the instability of CEB1 at the lagging strand in the rfa1-D228Y mutant indicating that Pif1 can also act at the lagging strand. We show that the effects of the rfa1-D228Y (rpa1-D223Y in fission yeast) are conserved in Schizosaccharomyces pombe. Finally, we report that RNase H1 interacts in a DNA-dependent manner with RPA in budding yeast, however overexpression of RNase H1 does not rescue CEB1 instability observed in pif1Δ and rfa1-D228Y mutants. Collectively these results add new insights about the general role of RPA in preventing formation of DNA secondary structures and in coordinating the action of factors aimed at resolving them.
Collapse
Affiliation(s)
- Laetitia Maestroni
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France. Equipe Labellisée par la Ligue Nationale contre le Cancer
| | - Julien Audry
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France. Equipe Labellisée par la Ligue Nationale contre le Cancer
| | - Pierre Luciano
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France. Equipe Labellisée par la Ligue Nationale contre le Cancer
| | - Stéphane Coulon
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France. Equipe Labellisée par la Ligue Nationale contre le Cancer
| | - Vincent Géli
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France. Equipe Labellisée par la Ligue Nationale contre le Cancer
| | - Yves Corda
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France. Equipe Labellisée par la Ligue Nationale contre le Cancer
| |
Collapse
|
26
|
Zheng L, Meng Y, Campbell JL, Shen B. Multiple roles of DNA2 nuclease/helicase in DNA metabolism, genome stability and human diseases. Nucleic Acids Res 2020; 48:16-35. [PMID: 31754720 PMCID: PMC6943134 DOI: 10.1093/nar/gkz1101] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/23/2019] [Accepted: 11/12/2019] [Indexed: 12/25/2022] Open
Abstract
DNA2 nuclease/helicase is a structure-specific nuclease, 5'-to-3' helicase, and DNA-dependent ATPase. It is involved in multiple DNA metabolic pathways, including Okazaki fragment maturation, replication of 'difficult-to-replicate' DNA regions, end resection, stalled replication fork processing, and mitochondrial genome maintenance. The participation of DNA2 in these different pathways is regulated by its interactions with distinct groups of DNA replication and repair proteins and by post-translational modifications. These regulatory mechanisms induce its recruitment to specific DNA replication or repair complexes, such as DNA replication and end resection machinery, and stimulate its efficient cleavage of various structures, for example, to remove RNA primers or to produce 3' overhangs at telomeres or double-strand breaks. Through these versatile activities at replication forks and DNA damage sites, DNA2 functions as both a tumor suppressor and promoter. In normal cells, it suppresses tumorigenesis by maintaining the genomic integrity. Thus, DNA2 mutations or functional deficiency may lead to cancer initiation. However, DNA2 may also function as a tumor promoter, supporting cancer cell survival by counteracting replication stress. Therefore, it may serve as an ideal target to sensitize advanced DNA2-overexpressing cancers to current chemo- and radiotherapy regimens.
Collapse
Affiliation(s)
- Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Yuan Meng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Judith L Campbell
- Divisions of Chemistry and Chemical Engineering and Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
27
|
Branched unwinding mechanism of the Pif1 family of DNA helicases. Proc Natl Acad Sci U S A 2019; 116:24533-24541. [PMID: 31744872 DOI: 10.1073/pnas.1915654116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Members of the Pif1 family of helicases function in multiple pathways that involve DNA synthesis: DNA replication across G-quadruplexes; break-induced replication; and processing of long flaps during Okazaki fragment maturation. Furthermore, Pif1 increases strand-displacement DNA synthesis by DNA polymerase δ and allows DNA replication across arrays of proteins tightly bound to DNA. This is a surprising feat since DNA rewinding or annealing activities limit the amount of single-stranded DNA product that Pif1 can generate, leading to an apparently poorly processive helicase. In this work, using single-molecule Förster resonance energy transfer approaches, we show that 2 members of the Pif1 family of helicases, Pif1 from Saccharomyces cerevisiae and Pfh1 from Schizosaccharomyces pombe, unwind double-stranded DNA by a branched mechanism with 2 modes of activity. In the dominant mode, only short stretches of DNA can be processively and repetitively opened, with reclosure of the DNA occurring by mechanisms other than strand-switching. In the other less frequent mode, longer stretches of DNA are unwound via a path that is separate from the one leading to repetitive unwinding. Analysis of the kinetic partitioning between the 2 different modes suggests that the branching point in the mechanism is established by conformational selection, controlled by the interaction of the helicase with the 3' nontranslocating strand. The data suggest that the dominant and repetitive mode of DNA opening of the helicase can be used to allow efficient DNA replication, with DNA synthesis on the nontranslocating strand rectifying the DNA unwinding activity.
Collapse
|
28
|
DNA Replication Through Strand Displacement During Lagging Strand DNA Synthesis in Saccharomyces cerevisiae. Genes (Basel) 2019; 10:genes10020167. [PMID: 30795600 PMCID: PMC6409922 DOI: 10.3390/genes10020167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 01/21/2023] Open
Abstract
This review discusses a set of experimental results that support the existence of extended strand displacement events during budding yeast lagging strand DNA synthesis. Starting from introducing the mechanisms and factors involved in leading and lagging strand DNA synthesis and some aspects of the architecture of the eukaryotic replisome, we discuss studies on bacterial, bacteriophage and viral DNA polymerases with potent strand displacement activities. We describe proposed pathways of Okazaki fragment processing via short and long flaps, with a focus on experimental results obtained in Saccharomyces cerevisiae that suggest the existence of frequent and extended strand displacement events during eukaryotic lagging strand DNA synthesis, and comment on their implications for genome integrity.
Collapse
|