1
|
Sherlock ME, Langeberg CJ, Kieft JS. Diversity and modularity of tyrosine-accepting tRNA-like structures. RNA (NEW YORK, N.Y.) 2024; 30:213-222. [PMID: 38164607 PMCID: PMC10870377 DOI: 10.1261/rna.079768.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Certain positive-sense single-stranded RNA viruses contain elements at their 3' termini that structurally mimic tRNAs. These tRNA-like structures (TLSs) are classified based on which amino acid is covalently added to the 3' end by host aminoacyl-tRNA synthetase. Recently, a cryoEM reconstruction of a representative tyrosine-accepting tRNA-like structure (TLSTyr) from brome mosaic virus (BMV) revealed a unique mode of recognition of the viral anticodon-mimicking domain by tyrosyl-tRNA synthetase. Some viruses in the hordeivirus genus of Virgaviridae are also selectively aminoacylated with tyrosine, yet these TLS RNAs have a different architecture in the 5' domain that comprises the atypical anticodon loop mimic. Herein, we present bioinformatic and biochemical data supporting a distinct secondary structure for the 5' domain of the hordeivirus TLSTyr compared to those in Bromoviridae Despite forming a different secondary structure, the 5' domain is necessary to achieve robust in vitro aminoacylation. Furthermore, a chimeric RNA containing the 5' domain from the BMV TLSTyr and the 3' domain from a hordeivirus TLSTyr are aminoacylated, illustrating modularity in these structured RNA elements. We propose that the structurally distinct 5' domain of the hordeivirus TLSTyrs performs the same role in mimicking the anticodon loop as its counterpart in the BMV TLSTyr Finally, these structurally and phylogenetically divergent types of TLSTyr provide insight into the evolutionary connections between all classes of viral tRNA-like structures.
Collapse
Affiliation(s)
- Madeline E Sherlock
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Conner J Langeberg
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
2
|
Alternative Polyadenylation Is a Novel Strategy for the Regulation of Gene Expression in Response to Stresses in Plants. Int J Mol Sci 2023; 24:ijms24054727. [PMID: 36902157 PMCID: PMC10003127 DOI: 10.3390/ijms24054727] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Precursor message RNA requires processing to generate mature RNA. Cleavage and polyadenylation at the 3'-end in the maturation of mRNA is one of key processing steps in eukaryotes. The polyadenylation (poly(A)) tail of mRNA is an essential feature that is required to mediate its nuclear export, stability, translation efficiency, and subcellular localization. Most genes have at least two mRNA isoforms via alternative splicing (AS) or alternative polyadenylation (APA), which increases the diversity of transcriptome and proteome. However, most previous studies have focused on the role of alternative splicing on the regulation of gene expression. In this review, we summarize the recent advances concerning APA in the regulation of gene expression and in response to stresses in plants. We also discuss the mechanisms for the regulation of APA for plants in the adaptation to stress responses, and suggest that APA is a novel strategy for the adaptation to environmental changes and response to stresses in plants.
Collapse
|
3
|
Córdoba L, Ruiz-Padilla A, Rodríguez-Romero J, Ayllón MA. Construction and Characterization of a Botrytis Virus F Infectious Clone. J Fungi (Basel) 2022; 8:jof8050459. [PMID: 35628716 PMCID: PMC9146958 DOI: 10.3390/jof8050459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Botrytis virus F (BVF) is a positive-sense, single-stranded RNA (+ssRNA) virus within the Gammaflexiviridae family of the plant-pathogenic fungus Botrytis cinerea. In this study, the complete sequence of a BVF strain isolated from B. cinerea collected from grapevine fields in Spain was analyzed. This virus, in this work BVF-V448, has a genome of 6827 nt in length, excluding the poly(A) tail, with two open reading frames encoding an RNA dependent RNA polymerase (RdRP) and a coat protein (CP). The 5′- and 3′-terminal regions of the genome were determined by rapid amplification of cDNA ends (RACE). Furthermore, a yet undetected subgenomic RNA species in BVF-V448 was identified, indicating that the CP is expressed via 3′ coterminal subgenomic RNAs (sgRNAs). We also report the successful construction of the first BVF full-length cDNA clone and synthesized in vitro RNA transcripts using the T7 polymerase, which could efficiently transfect two different strains of B. cinerea, B05.10 and Pi258.9. The levels of growth in culture and virulence on plants of BVF-V448 transfected strains were comparable to BVF-free strains. The infectious clones generated in this work provide a useful tool for the future development of an efficient BVF foreign gene expression vector and a virus-induced gene silencing (VIGS) vector as a biological agent for the control of B. cinerea.
Collapse
Affiliation(s)
- Laura Córdoba
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (L.C.); (A.R.-P.); (J.R.-R.)
| | - Ana Ruiz-Padilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (L.C.); (A.R.-P.); (J.R.-R.)
| | - Julio Rodríguez-Romero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (L.C.); (A.R.-P.); (J.R.-R.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - María A. Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (L.C.); (A.R.-P.); (J.R.-R.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
4
|
Bonilla SL, Sherlock ME, MacFadden A, Kieft JS. A viral RNA hijacks host machinery using dynamic conformational changes of a tRNA-like structure. Science 2021; 374:955-960. [PMID: 34793227 PMCID: PMC9033304 DOI: 10.1126/science.abe8526] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Viruses require multifunctional structured RNAs to hijack their host’s biochemistry, but their mechanisms can be obscured by the difficulty of solving conformationally dynamic RNA structures. Using cryo–electron microscopy (cryo-EM), we visualized the structure of the mysterious viral transfer RNA (tRNA)–like structure (TLS) from the brome mosaic virus, which affects replication, translation, and genome encapsidation. Structures in isolation and those bound to tyrosyl-tRNA synthetase (TyrRS) show that this ~55-kilodalton purported tRNA mimic undergoes large conformational rearrangements to bind TyrRS in a form that differs substantially from that of tRNA. Our study reveals how viral RNAs can use a combination of static and dynamic RNA structures to bind host machinery through highly noncanonical interactions, and we highlight the utility of cryo-EM for visualizing small, conformationally dynamic structured RNAs.
Collapse
Affiliation(s)
- Steve L. Bonilla
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Madeline E. Sherlock
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrea MacFadden
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jeffrey S. Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA BioScience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 10 80045, USA
| |
Collapse
|
5
|
Hong X, Zheng J, Xie J, Tong X, Liu X, Song Q, Liu S, Liu S. RR3DD: an RNA global structure-based RNA three-dimensional structural classification database. RNA Biol 2021; 18:738-746. [PMID: 34663179 DOI: 10.1080/15476286.2021.1989200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The three-dimensional (3D) structure of RNA usually plays an important role in the recognition with RNA-binding protein. Along with the discovering of RNAs, several RNA databases are developed to study the functions of RNA based on sequence, secondary structure, local 3D structural motif and global structure. Based on RNA function and structure, different RNAs are classified and stored in SCOR and DARTS, respectively. The classification of RNA structures is useful in RNA structure prediction and function annotation. However, the SCOR and DARTS are not updated any more. In this study, we present an RNA classification database RR3DD based on RNA fold with the global 3D structural similarity. The RR3DD includes 13,601 RNA chains from PDB and mmCIF format structures which are classified into 780 RNA folds. The RNA chains from PDB and mmCIF format structures are aligned and clustered into 675 and 220 RNA folds, respectively. By analysing the RNA structure in RR3DD, we find that there are 11 clusters with more than 50 members. These clusters include rRNAs, riboswitches, tRNAs and so on. By mapping RR3DD into Rfam, we found that some RNAs without annotation by Rfam can be annotated through structural alignment. For example, we analysed tRNAs and found that tRNA were successfully grouped in RR3DD for which Rfam did not classify them into one family. Finally, we provide a web interface of RR3DD offering functions of browsing RR3DD, annotating RNA 3D structure and finding templates for RNA homology modelling.
Collapse
Affiliation(s)
- Xu Hong
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Jinfang Zheng
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Xie
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxue Tong
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Xudong Liu
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Song
- Key Laboratory of Fermentation Engineering (Ministry of Education, Hubei University of Technology, Wuhan, China
| | - Sen Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education, Hubei University of Technology, Wuhan, China
| | - Shiyong Liu
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Langeberg CJ, Sherlock ME, MacFadden A, Kieft JS. An expanded class of histidine-accepting viral tRNA-like structures. RNA (NEW YORK, N.Y.) 2021; 27:653-664. [PMID: 33811147 PMCID: PMC8127992 DOI: 10.1261/rna.078550.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/30/2021] [Indexed: 05/12/2023]
Abstract
Structured RNA elements are common in the genomes of RNA viruses, often playing critical roles during viral infection. Some viral RNA elements use forms of tRNA mimicry, but the diverse ways this mimicry can be achieved are poorly understood. Histidine-accepting tRNA-like structures (TLSHis) are examples found at the 3' termini of some positive-sense single-stranded RNA (+ssRNA) viruses where they interact with several host proteins, induce histidylation of the RNA genome, and facilitate processes important for infection, to include genome replication. As only five TLSHis examples had been reported, we explored the possible larger phylogenetic distribution and diversity of this TLS class using bioinformatic approaches. We identified many new examples of TLSHis, yielding a rigorous consensus sequence and secondary structure model that we validated by chemical probing of representative TLSHis RNAs. We confirmed new examples as authentic TLSHis by demonstrating their ability to be histidylated in vitro, then used mutational analyses to imply a tertiary interaction that is likely analogous to the D- and T-loop interaction found in canonical tRNAs. These results expand our understanding of how diverse RNA sequences achieve tRNA-like structure and function in the context of viral RNA genomes and lay the groundwork for high-resolution structural studies of tRNA mimicry by histidine-accepting TLSs.
Collapse
Affiliation(s)
- Conner J Langeberg
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Madeline E Sherlock
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Andrea MacFadden
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
- RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
7
|
Balas MM, Hartwick EW, Barrington C, Roberts JT, Wu SK, Bettcher R, Griffin AM, Kieft JS, Johnson AM. Establishing RNA-RNA interactions remodels lncRNA structure and promotes PRC2 activity. SCIENCE ADVANCES 2021; 7:7/16/eabc9191. [PMID: 33853770 PMCID: PMC8046370 DOI: 10.1126/sciadv.abc9191] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 02/24/2021] [Indexed: 05/03/2023]
Abstract
Human Polycomb Repressive Complex 2 (PRC2) catalysis of histone H3 lysine 27 methylation at certain loci depends on long noncoding RNAs (lncRNAs). Yet, in apparent contradiction, RNA is a potent catalytic inhibitor of PRC2. Here, we show that intermolecular RNA-RNA interactions between the lncRNA HOTAIR and its targets can relieve RNA inhibition of PRC2. RNA bridging is promoted by heterogeneous nuclear ribonucleoprotein B1, which uses multiple protein domains to bind HOTAIR regions via multivalent protein-RNA interactions. Chemical probing demonstrates that establishing RNA-RNA interactions changes HOTAIR structure. Genome-wide HOTAIR/PRC2 activity occurs at genes whose transcripts can make favorable RNA-RNA interactions with HOTAIR. We demonstrate that RNA-RNA matches of HOTAIR with target gene RNAs can relieve the inhibitory effect of a single lncRNA for PRC2 activity after B1 dissociation. Our work highlights an intrinsic switch that allows PRC2 activity in specific RNA contexts, which could explain how many lncRNAs work with PRC2.
Collapse
Affiliation(s)
- Maggie M Balas
- Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, 12801 East 17th Ave., Aurora, CO, USA
| | - Erik W Hartwick
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, 12801 East 17th Ave., Aurora, CO, USA
| | - Chloe Barrington
- Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, 12801 East 17th Ave., Aurora, CO, USA
| | - Justin T Roberts
- Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Stephen K Wu
- Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ryan Bettcher
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - April M Griffin
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jeffrey S Kieft
- Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, 12801 East 17th Ave., Aurora, CO, USA
| | - Aaron M Johnson
- Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, 12801 East 17th Ave., Aurora, CO, USA
| |
Collapse
|
8
|
Sosorev A, Kharlanov O. Organic nanoelectronics inside us: charge transport and localization in RNA could orchestrate ribosome operation. Phys Chem Chem Phys 2021; 23:7037-7047. [PMID: 33448272 DOI: 10.1039/d0cp04970k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Translation - protein synthesis at the ribonucleic acid (RNA) based molecular machine, the ribosome, - proceeds in a similar manner in all life forms. However, despite several decades of research, the physics underlying this process remains enigmatic. Specifically, during translation, a ribosome undergoes large-scale conformational changes of its distant parts, and these motions are coordinated by an unknown mechanism. In this study, we suggest that such a mechanism could be related to charge (electron hole) transport along and between the RNA molecules, localization of these charges at certain sites and successive relaxation of the molecular geometry. Thus, we suppose that RNA-based molecular machines, e.g., the ribosome, could be electronically controlled, having "wires", "actuators", "a battery", and other "circuitry". Taking transfer RNA as an example, we justify the reasonability of our suggestion using ab initio and atomistic simulations. Specifically, very large hole transfer integrals between the nucleotides (up to above 100 meV) are observed so that the hole can migrate over nearly the whole tRNA molecule. Hole localization at several guanines located at functionally important sites (G27, G10, G34 and G63) is predicted, which is shown to induce geometry changes in these sites, their neighborhoods and even rather distant moieties. If our hypothesis is right, we anticipate that our findings will qualitatively advance the understanding of the key biological processes and could inspire novel approaches in medicine.
Collapse
Affiliation(s)
- Andrey Sosorev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, Moscow, GSP-7, 117997, Russia.
| | | |
Collapse
|
9
|
Sherlock ME, Hartwick EW, MacFadden A, Kieft JS. Structural diversity and phylogenetic distribution of valyl tRNA-like structures in viruses. RNA (NEW YORK, N.Y.) 2021; 27:27-39. [PMID: 33008837 PMCID: PMC7749636 DOI: 10.1261/rna.076968.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/26/2020] [Indexed: 05/26/2023]
Abstract
Viruses commonly use specifically folded RNA elements that interact with both host and viral proteins to perform functions important for diverse viral processes. Examples are found at the 3' termini of certain positive-sense ssRNA virus genomes where they partially mimic tRNAs, including being aminoacylated by host cell enzymes. Valine-accepting tRNA-like structures (TLSVal) are an example that share some clear homology with canonical tRNAs but have several important structural differences. Although many examples of TLSVal have been identified, we lacked a full understanding of their structural diversity and phylogenetic distribution. To address this, we undertook an in-depth bioinformatic and biochemical investigation of these RNAs, guided by recent high-resolution structures of a TLSVal We cataloged many new examples in plant-infecting viruses but also in unrelated insect-specific viruses. Using biochemical and structural approaches, we verified the secondary structure of representative TLSVal substrates and tested their ability to be valylated, confirming previous observations of structural heterogeneity within this class. In a few cases, large stem-loop structures are inserted within variable regions located in an area of the TLS distal to known host cell factor binding sites. In addition, we identified one virus whose TLS has switched its anticodon away from valine, causing a loss of valylation activity; the implications of this remain unclear. These results refine our understanding of the structural and functional mechanistic details of tRNA mimicry and how this may be used in viral infection.
Collapse
MESH Headings
- Anticodon/chemistry
- Anticodon/metabolism
- Base Sequence
- Binding Sites
- Computational Biology
- Genetic Variation
- Insect Viruses/classification
- Insect Viruses/genetics
- Insect Viruses/metabolism
- Models, Molecular
- Molecular Mimicry
- Phylogeny
- Plant Viruses/classification
- Plant Viruses/genetics
- Plant Viruses/metabolism
- RNA Folding
- RNA, Transfer, Val/chemistry
- RNA, Transfer, Val/genetics
- RNA, Transfer, Val/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Sequence Homology, Nucleic Acid
- Valine/metabolism
Collapse
Affiliation(s)
- Madeline E Sherlock
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Erik W Hartwick
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Andrea MacFadden
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
- RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
10
|
Szucs MJ, Nichols PJ, Jones RA, Vicens Q, Kieft JS. A New Subclass of Exoribonuclease-Resistant RNA Found in Multiple Genera of Flaviviridae. mBio 2020; 11:mBio.02352-20. [PMID: 32994331 DOI: 10.1101/2020.06.26.172668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
Viruses have developed innovative strategies to exploit the cellular machinery and overcome the antiviral defenses of the host, often using specifically structured RNA elements. Examples are found in the Flavivirus genus (in the family Flaviviridae), where during flaviviral infection, pathogenic subgenomic flaviviral RNAs (sfRNAs) accumulate in the cell. These sfRNAs are formed when a host cell 5' to 3' exoribonuclease degrades the viral genomic RNA but is blocked by an exoribonuclease-resistant RNA structure (xrRNA) located in the viral genome's 3' untranslated region (UTR). Although known to exist in several Flaviviridae genera, the full distribution and diversity of xrRNAs in this family were unknown. Using the recently solved high-resolution structure of an xrRNA from the divergent flavivirus Tamana bat virus (TABV) as a reference, we used bioinformatic searches to identify xrRNAs in the remaining three genera of Flaviviridae: Pegivirus, Pestivirus, and Hepacivirus We biochemically and structurally characterized several examples, determining that they are genuine xrRNAs with a conserved fold. These new xrRNAs look superficially similar to the previously described xrRNAs but possess structural differences making them distinct from previous classes of xrRNAs. Overall, we have identified the presence of xrRNA in all four genera of Flaviviridae, but not in all species. Our findings thus require adjustments of previous xrRNA classification schemes and expand the previously known distribution of xrRNA in Flaviviridae.IMPORTANCE The members of the Flaviviridae comprise one of the largest families of positive-sense single-stranded RNA (+ssRNA) and are divided into the Flavivirus, Pestivirus, Pegivirus, and Hepacivirus genera. The genus Flavivirus contains many medically relevant viruses such as Zika virus, dengue virus, and Powassan virus. In these, a part of the RNA of the virus twists up into a distinct three-dimensional shape called an exoribonuclease-resistant RNA (xrRNA) that blocks the ability of the cell to "chew up" the viral RNA. Hence, part of the RNA of the virus remains intact, and this protected part is important for viral infection. These xrRNAs were known to occur in flaviviruses, but whether they existed in the other members of the family was not known. In this study, we identified a new subclass of xrRNA found not only in flaviviruses but also in the remaining three genera. The fact that these structured viral RNAs exist throughout the Flaviviridae family suggests they are important parts of the infection strategy of diverse pathogens, which could lead to new avenues of research.
Collapse
Affiliation(s)
- Matthew J Szucs
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| | - Parker J Nichols
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| | - Rachel A Jones
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| | - Quentin Vicens
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
- RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
11
|
Abstract
The members of the Flaviviridae comprise one of the largest families of positive-sense single-stranded RNA (+ssRNA) and are divided into the Flavivirus, Pestivirus, Pegivirus, and Hepacivirus genera. The genus Flavivirus contains many medically relevant viruses such as Zika virus, dengue virus, and Powassan virus. In these, a part of the RNA of the virus twists up into a distinct three-dimensional shape called an exoribonuclease-resistant RNA (xrRNA) that blocks the ability of the cell to “chew up” the viral RNA. Hence, part of the RNA of the virus remains intact, and this protected part is important for viral infection. These xrRNAs were known to occur in flaviviruses, but whether they existed in the other members of the family was not known. In this study, we identified a new subclass of xrRNA found not only in flaviviruses but also in the remaining three genera. The fact that these structured viral RNAs exist throughout the Flaviviridae family suggests they are important parts of the infection strategy of diverse pathogens, which could lead to new avenues of research. Viruses have developed innovative strategies to exploit the cellular machinery and overcome the antiviral defenses of the host, often using specifically structured RNA elements. Examples are found in the Flavivirus genus (in the family Flaviviridae), where during flaviviral infection, pathogenic subgenomic flaviviral RNAs (sfRNAs) accumulate in the cell. These sfRNAs are formed when a host cell 5′ to 3′ exoribonuclease degrades the viral genomic RNA but is blocked by an exoribonuclease-resistant RNA structure (xrRNA) located in the viral genome’s 3′ untranslated region (UTR). Although known to exist in several Flaviviridae genera, the full distribution and diversity of xrRNAs in this family were unknown. Using the recently solved high-resolution structure of an xrRNA from the divergent flavivirus Tamana bat virus (TABV) as a reference, we used bioinformatic searches to identify xrRNAs in the remaining three genera of Flaviviridae: Pegivirus, Pestivirus, and Hepacivirus. We biochemically and structurally characterized several examples, determining that they are genuine xrRNAs with a conserved fold. These new xrRNAs look superficially similar to the previously described xrRNAs but possess structural differences making them distinct from previous classes of xrRNAs. Overall, we have identified the presence of xrRNA in all four genera of Flaviviridae, but not in all species. Our findings thus require adjustments of previous xrRNA classification schemes and expand the previously known distribution of xrRNA in Flaviviridae.
Collapse
|
12
|
Schroeder GM, Dutta D, Cavender CE, Jenkins J, Pritchett EM, Baker CD, Ashton JM, Mathews DH, Wedekind JE. Analysis of a preQ1-I riboswitch in effector-free and bound states reveals a metabolite-programmed nucleobase-stacking spine that controls gene regulation. Nucleic Acids Res 2020; 48:8146-8164. [PMID: 32597951 PMCID: PMC7641330 DOI: 10.1093/nar/gkaa546] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 01/20/2023] Open
Abstract
Riboswitches are structured RNA motifs that recognize metabolites to alter the conformations of downstream sequences, leading to gene regulation. To investigate this molecular framework, we determined crystal structures of a preQ1-I riboswitch in effector-free and bound states at 2.00 Å and 2.65 Å-resolution. Both pseudoknots exhibited the elusive L2 loop, which displayed distinct conformations. Conversely, the Shine-Dalgarno sequence (SDS) in the S2 helix of each structure remained unbroken. The expectation that the effector-free state should expose the SDS prompted us to conduct solution experiments to delineate environmental changes to specific nucleobases in response to preQ1. We then used nudged elastic band computational methods to derive conformational-change pathways linking the crystallographically-determined effector-free and bound-state structures. Pathways featured: (i) unstacking and unpairing of L2 and S2 nucleobases without preQ1-exposing the SDS for translation and (ii) stacking and pairing L2 and S2 nucleobases with preQ1-sequestering the SDS. Our results reveal how preQ1 binding reorganizes L2 into a nucleobase-stacking spine that sequesters the SDS, linking effector recognition to biological function. The generality of stacking spines as conduits for effector-dependent, interdomain communication is discussed in light of their existence in adenine riboswitches, as well as the turnip yellow mosaic virus ribosome sensor.
Collapse
Affiliation(s)
- Griffin M Schroeder
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Debapratim Dutta
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Chapin E Cavender
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Jermaine L Jenkins
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Elizabeth M Pritchett
- Genomics Research Center, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Cameron D Baker
- Genomics Research Center, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - John M Ashton
- Genomics Research Center, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - David H Mathews
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Joseph E Wedekind
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
13
|
Thulson E, Hartwick EW, Cooper-Sansone A, Williams MAC, Soliman ME, Robinson LK, Kieft JS, Mouzakis KD. An RNA pseudoknot stimulates HTLV-1 pro-pol programmed -1 ribosomal frameshifting. RNA (NEW YORK, N.Y.) 2020; 26:512-528. [PMID: 31980578 PMCID: PMC7075266 DOI: 10.1261/rna.070490.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Programmed -1 ribosomal frameshifts (-1 PRFs) are commonly used by viruses to regulate their enzymatic and structural protein levels. Human T-cell leukemia virus type 1 (HTLV-1) is a carcinogenic retrovirus that uses two independent -1 PRFs to express viral enzymes critical to establishing new HTLV-1 infections. How the cis-acting RNA elements in this viral transcript function to induce frameshifting is unknown. The objective of this work was to conclusively define the 3' boundary of and the RNA elements within the HTLV-1 pro-pol frameshift site. We hypothesized that the frameshift site structure was a pseudoknot and that its 3' boundary would be defined by the pseudoknot's 3' end. To test these hypotheses, the in vitro frameshift efficiencies of three HTLV-1 pro-pol frameshift sites with different 3' boundaries were quantified. The results indicated that nucleotides included in the longest construct were essential to highly efficient frameshift stimulation. Interestingly, only this construct could form the putative frameshift site pseudoknot. Next, the secondary structure of this frameshift site was determined. The dominant structure was an H-type pseudoknot which, together with the slippery sequence, stimulated frameshifting to 19.4(±0.3)%. The pseudoknot's critical role in frameshift stimulation was directly revealed by examining the impact of structural changes on HTLV-1 pro-pol -1 PRF. As predicted, mutations that occluded pseudoknot formation drastically reduced the frameshift efficiency. These results are significant because they demonstrate that a pseudoknot is important to HTLV-1 pro-pol -1 PRF and define the frameshift site's 3' boundary.
Collapse
Affiliation(s)
- Eliza Thulson
- Department of Chemistry and Biochemistry, Fort Lewis College, Durango, Colorado 81301, USA
| | - Erik W Hartwick
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Andrew Cooper-Sansone
- Department of Chemistry and Biochemistry, Fort Lewis College, Durango, Colorado 81301, USA
| | - Marcus A C Williams
- Department of Chemistry and Biochemistry, Fort Lewis College, Durango, Colorado 81301, USA
| | - Mary E Soliman
- Department of Chemistry and Biochemistry, Loyola Marymount University, Los Angeles, California 90045, USA
| | - Leila K Robinson
- Department of Chemistry and Biochemistry, Loyola Marymount University, Los Angeles, California 90045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Kathryn D Mouzakis
- Department of Chemistry and Biochemistry, Loyola Marymount University, Los Angeles, California 90045, USA
| |
Collapse
|
14
|
Zhang Y, Liu S, Jiang H, Deng H, Dong C, Shen W, Chen H, Gao C, Xiao S, Liu ZF, Wei D. G 2-quadruplex in the 3'UTR of IE180 regulates Pseudorabies virus replication by enhancing gene expression. RNA Biol 2020; 17:816-827. [PMID: 32070191 DOI: 10.1080/15476286.2020.1731664] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RNA secondary structure elements in the mRNA 3'-untranslated regions (3'UTR) play important roles in post-transcriptional regulation. RNA structure elements in the viral RNA provide valuable model for studying diverse regulation mechanisms. Herpesvirus genomes are double-stranded DNA with GC-rich sequences, which can be transcribed into abundant GC-rich RNAs. It is valuable to explore the structures and function of those GC-rich RNAs. We identified a G2-quadruplex-forming sequence named PQS18-1 in the 3'UTR of the unique immediate early gene of Pseudorabies virus (PRV), an important member of Alphaherpesvirinae subfamily. The RNA PQS18-1 was folded into parallel G-quadruplex structure, enhancing gene expression. Both non-G-quadruplex mutant and G3-quadruplex mutant in the 3'UTR showed lower gene expression level than the wildtype G2-quadruplex. TMPyP4 destroyed PQS18-1 G2-quadruplex and suppressed gene expression, accordingly reducing PRV replication by one titre in the PK15 cells at 24 h post infection. Our findings indicated that the RNA G2-quadruplex in 3'UTR was essential for high expression of IE180 gene, and it could be a specific post-transcription regulation element in response to small molecules or other macromolecules. This study discovers a novel RNA G2-quadruplex in the 3'UTR of an immediate early gene of alphaherpesvirus and provides a new nucleic acid target for anti-virus drug design.
Collapse
Affiliation(s)
- Yashu Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan, China.,College of Science, Huazhong Agricultural University , Wuhan, China.,College of Plant Science and Technology, Huazhong Agricultural University , Wuhan, China
| | - Sisi Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan, China.,College of Science, Huazhong Agricultural University , Wuhan, China
| | - Hui Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, China
| | - Hui Deng
- College of Science, Huazhong Agricultural University , Wuhan, China
| | - Chen Dong
- College of Science, Huazhong Agricultural University , Wuhan, China
| | - Wei Shen
- College of Science, Huazhong Agricultural University , Wuhan, China
| | - Haifeng Chen
- College of Science, Huazhong Agricultural University , Wuhan, China
| | - Chao Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan, China.,College of Science, Huazhong Agricultural University , Wuhan, China.,College of Plant Science and Technology, Huazhong Agricultural University , Wuhan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, China
| | - Zheng-Fei Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, China
| | - Dengguo Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan, China.,College of Science, Huazhong Agricultural University , Wuhan, China
| |
Collapse
|