1
|
Čajánek L, Smite S, Ivashchenko O, Huranova M. Cilia at the crossroad: convergence of regulatory mechanisms to govern cilia dynamics during cell signaling and the cell cycle. Cell Biosci 2025; 15:81. [PMID: 40483459 PMCID: PMC12144771 DOI: 10.1186/s13578-025-01403-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/28/2025] [Indexed: 06/11/2025] Open
Abstract
Cilia are versatile, microtubule-based organelles that facilitate cellular signaling, motility, and environmental sensing in eukaryotic cells. These dynamic structures act as hubs for key developmental signaling pathways, while their assembly and disassembly are intricately regulated along cell cycle transitions. Recent findings show that factors regulating ciliogenesis and cilia dynamics often integrate their roles across other cellular processes, including cell cycle regulation, cytoskeletal organization, and intracellular trafficking, ensuring multilevel crosstalk of mechanisms controlling organogenesis. Disruptions in these shared regulators lead to broad defects associated with both ciliopathies and cancer. This review explores the crosstalk of regulatory mechanisms governing cilia assembly, disassembly, and maintenance during ciliary signaling and the cell cycle, along with the broader implications for development, tissue homeostasis, and disease.
Collapse
Affiliation(s)
- Lukáš Čajánek
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno, 62500, Czech Republic.
- Section of Animal Physiology and Immunology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic.
| | - Sindija Smite
- Laboratory of Cilia Genetics and Pathology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague, 142 00, Czech Republic
| | - Olha Ivashchenko
- Laboratory of Cilia Genetics and Pathology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague, 142 00, Czech Republic
| | - Martina Huranova
- Laboratory of Cilia Genetics and Pathology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague, 142 00, Czech Republic.
| |
Collapse
|
2
|
Wu J, Bala Tannan N, Vuong LT, Koca Y, Collu GM, Mlodzik M. Par3/bazooka binds NICD and promotes notch signaling during Drosophila development. Dev Biol 2024; 514:37-49. [PMID: 38885804 PMCID: PMC11287782 DOI: 10.1016/j.ydbio.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 04/01/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
The conserved bazooka (baz/par3) gene acts as a key regulator of asymmetrical cell divisions across the animal kingdom. Associated Par3/Baz-Par6-aPKC protein complexes are also well known for their role in the establishment of apical/basal cell polarity in epithelial cells. Here we define a novel, positive function of Baz/Par3 in the Notch pathway. Using Drosophila wing and eye development, we demonstrate that Baz is required for Notch signaling activity and optimal transcriptional activation of Notch target genes. Baz appears to act independently of aPKC in these contexts, as knockdown of aPKC does not cause Notch loss-of-function phenotypes. Using transgenic Notch constructs, our data positions Baz activity downstream of activating Notch cleavage steps and upstream of Su(H)/CSL transcription factor complex activity on Notch target genes. We demonstrate a biochemical interaction between NICD and Baz, suggesting that Baz is required for NICD activity before NICD binds to Su(H). Taken together, our data define a novel role of the polarity protein Baz/Par3, as a positive and direct regulator of Notch signaling through its interaction with NICD.
Collapse
Affiliation(s)
- Jun Wu
- Dept. of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Neeta Bala Tannan
- Dept. of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Linh T Vuong
- Dept. of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Yildiz Koca
- Dept. of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Giovanna M Collu
- Dept. of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Marek Mlodzik
- Dept. of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
3
|
Putnová I, Putnová BM, Hurník P, Štembírek J, Buchtová M, Kolísková P. Primary cilia-associated signalling in squamous cell carcinoma of head and neck region. Front Oncol 2024; 14:1413255. [PMID: 39234399 PMCID: PMC11372790 DOI: 10.3389/fonc.2024.1413255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Squamous cell carcinoma (SCC) of the head and neck originates from the mucosal lining of the upper aerodigestive tract, including the lip, tongue, nasopharynx, oropharynx, larynx and hypopharynx. In this review, we summarise what is currently known about the potential function of primary cilia in the pathogenesis of this disease. As primary cilia represent a key cellular structure for signal transduction and are related to cell proliferation, an understanding of their role in carcinogenesis is necessary for the design of new treatment approaches. Here, we introduce cilia-related signalling in head and neck squamous cell carcinoma (HNSCC) and its possible association with HNSCC tumorigenesis. From this point of view, PDGF, EGF, Wnt and Hh signalling are discussed as all these pathways were found to be dysregulated in HNSCC. Moreover, we review the clinical potential of small molecules affecting primary cilia signalling to target squamous cell carcinoma of the head and neck area.
Collapse
Affiliation(s)
- Iveta Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Anatomy, Histology and Embryology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Barbora Moldovan Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Pathological Morphology and Parasitology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Pavel Hurník
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Jan Štembírek
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czechia
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Petra Kolísková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
4
|
Vuong LT, Mlodzik M. Wg/Wnt-signaling-induced nuclear translocation of β-catenin is attenuated by a β-catenin peptide through its interference with the IFT-A complex. Cell Rep 2024; 43:114362. [PMID: 38870008 PMCID: PMC11311196 DOI: 10.1016/j.celrep.2024.114362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 04/09/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
Wnt/Wingless (Wg) signaling is critical in development and disease, including cancer. Canonical Wnt signaling is mediated by β-catenin/Armadillo (Arm in Drosophila) transducing signals to the nucleus, with IFT-A/Kinesin 2 complexes promoting nuclear translocation of β-catenin/Arm. Here, we demonstrate that a conserved small N-terminal Arm34-87/β-catenin peptide binds to IFT140, acting as a dominant interference tool to attenuate Wg/Wnt signaling in vivo. Arm34-87 expression antagonizes endogenous Wnt/Wg signaling, resulting in the reduction of its target expression. Arm34-87 inhibits Wg/Wnt signaling by interfering with nuclear translocation of endogenous Arm/β-catenin, and this can be modulated by levels of wild-type β-catenin or IFT140, with the Arm34-87 effect being enhanced or suppressed. Importantly, this mechanism is conserved in mammals with the equivalent β-catenin24-79 peptide blocking nuclear translocation and pathway activation, including in cancer cells. Our work indicates that Wnt signaling can be regulated by a defined N-terminal β-catenin peptide and thus might serve as an entry point for therapeutic applications to attenuate Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Linh T Vuong
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029, USA
| | - Marek Mlodzik
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029, USA.
| |
Collapse
|
5
|
Sharma V, Sachan N, Sarkar B, Mutsuddi M, Mukherjee A. E3 ubiquitin ligase Deltex facilitates the expansion of Wingless gradient and antagonizes Wingless signaling through a conserved mechanism of transcriptional effector Armadillo/β-catenin degradation. eLife 2024; 12:RP88466. [PMID: 38900140 PMCID: PMC11189633 DOI: 10.7554/elife.88466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
The Wnt/Wg pathway controls myriads of biological phenomena throughout the development and adult life of all organisms across the phyla. Thus, an aberrant Wnt signaling is associated with a wide range of pathologies in humans. Tight regulation of Wnt/Wg signaling is required to maintain proper cellular homeostasis. Here, we report a novel role of E3 ubiquitin ligase Deltex in Wg signaling regulation. Drosophila dx genetically interacts with wg and its pathway components. Furthermore, Dx LOF results in a reduced spreading of Wg while its over-expression expands the diffusion gradient of the morphogen. We attribute this change in Wg gradient to the endocytosis of Wg through Dx which directly affects the short- and long-range Wg targets. We also demonstrate the role of Dx in regulating Wg effector Armadillo where Dx down-regulates Arm through proteasomal degradation. We also showed the conservation of Dx function in the mammalian system where DTX1 is shown to bind with β-catenin and facilitates its proteolytic degradation, spotlighting a novel step that potentially modulates Wnt/Wg signaling cascade.
Collapse
Affiliation(s)
- Vartika Sharma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu UniversityVaranasiIndia
- Department of Integrative Biology and Physiology, University of California Los AngelesLos AngelesUnited States
| | - Nalani Sachan
- Department of Cell Biology, NYU Langone Medical CenterNew YorkUnited States
| | - Bappi Sarkar
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu UniversityVaranasiIndia
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu UniversityVaranasiIndia
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu UniversityVaranasiIndia
| |
Collapse
|
6
|
Kikuchi K, Arata M. The interplay between Wnt signaling pathways and microtubule dynamics. In Vitro Cell Dev Biol Anim 2024; 60:502-512. [PMID: 38349554 DOI: 10.1007/s11626-024-00860-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024]
Abstract
Wnt signaling pathways represent an evolutionarily highly conserved, intricate network of molecular interactions that regulates various aspects of cellular behavior, including embryonic development and tissue homeostasis. Wnt signaling pathways share the β-catenin-dependent (canonical) and the multiple β-catenin-independent (non-canonical) pathways. These pathways collectively orchestrate a wide range of cellular processes through distinct mechanisms of action. Both the β-catenin-dependent and β-catenin-independent pathways are closely intertwined with microtubule dynamics, underscoring the complex crosstalk between Wnt signaling and the cellular cytoskeleton. This interplay involves several mechanisms, including how the components of Wnt signaling can influence the stability, organization, and distribution of microtubules. The modulation of microtubule dynamics by Wnt signaling plays a crucial role in coordinating cellular behaviors and responses to external signals. In this comprehensive review, we discussed the current understanding of how Wnt signaling and microtubule dynamics intersect in various aspects of cellular behavior. This study provides insights into our understanding of these crucial cellular processes.
Collapse
Affiliation(s)
- Koji Kikuchi
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan.
| | - Masaki Arata
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| |
Collapse
|
7
|
Brinzer RA, Winter AD, Page AP. The relationship between intraflagellar transport and upstream protein trafficking pathways and macrocyclic lactone resistance in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2024; 14:jkae009. [PMID: 38227795 PMCID: PMC10917524 DOI: 10.1093/g3journal/jkae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
Parasitic nematodes are globally important and place a heavy disease burden on infected humans, crops, and livestock, while commonly administered anthelmintics used for treatment are being rendered ineffective by increasing levels of resistance. It has recently been shown in the model nematode Caenorhabditis elegans that the sensory cilia of the amphid neurons play an important role in resistance toward macrocyclic lactones such as ivermectin (an avermectin) and moxidectin (a milbemycin) either through reduced uptake or intertissue signaling pathways. This study interrogated the extent to which ciliary defects relate to macrocyclic lactone resistance and dye-filling defects using a combination of forward genetics and targeted resistance screening approaches and confirmed the importance of intraflagellar transport in this process. This approach also identified the protein trafficking pathways used by the downstream effectors and the components of the ciliary basal body that are required for effector entry into these nonmotile structures. In total, 24 novel C. elegans anthelmintic survival-associated genes were identified in this study. When combined with previously known resistance genes, there are now 46 resistance-associated genes that are directly involved in amphid, cilia, and intraflagellar transport function.
Collapse
Affiliation(s)
- Robert A Brinzer
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Scotland G61 1QH, UK
| | - Alan D Winter
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Scotland G61 1QH, UK
| | - Antony P Page
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Scotland G61 1QH, UK
| |
Collapse
|
8
|
Vuong LT, Mlodzik M. The complex relationship of Wnt-signaling pathways and cilia. Curr Top Dev Biol 2023; 155:95-125. [PMID: 38043953 PMCID: PMC11287783 DOI: 10.1016/bs.ctdb.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Wnt family proteins are secreted glycolipoproteins that signal through multitude of signal transduction pathways. The Wnt-pathways are conserved and critical in all metazoans. They are essential for embryonic development, organogenesis and homeostasis, and associated with many diseases when defective or deregulated. Wnt signaling pathways comprise the canonical Wnt pathway, best known for its stabilization of β-catenin and associated nuclear β-catenin activity in gene regulation, and several non-canonical signaling branches. Wnt-Planar Cell Polarity (PCP) signaling has received the most attention among the non-canonical Wnt pathways. The relationship of cilia to Wnt-signaling is complex. While it was suggested that canonical Wnt signaling requires cilia this notion was always challenged by results suggesting the opposite. Recent developments provide insight and clarification to the relationship of Wnt signaling pathways and cilia. First, it has been now demonstrated that while ciliary proteins, in particular the IFT-A complex, are required for canonical Wnt/β-catenin signaling, the cilium as a structure is not. In contrast, recent work has defined a diverged canonical signaling branch (not affecting β-catenin) to be required for ciliary biogenesis and cilia function. Furthermore, the non-canonical Wnt-PCP pathway does not affect cilia biogenesis per se, but it regulates the position of cilia within cells in many cell types, possibly in all cells where it is active, with cilia being placed near the side of the cell that has the Frizzled-Dishevelled complex. This Wnt/PCP feature is conserved with both centrioles and basal bodies/cilia being positioned accordingly, and it is also used to align mitotic spindles within the Wnt-PCP polarization axis. It also coordinates the alignment of cilia in multiciliated cells. This article addresses these new insights and different links and relationships between cilia and Wnt signaling.
Collapse
Affiliation(s)
- Linh T Vuong
- Department of Cell, Developmental, & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marek Mlodzik
- Department of Cell, Developmental, & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
9
|
Vuong LT, Mlodzik M. Wg/Wnt-signaling induced nuclear translocation of β-catenin is attenuated by a β-catenin peptide through its interaction with IFT-A in development and cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544986. [PMID: 37398005 PMCID: PMC10312694 DOI: 10.1101/2023.06.14.544986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Wnt/Wingless (Wg) signaling is critical for many developmental patterning processes and linked to diseases, including cancer. Canonical Wnt-signaling is mediated by β-catenin, Armadillo/Arm in Drosophila transducing signal activation to a nuclear response. The IFT-A/Kinesin-2 complex is required to promote the nuclear translocation of β-catenin/Arm. Here, we define a small conserved N-terminal Arm/β-catenin (Arm 34-87 ) peptide, which binds IFT140, as a dominant interference tool to attenuate Wg/Wnt-signaling in vivo . Expression of Arm 34-87 is sufficient to antagonize endogenous Wnt/Wg-signaling activation resulting in marked reduction of Wg-signaling target gene expression. This effect is modulated by endogenous levels of Arm and IFT140, with the Arm 34-87 effect being enhanced or suppressed, respectively. Arm 34-87 thus inhibits Wg/Wnt-signaling by interfering with the nuclear translocation of endogenous Arm/β-catenin. Importantly, this mechanism is conserved in mammals with the equivalent β-catenin 34-87 peptide blocking nuclear translocation and pathway activation, including in cancer cells. Our work indicates that Wnt-signaling can be regulated by a defined N-terminal peptide of Arm/β-catenin, and thus this might serve as an entry point for potential therapeutic applications to attenuate Wnt/β-catenin signaling.
Collapse
|
10
|
Min JK, Park HS, Lee YB, Kim JG, Kim JI, Park JB. Cross-Talk between Wnt Signaling and Src Tyrosine Kinase. Biomedicines 2022; 10:biomedicines10051112. [PMID: 35625853 PMCID: PMC9138253 DOI: 10.3390/biomedicines10051112] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022] Open
Abstract
Src, a non-receptor tyrosine kinase, was first discovered as a prototype oncogene and has been shown to critical for cancer progression for a variety of tissues. Src activity is regulated by a number of post-translational modifications in response to various stimuli. Phosphorylations of Src Tyr419 (human; 416 in chicken) and Src Tyr530 (human; 527 in chicken) have been known to be critical for activation and inactivation of Src, respectively. Wnt signaling regulates a variety of cellular functions including for development and cell proliferation, and has a role in certain diseases such as cancer. Wnt signaling is carried out through two pathways: β-catenin-dependent canonical and β-catenin-independent non-canonical pathways as Wnt ligands bind to their receptors, Frizzled, LRP5/6, and ROR1/2. In addition, many signaling components including Axin, APC, Damm, Dishevelled, JNK kinase and Rho GTPases contribute to these canonical and non-canonical Wnt pathways. However, the communication between Wnt signaling and Src tyrosine kinase has not been well reviewed as Src regulates Wnt signaling through LRP6 tyrosine phosphorylation. GSK-3β phosphorylated by Wnt also regulates Src activity. As Wnt signaling and Src mutually regulate each other, it is noted that aberrant regulation of these components give rise to various diseases including typically cancer, and as such, merit a closer look.
Collapse
Affiliation(s)
- Jung Ki Min
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 25242, Korea; (J.K.M.); (Y.-B.L.); (J.-G.K.)
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Hwee-Seon Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-S.P.); (J.-I.K.)
- Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yoon-Beom Lee
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 25242, Korea; (J.K.M.); (Y.-B.L.); (J.-G.K.)
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Jae-Gyu Kim
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 25242, Korea; (J.K.M.); (Y.-B.L.); (J.-G.K.)
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-S.P.); (J.-I.K.)
- Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 25242, Korea; (J.K.M.); (Y.-B.L.); (J.-G.K.)
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Korea
- Correspondence: ; Tel.: +82-33-248-2542; Fax: +82-33-244-8425
| |
Collapse
|
11
|
Abstract
The Wnt pathway is central to a host of developmental and disease-related processes. The remarkable conservation of this intercellular signaling cascade throughout metazoan lineages indicates that it coevolved with multicellularity to regulate the generation and spatial arrangement of distinct cell types. By regulating cell fate specification, mitotic activity, and cell polarity, Wnt signaling orchestrates development and tissue homeostasis, and its dysregulation is implicated in developmental defects, cancer, and degenerative disorders. We review advances in our understanding of this key pathway, from Wnt protein production and secretion to relay of the signal in the cytoplasm of the receiving cell. We discuss the evolutionary history of this pathway as well as endogenous and synthetic modulators of its activity. Finally, we highlight remaining gaps in our knowledge of Wnt signal transduction and avenues for future research. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ellen Youngsoo Rim
- Howard Hughes Medical Institute, Department of Developmental Biology, and Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, USA;
| | - Hans Clevers
- Hubrecht Institute and Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, The Netherlands
| | - Roel Nusse
- Howard Hughes Medical Institute, Department of Developmental Biology, and Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, USA;
| |
Collapse
|
12
|
Zhang J, Zhang L, Wang J, Zhao J, Zhao X, Zhang C, Han P, Geng C. Long non-coding RNA linc00921 suppresses tumorigenesis and epithelial-to-mesenchymal transition of triple-negative breast cancer via targeting miR-9-5p/LZTS2 axis. Hum Cell 2022; 35:909-923. [PMID: 35179718 PMCID: PMC9013323 DOI: 10.1007/s13577-022-00685-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 02/05/2022] [Indexed: 11/25/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Dysregulation of long non-coding RNAs (lncRNAs) plays crucial roles in the initiation and progression of TNBC. In this study, we analyzed public GEO profiles to verify the key lncRNAs in TNBC. Linc00921 was selected for further study. Low expression of linc00921 was observed in 49 of 95 TNBC tissues. Low expression of linc00921 was correlated with poor postoperative disease-free survival (DFS) and overall survival (OS) of TNBC patients. Overexpression of linc00921 with lentivirus suppressed the proliferation, migration and invasion of TNBC cells. A luciferase reporter assay showed that linc00921 could sponge miR-9-5p in TNBC. Moreover, linc00921 and miR-9-5p occupied the same Argonaute-2 (Ago2) protein in TNBC cells. Leucine zipper tumor suppressor 2 (LZTS2) was recognized as a target gene of miR-9-5p, and thereby a linc00921/miR-9-5p/LZTS2 axis was identified in TNBC cells. Overexpression of linc00921 promoted nuclear export of β-catenin, neutralized its function, and subsequently promoted epithelial-to-mesenchymal transition (EMT) in TNBC. A xenograft tumor mouse model showed that the miR-9-5p inhibitor upregulates LZTS2 expression and induce nuclear export of β-catenin in TNBC. Thus, linc00921 upregulates LZTS2 by sponging miR-9-5p to suppress tumorigenesis and EMT of TNBC. Linc00921/miR-9-5p/LZTS2 axis may be a novel biomarker and therapeutic target for TNBC patients.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Plastic Surgery, Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Lina Zhang
- Breast Disease Diagnostic and Therapeutic Center, Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, 050035, Hebei, China
| | - Jianlong Wang
- Department of Minimally Invasive Surgery, Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jing Zhao
- Department of Anus and Intestine Surgery, Second Affiliated Hospital of Hebei Medical University, ShijiazhuangHebei, 050000, China
| | - Xuelian Zhao
- Department of Plastic Surgery, Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Chunli Zhang
- Department of Plastic Surgery, Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Peng Han
- Department of Plastic Surgery, Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Cuizhi Geng
- Breast Disease Diagnostic and Therapeutic Center, Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, 050035, Hebei, China.
| |
Collapse
|
13
|
Vuong LT, Mlodzik M. Different strategies by distinct Wnt-signaling pathways in activating a nuclear transcriptional response. Curr Top Dev Biol 2022; 149:59-89. [PMID: 35606062 PMCID: PMC9870056 DOI: 10.1016/bs.ctdb.2022.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Wnt family of secreted glycolipo-proteins signals through multiple signal transduction pathways and is essential for embryonic development and organ development and homeostasis. The Wnt-pathways are conserved and critical in all metazoans. Wnt signaling pathways comprise the canonical Wnt/β-catenin pathway and several non-canonical signaling branches, of which Wnt-Planar Cell Polarity (PCP) signaling and the Wnt/Calcium pathway have received the most attention and are best understood. nterestingly, all Wnt-pathways have a nuclear signaling branch and also can affect many cellular processes independent of its nuclear transcriptional regulation. Canonical Wnt/β-catenin signaling is the most critical for a nuclear transcriptional response, in both development and disease, yet the mechanism(s) on how the "business end" of the pathway, β-catenin, translocates to the nucleus to act as co-activator to the TCF/Lef transcription factor family still remains obscure. Here we discuss and compare the very different strategies on how the respective Wnt signaling pathways activate a nuclear transcriptional response. We also highlight some recent new insights into how β-catenin is translocated to the nucleus via an IFT-A, Kinesin-2, and microtubule dependent mechanism and how this aspect of canonical Wnt-signaling uses ciliary proteins in a cilium independent manner, conserved between Drosophila and mammalian cells.
Collapse
Affiliation(s)
| | - Marek Mlodzik
- Department of Cell, Developmental, & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
14
|
Wnt signaling recruits KIF2A to the spindle to ensure chromosome congression and alignment during mitosis. Proc Natl Acad Sci U S A 2021; 118:2108145118. [PMID: 34417301 DOI: 10.1073/pnas.2108145118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Canonical Wnt signaling plays critical roles in development and tissue renewal by regulating β-catenin target genes. Recent evidence showed that β-catenin-independent Wnt signaling is also required for faithful execution of mitosis. However, the targets and specific functions of mitotic Wnt signaling still remain uncharacterized. Using phosphoproteomics, we identified that Wnt signaling regulates the microtubule depolymerase KIF2A during mitosis. We found that Dishevelled recruits KIF2A via its N-terminal and motor domains, which is further promoted upon LRP6 signalosome formation during cell division. We show that Wnt signaling modulates KIF2A interaction with PLK1, which is critical for KIF2A localization at the spindle. Accordingly, inhibition of basal Wnt signaling leads to chromosome misalignment in somatic cells and pluripotent stem cells. We propose that Wnt signaling monitors KIF2A activity at the spindle poles during mitosis to ensure timely chromosome alignment. Our findings highlight a function of Wnt signaling during cell division, which could have important implications for genome maintenance, notably in stem cells.
Collapse
|
15
|
Peralta M, Ortiz Lopez L, Jerabkova K, Lucchesi T, Vitre B, Han D, Guillemot L, Dingare C, Sumara I, Mercader N, Lecaudey V, Delaval B, Meilhac SM, Vermot J. Intraflagellar Transport Complex B Proteins Regulate the Hippo Effector Yap1 during Cardiogenesis. Cell Rep 2021; 32:107932. [PMID: 32698004 DOI: 10.1016/j.celrep.2020.107932] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/30/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Cilia and the intraflagellar transport (IFT) proteins involved in ciliogenesis are associated with congenital heart diseases (CHDs). However, the molecular links between cilia, IFT proteins, and cardiogenesis are yet to be established. Using a combination of biochemistry, genetics, and live-imaging methods, we show that IFT complex B proteins (Ift88, Ift54, and Ift20) modulate the Hippo pathway effector YAP1 in zebrafish and mouse. We demonstrate that this interaction is key to restrict the formation of the proepicardium and the myocardium. In cellulo experiments suggest that IFT88 and IFT20 interact with YAP1 in the cytoplasm and functionally modulate its activity, identifying a molecular link between cilia-related proteins and the Hippo pathway. Taken together, our results highlight a noncanonical role for IFT complex B proteins during cardiogenesis and shed light on a mechanism of action for ciliary proteins in YAP1 regulation.
Collapse
Affiliation(s)
- Marina Peralta
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Laia Ortiz Lopez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Katerina Jerabkova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Tommaso Lucchesi
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France; INSERM UMR1163, Université Paris Descartes, Paris, France; Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Benjamin Vitre
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS, Université de Montpellier, Montpellier, France
| | - Dong Han
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France; INSERM UMR1163, Université Paris Descartes, Paris, France
| | - Laurent Guillemot
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France; INSERM UMR1163, Université Paris Descartes, Paris, France
| | - Chaitanya Dingare
- Institute for Cell Biology and Neurosciences, Goethe University of Frankfurt, Frankfurt, Germany
| | - Izabela Sumara
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Nadia Mercader
- Institute of Anatomy, University of Bern, Bern, Switzerland; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Virginie Lecaudey
- Institute for Cell Biology and Neurosciences, Goethe University of Frankfurt, Frankfurt, Germany
| | - Benedicte Delaval
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS, Université de Montpellier, Montpellier, France
| | - Sigolène M Meilhac
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France; INSERM UMR1163, Université Paris Descartes, Paris, France
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France; Sorbonne Université, Collège Doctoral, F-75005, Paris, France; Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
16
|
Kumari A, Shriwas O, Sisodiya S, Santra MK, Guchhait SK, Dash R, Panda D. Microtubule-targeting agents impair kinesin-2-dependent nuclear transport of β-catenin: Evidence of inhibition of Wnt/β-catenin signaling as an important antitumor mechanism of microtubule-targeting agents. FASEB J 2021; 35:e21539. [PMID: 33742719 DOI: 10.1096/fj.202002594r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/12/2021] [Accepted: 03/03/2021] [Indexed: 11/11/2022]
Abstract
An aberrant accumulation of nuclear β-catenin is closely associated with the augmentation of cancer malignancy. In this work, we report that several microtubule-targeting agents (MTAs) such as vinblastine, taxol, and C12 (combretastatin-2-aminoimidazole analog) inhibit Wnt/β-catenin signaling in oral squamous cell carcinoma (OSCC). We showed that the inhibition of microtubule dynamics by MTAs decreased the level of β-catenin by increasing Axin and adenomatous polyposis coli levels and reducing the level of dishevelled. Furthermore, MTAs strongly reduced the localization of β-catenin in the nucleus. The reduction in the level of nuclear β-catenin was neither due to the degradation of β-catenin in the nucleus nor due to an increase in the export of nuclear β-catenin from the nucleus. A motor protein kinesin-2 was found to assist the nuclear transportation of β-catenin. Interestingly, Wnt/β-catenin signaling antagonist treatment synergized with MTAs and the activators of Wnt/β-catenin signaling antagonized with the MTAs. C12 potently suppressed the growth of 4-Nitroquinoline 1-oxide-induced OSCC in the tongue of C57 black 6 mice and also abrogated Wnt/β-catenin signaling pathway in the tumor. Our results provide evidence that the decrease in Wnt/β-catenin signaling is an important antitumor effect of MTAs and the combined use of MTAs with Wnt/β-catenin signaling antagonists could be a promising strategy for cancer chemotherapy.
Collapse
Affiliation(s)
- Anuradha Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, India
| | | | - Shailendra Sisodiya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Punjab, India
| | | | - Sankar K Guchhait
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Rupesh Dash
- Institute of Life Sciences, Bhubaneshwar, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, India
| |
Collapse
|
17
|
Chen Y, Fan Q, Zhang H, Tao D, Wang Y, Yue R, Sun Y. Lineage tracing of cells expressing the ciliary gene IFT140 during bone development. Dev Dyn 2021; 250:574-583. [PMID: 33095947 DOI: 10.1002/dvdy.266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 09/28/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Primary cilia influence cell function and tissue development. Ciliary signaling is mediated by two intraflagellar transport (IFT) protein complexes, IFT-A and IFT-B. The IFT-A complex is responsible for retrograde transport, and IFT140 is a core protein in the A complex. Mutations in IFT140 cause a variety of skeletal disorders. However, the expression and role of IFT140 during bone development remain unclear. In this study, to further explore the potential role of IFT140 in osteogenesis, we used cell lineage tracing and conditional knockout to analyze the distribution and function of IFT140-positive cells during bone formation. RESULTS In newborn Ift140-creER; R26RtdTomato mice, IFT140-positive cells were mainly located in the medullary cavity and then migrated to and differentiated on the surface of trabecular and cortical bone. In contrast, the number of IFT140-positive cells significantly decreased in the adult stage, and these cells were only located in the bone marrow cavity for a short time. In Osx-cre; Ift140flox/flox mice, the loss of IFT140 in preosteoblasts caused bone loss in the trabecular bone area at 10 weeks. CONCLUSION The results revealed that IFT140-positive cells mainly contribute to the early stage of bone formation.
Collapse
Affiliation(s)
- Yubei Chen
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Qiqi Fan
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Han Zhang
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Dike Tao
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yibin Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yao Sun
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
18
|
Loganathan R, Kim JH, Wells MB, Andrew DJ. Secrets of secretion-How studies of the Drosophila salivary gland have informed our understanding of the cellular networks underlying secretory organ form and function. Curr Top Dev Biol 2020; 143:1-36. [PMID: 33820619 DOI: 10.1016/bs.ctdb.2020.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Secretory organs are critical for organismal survival. Yet, the transcriptional regulatory mechanisms governing their development and maintenance remain unclear for most model secretory organs. The Drosophila embryonic salivary gland (SG) remedies this deficiency as one of the few organs wherein direct connections from the expression of the early patterning genes to cell specification to organ architecture and functional specialization can be made. Few other models of secretion can be accorded this distinction. Studies from the past three decades have made enormous strides in parsing out the roles of distinct transcription factors (TFs) that direct major steps in furnishing this secretory organ. In the first step of specifying the salivary gland, the activity of the Hox factors Sex combs reduced, Extradenticle, and Homothorax activate expression of fork head (fkh), sage, and CrebA, which code for the major suite of TFs that carry forward the task of organ building and maintenance. Then, in the second key step of building the SG, the program for cell fate maintenance and morphogenesis is deployed. Fkh maintains the secretory cell fate by regulating its own expression and that of sage and CrebA. Fkh and Sage maintain secretory cell viability by actively blocking apoptotic cell death. Fkh, along with two other TFs, Hkb and Rib, also coordinates organ morphogenesis, transforming two plates of precursor cells on the embryo surface into elongated internalized epithelial tubes. Acquisition of functional specialization, the third key step, is mediated by CrebA and Fkh working in concert with Sage and yet another TF, Sens. CrebA directly upregulates expression of all of the components of the secretory machinery as well as other genes (e.g., Xbp1) necessary for managing the physiological stress that inexorably accompanies high secretory load. Secretory cargo specificity is controlled by Sage and Sens in collaboration with Fkh. Investigations have also uncovered roles for various signaling pathways, e.g., Dpp signaling, EGF signaling, GPCR signaling, and cytoskeletal signaling, and their interactions within the gene regulatory networks that specify, build, and specialize the SG. Collectively, studies of the SG have expanded our knowledge of secretory dynamics, cell polarity, and cytoskeletal mechanics in the context of organ development and function. Notably, the embryonic SG has made the singular contribution as a model system that revealed the core function of CrebA in scaling up secretory capacity, thus, serving as the pioneer system in which the conserved roles of the mammalian Creb3/3L-family orthologues were first discovered.
Collapse
Affiliation(s)
- Rajprasad Loganathan
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ji Hoon Kim
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael B Wells
- Idaho College of Osteopathic Medicine, Meridian, ID, United States
| | - Deborah J Andrew
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
19
|
Vitre B, Guesdon A, Delaval B. Non-ciliary Roles of IFT Proteins in Cell Division and Polycystic Kidney Diseases. Front Cell Dev Biol 2020; 8:578239. [PMID: 33072760 PMCID: PMC7536321 DOI: 10.3389/fcell.2020.578239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/26/2020] [Indexed: 12/30/2022] Open
Abstract
Cilia are small organelles present at the surface of most differentiated cells where they act as sensors for mechanical or biochemical stimuli. Cilia assembly and function require the Intraflagellar Transport (IFT) machinery, an intracellular transport system that functions in association with microtubules and motors. If IFT proteins have long been studied for their ciliary roles, recent evidences indicate that their functions are not restricted to the cilium. Indeed, IFT proteins are found outside the ciliary compartment where they are involved in a variety of cellular processes in association with non-ciliary motors. Recent works also provide evidence that non-ciliary roles of IFT proteins could be responsible for the development of ciliopathies related phenotypes including polycystic kidney diseases. In this review, we will discuss the interactions of IFT proteins with microtubules and motors as well as newly identified non-ciliary functions of IFT proteins, focusing on their roles in cell division. We will also discuss the potential contribution of non-ciliary IFT proteins functions to the etiology of kidney diseases.
Collapse
|
20
|
Bian J, Dannappel M, Wan C, Firestein R. Transcriptional Regulation of Wnt/β-Catenin Pathway in Colorectal Cancer. Cells 2020; 9:cells9092125. [PMID: 32961708 PMCID: PMC7564852 DOI: 10.3390/cells9092125] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
The Wnt/β-catenin signaling pathway exerts integral roles in embryogenesis and adult homeostasis. Aberrant activation of the pathway is implicated in growth-associated diseases and cancers, especially as a key driver in the initiation and progression of colorectal cancer (CRC). Loss or inactivation of Adenomatous polyposis coli (APC) results in constitutive activation of Wnt/β-catenin signaling, which is considered as an initiating event in the development of CRC. Increased Wnt/β-catenin signaling is observed in virtually all CRC patients, underscoring the importance of this pathway for therapeutic intervention. Prior studies have deciphered the regulatory networks required for the cytoplasmic stabilisation or degradation of the Wnt pathway effector, β-catenin. However, the mechanism whereby nuclear β-catenin drives or inhibits expression of Wnt target genes is more diverse and less well characterised. Here, we describe a brief synopsis of the core canonical Wnt pathway components, set the spotlight on nuclear mediators and highlight the emerging role of chromatin regulators as modulators of β-catenin-dependent transcription activity and oncogenic output.
Collapse
Affiliation(s)
- Jia Bian
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Marius Dannappel
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Chunhua Wan
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
- Correspondence:
| |
Collapse
|
21
|
Alleviation by Mahuang Fuzi and Shenzhuo Decoction in High Glucose-Induced Podocyte Injury by Inhibiting the Activation of Wnt/ β-Catenin Signaling Pathway, Resulting in Activation of Podocyte Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7809427. [PMID: 32963573 PMCID: PMC7486640 DOI: 10.1155/2020/7809427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 05/16/2020] [Accepted: 06/15/2020] [Indexed: 11/17/2022]
Abstract
Background Organ fibrosis is a common endpoint of a variety of diseases. Many studies have shown that the pathogenesis of diabetic kidney disease (DKD) is related to the excessive activation of the Wnt/β-catenin signaling pathway on podocytes, so the treatment of DKD starts from this signaling pathway. At the same time, DKD, as a metabolic disease, has many connections related to podocyte autophagy. Objectives We experimented the effects of Mahuang Fuzi and Shenzhuo decoction (MFSD) which is the combination of Mahuang Fuzi decoction and Shenzhuo decoction in traditional Chinese medicine compounds used "The Golden Chamber" in high glucose-induced podocytes, determined whether this effect was related to Wnt/β-catenin signaling pathway, and further investigated the relationship between this effect and autophagy. Methods The mice podocytes were stimulated by using 30 mmol/L of high glucose and serum containing MFSD or Wnt/β-catenin signaling pathway inhibitor DKK1 (100 ng/ml) was used to intervene podocytes before high glucose stimulation. Podocyte injury-related proteins, Wnt/β-catenin signaling pathway-related proteins, and autophagy-related proteins were detected by using western blotting and immunofluorescence analysis. Results Our results showed that DKK1 and MFSD treatment significantly upregulated the protein expressions of nephrin, podocin, podocalyxin, and podoplanin in high glucose-induced podocytes and downregulated the β-catenin protein expression. Furthermore, the protein expressions of beclin1, LC3B, and P62 were also significantly increased in high glucose-induced podocytes. Conclusion Our experiments confirmed that the destruction of podocytes in DKD is related to the excessive activation of Wnt/β-catenin signaling pathway and the inhibition of autophagy after activation. MFSD treatment can inhibit the activation of Wnt/β-catenin signaling pathway in podocytes stimulated by high glucose and helpful in reducing the podocyte injury. This protective mechanism can be related to the enhancement of podocyte autophagy by MFSD treatment.
Collapse
|
22
|
Anthony CC, Robbins DJ, Ahmed Y, Lee E. Nuclear Regulation of Wnt/β-Catenin Signaling: It's a Complex Situation. Genes (Basel) 2020; 11:genes11080886. [PMID: 32759724 PMCID: PMC7465203 DOI: 10.3390/genes11080886] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/26/2022] Open
Abstract
Wnt signaling is an evolutionarily conserved metazoan cell communication pathway required for proper animal development. Of the myriad of signaling events that have been ascribed to cellular activation by Wnt ligands, the canonical Wnt/β-catenin pathway has been the most studied and best understood. Misregulation of Wnt/β-catenin signaling has been implicated in developmental defects in the embryo and major diseases in the adult. Despite the latter, no drugs that inhibit the Wnt/β-catenin pathway have been approved by the FDA. In this review, we explore the least understood step in the Wnt/β-catenin pathway-nuclear regulation of Wnt target gene transcription. We initially describe our current understanding of the importation of β-catenin into the nucleus. We then focus on the mechanism of action of the major nuclear proteins implicated in driving gene transcription. Finally, we explore the concept of a nuclear Wnt enhanceosome and propose a modified model that describes the necessary components for the transcription of Wnt target genes.
Collapse
Affiliation(s)
- Christin C. Anthony
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA;
| | - David J. Robbins
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA;
| | - Ethan Lee
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA;
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence:
| |
Collapse
|
23
|
Yang H, Huang K. Dissecting the Vesicular Trafficking Function of IFT Subunits. Front Cell Dev Biol 2020; 7:352. [PMID: 32010685 PMCID: PMC6974671 DOI: 10.3389/fcell.2019.00352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
Intraflagellar transport (IFT) was initially identified as a transport machine with multiple protein subunits, and it is essential for the assembly, disassembly, and maintenance of cilium/flagellum, which serves as the nexus of extracellular-to-intracellular signal integration. To date, in addition to its well-established and indispensable roles in ciliated cells, most IFT subunits have presented more general functions of vesicular trafficking in the non-ciliated cells. Thus, this review aims to summarize the recent progress on the vesicular trafficking functions of the IFT subunits and to highlight the issues that may arise in future research.
Collapse
Affiliation(s)
- Huihui Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Institute of Hydrobiology, University of Chinese Academy of Sciences, Beijing, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
24
|
Liu D, Chen L, Zhao H, Vaziri ND, Ma SC, Zhao YY. Small molecules from natural products targeting the Wnt/β-catenin pathway as a therapeutic strategy. Biomed Pharmacother 2019; 117:108990. [PMID: 31226638 DOI: 10.1016/j.biopha.2019.108990] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
The Wnt/β-catenin signaling pathway is an evolutionarily conserved developmental signaling event that plays a critical role in regulating tissue development and maintaining homeostasis, the dysregulation of which contributes to various diseases. Natural products have been widely recognized as a treasure trove of novel drug discovery for millennia, and many clinical drugs are derived from natural small molecules. Mounting evidence has demonstrated that many natural small molecules could inhibit the Wnt/β-catenin pathway, while the efficacy of natural products remains to be determined. Therefore, this paper primarily reviews the targeting mechanism of natural small molecules for aberrant Wnt/β-catenin pathway that is intimately implicated in the pathogenesis of myriad diseases, such as cancers, renal diseases, neurodegenerative diseases and bone disorders. In addition, this review also highlights some natural products that have the potential to halt Wnt/β-catenin pathway, especially for porcupine, the receptors of Wnt ligands, β-catenin and β-catenin-dependent proteins. Additionally, a series of natural small molecules have shown good therapeutic effects against mutations of the Wnt/β-catenin pathway, which may dramatically facilitate the development of natural products in Wnt/β-catenin pathway intervention.
Collapse
Affiliation(s)
- Dan Liu
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Lin Chen
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Hui Zhao
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, California, 92897, USA
| | - Shuang-Cheng Ma
- National Institutes for Food and Drug Control, State Food and Drug Administration, No. 2 Tiantan Xili, Beijing, 100050, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|