1
|
Crane AH, Baldry CJ, Rankin KE, Clarkin CE, Williams KA, Gostling NJ. The three-dimensional structure of medullary bone: Novel criteria for the identification of avian sex-specific bone tissue. Dev Biol 2025; 521:108-121. [PMID: 39938771 DOI: 10.1016/j.ydbio.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/09/2024] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
Medullary bone is a fast-growing, ephemeral bone tissue found inside the bone cavities of female birds. Identifying this tissue in the bones of fossil avian and non-avian dinosaurs has the potential to determine which specimens represent reproductively mature females. However, difficulties in distinguishing medullary bone from superficially similar bone pathologies has led to uncertainty as to whether some specimens previously thought to contain medullary bone instead represent sick or injured individuals. The most frequently mentioned of these pathologies is avian osteopetrosis, a virally-induced condition in birds causing bony lesions which can resemble medullary bone. Lists of criteria, primarily using two-dimensional osteohistology, have yet to form a comprehensive framework through which all medullary bone can be positively identified, and all pathology excluded. Here, we use high-resolution computed tomography (μCT) to characterise the three-dimensional structure of medullary bone in modern birds for the first time and make comparisons to the endosteal lesions of avian osteopetrosis. We identify both qualitative and quantitative features which we suggest to be characteristic of medullary bone, including connectivity density and osteocyte lacunar orientation, and highlight conspicuously variable features which require further investigation. We find several three-dimensional which can be used to differentiate between medullary bone and avian osteopetrosis, including structural anisotropy and trabecular thickness. These three-dimensional characters can be added to the growing framework of criteria to identify medullary bone in the fossil record and thus help determine the sex of dinosaurs.
Collapse
Affiliation(s)
- Abi H Crane
- School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, UK; School of Ocean and Earth Science, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, UK
| | - Claudia J Baldry
- School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, UK
| | - Kathryn E Rankin
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Claire E Clarkin
- School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, UK
| | - Katherine A Williams
- School of the Environment and Life Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK.
| | - Neil J Gostling
- School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, UK.
| |
Collapse
|
2
|
Chinzorig T, Beguesse KA, Canoville A, Phillips G, Zanno LE. Chronic fracture and osteomyelitis in a large-bodied ornithomimosaur with implications for the identification of unusual endosteal bone in the fossil record. Anat Rec (Hoboken) 2022. [PMID: 36193654 DOI: 10.1002/ar.25069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 11/07/2022]
Abstract
Paleopathological diagnoses provide key information on the macroevolutionary origin of disease as well as behavioral and physiological inferences that are inaccessible via direct observation of extinct organisms. Here we describe the external gross morphology and internal architecture of a pathologic right second metatarsal (MMNS VP-6332) of a large-bodied ornithomimid (~432 kg) from the Santonian (Upper Cretaceous) Eutaw Formation in Mississippi, using a combination of X-ray computed microtomography (microCT) and petrographic histological analyses. X-ray microCT imaging and histopathologic features are consistent with multiple complete, oblique to comminuted, minimally displaced mid-diaphyseal cortical fractures that produce a "butterfly" fragment fracture pattern, and secondary osteomyelitis with a bone fistula formation. We interpret this as evidence of blunt force trauma to the foot that could have resulted from intra- or interspecific competition or predator-prey interaction, and probably impaired the function of the metatarsal as a weight-bearing element until the animal's death. Of particular interest is the apparent decoupling of endosteal and periosteal pathological bone deposition in MMNS VP-6332, which produces transverse sections exhibiting homogenously thick endosteal pathological bone in the absence of localized periosteal reactive bone. These distribution and depositional patterns are used as criteria for ruling out a pathological origin in favor of a reproductive one for unusual endosteal bone in fossil specimens. On the basis of MMNS VP-6332, we suggest caution in their use to substantiate a medullary bone identification in extinct archosaurians.
Collapse
Affiliation(s)
- Tsogtbaatar Chinzorig
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA.,Paleontology Research Laboratory, North Carolina Museum of Natural Sciences, Raleigh, North Carolina, USA
| | - Kyla A Beguesse
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA.,Paleontology Research Laboratory, North Carolina Museum of Natural Sciences, Raleigh, North Carolina, USA
| | - Aurore Canoville
- Stiftung Schloss Friedenstein, Gotha & Museum für Naturkunde, Berlin, Germany
| | - George Phillips
- Conservation & Biodiversity Section, Mississippi Museum of Natural Science, Jackson, Mississippi, USA
| | - Lindsay E Zanno
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA.,Paleontology Research Laboratory, North Carolina Museum of Natural Sciences, Raleigh, North Carolina, USA
| |
Collapse
|
3
|
Chinsamy A, Handley WD, Worthy TH. Osteohistology of
Dromornis stirtoni
(Aves: Dromornithidae) and the biological implications of the bone histology of the Australian mihirung birds. Anat Rec (Hoboken) 2022. [DOI: 10.1002/ar.25047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anusuya Chinsamy
- Department of Biological Sciences University of Cape Town Rondebosch South Africa
| | - Warren D. Handley
- Palaeontology Group, College of Science and Engineering Flinders University Adelaide South Australia Australia
| | - Trevor H. Worthy
- Palaeontology Group, College of Science and Engineering Flinders University Adelaide South Australia Australia
| |
Collapse
|
4
|
Ong N, Hart‐Farrar B, Tremaine K, Woodward HN. Osteohistological description of ostrich and emu long bones, with comments on markers of growth. J Anat 2022; 241:518-526. [PMID: 35412666 PMCID: PMC9296041 DOI: 10.1111/joa.13665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 12/19/2022] Open
Abstract
Ostriches and emus are among the largest extant birds and are frequently used as modern analogs for the growth dynamics of non-avian theropod dinosaurs. These ratites quickly reach adult size in under 1 year, and as such do not typically exhibit annually deposited growth marks. Growth marks, commonly classified as annuli or lines of arrested growth (LAGs), represent reduced or halted osteogenesis, respectively, and their presence demonstrates varying degrees of developmental plasticity. Growth marks have not yet been reported from ostriches and emus, prompting authors to suggest that they have lost the plasticity required to deposit them. Here we observe the hind limb bone histology of three captive juvenile emus and one captive adult ostrich. Two of the three juvenile emus exhibit typical bone histology but the third emu, a 4.5-month-old juvenile, exhibits a regional arc of avascular tissue, which we interpret as a growth mark. As this mark is not present in the other two emus from the same cohort and it co-occurs with a contralateral broken fibula, we suggest variable biomechanical load as a potential cause. The ostrich exhibits a complete ring of avascular, hypermineralized bone with sparse, flattened osteocyte lacunae. We identify this as an annulus and interpret it as slowing of growth. In the absence of other growth marks and lacking the animal's life history, the timing and cause of this ostrich's reduced growth are unclear. Even so, these findings demonstrate that both taxa retain the ancestral developmental plasticity required to temporarily slow growth. We also discuss the potential challenges of identifying growth marks using incomplete population data sets and partial cortical sampling.
Collapse
Affiliation(s)
- Nathan Ong
- Department of Anatomy and Cell BiologyOklahoma State University Center for Health SciencesTulsaOklahomaUSA
| | - Brenna Hart‐Farrar
- Department of Anatomy and Cell BiologyOklahoma State University Center for Health SciencesTulsaOklahomaUSA
| | - Katie Tremaine
- Department of Earth ScienceMontana State UniversityBozemanMontanaUSA
- Museum of the RockiesMontana State UniversityBozemanMontanaUSA
| | - Holly N. Woodward
- Department of Anatomy and Cell BiologyOklahoma State University Center for Health SciencesTulsaOklahomaUSA
| |
Collapse
|
5
|
Carr TD. A high-resolution growth series of Tyrannosaurus rex obtained from multiple lines of evidence. PeerJ 2020. [DOI: 10.7717/peerj.9192] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background
During the growth of complex multicellular organisms, chronological age, size and morphology change together in a hierarchical and coordinated pattern. Among extinct species, the growth of Tyrannosaurus rex has received repeated attention through quantitative analyses of relative maturity and chronological age. Its growth series shows an extreme transformation from shallow skulls in juveniles to deep skulls in adults along with a reduction in tooth count, and its growth curve shows that T. rex had a high growth rate in contrast to its closest relatives. However, separately, these sets of data provide an incomplete picture of the congruence between age, size, and relative maturity in this exemplar species. The goal of this work is to analyze these data sets together using cladistic analysis to produce a single hypothesis of growth that includes all of the relevant data.
Methods
The three axes of growth were analyzed together using cladistic analysis, based on a data set of 1,850 morphological characters and 44 specimens. The analysis was run in TNT v.1.5 under a New Technology search followed by a Traditional search. Correlation tests were run in IBM SPSS Statistics v. 24.0.0.0.
Results
An initial analysis that included all of the specimens recovered 50 multiple most parsimonious ontograms a series of analyses identified 13 wildcard specimens. An analysis run without the wildcard specimens recovered a single most parsimonious tree (i.e., ontogram) of 3,053 steps. The ontogram is composed of 21 growth stages, and all but the first and third are supported by unambiguously optimized synontomorphies. T. rex ontogeny can be divided into five discrete growth categories that are diagnosed by chronological age, morphology, and, in part, size (uninformative among adults). The topology shows that the transition from shallow to deep skull shape occurred between 13 and 15 years of age, and the size of the immediate relatives of T. rex was exceeded between its 15th and 18th years. Although size and maturity are congruent among juveniles and subadults, congruence is not seen among adults; for example, one of the least mature adults (RSM 2523.8) is also the largest and most massive example of the species. The extreme number of changes at the transition between juveniles and subadults shows that the ontogeny of T. rex exhibits secondary metamorphosis, analogous to the abrupt ontogenetic changes that are seen at sexual maturity among teleosts. These results provide a point of comparison for testing the congruence between maturity and chronological age, size, and mass, as well as integrating previous work on functional morphology into a rigorous ontogenetic framework. Comparison of the growth series of T. rex with those of outgroup taxa clarifies the ontogenetic trends that were inherited from the common ancestor of Archosauriformes.
Collapse
|
6
|
Wang M, O’Connor JK, Bailleul AM, Li Z. Evolution and distribution of medullary bone: evidence from a new Early Cretaceous enantiornithine bird. Natl Sci Rev 2020; 7:1068-1078. [PMID: 34692126 PMCID: PMC8289052 DOI: 10.1093/nsr/nwz214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/24/2022] Open
Abstract
Living birds are unique among vertebrates in the formation of a female-specific bone tissue called medullary bone (MB) that is strictly associated with reproductive activity. MB is a rapidly mobilized source of calcium and phosphorus for the production of eggshell. Among living taxa, its skeletal distribution can be highly extensive such that it even exists in the ribs of some species. Due to its ephemeral nature, MB is rarely fossilized and so little is understood with regard to the origin of MB and its skeletal distribution in early taxa. Here we describe a new Early Cretaceous enantiornithine bird, Mirusavis parvus, gen. et. sp. nov., indicating that skeleton-wide distribution of MB appeared early in avian evolution. We suggest that this represents the plesiomorphic condition for the Aves and that the distribution of MB observed among extant neornithines is a product of increased pneumatization in this lineage and natural selection for more efficient distribution of MB.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| | - Jingmai K O’Connor
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| | - Alida M Bailleul
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| | - Zhiheng Li
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| |
Collapse
|
7
|
Canoville A, Schweitzer MH, Zanno L. Identifying medullary bone in extinct avemetatarsalians: challenges, implications and perspectives. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190133. [PMID: 31928189 DOI: 10.1098/rstb.2019.0133] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Medullary bone (MB) is a sex-specific tissue produced by female birds during the laying cycle, and it is hypothesized to have arisen within Avemetatarsalia, possibly outside Avialae. Over the years, researchers have attempted to define a set of criteria from which to evaluate the nature of purported MB-like tissues recovered from fossil specimens. However, we argue that the prevalence, microstructural and chemical variability of MB in Neornithes is, as of yet, incompletely known and thus current diagnoses of MB do not capture the extent of variability that exists in modern birds. Based on recently published data and our own observations of MB distribution and structure using computed tomography and histochemistry, we attempt to advance the discourse on identifying MB in fossil specimens. We propose: (i) new insights into the phylogenetic breadth and structural diversity of MB within extant birds; (ii) a reevaluation and refinement of the most recently published list of criteria suggested for confidently identifying MB in the fossil record; (iii) reconsideration of some prior identifications of MB-like tissues in fossil specimens by taking into account the newly acquired data; and (iv) discussions on the challenges of characterizing MB in Neornithes with the goal of improving its diagnosis in extinct avemetatarsalians. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Aurore Canoville
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Mary H Schweitzer
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.,Museum of the Rockies, Montana State University, Bozeman, MT 59717, USA.,Department of Geology, Lund University, 223 62 Lund, Sweden
| | - Lindsay Zanno
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
8
|
Bailleul AM, O’Connor J, Schweitzer MH. Dinosaur paleohistology: review, trends and new avenues of investigation. PeerJ 2019; 7:e7764. [PMID: 31579624 PMCID: PMC6768056 DOI: 10.7717/peerj.7764] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
In the mid-19th century, the discovery that bone microstructure in fossils could be preserved with fidelity provided a new avenue for understanding the evolution, function, and physiology of long extinct organisms. This resulted in the establishment of paleohistology as a subdiscipline of vertebrate paleontology, which has contributed greatly to our current understanding of dinosaurs as living organisms. Dinosaurs are part of a larger group of reptiles, the Archosauria, of which there are only two surviving lineages, crocodilians and birds. The goal of this review is to document progress in the field of archosaur paleohistology, focusing in particular on the Dinosauria. We briefly review the "growth age" of dinosaur histology, which has encompassed new and varied directions since its emergence in the 1950s, resulting in a shift in the scientific perception of non-avian dinosaurs from "sluggish" reptiles to fast-growing animals with relatively high metabolic rates. However, fundamental changes in growth occurred within the sister clade Aves, and we discuss this major evolutionary transition as elucidated by histology. We then review recent innovations in the field, demonstrating how paleohistology has changed and expanded to address a diversity of non-growth related questions. For example, dinosaur skull histology has elucidated the formation of curious cranial tissues (e.g., "metaplastic" tissues), and helped to clarify the evolution and function of oral adaptations, such as the dental batteries of duck-billed dinosaurs. Lastly, we discuss the development of novel techniques with which to investigate not only the skeletal tissues of dinosaurs, but also less-studied soft-tissues, through molecular paleontology and paleohistochemistry-recently developed branches of paleohistology-and the future potential of these methods to further explore fossilized tissues. We suggest that the combination of histological and molecular methods holds great potential for examining the preserved tissues of dinosaurs, basal birds, and their extant relatives. This review demonstrates the importance of traditional bone paleohistology, but also highlights the need for innovation and new analytical directions to improve and broaden the utility of paleohistology, in the pursuit of more diverse, highly specific, and sensitive methods with which to further investigate important paleontological questions.
Collapse
Affiliation(s)
- Alida M. Bailleul
- Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Jingmai O’Connor
- Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Mary H. Schweitzer
- Department of Biology, North Carolina State University, Raleigh, NC, USA
- North Carolina Museum of Natural Science, Raleigh, NC, USA
- Department of Geology, Lund University, Lund, Sweden
- Museum of the Rockies, Montana State University, Bozeman, MT, USA
| |
Collapse
|
9
|
An Early Cretaceous enantiornithine (Aves) preserving an unlaid egg and probable medullary bone. Nat Commun 2019; 10:1275. [PMID: 30894527 PMCID: PMC6426974 DOI: 10.1038/s41467-019-09259-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/01/2019] [Indexed: 11/09/2022] Open
Abstract
Understanding non-crown dinosaur reproduction is hindered by a paucity of directly associated adults with reproductive traces. Here we describe a new enantiornithine, Avimaia schweitzerae gen. et sp. nov., from the Lower Cretaceous Xiagou Formation with an unlaid egg two-dimensionally preserved within the abdominothoracic cavity. Ground-sections reveal abnormal eggshell proportions, and multiple eggshell layers best interpreted as a multi-layered egg resulting from prolonged oviductal retention. Fragments of the shell membrane and cuticle are both preserved. SEM reveals that the cuticle consists of nanostructures resembling those found in neornithine eggs adapted for infection-prone environments, which are hypothesized to represent the ancestral avian condition. The femur preserves small amounts of probable medullary bone, a tissue found today only in reproductively active female birds. To our knowledge, no other occurrence of Mesozoic medullary bone is associated with indications of reproductive activity, such as a preserved egg, making our identification unique, and strongly supported. The fossil record of the reproductive traits of early birds is limited. Here, Bailleul and colleagues describe the Cretaceous enantiornithine bird Avimaia schweitzerae, which preserves an unlaid egg in the abdominal cavity and putative medullary bone.
Collapse
|
10
|
Canoville A, Schweitzer MH, Zanno LE. Systemic distribution of medullary bone in the avian skeleton: ground truthing criteria for the identification of reproductive tissues in extinct Avemetatarsalia. BMC Evol Biol 2019; 19:71. [PMID: 30845911 PMCID: PMC6407237 DOI: 10.1186/s12862-019-1402-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/25/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Medullary bone (MB) is an estrogen-dependent, sex-specific tissue produced by female birds during lay and inferred to be present in extinct avemetatarsalians (bird-line archosaurs). Although preliminary studies suggest that MB can be deposited within most skeletal elements, these are restricted to commercial layers or hormonally treated male pigeons, which are poor analogues for wild birds. By contrast, studies in wild bird species noted the presence of MB almost exclusively within limb bones, spurring the misconception that MB deposition is largely restricted to these regions. These disparate claims have cast doubt on the nature of MB-like tissues observed in some extinct avemetatarsalians because of their "unusual" anatomical locations. Furthermore, previous work reported that MB deposition is related to blood supply and pneumatization patterns, yet these hypotheses have not been tested widely in birds. To document the skeletal distribution of MB across Neornithes, reassess previous hypotheses pertaining to its deposition/distribution patterns, and refine the set of criteria by which to evaluate the nature of purported MB tissue in extinct avemetatarsalians, we CT-scanned skeletons of 40 female birds (38 species) that died during the egg-laying cycle, recorded presence or absence of MB in 19 skeletal regions, and assessed pneumatization of stylopods. Selected elements were destructively analyzed to ascertain the chemical and histological nature of observed endosteal bone tissues in contentious skeletal regions. RESULTS Although its skeletal distribution varies interspecifically, we find MB to be a systemic tissue that can be deposited within virtually all skeletal regions, including cranial elements. We also provide evidence that the deposition of MB is dictated by skeletal distribution patterns of both pneumaticity and bone marrow; two factors linked to ecology (body size, foraging). Hence, skeletal distribution of MB can be extensive in small-bodied and diving birds, but more restricted in large-bodied species or efficient flyers. CONCLUSIONS Previously outlined anatomical locations of purported MB in extinct taxa are invalid criticisms against their potential reproductive nature. Moreover, the proposed homology of lung tissues between birds and some extinct avemetatarsalians permit us to derive a series of location-based predictions that can be used to critically evaluate MB-like tissues in fossil specimens.
Collapse
Affiliation(s)
- Aurore Canoville
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC, USA.
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| | - Mary H Schweitzer
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Lindsay E Zanno
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|