1
|
Ghosh D, Bag S, De P. Facially Amphiphilic Cholate-Conjugated Polymers for Regulating Insulin Fibrillation. Bioconjug Chem 2025; 36:1040-1053. [PMID: 40240031 DOI: 10.1021/acs.bioconjchem.5c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
To understand the influence of facially amphiphilic polymers (FAPs) on insulin fibril (IF) inhibition, three different cholate-based FAPs [cationic (PFCAQA), anionic (PFCASF), and zwitterionic (PFCASB)] have been synthesized. Besides, two control polymers [cholate and sulfobetaine-pendant random copolymer PRCASB (without facial amphiphilicity) and sulfobetaine-tethered homopolymer PSBMA (without cholate pendants)] are also prepared. Several biophysical experiments such as spectroscopic techniques [thioflavin T (ThT), Nile red (NR), tyrosine (Tyr) fluorescence assay], turbidity assay by ultraviolet-visible (UV-vis) spectroscopy, dynamic light scattering (DLS), circular dichroism (CD) study, and microscopic investigation are performed to investigate the role of polymers as antiamyloidogenic agents during insulin fibrillation. Interestingly, the PFCASB zwitterionic polymer behaves as the most efficacious antiamyloidogenic agent. To clarify the interaction of PFCASB and native insulin (NI), an isothermal titration calorimetry (ITC) experiment is carried out. Tyr and the NR fluorescence investigation suggest the important role of hydrophobic interactions, whereas the ITC experiment confirms the significance of hydrophobic and electrostatic interactions in the IF inhibitory process. A hemolytic test is conducted to investigate the toxicity caused by IF and the efficacy of PFCASB in prohibiting erythrocyte disruption caused by IF. Overall, the present work reveals the impact of the facially amphiphilic cholic acid (CA)-based zwitterionic polymer in modulating the insulin aggregation process and gives a new perspective for investigations on different protein aggregations.
Collapse
Affiliation(s)
- Desoshree Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, 741246 Mohanpur, West Bengal, India
| | - Sagar Bag
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, 741246 Mohanpur, West Bengal, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, 741246 Mohanpur, West Bengal, India
| |
Collapse
|
2
|
Wang Q, Huang W, Sun Q, Le M, Cai L, Jia YG. Facially amphiphilic skeleton-derived antibacterial crown ether/silver ion complexes. SOFT MATTER 2025; 21:2152-2159. [PMID: 39989433 DOI: 10.1039/d4sm01192a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Silver and its derivatives have been widely explored for their antibacterial properties in the treatment of bacterial infections. However, the biological toxicity of silver limits its further development and application. In this study, we designed a facially amphiphilic skeleton incorporating crown ether moieties based on the dendrimer D-CA6-CE. The high-density crown ether units within this structure enable the chelation of silver ions, forming facially amphiphilic skeleton-derived D-CA6-CE/Ag+ complexes. These results indicate that D-CA6-CE/Ag+ can self-assemble into nano-micelles in aqueous solution. D-CA6-CE/Ag+ exhibited high antibacterial activity against Escherichia coli and Staphylococcus aureus, significantly reducing the minimum inhibitory concentrations (MICs) of Ag+ to 6.13 ± 0.19 and 7.33 ± 0.13 μg mL-1, respectively. This antibacterial efficacy surpassed that of silver sulfadiazine, primarily attributed to the enhanced ability to disturb and destroy bacterial membranes by introducing the amphiphilic structure of the cholic acid units. In addition, D-CA6-CE/Ag+ also exhibited lower hemolysis (approximately four times lower) and reduced cytotoxicity compared to silver sulfadiazine. This was likely due to the micellar structure formed by D-CA6-CE/Ag+, which further decreases the direct contact between Ag+ and cells. In summary, the D-CA6-CE/Ag+ complex, with its facially amphiphilic skeletons, exhibited superior antibacterial performance and lower biological toxicity than silver sulfadiazine does. These properties highlight its potential as a promising candidate for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Qingsheng Wang
- Orthopedics Department, General Hospital of Pingmei Shenma Group, Pingdingshan 467000, China
| | - Wen Huang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Qian Sun
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Mengqi Le
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Lili Cai
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519040, China.
| | - Yong-Guang Jia
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China.
| |
Collapse
|
3
|
Hong S, Baravkar SB, Lu Y, Masoud AR, Zhao Q, Zhou W. Molecular Modification of Queen Bee Acid and 10-Hydroxydecanoic Acid with Specific Tripeptides: Rational Design, Organic Synthesis, and Assessment for Prohealing and Antimicrobial Hydrogel Properties. Molecules 2025; 30:615. [PMID: 39942719 PMCID: PMC11819776 DOI: 10.3390/molecules30030615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Royal jelly and medical grade honey are traditionally used in treating wounds and infections, although their effectiveness is often variable and insufficient. To overcome their limitations, we created novel amphiphiles by modifying the main reparative and antimicrobial components, queen bee acid (hda) and 10-hydroxyl-decanoic acid (hdaa), through peptide bonding with specific tripeptides. Our molecular design incorporated amphiphile targets as being biocompatible in wound healing, biodegradable, non-toxic, hydrogelable, prohealing, and antimicrobial. The amphiphilic molecules were designed in a hda(hdaa)-aa1-aa2-aa3 structural model with rational selection criteria for each moiety, prepared via Rink/Fmoc-tBu-based solid-phase peptide synthesis, and structurally verified by NMR and LC-MS/MS. We tested several amphiphiles among those containing moieties of hda or hdaa and isoleucine-leucine-aspartate (ILD-amidated) or IL-lysine (ILK-NH2). These tests were conducted to evaluate their prohealing and antimicrobial hydrogel properties. Our observation of their hydrogelation and hydrogel-rheology showed that they can form hydrogels with stable elastic moduli and injectable shear-thinning properties, which are suitable for cell and tissue repair and regeneration. Our disc-diffusion assay demonstrated that hdaa-ILK-NH2 markedly inhibited Staphylococcus aureus. Future research is needed to comprehensively evaluate the prohealing and antimicrobial properties of these novel molecules modified from hda and hdaa with tripeptides.
Collapse
Affiliation(s)
- Song Hong
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA (A.-R.M.)
- Department of Ophthalmology, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA
| | - Sachin B. Baravkar
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA (A.-R.M.)
| | - Yan Lu
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA (A.-R.M.)
| | - Abdul-Razak Masoud
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA (A.-R.M.)
| | - Qi Zhao
- NMR Laboratory, Department of Chemistry, Tulane University, New Orleans, LA 70115, USA;
| | - Weilie Zhou
- Department of Physics and AMRI, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
4
|
Wu Q, Deng M, Mao R, Yang N, Hao Y, Cao M, Teng D, Wang J. Self-Assembled Peptide Hydrogels PPI45 and PPI47: Novel Drug Candidates for Staphylococcus aureus Infection Treatment. Gels 2025; 11:63. [PMID: 39852034 PMCID: PMC11764660 DOI: 10.3390/gels11010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/02/2025] [Accepted: 01/05/2025] [Indexed: 01/26/2025] Open
Abstract
Staphylococcus aureus, a prevalent zoonotic pathogen, poses a significant threat to skin wound infections. This study evaluates the bactericidal efficacy of self-assembled peptide hydrogels, PPI45 and PPI47, derived from the defensin-derived peptide PPI42, against S. aureus ATCC43300. The high-level preparation of PPI45 and PPI47 was achieved with yields of 1.82 g/L and 2.13 g/L, which are 2.19 and 2.60 times the yield of PPI42. Additionally, the critical micelle concentrations (CMCs) of the peptides at pH 7.4 for PPI42, PPI45, and PPI47 were determined to be 245 µg/mL, 973 µg/mL, and 1016 µg/mL, respectively. At a concentration of 3 mg/mL, the viscosities of the gels were 52,500 mPa·s, 33,700 mPa·s, and 3480 mPa·s for PPI42, PPI45, and PPI47. Transmission electron microscopy (TEM) revealed that all peptides exhibited long, pearl necklace-like protofibrils. These peptides demonstrated potent bactericidal activity, with a minimal inhibitory concentration (MIC) of 4-16 µg/mL against S. aureus, and a sustained effect post-drug clearance. Flow cytometry analysis after 2×MIC peptides treatment for 2 h revealed a 20-38% membrane disruption rate in bacteria, corroborated by scanning electron microscopy (SEM) observations of membrane damage and bacterial collapse. The peptide treatment also led to reduced hyperpolarized membrane potential. In vitro safety assessments indicated minimal hemolytic activity on murine red blood cells and low cytotoxicity on human immortalized epidermal cells (HaCaT). In summary, this work lays a valuable cornerstone for the future design and characterization of self-assembling antimicrobial peptides hydrogels to combat S. aureus infection.
Collapse
Affiliation(s)
- Quanlong Wu
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Mengyin Deng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Manli Cao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
5
|
Safwan SM, Mehta D, Arora A, Khatol S, Singh M, Rana K, Gupta SK, Kumar Y, Verma V, Saini V, Bajaj A. Niacin-Cholic Acid-Peptide Conjugate Act as a Potential Antibiotic Adjuvant to Mitigate Polymicrobial Infections Caused by Gram-Negative Pathogens. ACS Infect Dis 2024; 10:4146-4155. [PMID: 39564818 DOI: 10.1021/acsinfecdis.4c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Polymicrobial wound infections caused by Gram-negative bacteria and associated inflammation are challenging to manage, as many antibiotics do not work against these infections. Utilizing adjuvants to repurpose the existing antibiotics for mitigating microbial infections presents an alternative therapeutic strategy. We designed and developed a niacin-cholic acid-peptide conjugate (1) to rejuvenate the therapeutic efficacy of macrolide antibiotics against Gram-negative pathogens. We conjugated niacin with anti-inflammatory properties at the carboxyl terminal of the cholic acid and dipeptide (glycine-valine) at the three hydroxyl terminals of cholic acid to obtain the amphiphile 1. Our findings demonstrated that amphiphile 1 serves as a microbial membrane disruptor that facilitates the entry of erythromycin (ERY) in bacterial cells. The combination of amphiphile 1 and ERY is bactericidal and can effectively eliminate monomicrobial and polymicrobial Gram-negative bacterial biofilms. We further demonstrated the antibacterial effectiveness of combining 1 and ERY against monomicrobial and polymicrobial wound infections. Together, these findings indicate that amphiphile 1 revitalizes the remedial efficacy of ERY against Gram-negative bacteria.
Collapse
Affiliation(s)
- Sayed M Safwan
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Devashish Mehta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Amit Arora
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Steffi Khatol
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Mohit Singh
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Kajal Rana
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Sonu K Gupta
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Yashwant Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Vikas Verma
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Varsha Saini
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| |
Collapse
|
6
|
Xiong Y, Nayanathara U, Lai X, Huang X, Zhang C, Yuen D, Sangwan P, Shen HH, Johnston APR, Muir BW, Such GK. Cholic-Acid Derived, Guanidine-Functionalized Polymers as Broad-Spectrum Antimicrobial Agents. ACS OMEGA 2024; 9:48738-48747. [PMID: 39676976 PMCID: PMC11635482 DOI: 10.1021/acsomega.4c08266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024]
Abstract
In this study, we report the design of a new guanylated, cholic-acid-based monomer (GM) to combat antimicrobial resistance. The microbial activity stems from the interfacial amphiphilicity of cholic acid, while guanidine shows a strong association with phosphate, which promotes binding to membrane phospholipids. The monomer showed strong antimicrobial activity; however, surprisingly, homopolymers synthesized by photoiniferter reversible addition-fragmentation chain-transfer (RAFT) polymerization of GM completely lost their activity likely due to the conformation of the polymer. In contrast, the design of GM copolymers with poly(ethylene glycol) methyl ether methacrylate (PEGMA) or 2-hydroxyethyl methacrylate (HEMA) allowed recovery of their antimicrobial activity. Due to the existence of cholesterol in cell membranes, hemolysis was highly dependent on the content of GM incorporated. This study highlights the unique and intriguing properties of this novel amphiphilic monomer and its polymers, providing valuable insights into the development of more potent antimicrobial materials.
Collapse
Affiliation(s)
- Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Xiangfeng Lai
- Department
of Materials Science and Engineering, Monash
University, Clayton, Victoria 3800, Australia
| | - Xiangyi Huang
- Department
of Materials Science and Engineering, Monash
University, Clayton, Victoria 3800, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Daniel Yuen
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | - Hsin-hui Shen
- Department
of Materials Science and Engineering, Monash
University, Clayton, Victoria 3800, Australia
| | - Angus P. R. Johnston
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
7
|
Barman S, Kurnaz LB, Leighton R, Hossain MW, Decho AW, Tang C. Intrinsic antimicrobial resistance: Molecular biomaterials to combat microbial biofilms and bacterial persisters. Biomaterials 2024; 311:122690. [PMID: 38976935 PMCID: PMC11298303 DOI: 10.1016/j.biomaterials.2024.122690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/13/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
The escalating rise in antimicrobial resistance (AMR) coupled with a declining arsenal of new antibiotics is imposing serious threats to global public health. A pervasive aspect of many acquired AMR infections is that the pathogenic microorganisms exist as biofilms, which are equipped with superior survival strategies. In addition, persistent and recalcitrant infections are seeded with bacterial persister cells at infection sites. Together, conventional antibiotic therapeutics often fail in the complete treatment of infections associated with bacterial persisters and biofilms. Novel therapeutics have been attempted to tackle AMR, biofilms, and persister-associated complex infections. This review focuses on the progress in designing molecular biomaterials and therapeutics to address acquired and intrinsic AMR, and the fundamental microbiology behind biofilms and persisters. Starting with a brief introduction of AMR basics and approaches to tackling acquired AMR, the emphasis is placed on various biomaterial approaches to combating intrinsic AMR, including (1) semi-synthetic antibiotics; (2) macromolecular or polymeric biomaterials mimicking antimicrobial peptides; (3) adjuvant effects in synergy; (4) nano-therapeutics; (5) nitric oxide-releasing antimicrobials; (6) antimicrobial hydrogels; (7) antimicrobial coatings. Particularly, the structure-activity relationship is elucidated in each category of these biomaterials. Finally, illuminating perspectives are provided for the future design of molecular biomaterials to bypass AMR and cure chronic multi-drug resistant (MDR) infections.
Collapse
Affiliation(s)
- Swagatam Barman
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States; Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Leman Buzoglu Kurnaz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Ryan Leighton
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Md Waliullah Hossain
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Alan W Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States.
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States.
| |
Collapse
|
8
|
Shao Z, Xu YD, Luo H, Hakobyan K, Zhang M, Xu J, Stenzel MH, Wong EHH. Smart Galactosidase-Responsive Antimicrobial Dendron: Towards More Biocompatible Membrane-Disruptive Agents. Macromol Rapid Commun 2024; 45:e2400350. [PMID: 38895813 DOI: 10.1002/marc.202400350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Antimicrobial resistance is a global healthcare challenge that urgently needs the development of new therapeutic agents. Antimicrobial peptides and mimics thereof are promising candidates but mostly suffer from inherent toxicity issues due to the non-selective binding of cationic groups with mammalian cells. To overcome this toxicity issue, this work herein reports the synthesis of a smart antimicrobial dendron with masked cationic groups (Gal-Dendron) that could be uncaged in the presence of β-galactosidase enzyme to form the activated Enz-Dendron and confer antimicrobial activity. Enz-Dendron show bacteriostatic activity toward Gram-negative (P. aeruginosa and E. coli) and Gram-positive (S. aureus) bacteria with minimum inhibitory concentration values of 96 µm and exerted its antimicrobial mechanism via a membrane disruption pathway, as indicated by inner and outer membrane permeabilization assays. Crucially, toxicity studies confirmed that the masked prodrug Gal-Dendron exhibited low hemolysis and is at least 2.4 times less toxic than the uncaged cationic Enz-Dendron, thus demonstrating the advantage of masking the cationic groups with responsive immolative linkers to overcome toxicity and selectivity issues. Overall, this study highlights the potential of designing new membrane-disruptive antimicrobial agents that are more biocompatible via the amine uncaging strategy.
Collapse
Affiliation(s)
- Zeyu Shao
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - You Dan Xu
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Hao Luo
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Karen Hakobyan
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Mengnan Zhang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Jiangtao Xu
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Martina H Stenzel
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Edgar H H Wong
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| |
Collapse
|
9
|
Zheng Y, Chi J, Ou J, Jiang L, Wang L, Luo R, Yan Y, Xu Z, Peng T, Cai J, Wu C, Teng P, Quan G, Lu C. Imidazole-Rich, Four-Armed Host-Defense Peptidomimetics as Promising Narrow-Spectrum Antibacterial Agents and Adjuvants against Pseudomonas Aeruginosa Infections. Adv Healthc Mater 2024; 13:e2400664. [PMID: 39039988 DOI: 10.1002/adhm.202400664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/21/2024] [Indexed: 07/24/2024]
Abstract
The development of narrow-spectrum antimicrobial agents is paramount for swiftly eradicating pathogenic bacteria, mitigating the onset of drug resistance, and preserving the homeostasis of bacterial microbiota in tissues. Owing to the limited affinity between the hydrophobic lipid bilayer interior of bacterial cells and most hydrophilic, polar peptides, the construction of a distinctive class of four-armed host-defense peptides/peptidomimetics (HDPs) is proposed with enhanced specificity and membrane perturbation capability against Pseudomonas aeruginosa by incorporating imidazole groups. These groups demonstrate substantial affinity for unsaturated phospholipids, which are predominantly expressed in the cell membrane of P. aeruginosa, thereby enabling HDPs to exhibit narrow-spectrum activity against this bacterium. Computational simulations and experimental investigations have corroborated that the imidazole-rich, four-armed peptidomimetics exhibit notable selectivity toward bacteria over mammalian cells. Among them, 4H10, characterized by its abundant and densely distributed imidazole groups, exhibits impressive activity against various clinically isolated P. aeruginosa strains. Moreover, 4H10 has demonstrated potential as an antibiotic adjuvant, enhancing doxycycline accumulation and exerting effects on intracellular targets by efficiently disrupting bacterial cell membranes. Consequently, the hydrogel composed of 4H10 and doxycycline emerged as a promising topical agent, significantly diminishing the skin P. aeruginosa burden by 97.1% within 2 days while inducing minimal local and systemic toxicity.
Collapse
Affiliation(s)
- Yuwei Zheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, China
- College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Jiaying Chi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, China
- College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Jiayu Ou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, China
- College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Ling Jiang
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, China
| | - Liqing Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, China
- College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Rui Luo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, China
- College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Yilang Yan
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, China
| | - Zejun Xu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, China
- College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Tingting Peng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, China
- College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, China
- College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Peng Teng
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guilan Quan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, China
- College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, China
- College of Pharmacy, Jinan University, Guangzhou, 511436, China
| |
Collapse
|
10
|
Datta LP, Dutta D, Mukherjee R, Das TK, Biswas S. Polyoxometalate-Polymer Directed Macromolecular Architectonics of Silver Nanoparticles as Effective Antimicrobials. Chem Asian J 2024; 19:e202400344. [PMID: 38822687 DOI: 10.1002/asia.202400344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/03/2024]
Abstract
A novel inorganic-organic-inorganic ternary bioactive material formulated on antimicrobial peptide-based polymer has been reported. Supramolecular approach has been employed to incorporate molecularly crowded tyrosine-based polymer stabilized silver nanoparticles into membrane bound vesicles exploiting polyoxometalate-triggered surface templating strategy. Utilizing the covalent reversible addition fragmentation chain transfer (RAFT) polymerization and exploiting templated supramolecular architectonics at biopolymer interface, the bioactive ternary polymeric nanohybrids have been designed against Shigellosis leveraging the antibacterial activities of silver nanoparticle, cationic amphiphilic tyrosine polymer and inorganic polyoxometalate. The detail investigation against Shigella flexneri 2a cell line demonstrates that the collaborative mechanism of the ternary hybrid composite enhances the bactericidal activity in comparison to only polyoxometalate and polymer stabilized silver nanoparticle with an altered mechanism of action which is established via detailed biological analysis.
Collapse
Affiliation(s)
- Lakshmi Priya Datta
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India
| | - Debanjan Dutta
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India
| | - Riya Mukherjee
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India
| | - Tapan Kumar Das
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India
| | - Subharanjan Biswas
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India
| |
Collapse
|
11
|
Liang Y, Zhang Y, Huang Y, Xu C, Chen J, Zhang X, Huang B, Gan Z, Dong X, Huang S, Li C, Jia S, Zhang P, Yuan Y, Zhang H, Wang Y, Yuan B, Bao Y, Xiao S, Xiong M. Helicity-directed recognition of bacterial phospholipid via radially amphiphilic antimicrobial peptides. SCIENCE ADVANCES 2024; 10:eadn9435. [PMID: 39213359 PMCID: PMC11364095 DOI: 10.1126/sciadv.adn9435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
The fundamental differences in phospholipids between bacterial and mammalian cell membranes present remarkable opportunities for antimicrobial design. However, it is challenging to distinguish bacterial anionic phospholipid phosphatidylglycerol (PG) from mammalian anionic phosphatidylserine (PS) with the same net charge. Here, we report a class of radially amphiphilic α helix antimicrobial peptides (RAPs) that can selectively discriminate PG from PS, relying on the helix structure. The representative RAP, L10-MMBen, can direct the rearrangement of PG vesicles into a lamellar structure with its helix axis parallel to the PG membrane surface. The helical structure imparts both the thermodynamic and kinetic advantages of L10-MMBen/PG assembly, and the hiding of hydrophobic regions in RAPs is crucial for PG recognition. L10-MMBen exhibits high selectivity against bacteria depending on PG recognition, showing low in vivo toxicity and significant treatment efficacy in mice infection models. Our study introduces a helicity-direct bacterial phospholipid recognition paradigm for designing highly selective antimicrobial peptides.
Collapse
Affiliation(s)
- Yangbin Liang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yuhao Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yu Huang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Cheng Xu
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, 523808, P. R. China
| | - Jingxian Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Xinshuang Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Bingchuan Huang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Zhanhui Gan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Xuehui Dong
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Songyin Huang
- Biotherapy Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
| | - Chengrun Li
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Shuyi Jia
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Pengfei Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
| | - Yueling Yuan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Houbing Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
| | - Yucai Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, 523808, P. R. China
| | - Yan Bao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
| | - Shiyan Xiao
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Menghua Xiong
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
12
|
Pimchan T, Tian F, Thumanu K, Rodtong S, Yongsawatdigul J. Anti-Salmonella Activity of a Novel Peptide, KGGDLGLFEPTL, Derived from Egg Yolk Hydrolysate. Antibiotics (Basel) 2023; 13:19. [PMID: 38247578 PMCID: PMC10812675 DOI: 10.3390/antibiotics13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
The present study aimed to characterize the mode of action of a novel antimicrobial peptide isolated from egg yolk hydrolysate. The EYHp6, KGGDLGLFEPTL, exhibited inhibition against Salmonella enterica serovar Typhimurium TISTR 292 and S. enterica serovar Enteritidis DMST 15679 with a MIC value of 2 mM. In contrast, S. enterica serovar Newport ATCC 6962 and other strains of Typhimurium and Enteritidis were inhibited at 4 mM. EYHp6 increased the cell membrane permeability of S. Typhimurium TISTR 292, leading to DNA leakage. Membrane integrity determined by propidium iodide and SYTO9 staining visualized by confocal microscopy demonstrated that EYHp6 at 1 × MIC induced disruption of cell membranes. Electron microscopy revealed that treatment of S. Typhimurium with EYHp6 led to damage to the cell membrane, causing the leakage of intracellular contents. Synchrotron-based Fourier-transform infrared spectroscopy indicated that EYHp6 killed S. Typhimurium by targeting fatty acids and nucleic acids in the cell membrane. The peptide did not show hemolytic activity up to 4 mM. These findings suggest that EYHp6 could be a promising antibacterial agent for controlling the growth of S. enterica.
Collapse
Affiliation(s)
- Thippawan Pimchan
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Fu Tian
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, China;
| | - Kanjana Thumanu
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand;
| | - Sureelak Rodtong
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Jirawat Yongsawatdigul
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| |
Collapse
|
13
|
Qi G, Tang Y, Shi L, Zhuang J, Liu X, Liu B. Capsule Shedding and Membrane Binding Enhanced Photodynamic Killing of Gram-Negative Bacteria by a Unimolecular Conjugated Polyelectrolyte. NANO LETTERS 2023; 23:10374-10382. [PMID: 37921703 DOI: 10.1021/acs.nanolett.3c02965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The development of new antimicrobial agents to treat infections caused by Gram-negative bacteria is of paramount importance due to increased antibiotic resistance worldwide. Herein, we show that a water-soluble porphyrin-cored hyperbranched conjugated polyelectrolyte (PorHP) exhibits high photodynamic bactericidal activity against the Gram-negative bacteria tested, including a multidrug-resistant (MDR) pathogen, while demonstrating low cytotoxicity toward mammalian cells. Comprehensive analyses reveal that the antimicrobial activity of PorHP proceeds via a multimodal mechanism by effective bacterial capsule shedding, strong bacterial outer membrane binding, and singlet oxygen generation. Through this multimodal antimicrobial mechanism, PorHP displays significant performance for Gram-negative bacteria with >99.9% photodynamic killing efficacy. Overall, PorHP shows great potential as an antimicrobial agent in fighting the growing threat of Gram-negative bacteria.
Collapse
Affiliation(s)
- Guobin Qi
- Department of Chemical and Biomolecular Engineering, National University of Singapore (Singapore), 4 Engineering Drive 4, Singapore 117585
| | - Yufu Tang
- Department of Chemical and Biomolecular Engineering, National University of Singapore (Singapore), 4 Engineering Drive 4, Singapore 117585
| | - Leilei Shi
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Jiahao Zhuang
- Department of Chemical and Biomolecular Engineering, National University of Singapore (Singapore), 4 Engineering Drive 4, Singapore 117585
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University (Fuzhou, China), Binhai New City, Fuzhou 350207, China
| | - Xianglong Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore (Singapore), 4 Engineering Drive 4, Singapore 117585
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University (Fuzhou, China), Binhai New City, Fuzhou 350207, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore (Singapore), 4 Engineering Drive 4, Singapore 117585
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University (Fuzhou, China), Binhai New City, Fuzhou 350207, China
- Institute for Functional Intelligent Materials, National University of Singapore (Singapore), Blk S9, Level 9, 4 Science Drive 2, Singapore 117544
| |
Collapse
|
14
|
Bachurska-Szpala P, Burdach K, Lasek R, Tymecka D, Juhaniewicz-Dębińska J, Bartosik D, Pułka-Ziach K, Sęk S. De novo designed self-assembling helicomimetic lipooligoureas with antibacterial activity. Eur J Med Chem 2023; 259:115700. [PMID: 37542988 DOI: 10.1016/j.ejmech.2023.115700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
The overuse of antibiotics has led to a rise in infections caused by multidrug-resistant bacteria, resulting in a need for new antibacterial compounds with different modes of action. In this paper, we describe a new class of compounds called lipooligoureas, which are foldamer-based mimetics of antimicrobial lipopeptides. The lipooligoureas consist of an acyl chain connected to the N-terminus of an oligourea head group that exhibits a well-defined 2.5-helix secondary structure, which is further stabilized by the attachment of the lipophilic chain to the oligourea moiety. These compounds meet the established criteria for membranolytic compounds by possessing an amphiphilic structure that promotes the internalization and partitioning of the molecules into the lipid membrane. The presence of positively charged urea residues promotes electrostatic interactions with the negatively charged bacterial membrane. The subtle structural differences in oligourea head group influence the compounds' aggregation behavior, with the number and position of positively charged urea residues correlating with their aggregation ability. The biological activity of these compounds in inhibiting bacterial growth is correlated with their ability to aggregate, with stronger antibacterial properties exhibited by those that aggregate more easily. However, the concentration inhibiting bacterial growth is significantly lower than the critical aggregation concentration values, suggesting that the mechanism of action involves the monomeric forms of lipooligoureas. Nonetheless, a mechanism based on membrane-induced aggregation cannot be ruled out. The lipooligoureas exhibit higher activity towards Gram-positive bacteria than against Gram-negative bacteria, which is indicative of certain selectivity of these compounds. It is also demonstrated that lipooligoureas exhibit increased stability against proteolytic degradation in human blood serum.
Collapse
Affiliation(s)
| | - Kinga Burdach
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Robert Lasek
- Faculty of Biology, Institute of Microbiology, Department of Bacterial Genetics, University of Warsaw, 02-096, Warsaw, Poland
| | - Dagmara Tymecka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Joanna Juhaniewicz-Dębińska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Dariusz Bartosik
- Faculty of Biology, Institute of Microbiology, Department of Bacterial Genetics, University of Warsaw, 02-096, Warsaw, Poland
| | | | - Sławomir Sęk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland.
| |
Collapse
|
15
|
Kurnaz LB, Barman S, Yang X, Fisher C, Outten FW, Nagarkatti P, Nagarkatti M, Tang C. Facial amphiphilic naphthoic acid-derived antimicrobial polymers against multi-drug resistant gram-negative bacteria and biofilms. Biomaterials 2023; 301:122275. [PMID: 37619264 PMCID: PMC10530118 DOI: 10.1016/j.biomaterials.2023.122275] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/19/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Inspired by the facial amphiphilic nature and antimicrobial efficacy of many antimicrobial peptides, this work reported facial amphiphilic bicyclic naphthoic acid derivatives with different ratios of charges to rings that were installed onto side chains of poly(glycidyl methacrylate). Six quaternary ammonium-charged (QAC) polymers were prepared to investigate the structure-activity relationship. These QAC polymers displayed potent antibacterial activity against various multi-drug resistant (MDR) gram-negative pathogens such as Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii. Polymers demonstrated low hemolysis and high antimicrobial selectivity. Additionally, they were able to eradicate established biofilms and kill metabolically inactive dormant cells. The membrane permeabilization and depolarization results indicated a mechanism of action through membrane disruption. Two lead polymers showed no resistance from MDR-P. aeruginosa and MDR-K. pneumoniae. These facial amphiphiles are potentially a new class of potent antimicrobial agents to tackle the antimicrobial resistance for both planktonic and biofilm-related infections.
Collapse
Affiliation(s)
- Leman Buzoglu Kurnaz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Swagatam Barman
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Xiaoming Yang
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC, 29209, United States
| | - Claire Fisher
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - F Wayne Outten
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC, 29209, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC, 29209, United States
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States.
| |
Collapse
|
16
|
Barman S, Buzoglu Kurnaz L, Yang X, Nagarkatti M, Nagarkatti P, Decho AW, Tang C. Facially Amphiphilic Bile Acid-Functionalized Antimicrobials: Combating Pathogenic Bacteria, Fungi, and Their Biofilms. ACS Infect Dis 2023; 9:1769-1782. [PMID: 37535907 PMCID: PMC10529379 DOI: 10.1021/acsinfecdis.3c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
We report facially amphiphilic bile acid-based antimicrobials with a broad spectrum of activity against both bacterial and fungal pathogens and negligible detrimental effects on mammalian cells. Two lead compounds eliminated dormant subpopulations of various bacterial species, unlike conventional antibiotics. The lead compounds were also effective in eradicating biofilms of methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Candida albicans. Additionally, these compounds substantially inhibited the formation of fungal biofilms (C. albicans). Mechanistic investigations revealed the membrane-active nature and endogenous reactive oxygen species (ROS) induction ability of these compounds. Finally, no detectable resistance was developed by the bacterial strains against this class of membrane-targeting antimicrobials.
Collapse
Affiliation(s)
- Swagatam Barman
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Leman Buzoglu Kurnaz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Xiaoming Yang
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, South Carolina 29209, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, South Carolina 29209, United States
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, South Carolina 29209, United States
| | - Alan W Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
17
|
Lin C, Ma Z, Gao Y, Le M, Shi Z, Qi D, Ma JC, Cui ZK, Wang L, Jia YG. Main-Chain Cationic Bile Acid Polymers Mimicking Facially Amphiphilic Antimicrobial Peptides. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37400427 DOI: 10.1021/acsami.3c06424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Antibiotic-resistant bacterial infections have led to an increased demand for antibacterial agents that do not contribute to antimicrobial resistance. Antimicrobial peptides (AMPs) with the facially amphiphilic structures have demonstrated remarkable effectiveness, including the ability to suppress antibiotic resistance during bacterial treatment. Herein, inspired by the facially amphiphilic structure of AMPs, the facially amphiphilic skeletons of bile acids (BAs) are utilized as building blocks to create a main-chain cationic bile acid polymer (MCBAP) with macromolecular facial amphiphilicity via polycondensation and a subsequent quaternization. The optimal MCBAP displays an effective activity against Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and Gram-negative Escherichia coli, fast killing efficacy, superior bactericidal stability in vitro, and potent anti-infectious performance in vivo using the MRSA-infected wound model. MCBAP shows the low possibility to develop drug-resistant bacteria after repeated exposure, which may ascribe to the macromolecular facial amphiphilicity promoting bacterial membrane disruption and the generation of reactive oxygen species. The easy synthesis and low cost of MCBAP, the superior antimicrobial performance, and the therapeutic potential in treating MRSA infection altogether demonstrate that BAs are a promising group of building blocks to mimic the facially amphiphilic structure of AMPs in treating MRSA infection and alleviating antibiotic resistance.
Collapse
Affiliation(s)
- Caihong Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Zunwei Ma
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yunpeng Gao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Mengqi Le
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Zhifeng Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Dawei Qi
- MediCity Research Laboratory, University of Turku, Turku 20520, Finland
| | - Jian-Chao Ma
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhong-Kai Cui
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lin Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
18
|
Shen X, Rao Y, Wang J, Niu X, Wang Y, Chen W, Liu F, Guo L, Chen H. Biocompatible cationic polypeptoids with antibacterial selectivity depending on hydrophobic carbon chain length. J Mater Chem B 2023. [PMID: 37326556 DOI: 10.1039/d3tb00643c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The overuse of antibiotics has triggered a new infection crisis and natural antimicrobial peptides (AMPs) have been extensively studied as an alternative to fight microorganisms. Polypeptoids, or polypeptide-biomimetics, offer similar properties to polypeptides and a highly tunable structure that has been synthesized by various methods such as ring opening polymerization (ROP) using N-carboxyanhydride monomers. Simultaneous high antibacterial activity and biocompatibility of a structure by efficient synthesis is desired in the application of those materials. Herein, a series of cationic polypeptoids (PNBs) with variable side chain lengths was obtained by introducing positive charges to the main chain in one step and preserving the backbone structure, namely polypeptoids (PNBM, PNBE, PNBB) with different end groups (methyl (M), ethyl (E), butyl (B)). To address the issue of infection in interventional biomedical implants, we report cost-effective modified polyurethane (PU) films (PU-PNBM, PU-PNBE, PU-PNBB) as physical-biological synergistic antibacterial surfaces that overcome problems such as steric hindrance and the solubility of the materials. Antibacterial selectivity was achieved by regulating the different side chain lengths. When methyl and ethyl were used as hydrophobic side chains, they can only selectively kill Gram-positive Staphylococcus aureus. PNBB, the most hydrophobic and with a butyl side chain can kill both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus and inhibit the growth of bacterial biofilms. Effective in both solution and modified substrate, its biocompatibility is not compromised while the antibacterial properties are substantially improved. Furthermore, PU-PNBB films demonstrated their potential in vivo antimicrobial efficiency in a model of S. aureus infection established on mouse skin. The synthesis route and the surface modification strategies are convenient, providing a solution to the problem of poor biocompatibility in antimicrobial surface applications and a strategy for the use of peptide polymers for targeted therapy after specific infections in the biomedical field.
Collapse
Affiliation(s)
- Xiran Shen
- Research School of Polymeric Materials, School of Material Science & Engineering, Jiangsu University, Zhenjiang, 202113, P. R. China.
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yu Rao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jinghong Wang
- Jiangsu Biosurf Biotech Co., Ltd, Suzhou 215123, P. R. China
- The SIP Biointerface Engineering Research Institute, Suzhou 215123, P. R. China
| | - Xiaomeng Niu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yichen Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Wentao Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Fan Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China.
| | - Li Guo
- Research School of Polymeric Materials, School of Material Science & Engineering, Jiangsu University, Zhenjiang, 202113, P. R. China.
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
19
|
Shen Z, Pan Y, Yan D, Wang D, Tang BZ. AIEgen-Based Nanomaterials for Bacterial Imaging and Antimicrobial Applications: Recent Advances and Perspectives. Molecules 2023; 28:2863. [PMID: 36985835 PMCID: PMC10057855 DOI: 10.3390/molecules28062863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Microbial infections have always been a thorny problem. Multi-drug resistant (MDR) bacterial infections rendered the antibiotics commonly used in clinical treatment helpless. Nanomaterials based on aggregation-induced emission luminogens (AIEgens) recently made great progress in the fight against microbial infections. As a family of photosensitive antimicrobial materials, AIEgens enable the fluorescent tracing of microorganisms and the production of reactive oxygen (ROS) and/or heat upon light irradiation for photodynamic and photothermal treatments targeting microorganisms. The novel nanomaterials constructed by combining polymers, antibiotics, metal complexes, peptides, and other materials retain the excellent antimicrobial properties of AIEgens while giving other materials excellent properties, further enhancing the antimicrobial effect of the material. This paper reviews the research progress of AIEgen-based nanomaterials in the field of antimicrobial activity, focusing on the materials' preparation and their related antimicrobial strategies. Finally, it concludes with an outlook on some of the problems and challenges still facing the field.
Collapse
Affiliation(s)
- Zipeng Shen
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yinzhen Pan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
20
|
Teng P, Shao H, Huang B, Xie J, Cui S, Wang K, Cai J. Small Molecular Mimetics of Antimicrobial Peptides as a Promising Therapy To Combat Bacterial Resistance. J Med Chem 2023; 66:2211-2234. [PMID: 36739538 DOI: 10.1021/acs.jmedchem.2c00757] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clinically, antibiotics are widely used to treat infectious diseases; however, excessive drug abuse and overuse exacerbate the prevalence of drug-resistant bacterial pathogens, making the development of novel antibiotics extremely difficult. Antimicrobial peptide (AMP) is one of the most promising candidates for overcoming bacterial resistance owing to its unique structure and mechanism of action. This study examines the development of small molecular mimetics of AMPs over the past two decades. These mimetics can selectively disrupt membranes, which are the characteristic antibacterial mechanism of AMPs. In addition, the advantages and disadvantages of small AMP mimetics are discussed. The small molecular mimetics of AMPs are anticipated to garner interest and investment in discovering new antibiotics. This Perspective will assist in revitalizing the golden age of antibiotics in the current era of combating bacterial resistance.
Collapse
Affiliation(s)
- Peng Teng
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Haodong Shao
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Bo Huang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| |
Collapse
|
21
|
Ghosh R, Jayakannan M. Theranostic FRET Gate to Visualize and Quantify Bacterial Membrane Breaching. Biomacromolecules 2023; 24:739-755. [PMID: 36598256 DOI: 10.1021/acs.biomac.2c01202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Designing new antimicrobial-cum-probes to study real-time bacterial membrane breaching and concurrently developing inquisitorial image-based analytical tools is essential for the treatment of infectious diseases. An array of aggregation-induced emission (AIE) polymers (donor) consisting of neutral, anionic, and cationic charges were designed and employed as antimicrobial theranostic gatekeepers for the permeabilization of the peptidoglycan layer-adherable crystal violet (CV, acceptor). An AIE-active tetraphenylethylene (TPE)-tagged polycaprolactone biodegradable platform was chosen, and their self-assembled tiny amphiphilic nanoparticles were employed as a gatekeeper in the construction of bacterial membrane-reinforced fluorescent resonance energy transfer (FRET) probes. Electrostatic adhering of the cationic AIE polymer and subsequent gate opening aided fluorescent FRET probe activation on the membrane of Gram-negative bacteria, Escherichia coli. The selective photoexcitation energy transfer process in confocal microscopy experiments facilitated the building of a visualization-based FRET assay for the quantification of bactericidal activity. Nonantimicrobial AIE polymers (neutral and anionic) did not breach the bacterial membrane, resulting in no FRET signal. Detailed photophysical studies were done to establish the FRET probe mechanism, and a proof of concept was established.
Collapse
Affiliation(s)
- Ruma Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
22
|
Buzoglu Kurnaz L, Luo Y, Yang X, Alabresm A, Leighton R, Kumar R, Hwang J, Decho AW, Nagarkatti P, Nagarkatti M, Tang C. Facial amphiphilicity index correlating chemical structures with antimicrobial efficacy. Bioact Mater 2023; 20:519-527. [PMID: 35846842 PMCID: PMC9253162 DOI: 10.1016/j.bioactmat.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Facial amphiphilicity is an extraordinary chemical structure feature of a variety of antimicrobial peptides and polymers. Vast efforts have been dedicated to small molecular, macromolecular and dendrimer-like systems to mimic this highly preferred structure or conformation, including local facial amphiphilicity and global amphiphilicity. This work conceptualizes Facial Amphiphilicity Index (FAI) as a numerical value to quantitatively characterize the measure of chemical compositions and structural features in dictating antimicrobial efficacy. FAI is a ratio of numbers of charges to rings, representing both compositions of hydrophilicity and hydrophobicity. Cationic derivatives of multicyclic compounds were evaluated as model systems for testing antimicrobial selectivity against Gram-negative and Gram-positive bacteria. Both monocyclic and bicyclic compounds are non-antimicrobial regardless of FAIs. Antimicrobial efficacy was observed with systems having larger cross-sectional areas including tricyclic abietic acid and tetracyclic bile acid. While low and high FAIs respectively lead to higher and lower antimicrobial efficacy, in consideration of cytotoxicity, the sweet spot is typically suited with intermediate FAIs for each specific system. This can be well explained by the synergistic hydrophobic-hydrophobic and electrostatic interactions with bacterial cell membranes and the difference between bacterial and mammalian cell membranes. The adoption of FAI would pave a new avenue toward the design of next-generation antimicrobial macromolecules and peptides. Established a numerical index to quantify the effect of facial amphiphilicity on antimicrobial efficacy. Evaluated the facial amphiphilicity index of multicyclic compounds possessing various rings and cationic charges. Provided this index a new tool toward more quantitative designs of AMP mimics.
Collapse
Affiliation(s)
- Leman Buzoglu Kurnaz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Yuanyuan Luo
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Xiaoming Yang
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC, 29209, United States
| | - Amjed Alabresm
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Ryan Leighton
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Rani Kumar
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - JiHyeon Hwang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Alan W. Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC, 29209, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC, 29209, United States
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
- Corresponding author.
| |
Collapse
|
23
|
Zhang L, Fan Y, Galantini L, Schillén K, Del Giudice A, Du G, Wang Y. Noncovalent Bile Acid Oligomers as Facial Amphiphilic Antimicrobials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:495-506. [PMID: 36529944 DOI: 10.1021/acs.langmuir.2c02787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
New antimicrobial agents are needed to address the ever-growing risk of bacterial resistance, particularly for methicillin- and vancomycin-resistant Staphylococcus aureus (S. aureus). Here, we report a class of bile acid oligomers as facial amphiphilic antimicrobials, which are noncovalently fabricated by cholic acid (CA) and deoxycholic acid (DCA) with polyamines (e.g., diamines, diethylenetriamine, spermidine, and spermine). The antibacterial activities of these bile acid oligomers (CA/polyamines and DCA/polyamines) against S. aureus become stronger with increasing the amine group numbers of polyamines without obviously enhanced cytotoxicity and skin irritation. DCA/spermine, entirely composed of natural products, exhibits the best antibacterial activity but the lowest cytotoxicity and the weakest skin irritation. All CA/polyamines and DCA/polyamines form well-ordered ribbon-like aggregates, collecting numerous facial amphiphilic structures to significantly enhance the interactions with bacterial membranes. In particular, the biogenic polyamines with more than two amine groups provide extra positively charged sites, hence facilitating the binding of bile acid oligomers to the negatively charged outer membrane of the bacteria via electrostatic interaction. This in turn promotes more oligomeric bile acid units that can be inserted into the membrane through hydrophobic interaction between bile acids and lipid domains. The noncovalently constructed and separable amphiphilic antimicrobials can avoid the long-term coexistence of microorganisms and antibacterial molecules in different acting modes. Therefore, the noncovalent bile acid oligomers, especially those with higher oligomerization degrees, can be a potential approach to effectively enhance antibacterial activity, improve environmental friendliness, and reduce bacterial drug resistance.
Collapse
Affiliation(s)
- Liangchen Zhang
- Chinese Academy of Sciences Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yaxun Fan
- Chinese Academy of Sciences Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome, P.O. Box 34-Roma 62, Piazzale A. Moro 5, I-00185 Roma, Italy
| | - Karin Schillén
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Alessandra Del Giudice
- Department of Chemistry, Sapienza University of Rome, P.O. Box 34-Roma 62, Piazzale A. Moro 5, I-00185 Roma, Italy
| | - Guanqun Du
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Yilin Wang
- Chinese Academy of Sciences Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
24
|
Le M, Huang W, Ma Z, Shi Z, Li Q, Lin C, Wang L, Jia YG. Facially Amphiphilic Skeleton-Derived Antibacterial Cationic Dendrimers. Biomacromolecules 2023; 24:269-282. [PMID: 36495302 DOI: 10.1021/acs.biomac.2c01128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is urgent to develop biocompatible and high-efficiency antimicrobial agents since microbial infections have always posed serious challenges to human health. Herein, through the marriage of facially amphiphilic skeletons and cationic dendrimers, high-density positively charged dendrimers D-CA6-N+ (G2) and D-CA2-N+ (G1) were designed and synthesized using the "branch" of facially amphiphilic bile acids, followed by their modification with quaternary ammonium charges. Both dendrimers could self-assemble into nanostructured micelles in aqueous solution. D-CA6-N+ displays potent antibacterial activity against Staphylococcus aureus and Escherichia coli, with minimum inhibitory concentrations (MICs) as low as 7.50 and 7.79 μM, respectively, and has an evidently stronger antibacterial activity than D-CA2-N+. Moreover, D-CA6-N+ can kill S. aureus faster than E. coli. The facial amphiphilicity of the bile acid skeleton facilitates the selective destruction of bacterial membranes and endows dendrimers with negligible hemolysis and cytotoxicity even under a high concentration of 16× MIC. In vivo studies show that D-CA6-N+ is much more effective and safer than penicillin G in treating S. aureus infection and promoting wound healing, which suggests facially amphiphilic skeleton-derived cationic dendrimers can be a promising approach to effectively enhance antibacterial activity and biocompatibility of antibacterial agent, simultaneously.
Collapse
Affiliation(s)
- Mengqi Le
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou510006, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Wen Huang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Zunwei Ma
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Zhifeng Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Qingtao Li
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Caihong Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Lin Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou510006, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou510006, China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou510006, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou510006, China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| |
Collapse
|
25
|
Shin J, Kim G, Park J, Lee M, Park Y. Long-term label-free assessments of individual bacteria using three-dimensional quantitative phase imaging and hydrogel-based immobilization. Sci Rep 2023; 13:46. [PMID: 36593327 PMCID: PMC9806822 DOI: 10.1038/s41598-022-27158-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Three-dimensional (3D) quantitative phase imaging (QPI) enables long-term label-free tomographic imaging and quantitative analysis of live individual bacteria. However, the Brownian motion or motility of bacteria in a liquid medium produces motion artifacts during 3D measurements and hinders precise cell imaging and analysis. Meanwhile, existing cell immobilization methods produce noisy backgrounds and even alter cellular physiology. Here, we introduce a protocol that utilizes hydrogels for high-quality 3D QPI of live bacteria maintaining bacterial physiology. We demonstrate long-term high-resolution quantitative imaging and analysis of individual bacteria, including measuring the biophysical parameters of bacteria and responses to antibiotic treatments.
Collapse
Affiliation(s)
- Jeongwon Shin
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea
| | - Geon Kim
- grid.37172.300000 0001 2292 0500Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea ,grid.37172.300000 0001 2292 0500KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea
| | - Jinho Park
- grid.37172.300000 0001 2292 0500Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea
| | - Moosung Lee
- grid.37172.300000 0001 2292 0500Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea ,grid.37172.300000 0001 2292 0500KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea
| | - YongKeun Park
- grid.37172.300000 0001 2292 0500Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea ,grid.37172.300000 0001 2292 0500KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea ,Tomocube Inc., Daejeon, 34051 South Korea
| |
Collapse
|
26
|
Fan D, Liu X, Ren Y, Bai S, Li Y, Luo Z, Dong J, Chen F, Zeng W. Functional insights to the development of bioactive material for combating bacterial infections. Front Bioeng Biotechnol 2023; 11:1186637. [PMID: 37152653 PMCID: PMC10160456 DOI: 10.3389/fbioe.2023.1186637] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
The emergence of antibiotic-resistant "superbugs" poses a serious threat to human health. Nanomaterials and cationic polymers have shown unprecedented advantages as effective antimicrobial therapies due to their flexibility and ability to interact with biological macromolecules. They can incorporate a variety of antimicrobial substances, achieving multifunctional effects without easily developing drug resistance. Herein, this article discusses recent advances in cationic polymers and nano-antibacterial materials, including material options, fabrication techniques, structural characteristics, and activity performance, with a focus on their fundamental active elements.
Collapse
Affiliation(s)
- Duoyang Fan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Xiaohui Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Yueming Ren
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Shuaige Bai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Yanbing Li
- Xiangya Hospital, Central South University, Changsha, China
| | - Ziheng Luo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
- *Correspondence: Fei Chen, ; Wenbin Zeng,
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
- *Correspondence: Fei Chen, ; Wenbin Zeng,
| |
Collapse
|
27
|
Cationic RGD peptidomimetic nanoconjugates as effective tumor targeting gene delivery vectors with antimicrobial potential. Bioorg Chem 2022; 129:106197. [DOI: 10.1016/j.bioorg.2022.106197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 11/22/2022]
|
28
|
Ren R, Lim C, Li S, Wang Y, Song J, Lin TW, Muir BW, Hsu HY, Shen HH. Recent Advances in the Development of Lipid-, Metal-, Carbon-, and Polymer-Based Nanomaterials for Antibacterial Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3855. [PMID: 36364631 PMCID: PMC9658259 DOI: 10.3390/nano12213855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 05/29/2023]
Abstract
Infections caused by multidrug-resistant (MDR) bacteria are becoming a serious threat to public health worldwide. With an ever-reducing pipeline of last-resort drugs further complicating the current dire situation arising due to antibiotic resistance, there has never been a greater urgency to attempt to discover potential new antibiotics. The use of nanotechnology, encompassing a broad range of organic and inorganic nanomaterials, offers promising solutions. Organic nanomaterials, including lipid-, polymer-, and carbon-based nanomaterials, have inherent antibacterial activity or can act as nanocarriers in delivering antibacterial agents. Nanocarriers, owing to the protection and enhanced bioavailability of the encapsulated drugs, have the ability to enable an increased concentration of a drug to be delivered to an infected site and reduce the associated toxicity elsewhere. On the other hand, inorganic metal-based nanomaterials exhibit multivalent antibacterial mechanisms that combat MDR bacteria effectively and reduce the occurrence of bacterial resistance. These nanomaterials have great potential for the prevention and treatment of MDR bacterial infection. Recent advances in the field of nanotechnology are enabling researchers to utilize nanomaterial building blocks in intriguing ways to create multi-functional nanocomposite materials. These nanocomposite materials, formed by lipid-, polymer-, carbon-, and metal-based nanomaterial building blocks, have opened a new avenue for researchers due to the unprecedented physiochemical properties and enhanced antibacterial activities being observed when compared to their mono-constituent parts. This review covers the latest advances of nanotechnologies used in the design and development of nano- and nanocomposite materials to fight MDR bacteria with different purposes. Our aim is to discuss and summarize these recently established nanomaterials and the respective nanocomposites, their current application, and challenges for use in applications treating MDR bacteria. In addition, we discuss the prospects for antimicrobial nanomaterials and look forward to further develop these materials, emphasizing their potential for clinical translation.
Collapse
Affiliation(s)
- Ruohua Ren
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Chiaxin Lim
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Shiqi Li
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Yajun Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jiangning Song
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan
| | | | - Hsien-Yi Hsu
- School of Energy and Environment, Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong 518057, China
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
29
|
Gupta S, Arora A, Saini V, Mehta D, Khan MZ, Mishra DK, Yavvari PS, Singh A, Gupta SK, Srivastava A, Kumar Y, Verma V, Nandicoori VK, Bajaj A. Hydrophobicity of Cholic Acid-Derived Amphiphiles Dictates the Antimicrobial Specificity. ACS Biomater Sci Eng 2022; 8:4996-5007. [DOI: 10.1021/acsbiomaterials.2c00924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Siddhi Gupta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Amit Arora
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana, India
| | - Varsha Saini
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Devashish Mehta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Mehak Zahoor Khan
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Deepak K. Mishra
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Prabhu Srinivas Yavvari
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Archana Singh
- Institute of Genomics and Integrative Biology, South Campus, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sonu Kumar Gupta
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Yashwant Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Vikas Verma
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana, India
| | - Vinay K. Nandicoori
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| |
Collapse
|
30
|
Wang X, Xie W, Zhang S, Shao Y, Cai J, Cai L, Wang X, Shan Z, Zhou H, Li J, Cui W, Wang L, Qiao X, Li Y, Jiang Y, Tang L. Effect of Microencapsulation Techniques on the Stress Resistance and Biological Activity of Bovine Lactoferricin-Lactoferrampin-Encoding Lactobacillus reuteri. Foods 2022; 11:3169. [PMID: 37430918 PMCID: PMC9602003 DOI: 10.3390/foods11203169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/16/2022] [Accepted: 10/08/2022] [Indexed: 08/27/2023] Open
Abstract
Bovine lactoferricin-lactoferrampin-encoding Lactobacillus reuteri (LR-LFCA) has been found to benefit its host by strengthening its intestinal barrier. However, several questions remain open concerning genetically engineered strains maintaining long-term biological activity at room temperature. In addition, probiotics are vulnerable to harsh conditions in the gut, such as acidity and alkalinity, and bile salts. Microencapsulation is a technique to entrap probiotic bacteria into gastro-resistant polymers to carry them directly to the intestine. We selected nine kinds of wall material combinations to encapsulate LR-LFCA by spray drying microencapsulation. The storage stability, microstructural morphology, biological activity, and simulated digestion in vivo or in vitro of the microencapsulated LR-LFCA were further evaluated. The results showed that LR-LFCA had the highest survival rate when microcapsules were prepared using a wall material mixture (skim milk, sodium glutamate, polyvinylpyrrolidone, maltodextrin, and gelatin). Microencapsulated LR-LFCA increased the stress resistance capacity and colonization abilities. In the present study, we have identified a suitable wall material formulation for spray-dried microencapsulation of genetically engineered probiotic products, which would facilitate their storage and transport.
Collapse
Affiliation(s)
- Xueying Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Weichun Xie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Senhao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yilan Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiyao Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Limeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhifu Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
31
|
Luo X, Song Y, Cao Z, Qin Z, Dessie W, He N, Wang Z, Tan Y. Evaluation of the antimicrobial activities and mechanisms of synthetic antimicrobial peptide against food-borne pathogens. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Abstract
Pathogenic microorganisms are considered to a major threat to human health, impinging on multiple sectors including hospitals, dentistry, food storage and packaging, and water contamination. Due to the increasing levels of antimicrobial resistance shown by pathogens, often caused by long-term abuse or overuse of traditional antimicrobial drugs, new approaches and solutions are necessary. In this area, antimicrobial polymers are a viable solution to combat a variety of pathogens in a number of contexts. Indeed, polymers with intrinsic antimicrobial activities have long been an intriguing research area, in part, due to their widespread natural abundance in materials such as chitin, chitosan, carrageen, pectin, and the fact that they can be tethered to surfaces without losing their antimicrobial activities. In addition, since the discovery of the strong antimicrobial activity of some synthetic polymers, much work has focused on revealing the most effective structural elements that give rise to optimal antimicrobial properties. This has often been synthesis targeted, with the generation of either new polymers or the modification of natural antimicrobial polymers with the addition of antimicrobial enhancing modalities such as quaternary ammonium or guanidinium groups. In this review, the growing number of polymers showing intrinsic antimicrobial properties from the past decade are highlighted in terms of synthesis; often based on post-synthesis modification and their utilization. This includes as surface coatings, for example on medical devices, such as intravascular catheters, orthopaedic implants and contact lenses, or directly as antibacterial agents (specifically as eye drops). Surface functionalisation with inherently antimicrobial polymers is highlighted and has been achieved via various techniques, including surface-bound initiators allowing RAFT or ATRP surface-based polymerization, or via physical immobilization such as by layer-by-layer techniques. This article also covers the mechanistic modes of action of intrinsic antimicrobial polymers against bacteria, viruses, or fungi.
Collapse
Affiliation(s)
- Meltem Haktaniyan
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK.
| | - Mark Bradley
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK.
| |
Collapse
|
33
|
Kong Q, Li G, Zhang F, Yu T, Chen X, Jiang Q, Wang Y. N-Arylimidazoliums as Highly Selective Biomimetic Antimicrobial Agents. J Med Chem 2022; 65:11309-11321. [PMID: 35930690 DOI: 10.1021/acs.jmedchem.2c00818] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Antibiotic resistance has become one of the greatest health threats in the world. In this study, a charge-dispersed dimerization strategy is described for the antimicrobial peptide (AMP) mimics via a tunable cationic charge to improve the selectivity between prokaryotic microbes and eukaryotic cells. This strategy is demonstrated with a series of charge-dispersed AMP mimics based on N-arylimidazolium skeletons. These N-arylimidazolium AMP mimics show potent antibacterial activity against strains along with a low rate of drug resistance, good hemocompatibility, and low cytotoxicity. In addition to the elimination of planktonic bacteria, N-arylimidazolium AMP mimics can also inhibit biofilm formation and destroy the established biofilm. More importantly, methicillin-resistant Staphylococcus aureus (MRSA)-induced lung-infected mice can be effectively treated by the intravenous administration of N-arylimidazolium AMP mimic, which enable the design of N-arylimidazolium AMP mimics to offer an alternative avenue to eradicate drug-resistant bacterial infection.
Collapse
Affiliation(s)
- Qunshou Kong
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Fanjun Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Tao Yu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Xiaotong Chen
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
34
|
Affiliation(s)
- Phuong Pham
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Susan Oliver
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
35
|
Dhumal D, Maron B, Malach E, Lyu Z, Ding L, Marson D, Laurini E, Tintaru A, Ralahy B, Giorgio S, Pricl S, Hayouka Z, Peng L. Dynamic self-assembling supramolecular dendrimer nanosystems as potent antibacterial candidates against drug-resistant bacteria and biofilms. NANOSCALE 2022; 14:9286-9296. [PMID: 35649277 DOI: 10.1039/d2nr02305a] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The alarming and prevailing antibiotic resistance crisis urgently calls for innovative "outside of the box" antibacterial agents, which can differ substantially from conventional antibiotics. In this context, we have established antibacterial candidates based on dynamic supramolecular dendrimer nanosystems self-assembled with amphiphilic dendrimers composed of a long hydrophobic alkyl chain and a small hydrophilic poly(amidoamine) dendron bearing distinct terminal functionalities. Remarkably, the amphiphilic dendrimer with amine terminals exhibited strong antibacterial activity against both Gram-positive and Gram-negative as well as drug-resistant bacteria, and prevented biofilm formation. Multidisciplinary studies combining experimental approaches and computer modelling together demonstrate that the dendrimer interacts and binds via electrostatic interactions with the bacterial membrane, where it becomes enriched and then dynamically self-assembles into supramolecular nanoassemblies for stronger and multivalent interactions. These, in turn, rapidly promote the insertion of the hydrophobic dendrimer tail into the bacterial membrane thereby inducing bacterial cell lysis and constituting powerful antibacterial activity. Our study presents a novel concept for creating nanotechnology-based antibacterial candidates via dynamic self-assembly and offers a new perspective for combatting recalcitrant bacterial infection.
Collapse
Affiliation(s)
- Dinesh Dhumal
- Aix Marseille Univ, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labelisée Ligue Contre le Cancer, Parc Scientifique et Technologique de Luminy, Marseille, France.
| | - Bar Maron
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Einav Malach
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Zhenbin Lyu
- Aix Marseille Univ, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labelisée Ligue Contre le Cancer, Parc Scientifique et Technologique de Luminy, Marseille, France.
| | - Ling Ding
- Aix Marseille Univ, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labelisée Ligue Contre le Cancer, Parc Scientifique et Technologique de Luminy, Marseille, France.
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Trieste, Italy
| | - Aura Tintaru
- Aix Marseille Univ, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labelisée Ligue Contre le Cancer, Parc Scientifique et Technologique de Luminy, Marseille, France.
| | - Brigino Ralahy
- Aix Marseille Univ, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labelisée Ligue Contre le Cancer, Parc Scientifique et Technologique de Luminy, Marseille, France.
| | - Suzanne Giorgio
- Aix Marseille Univ, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labelisée Ligue Contre le Cancer, Parc Scientifique et Technologique de Luminy, Marseille, France.
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Trieste, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Ling Peng
- Aix Marseille Univ, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labelisée Ligue Contre le Cancer, Parc Scientifique et Technologique de Luminy, Marseille, France.
| |
Collapse
|
36
|
Pohl C, Effantin G, Kandiah E, Meier S, Zeng G, Streicher W, Segura DR, Mygind PH, Sandvang D, Nielsen LA, Peters GHJ, Schoehn G, Mueller-Dieckmann C, Noergaard A, Harris P. pH- and concentration-dependent supramolecular assembly of a fungal defensin plectasin variant into helical non-amyloid fibrils. Nat Commun 2022; 13:3162. [PMID: 35672293 PMCID: PMC9174238 DOI: 10.1038/s41467-022-30462-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Self-assembly and fibril formation play important roles in protein behaviour. Amyloid fibril formation is well-studied due to its role in neurodegenerative diseases and characterized by refolding of the protein into predominantly β-sheet form. However, much less is known about the assembly of proteins into other types of supramolecular structures. Using cryo-electron microscopy at a resolution of 1.97 Å, we show that a triple-mutant of the anti-microbial peptide plectasin, PPI42, assembles into helical non-amyloid fibrils. The in vitro anti-microbial activity was determined and shown to be enhanced compared to the wildtype. Plectasin contains a cysteine-stabilised α-helix-β-sheet structure, which remains intact upon fibril formation. Two protofilaments form a right-handed protein fibril. The fibril formation is reversible and follows sigmoidal kinetics with a pH- and concentration dependent equilibrium between soluble monomer and protein fibril. This high-resolution structure reveals that α/β proteins can natively assemble into fibrils. Here the authors report the cryo-EM structure of a triple-mutant of the anti-microbial peptide plectasin, PPI42, assembling in a pH- and concentration dependent manner into helical non-amyloid fibrils. The fibrils formation is reversible, and follows a sigmoidal kinetics. The fibrils adopt a right-handed helical superstructure composed by two protofilaments, stabilized by an outer hydrophobic ring and an inner hydrophobic centre. These findings reveal that α/β proteins can natively assemble into fibrils.
Collapse
|
37
|
N-methyl Benzimidazole Tethered Cholic Acid Amphiphiles Can Eradicate S. aureus-Mediated Biofilms and Wound Infections. Molecules 2022; 27:molecules27113501. [PMID: 35684439 PMCID: PMC9182351 DOI: 10.3390/molecules27113501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 01/16/2023] Open
Abstract
Infections associated with Gram-positive bacteria like S. aureus pose a major threat as these bacteria can develop resistance and thereby limit the applications of antibiotics. Therefore, there is a need for new antibacterials to mitigate these infections. Bacterial membranes present an attractive therapeutic target as these membranes are anionic in nature and have a low chance of developing modifications in their physicochemical features. Antimicrobial peptides (AMPs) can disrupt the microbial membranes via electrostatic interactions, but the poor stability of AMPs halts their clinical translation. Here, we present the synthesis of eight N-methyl benzimidazole substituted cholic acid amphiphiles as antibacterial agents. We screened these novel heterocyclic cholic acid amphiphiles against different pathogens. Among the series, CABI-6 outperformed the other amphiphiles in terms of bactericidal activity against S. aureus. The membrane disruptive property of CABI-6 using a fluorescence-based assay has also been investigated, and it was inferred that CABI-6 can enhance the production of reactive oxygen species. We further demonstrated that CABI-6 can clear the pre-formed biofilms and can mitigate wound infection in murine models.
Collapse
|
38
|
Leong J, Shi D, Tan JPK, Yang C, Yang S, Wang Y, Ngow YS, Kng J, Balakrishnan N, Peng SQ, Yeow CS, Periaswamy B, Venkataraman S, Kwa AL, Liu X, Yao H, Yang YY. Potent Antiviral and Antimicrobial Polymers as Safe and Effective Disinfectants for the Prevention of Infections. Adv Healthc Mater 2022; 11:e2101898. [PMID: 34694749 DOI: 10.1002/adhm.202101898] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/19/2021] [Indexed: 11/06/2022]
Abstract
Disinfection using effective antimicrobials is essential in preventing the spread of infectious diseases. This COVID-19 pandemic has brought the need for effective disinfectants to greater attention due to the fast transmission of SARS-CoV-2. Current active ingredients in disinfectants are small molecules that microorganisms can develop resistance against after repeated long-term use and may penetrate the skin, causing harmful side-effects. To this end, a series of membrane-disrupting polyionenes that contain quaternary ammoniums and varying hydrophobic components is synthesized. They are effective against bacteria and fungi. They are also fast acting against clinically isolated drug resistant strains of bacteria. Formulating them with thickeners and nonionic surfactants do not affect their killing efficiency. These polyionenes are also effective in preventing infections caused by nonenveloped and enveloped viruses. Their effectiveness against mouse coronavirus (i.e., mouse hepatitis virus-MHV) depends on their hydrophobicity. The polyionenes with optimal compositions inactivates MHV completely in 30 s. More importantly, the polyionenes are effective in inhibiting SARS-CoV-2 by >99.999% within 30 s. While they are effective against the microorganisms, they do not cause damage to the skin and have a high oral lethal dose. Overall, these polyionenes are promising active ingredients for disinfection and prevention of viral and microbial infections.
Collapse
Affiliation(s)
- Jiayu Leong
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Danrong Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases First Affiliated Hospital Zhejiang University School of Medicine 79 Qingchun Road Hangzhou 310003 China
| | - Jeremy Pang Kern Tan
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Chuan Yang
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Shengcai Yang
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Yanming Wang
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Yeen Shian Ngow
- Department of Pharmacy Singapore General Hospital Outram Road Singapore 169608 Singapore
| | - Jessica Kng
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Nithiyaa Balakrishnan
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Shu Qin Peng
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Chun Siang Yeow
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Balamurugan Periaswamy
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Shrinivas Venkataraman
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Andrea Lay‐Hoon Kwa
- Department of Pharmacy Singapore General Hospital Outram Road Singapore 169608 Singapore
| | - Xiaoli Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases First Affiliated Hospital Zhejiang University School of Medicine 79 Qingchun Road Hangzhou 310003 China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases First Affiliated Hospital Zhejiang University School of Medicine 79 Qingchun Road Hangzhou 310003 China
| | - Yi Yan Yang
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
- Department of Orthopaedic Surgery Yong Loo Lin School of Medicine National University of Singapore Singapore 119288 Singapore
| |
Collapse
|
39
|
Cholic Acid-Based Antimicrobial Peptide Mimics as Antibacterial Agents. Int J Mol Sci 2022; 23:ijms23094623. [PMID: 35563014 PMCID: PMC9101178 DOI: 10.3390/ijms23094623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/16/2022] [Accepted: 04/16/2022] [Indexed: 12/16/2022] Open
Abstract
There is a significant and urgent need for the development of novel antibacterial agents to tackle the increasing incidence of antibiotic resistance. Cholic acid-based small molecular antimicrobial peptide mimics are reported as potential new leads to treat bacterial infection. Here, we describe the design, synthesis and biological evaluation of cholic acid-based small molecular antimicrobial peptide mimics. The synthesis of cholic acid analogues involves the attachment of a hydrophobic moiety at the carboxyl terminal of the cholic acid scaffold, followed by the installation of one to three amino acid residues on the hydroxyl groups present on the cholic acid scaffold. Structure–activity relationship studies suggest that the tryptophan moiety is important for high antibacterial activity. Moreover, a minimum of +2 charge is also important for antimicrobial activity. In particular, analogues containing lysine-like residues showed the highest antibacterial potency against Gram-positive S. aureus. All di-substituted analogues possess high antimicrobial activity against both Gram-positive S. aureus as well as Gram-negative E. coli and P. aeruginosa. Analogues 17c and 17d with a combination of these features were found to be the most potent in this study. These compounds were able to depolarise the bacterial membrane, suggesting that they are potential antimicrobial pore forming agents.
Collapse
|
40
|
Huo X, Wang Z, Xiao X, Yang C, Su J. Nanopeptide CMCS-20H loaded by carboxymethyl chitosan remarkably enhances protective efficacy against bacterial infection in fish. Int J Biol Macromol 2022; 201:226-241. [PMID: 34995671 DOI: 10.1016/j.ijbiomac.2021.12.172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 01/21/2023]
Affiliation(s)
- Xingchen Huo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhensheng Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xun Xiao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
41
|
Lin M, Sun J. Antimicrobial peptide–inspired antibacterial polymeric materials for biosafety. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
42
|
Bak IG, Chae CG, Lee JS. Synthetic Control of Helical Polyisocyanates by Living Anionic Polymerization toward Peptide Mimicry. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- In Gyu Bak
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Chang-Geun Chae
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jae-Suk Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
43
|
Wang Y, Zheng Q, Li L, Pan L, Zhu H. Anti-Quorum-Sensing Activity of Tryptophan-Containing Cyclic Dipeptides. Mar Drugs 2022; 20:md20020085. [PMID: 35200615 PMCID: PMC8924889 DOI: 10.3390/md20020085] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Quorum sensing (QS) can regulate the pathogenicity of bacteria and the production of some virulence factors. It is a promising target for screening to find anti-virulence agents in the coming post-antibiotics era. Cyclo (L-Trp-L-Ser), one variety of cyclic dipeptides (CDPs), isolated from a marine bacterium Rheinheimera aquimaris, exhibited anti-QS activity against Chromobacterium violaceum CV026 and Pseudomonas aeruginosa PAO1. Unlike the CDPs composed of phenylalanine or tyrosine, the anti-QS activity has been widely studied; however, cyclo (L-Trp-L-Ser) and derivatives, containing one tryptophan unit and one non-aromatic amino acid, have not been systematically explored. Herein, the cyclo (L-Trp-L-Ser) and seven derivatives were synthesized and evaluated. All tryptophane-contained CDPs were able to decrease the production of violacein in C.violaceum CV026 and predicted as binding within the same pocket of receptor protein CviR, but in lower binding energy compared with the natural ligand C6HSL. As for P. aeruginosa PAO1, owning more complicated QS systems, these CDPs also exhibited inhibitory effects on pyocyanin production, swimming motility, biofilm formation, and adhesion. These investigations suggested a promising way to keep the tryptophan untouched and make modifications on the non-aromatic unit to increase the anti-QS activity and decrease the cytotoxicity, thus developing a novel CDP-based anti-virulence agent.
Collapse
|
44
|
Guo W, Wang Y, Wan P, Wang H, Chen L, Zhang S, Xiao C, Chen X. Cationic amphiphilic dendrons with effective antibacterial performance. J Mater Chem B 2022; 10:456-467. [PMID: 34982090 DOI: 10.1039/d1tb02037d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bacterial infections and antibiotic resistance have become a global healthcare crisis. Herein, we designed and synthesized a series of cationic amphiphilic dendrons with cationic dendrons and hydrophobic alkyl chains for potential antibacterial applications. Our results showed that the antimicrobial activities of the cationic amphiphilic dendrons were highly dependent upon the length of the hydrophobic alkyl chain, whereas the number of cationic charges was less important. Among these cationic amphiphilic dendrons, a prime candidate was identified, which possessed excellent antimicrobial activity against various pathogens (minimum inhibitory concentrations of 9, 3, and 3 μg mL-1 for Escherichia coli, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus, respectively). Scanning electron microscopy and fluorescence microscopy analyses showed that it could disrupt the integrity of a pathogen's membrane, leading to cell lysis and death. In addition, in vitro bacteria-killing kinetics showed that it had rapid bactericidal efficiency. It also had excellent antimicrobial activities against MRSA in vivo and promoted wound healing. In general, the synthesized cationic amphiphilic dendrons, which exhibited rapid and broad-spectrum bactericidal activity, may have great potential in antimicrobial applications.
Collapse
Affiliation(s)
- Wei Guo
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | - Yongjie Wang
- Department of Spinal Surgery, the First Hospital of Jilin University, Changchun, China.,Molecular Bacteriology Laboratory, Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Pengqi Wan
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China. .,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Li Chen
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | - Shaokun Zhang
- Department of Spinal Surgery, the First Hospital of Jilin University, Changchun, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| |
Collapse
|
45
|
Sahoo S, Maiti I, Laha A, De R, Maiti S, De P. Cholate Conjugated Cationic Polymers for Regulation of Actin Dynamics. J Mater Chem B 2022; 10:8033-8045. [DOI: 10.1039/d2tb01364a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytoskeletal movement is a compulsory necessity for proper cell functioning and is largely controlled by actin filament dynamics. The actin dynamics can be finetuned by various natural and artificial materials...
Collapse
|
46
|
Kalelkar PP, Riddick M, García AJ. Biomaterial-based delivery of antimicrobial therapies for the treatment of bacterial infections. NATURE REVIEWS. MATERIALS 2022; 7:39-54. [PMID: 35330939 PMCID: PMC8938918 DOI: 10.1038/s41578-021-00362-4] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
UNLABELLED The rise in antibiotic-resistant bacteria, including strains that are resistant to last-resort antibiotics, and the limited ability of antibiotics to eradicate biofilms, have necessitated the development of alternative antibacterial therapeutics. Antibacterial biomaterials, such as polycationic polymers, and biomaterial-assisted delivery of non-antibiotic therapeutics, such as bacteriophages, antimicrobial peptides and antimicrobial enzymes, have improved our ability to treat antibiotic-resistant and recurring infections. Biomaterials not only allow targeted delivery of multiple agents, but also sustained release at the infection site, thereby reducing potential systemic adverse effects. In this Review, we discuss biomaterial-based non-antibiotic antibacterial therapies for the treatment of community- and hospital-acquired infectious diseases, with a focus in in vivo results. We highlight the translational potential of different biomaterial-based strategies, and provide a perspective on the challenges associated with their clinical translation. Finally, we discuss the future scope of biomaterial-assisted antibacterial therapies. WEB SUMMARY The development of antibiotic tolerance and resistance has demanded the search for alternative antibacterial therapies. This Review discusses antibacterial biomaterials and biomaterial-assisted delivery of non-antibiotic therapeutics for the treatment of bacterial infectious diseases, with a focus on clinical translation.
Collapse
Affiliation(s)
- Pranav P. Kalelkar
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Milan Riddick
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Andrés J. García
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- author to whom correspondence should be addressed:
| |
Collapse
|
47
|
Li X, İlk S, Liu Y, Raina DB, Demircan D, Zhang B. Nonionic nontoxic antimicrobial polymers: indole-grafted poly(vinyl alcohol) with pendant alkyl or ether groups. Polym Chem 2022. [DOI: 10.1039/d1py01504d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A series of new nonionic antimicrobial polymers with a biodegradable polyvinyl alcohol (PVA) backbone grafted with indole units and different hydrophobic alkyl or ether groups were synthesized by facile esterification.
Collapse
Affiliation(s)
- Xiaoya Li
- Lund University, Centre for Analysis and Synthesis, Department of Chemistry, P. O. Box 124, SE-22100 Lund, Sweden
| | - Sedef İlk
- Niğde Ömer Halisdemir University, Faculty of Medicine, Department of Immunology, TR-51240, Niğde, Turkey
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Glycoscience, SE-10691 Stockholm, Sweden
| | - Yang Liu
- Faculty of Medicine, Department of Clinical Sciences, Orthopedics, Lund University, Lund, Sweden
| | - Deepak Bushan Raina
- Faculty of Medicine, Department of Clinical Sciences, Orthopedics, Lund University, Lund, Sweden
| | - Deniz Demircan
- Lund University, Centre for Analysis and Synthesis, Department of Chemistry, P. O. Box 124, SE-22100 Lund, Sweden
| | - Baozhong Zhang
- Lund University, Centre for Analysis and Synthesis, Department of Chemistry, P. O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
48
|
Wang X, Wang G, Zhao J, Zhu Z, Rao J. Main-Chain Sulfonium-Containing Homopolymers with Negligible Hemolytic Toxicity for Eradication of Bacterial and Fungal Biofilms. ACS Macro Lett 2021; 10:1643-1649. [PMID: 35549147 DOI: 10.1021/acsmacrolett.1c00698] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Antimicrobials against planktonic cells and established biofilms at low doses are in increasing demand to tackle antibiotic-resistant biofilm infections. As a promising alternative to antibiotics, cationic polymers can effectively kill planktonic microbes but usually require high concentrations to eradicate the established biofilms. Herein, we developed a series of sulfonium-based homopolymers with cationic sulfoniums and alkane spacers in the main chain. These polysulfoniums presented effective activity against planktonic fungi (Candida albicans) and bacteria (Escherichia coli and Staphylococcus aureus) with minimum inhibition concentrations (MICs) of 0.5-32 μg/mL, and the optimal composition can provide an 80-90% reduction in biofilm mass and >99% killing of Candida albicans and Escherichia coli cells in 3-day mature biofilms at 2 × MIC as well as steadily low hemolytic toxicity. The influence of amphiphilicity and charge density of polysulfonium homopolymers on their antimicrobial activity against planktonic microbes and mature biofilms was investigated to provide insights for effective antimicrobial polymer design.
Collapse
Affiliation(s)
- Xiao Wang
- Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic of China
| | - Guixian Wang
- Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic of China
| | - Jinghua Zhao
- Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic of China
| | - Zhiyuan Zhu
- Suzhou Jufeng Electrical Insulation System Co., Ltd., Suzhou, Jiangsu 215214, People’s Republic of China
| | - Jingyi Rao
- Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic of China
| |
Collapse
|
49
|
Wang H, Nie X, You W, Huang W, Chen G, Gao F, Xia L, Zhang L, Wang L, Shen AZ, Wu KL, Ding SG, You YZ. Tug-of-War between Covalent Binding and Electrostatic Interaction Effectively Killing E. coli without Detectable Resistance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56838-56849. [PMID: 34816709 DOI: 10.1021/acsami.1c15868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antimicrobial resistance in Gram-negative bacteria has become one of the leading causes of morbidity and mortality and a serious worldwide public health concern due to the fact that Gram-negative bacteria have an additional outer membrane protecting them from an unwanted compound invading. It is still very difficult for antimicrobials to reach intracellular targets and very challenging to treat Gram-negative bacteria with the current strategies. Here, we found that (o-(bromomethyl)phenyl)boronic acid was incorporated into poly((2-N,N-diethyl)aminoethyl acrylate) (PDEA), forming a copolymer (poly(o-Bn-DEA)) having both phenylboronic acid (B) and ((2-N,N-diethyl)amino) (DEA) units. Poly(o-Bn-DEA) exhibits very strong intramolecular B-N coordination, which could highly promote the covalent binding of phenylboronic acid with lipopolysaccharide (LPS) on the outer membrane of E. coli and lodge poly(o-Bn-DEA) on the LPS layer on the surface of E. coli. Meanwhile, the strong electrostatic interaction between poly(o-Bn-DEA) and the negatively charged lipid preferred tugging the poly(o-Bn-DEA) into the lipid bilayer of E. coli. The combating interactions between covalent binding and electrostatic interaction form a tug-of-war action, which could trigger the lysis of the outer membrane, thereby killing Gram-negative E. coli effectively without detectable resistance.
Collapse
Affiliation(s)
- Haili Wang
- The Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xuan Nie
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei You
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Weiqiang Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guang Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fan Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Xia
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Zhang
- The Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Longhai Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ai-Zong Shen
- The Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Kai-Le Wu
- Department of Otolaryngology Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Sheng-Gang Ding
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Ye-Zi You
- The Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
50
|
Deng L, Lu H, Tu C, Zhou T, Cao W, Gao C. A tough synthetic hydrogel with excellent post-loading of drugs for promoting the healing of infected wounds in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112577. [PMID: 35525747 DOI: 10.1016/j.msec.2021.112577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2022]
Abstract
Bacterial infection is a major obstacle to the wound healing process. The hydrogel dressings with a simpler structure and good antibacterial and wound healing performance are appealing for clinical application. Herein, a robust hydrogel was synthesized from acrylamide (AM), acrylic acid (AA) and N,N'-methylene diacrylamide (MBA) via a redox initiating polymerization. The polymerization conditions were optimized to obtain the hydrogel with minimum unreacted monomers, which were 0.25% and 0.12% for AM and AA, respectively. The hydrogel had good mechanical strength, and could effectively resist damage by external forces and maintain a good macroscopic shape. It showed large water uptake capacity, and could post load a wide range of molecules via hydrogen bonding and electrostatic interaction. Loading of antibiotic doxycycline (DOX) enabled the hydrogel with good antibacterial activity against both Gram-positive bacteria and Gram-negative bacteria in vitro and in vivo. In a rat model of methicillin-resistant Staphylococcus aureus (MRSA)-infected full-thickness skin defect wound, the DOX-loaded hydrogel showed good therapeutic effect. It could significantly promote the wound closure, increased the collagen coverage area, down-regulate the expressions of pro-inflammatory TNF-α and IL-1β factors, and up-regulate the expressions of anti-inflammatory IL-4 factor and CD31 neovascularization factor.
Collapse
Affiliation(s)
- Liwen Deng
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huidan Lu
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou 310009, China
| | - Chenxi Tu
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tong Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wangbei Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Changyou Gao
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|