1
|
Peng Y, Gao L, Liu C, Guo H, Huang W, Zheng D. Gel-Based Electrolytes for Organic Electrochemical Transistors: Mechanisms, Applications, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409384. [PMID: 39901575 DOI: 10.1002/smll.202409384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/06/2024] [Indexed: 02/05/2025]
Abstract
Organic electrochemical transistors (OECTs) have emerged as the core component of specialized bioelectronic technologies due to their high signal amplification capability, low operating voltage (<1 V), and biocompatibility. Under a gate bias, OECTs modulate device operation via ionic drift between the electrolyte and the channel. Compared to common electrolytes with a fluid nature (including salt aqueous solutions and ion liquids), gel electrolytes, with an intriguing structure consisting of a physically and/or chemically crosslinked polymer network where the interstitial spaces between polymers are filled with liquid electrolytes or mobile ion species, are promising candidates for quasi-solid electrolytes. Due to relatively high ionic conductivity, the potential for large-scale integration, and the capability to suppress channel swelling, gel electrolytes have been a research highlight in OECTs in recent years. This review summarizes recent progress on OECTs with gel electrolytes that demonstrate good mechanical as well as physical and chemical stabilities. Moreover, various components in forming gel electrolytes, including different mobile liquid phases and polymer components, are introduced. Furthermore, applications of these OECTs in the areas of sensors, neuromorphics, and organic circuits, are discussed. Last, future perspectives of OECTs based on gel electrolytes are discussed along with possible solutions for existing challenges.
Collapse
Affiliation(s)
- Yujie Peng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Lin Gao
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Changjian Liu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Haihong Guo
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Wei Huang
- School of Automation Engineering, UESTC, Chengdu, 611731, P. R. China
| | - Ding Zheng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| |
Collapse
|
2
|
Zhang J, Yuan YX, Yan JW, Mao BW, Yao JL, Tian ZQ. Hydrophilicity Dependent Distribution of Water at Ionic Liquids/Metal Interface Monitored by Electrochemical SERS. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50054-50060. [PMID: 39283756 DOI: 10.1021/acsami.4c11613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The understanding of the interfacial processes is critically important for extending the practical application of ionic liquids, particularly for the role of interfacial water. In the electrochemical system based on ionic liquid electrolytes, small amounts of water at the interface generate a significant change in the electrochemical behaviors of ionic liquids. Therefore, the investigation on the interfacial behavior of water is highly desired in ionic liquids with different anions, water content, and hydrophilicity. Herein, based on the probe strategy, in situ surface enhanced Raman spectroscopy (SERS) combined with electrochemical control (EC-SERS) was developed to investigate the influence of hydrophilicity/hydrophobicity of ionic liquids on the interfacial water. The water-sensitive transformation reaction of 4,4'-dimercaptoazobenzene (DMAB) to para-aminothiophenol (PATP) was employed as a probe reaction for investigating the behavior of interfacial water. The changes of relative SERS intensities of DMAB to PATP served as an indication of the quantity variation of interfacial water. The results show that the transformation reaction efficiencies were critically dependent on the additional water contents, potential, and hydrophilicity of ionic liquids. With a very low molar fraction of additional water (Xw = 0.01), transformation efficiency of DMAB (the amount of interfacial water) followed the sequence of [BMIm]BF4 < [BMIm]PF6 < [BMIm]Tf2N. It was in agreement with the hydrophobicity order of the ionic liquids. With the increase in additional water content, the potential for the full transformation was positively moved, and the efficiency increased significantly. The stronger hydrophobicity allowed more water molecules to migrate to the interface, which was attributed to the difference in interactions between water and the anions of ionic liquids. It demonstrated that the small amount of water tended to gather at the interface in hydrophobic ionic liquids. Compared to traditional cyclic voltammetry, the EC-SERS technique combined with probe reactions is more sensitive to interfacial water. It is anticipated to develop as a promising tool for the investigating water-related issues at interfaces and to provide guidance to screen ionic liquids for practical application.
Collapse
Affiliation(s)
- Jing Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Ya-Xian Yuan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jia-Wei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bing-Wei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jian-Lin Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Chen Y, Chen Y, Gao R, Yu X, Lu C. Reversible Molecule Interactions Enable Ultrastretchable and Recyclable Ionogels for Wearable Piezoionic Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50027-50035. [PMID: 39270305 DOI: 10.1021/acsami.4c11268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Ionogel-based piezoionic sensors feel motions and strains like human skin relying on reversible ion migrations under external mechanical stimulus and are of great importance to artificial intelligence. However, conventional ion-conductive polymers behave with degraded electrical and mechanical properties after thousands of strain cycles, and the discarded materials and devices become electronic wastes as well. Here, we develop ultrastretchable ionogels with superior electrical properties via the mediation of metal-organic frameworks, whose properties are attributed to reversible molecule interactions inside the material system. Ionogels present excellent mechanical properties with breaking elongation as high as 850%, exceeding most previously reported similar materials, and the high conductivity enables further application in sensor devices. In addition, our ionogels display superior recyclability because of the reversible physical and chemical interactions inside material molecules, which are eco-friendly to the environment. As a result, the ionogel-based piezoionic sensors deliver high sensitivity, flexibility, cyclic stability, and signal reliability, which are of great significance to wearable applications in human-motion detections such as throat vibration, facial expression, joint mobility, and finger movement. Our study paves the way for ultrastretchable and eco-friendly ionogel design for flexible electrochemical devices.
Collapse
Affiliation(s)
- Yunxuan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanyu Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Rizhong Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xinpeng Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chao Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
4
|
Wang LX, Sun C, Huang SL, Kang B, Chen HY, Xu JJ. Single-Particle Imaging Reveals the Electrical Double-Layer Modulated Ion Dynamics at Crowded Interface. NANO LETTERS 2024; 24:9743-9749. [PMID: 39072414 DOI: 10.1021/acs.nanolett.4c02678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The dynamics of ion transport at the interface is the critical factor for determining the performance of an electrochemical energy storage device. While practical applications are realized in concentrated electrolytes and nanopores, there is a limited understanding of their ion dynamic features. Herein, we studied the interfacial ion dynamics in room-temperature ionic liquids by transient single-particle imaging with microsecond-scale resolution. We observed slowed-down dynamics at lower potential while acceleration was observed at higher potential. Combined with simulation, we found that the microstructure evolution of the electric double layer (EDL) results in potential-dependent kinetics. Then, we established a correspondence between the ion dynamics and interfacial ion composition. Besides, the ordered ion orientation within EDL is also an essential factor for accelerating interfacial ion transport. These results inspire us with a new possibility to optimize electrochemical energy storage through the good control of the rational design of the interfacial ion structures.
Collapse
Affiliation(s)
- Lu-Xuan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chao Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Sheng-Lan Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Bi S, Knijff L, Lian X, van Hees A, Zhang C, Salanne M. Modeling of Nanomaterials for Supercapacitors: Beyond Carbon Electrodes. ACS NANO 2024; 18:19931-19949. [PMID: 39053903 PMCID: PMC11308780 DOI: 10.1021/acsnano.4c01787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 07/27/2024]
Abstract
Capacitive storage devices allow for fast charge and discharge cycles, making them the perfect complements to batteries for high power applications. Many materials display interesting capacitive properties when they are put in contact with ionic solutions despite their very different structures and (surface) reactivity. Among them, nanocarbons are the most important for practical applications, but many nanomaterials have recently emerged, such as conductive metal-organic frameworks, 2D materials, and a wide variety of metal oxides. These heterogeneous and complex electrode materials are difficult to model with conventional approaches. However, the development of computational methods, the incorporation of machine learning techniques, and the increasing power in high performance computing now allow us to tackle these types of systems. In this Review, we summarize the current efforts in this direction. We show that depending on the nature of the materials and of the charging mechanisms, different methods, or combinations of them, can provide desirable atomic-scale insight on the interactions at play. We mainly focus on two important aspects: (i) the study of ion adsorption in complex nanoporous materials, which require the extension of constant potential molecular dynamics to multicomponent systems, and (ii) the characterization of Faradaic processes in pseudocapacitors, that involves the use of electronic structure-based methods. We also discuss how recently developed simulation methods will allow bridges to be made between double-layer capacitors and pseudocapacitors for future high power electricity storage devices.
Collapse
Affiliation(s)
- Sheng Bi
- Physicochimie
des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, CNRS, F-75005 Paris, France
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| | - Lisanne Knijff
- Department
of Chemistry - Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, BOX 538, Uppsala 75121, Sweden
| | - Xiliang Lian
- Physicochimie
des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, CNRS, F-75005 Paris, France
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| | - Alicia van Hees
- Department
of Chemistry - Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, BOX 538, Uppsala 75121, Sweden
| | - Chao Zhang
- Department
of Chemistry - Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, BOX 538, Uppsala 75121, Sweden
- Wallenberg
Initiative Materials Science for Sustainability, Uppsala University, 75121 Uppsala, Sweden
| | - Mathieu Salanne
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
- Institut
Universitaire de France (IUF), 75231 Paris, France
| |
Collapse
|
6
|
Yin XT, You EM, Zhou RY, Zhu LH, Wang WW, Li KX, Wu DY, Gu Y, Li JF, Mao BW, Yan JW. Unraveling the energy storage mechanism in graphene-based nonaqueous electrochemical capacitors by gap-enhanced Raman spectroscopy. Nat Commun 2024; 15:5624. [PMID: 38965231 PMCID: PMC11224393 DOI: 10.1038/s41467-024-49973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
Graphene has been extensively utilized as an electrode material for nonaqueous electrochemical capacitors. However, a comprehensive understanding of the charging mechanism and ion arrangement at the graphene/electrolyte interface remain elusive. Herein, a gap-enhanced Raman spectroscopic strategy is designed to characterize the dynamic interfacial process of graphene with an adjustable number of layers, which is based on synergistic enhancement of localized surface plasmons from shell-isolated nanoparticles and a metal substrate. By employing such a strategy combined with complementary characterization techniques, we study the potential-dependent configuration of adsorbed ions and capacitance curves for graphene based on the number of layers. As the number of layers increases, the properties of graphene transform from a metalloid nature to graphite-like behavior. The charging mechanism shifts from co-ion desorption in single-layer graphene to ion exchange domination in few-layer graphene. The increase in area specific capacitance from 64 to 145 µF cm-2 is attributed to the influence on ion packing, thereby impacting the electrochemical performance. Furthermore, the potential-dependent coordination structure of lithium bis(fluorosulfonyl) imide in tetraglyme ([Li(G4)][FSI]) at graphene/electrolyte interface is revealed. This work adds to the understanding of graphene interfaces with distinct properties, offering insights for optimization of electrochemical capacitors.
Collapse
Affiliation(s)
- Xiao-Ting Yin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - En-Ming You
- School of Ocean Information Engineering, Fujian Provincial Key Laboratory of Oceanic Information Perception and Intelligent Processing, Jimei University, Xiamen, China
| | - Ru-Yu Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Li-Hong Zhu
- Department of Electronic Science, Xiamen University, Xiamen, China
| | - Wei-Wei Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Kai-Xuan Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Yu Gu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
| | - Bing-Wei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Jia-Wei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
| |
Collapse
|
7
|
Gao H, Xu J, Zhang X, Zhou M. Benchmarking the Intrinsic Activity of Transition Metal Oxides for the Oxygen Evolution Reaction with Advanced Nanoelectrodes. Angew Chem Int Ed Engl 2024; 63:e202404663. [PMID: 38575553 DOI: 10.1002/anie.202404663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
The intrinsic activity assessment of transition metal oxides (TMOs) as key electrocatalysts for the oxygen evolution reaction (OER) has not been standardized due to uncertainties regarding their structure and composition, difficulties in accurately measuring their electrochemically active surface area (ECSA), and deficiencies in mass-transfer (MT) rates in conventional measurements. To address these issues, we utilized an electrodeposition-thermal annealing method to precisely synthesize single-particle TMOs with well-defined structure and composition. Concurrently, we engineered low roughness, spherical surfaces for individual particles, enabling precise measurement of their ECSA. Furthermore, by constructing a conductor-core semiconductor-shell structure, we evaluated the inherent OER activity of perovskite-type semiconductor materials, broadening the scope beyond just conductive TMOs. Finally, using single-particle nanoelectrode technique, we systematically measured individual TMO particles of various sizes for OER, overcoming MT limitations seen in conventional approaches. These improvements have led us to propose a precise and reliable approach to evaluating the intrinsic activity of TMOs, not only validating the accuracy of theoretical calculations but also revealing a strong correlation of OER activity on the melting point of TMOs. This discovery holds significant importance for future high-throughput material research and applications, offering valuable insights in electrocatalysis.
Collapse
Affiliation(s)
- Han Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jianan Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xueqi Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Min Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
8
|
Wang P, Zhang K, Li H, Hu J, Zheng M. Enhanced Ion Transport Through Mesopores Engineered with Additional Adsorption of Layered Double Hydroxides Array in Alkaline Flow Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308791. [PMID: 38096872 DOI: 10.1002/smll.202308791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/19/2023] [Indexed: 06/07/2024]
Abstract
Efficient mass transfer in electrodes is essential for the electrochemical processes of battery charge and discharge, especially at high rates and capacities. This study introduces a 3D electrode design featuring layered double hydroxides (LDHs) nanosheets array grown in situ on a carbon felt surface for flow batteries. The mesoporous structure and surface characteristic of LDH nanosheets, especially, the hydroxyl groups forming a unique "H-bonding-like" geometry with ferrous cyanide ions, facilitate efficient adsorption and ion transport. Thus, the designed LDHs electrode enables the alkaline zinc-iron flow battery to maintain a voltage efficiency of 81.6% at an ultra-high current density of 320 mA cm-2, surpassing the values reported in previous studies. The energy efficiency remains above 84% after 375 cycles at a current density of 240 mA cm-2. Molecular dynamics simulations verify the enhanced adsorption effect of LDH materials on active ions, thus facilitating ion transport in the battery. This study provides a novel approach to improve mass transport in electrodes for alkaline flow batteries and other energy storage devices.
Collapse
Affiliation(s)
- Pengfei Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
- Institute of Thermal Science and Power Systems, Zhejiang University, Hangzhou, 310027, China
| | - Kun Zhang
- Institute of Thermal Science and Power Systems, Zhejiang University, Hangzhou, 310027, China
- Institute of Wenzhou, Zhejiang University, Wenzhou, 325036, China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Jing Hu
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C, 8000, Denmark
| | - Menglian Zheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
- Institute of Thermal Science and Power Systems, Zhejiang University, Hangzhou, 310027, China
- Institute of Wenzhou, Zhejiang University, Wenzhou, 325036, China
| |
Collapse
|
9
|
Yang J, Papaderakis AA, Roh JS, Keerthi A, Adams RW, Bissett MA, Radha B, Dryfe RAW. Measuring the Capacitance of Carbon in Ionic Liquids: From Graphite to Graphene. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:3674-3684. [PMID: 38476828 PMCID: PMC10926162 DOI: 10.1021/acs.jpcc.3c08269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/14/2024]
Abstract
The physical electrochemistry of the carbon/ionic liquids interface underpins the processes occurring in a vast range of applications spanning electrochemical energy storage, iontronic devices, and lubrication. Elucidating the charge storage mechanisms at the carbon/electrolyte interface will lead to a better understanding of the operational principles of such systems. Herein, we probe the charge stored at the electrochemical double layer formed between model carbon systems, ranging from single-layer graphene to graphite and the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM-TFSI). The effect of the number of graphene layers on the overall capacitance of the interface is investigated. We demonstrate that in pure EMIM-TFSI and at moderate potential biases, the electronic properties of graphene and graphite govern the overall capacitance of the interface, while the electrolyte contribution to the latter is less significant. In mixtures of EMIM-TFSI with solvents of varying relative permittivity, the complex interplay between electrolyte ions and solvent molecules is shown to influence the charge stored at the interface, which under certain conditions overcomes the effects of relative permittivity. This work provides additional experimental insights into the continuously advancing topic of electrochemical double-layer structure at the interface between room temperature ionic liquids and carbon materials.
Collapse
Affiliation(s)
- Jing Yang
- Department
of Chemistry and Henry Royce Institute, The University of Manchester, Oxford Road, M13
9PL Manchester, U.K.
| | - Athanasios A. Papaderakis
- Department
of Chemistry and Henry Royce Institute, The University of Manchester, Oxford Road, M13
9PL Manchester, U.K.
| | - Ji Soo Roh
- Department
of Materials, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
- National
Graphene Institute, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
| | - Ashok Keerthi
- Department
of Chemistry and Henry Royce Institute, The University of Manchester, Oxford Road, M13
9PL Manchester, U.K.
- National
Graphene Institute, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
| | - Ralph W. Adams
- Department
of Chemistry and Henry Royce Institute, The University of Manchester, Oxford Road, M13
9PL Manchester, U.K.
| | - Mark A. Bissett
- Department
of Materials, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
- National
Graphene Institute, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
| | - Boya Radha
- Department
of Physics and Astronomy, The University
of Manchester, Oxford
Road, M13 9PL Manchester, U.K.
| | - Robert A. W. Dryfe
- Department
of Chemistry and Henry Royce Institute, The University of Manchester, Oxford Road, M13
9PL Manchester, U.K.
| |
Collapse
|
10
|
Liu L, Farhadi B, Li J, Liu S, Lu L, Wang H, Du M, Yang L, Bao S, Jiang X, Dong X, Miao Q, Li D, Wang K, Liu SF. Hydrophobic Hydrogen-Bonded Polymer Network for Efficient and Stable Perovskite/Si Tandem Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202317972. [PMID: 38116884 DOI: 10.1002/anie.202317972] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
The pursuit of highly efficient and stable wide-band gap (WBG) perovskite solar cells (PSCs), especially for monolithic perovskite/silicon tandem devices, is a key focus in achieving the commercialization of perovskite photovoltaics. In this study, we initially designed poly(ionic liquid)s (PILs) with varying alkyl chain lengths based on density functional theory calculations. Results pinpoint that PILs with longer alkyl chain lengths tend to exhibit more robust binding energy with the perovskite structure. Then we synthesized the PILs to craft a hydrophobic hydrogen-bonded polymer network (HHPN) that passivates the WBG perovskite/electron transport layer interface, inhibits ion migration and serves as a barrier layer against water and oxygen ingression. Accordingly, the HHPN effectively curbs nonradiative recombination losses while facilitating efficient carrier transport, resulting in substantially enhanced open-circuit voltage (Voc ) and fill factor. As a result, the optimized single-junction WBG PSC achieves an impressive efficiency of 23.18 %, with Voc as high as 1.25 V, which is the highest reported for WBG (over 1.67 eV) PSCs. These devices also demonstrate outstanding thermostability and humidity resistance. Notably, this versatile strategy can be extended to textured perovskite/silicon tandem cells, reaching a remarkable efficiency of 28.24 % while maintaining exceptional operational stability.
Collapse
Affiliation(s)
- Lu Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bita Farhadi
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
| | - Jianxun Li
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Siyi Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Linfeng Lu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Hui Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Minyong Du
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
| | - Liyou Yang
- JINNENG Clean Energy Technology LTD, Shanxi Comprehensive Reform Model Area, Jinzhong Area, Shanxi, 030300, China
| | - Shaojuan Bao
- JINNENG Clean Energy Technology LTD, Shanxi Comprehensive Reform Model Area, Jinzhong Area, Shanxi, 030300, China
| | - Xiao Jiang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
| | - Xinrui Dong
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qingqing Miao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Dongdong Li
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- Zhangjiang Laboratory, Shanghai, 201210, China
| | - Kai Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shengzhong Frank Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Prakash K, Sathian SP. Temperature-dependent differential capacitance of an ionic liquid-graphene-based supercapacitor. Phys Chem Chem Phys 2024; 26:4657-4667. [PMID: 38251719 DOI: 10.1039/d3cp05039d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
One of the critical factors affecting the performance of supercapacitors is thermal management. The design of supercapacitors that operate across a broad temperature range and at high charge/discharge rates necessitates understanding the correlation of the molecular characteristics of the device (such as interfacial structure and inter-ionic and ion-electrode interactions) with its macroscopic properties. In this study, we use molecular dynamics (MD) simulations to investigate the influence of Joule heating on the structure and dynamics of the ionic liquid (IL)/graphite-based supercapacitors. The temperature-dependent electrical double layer (EDL) and differential capacitance-potential (CD-V) curves of two different ([Bmim][BF4] and [Bmim][PF6]) IL-graphene pairs were studied under various thermal gradients. For the [Bmim][BF4] system, the differential capacitance curves transition from 'U' to bell shape under an applied thermal gradient (∇T) in the range from 3.3 K nm-1 to 16.7 K nm-1. Whereas in [Bmim][PF6], we find a positive dependence of differential capacitance with ∇T with a U-shaped CD-V curve. We examine changes in the EDL structure and screening potential (ϕ(z)) as a function of ∇T and correlate them with the trends observed in the CD-V curve. The identified correlation between the interfacial charge density and differential capacitance with thermal gradient would be helpful for the molecular design of the IL-electrode interface in supercapacitors or other chemical engineering applications.
Collapse
Affiliation(s)
- Kiran Prakash
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Sarith P Sathian
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| |
Collapse
|
12
|
Wu J, Zhang J, Chen M, Yan J, Mao B, Feng G. Regulating the electrical double layer to prevent water electrolysis for wet ionic liquids with cheap salts. NANOSCALE 2023; 15:18603-18612. [PMID: 37927229 DOI: 10.1039/d3nr04700h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Hydrophobic ionic liquids (ILs), broadly utilized as electrolytes, face limitations in practical applications due to their hygroscopicity, which narrows their electrochemical windows via water electrolysis. Herein, we scrutinized the impact of incorporating cheap salts on the electrochemical stability of wet hydrophobic ILs. We observed that alkali ions effectively manipulate the solvation structure of water and regulate the electrical double layer (EDL) structure by subtly adjusting the free energy distribution of water in wet ILs. Specifically, alkali ions significantly disrupted the hydrogen bond network, reducing free water, strengthening the O-H bond, and lowering water activity in bulk electrolytes. This effect was particularly pronounced in EDL regions, where most water molecules were repelled from both the cathode and anode with the disappearance of the H-bond network connectivity along the EDL. The residual interfacial water underwent reorientation, inhibiting water electrolysis and thus enhancing the electrochemical window of wet hydrophobic ILs. This theoretical proposition was confirmed by cyclic voltammetry measurements, demonstrating a 45% enhancement in the electrochemical windows for salt-in-wet ILs, approximating the dry one. This work offers feasible strategies for tuning the EDL and managing interfacial water activity, expanding the comprehension of interface engineering for advanced electrochemical systems.
Collapse
Affiliation(s)
- Jiedu Wu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), 430074 Wuhan, China.
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China
| | - Jinkai Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), 430074 Wuhan, China.
| | - Ming Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), 430074 Wuhan, China.
- Institute of Interdisciplinary Research for Mathematics and Applied Science, Huazhong University of Science and Technology (HUST), 430074 Wuhan, China
| | - Jiawei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China
| | - Bingwei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China
| | - Guang Feng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), 430074 Wuhan, China.
- Institute of Interdisciplinary Research for Mathematics and Applied Science, Huazhong University of Science and Technology (HUST), 430074 Wuhan, China
| |
Collapse
|
13
|
Chen Y, Rodenbücher C, Wippermann K, Korte C. Revealing Interfacial Reactions on Pt Electrodes in Ionic Liquids by In Situ Fourier-Transform Infrared Spectroscopy. Anal Chem 2023; 95:16618-16624. [PMID: 37902592 PMCID: PMC10652234 DOI: 10.1021/acs.analchem.3c02903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/31/2023]
Abstract
In situ monitoring of the electrolyte/electrode interfacial processes, such as the oxygen reduction reaction (ORR), is crucial for the design of electrolytes for fuel cells. In this study, we investigate the electrochemical behavior of platinum electrodes in protic ionic liquids (PILs) by means of in situ Fourier-transform infrared spectroscopy coupled with cyclic voltammetry. The result provides direct evidence of the change of water at the Pt electrode surface due to Pt oxide formation and reduction. A decrease in the interfacial water was observed in the spectra upon the formation of the Pt oxide. Conversely, the local water concentration at the electrode surface increases if the Pt oxide is reduced and the ORR takes place. At the same time, more cations replace anions on the electrode. The ORR kinetics in the [TFSI]-based PILs is slower than in the [TfO]-based ones, which could result from a blockage of catalytic sites by the adsorbed [TFSI] anions. It suggests that reducing the anion adsorption on the platinum surface could provide an opportunity to enhance the ORR activity.
Collapse
Affiliation(s)
- Yingzhen Chen
- Institute
of Energy and Climate Research—Electrochemical Process Engineering
(IEK-14), Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
- RWTH
Aachen University, 52062 Aachen, Germany
| | - Christian Rodenbücher
- Institute
of Energy and Climate Research—Electrochemical Process Engineering
(IEK-14), Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
| | - Klaus Wippermann
- Institute
of Energy and Climate Research—Electrochemical Process Engineering
(IEK-14), Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
| | - Carsten Korte
- Institute
of Energy and Climate Research—Electrochemical Process Engineering
(IEK-14), Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
- RWTH
Aachen University, 52062 Aachen, Germany
| |
Collapse
|
14
|
Wang Y, Tian G. Theoretical Insight into the Imidazolium-Based Ionic Liquid Interface Structure and Differential Capacitance on Au(111): Effects of the Cationic Substituent Group. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14231-14245. [PMID: 37751408 DOI: 10.1021/acs.langmuir.3c01381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Electric double layers (EDLs) play a key role in the electrochemical and energy storage of supercapacitors. It is important to understand the structure and properties of EDLs. In this work, quantum chemical calculations and molecular dynamics (MD) simulations are used to study the microstructure of EDLs of four different substituents of imidazolium-based bis(trifluoromethylsulfonyl)imide ionic liquids (ILs) on the Au(111) surface. It is shown that the particle interactions influence the different arrangements of the anion and cation. More alkyl substitutions and longer alkyl chains result in a higher ELUMO and thus a stronger interaction energy between cations and electrodes. Strong interactions produce linear patterns of anions/cations on the electrode and a maximum value of differential capacitance near PZC, whereas weak interactions generate worm-like patterns of anions/cations on Au(111) and a minimum value of differential capacitance near the PZC. We hold the opinion that the alkyl substitution has more effects on the EDLs. Our analysis provides a new perspective on EDLs structures at the atomic and molecular level. This study provides a good basis and guidance for further understanding the interface phenomena and characteristics of ionic liquids in electrochemical and energy device applications.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Complex Non-ferrous Metal Resource Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
- Yunnan Open University, Kunming 650223, China
| | - Guocai Tian
- State Key Laboratory of Complex Non-ferrous Metal Resource Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
15
|
Kim JS, Kim J, Lim JW, Kim DJ, Lee JI, Choi H, Kweon H, Lee J, Yee H, Kim JH, Kim B, Kang MS, Jeong JH, Park SM, Kim DH. Implantable Multi-Cross-Linked Membrane-Ionogel Assembly for Reversible Non-Faradaic Neurostimulation. ACS NANO 2023; 17:14706-14717. [PMID: 37498185 DOI: 10.1021/acsnano.3c02637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Neural interfaces play a major role in modulating neural signals for therapeutic purposes. To meet the demand of conformable neural interfaces for developing bioelectronic medicine, recent studies have focused on the performance of electrical neurostimulators employing soft conductors such as conducting polymers and electronic or ionic conductive hydrogels. However, faradaic charge injection at the interface of the electrode and nerve tissue causes irreversible gas evolution, oxidation of electrodes, and reduction of biological ions, thus causing undesired tissue damage and electrode degradation. Here we report a conformable neural interface engineering based on multicross-linked membrane-ionogel assembly (termed McMiA), which enables nonfaradaic neurostimulation without irreversible charge transfer reaction. The McMiA consists of a genipin-cross-linked biopolymeric ionogel coupled with a dopamine-cross-linked graphene oxide membrane to prevent ion exchange between biological and synthetic McMiA ions and to function as a bioadhesive forming covalent bonds with the target tissues. In addition, the demonstration of bioelectronic medicine via the McMiA-based neurostimulation of sciatic nerves shows the enhanced clinical utility in treating the overactive bladder syndrome. As the McMiA-based neural interface is soft, robust for bioadhesion, and stable in a physiological environment, it can offer significant advancement in biocompatibility and long-term operability for neural interface engineering.
Collapse
Affiliation(s)
- Joo Sung Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Junho Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jun Woo Lim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Dong Jun Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jong Ik Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Hanbin Choi
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyukmin Kweon
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jiho Lee
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hyeono Yee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Ji Hong Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Bokyung Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Moon Sung Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
- Institute of Emergent Materials, Sogang University, Seoul 04107, Republic of Korea
| | - Jae Hyun Jeong
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Sung-Min Park
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Do Hwan Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea
- Clean-Energy Research Institute, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
16
|
Zheng Q, Goodwin ZAH, Gopalakrishnan V, Hoane AG, Han M, Zhang R, Hawthorne N, Batteas JD, Gewirth AA, Espinosa-Marzal RM. Water in the Electrical Double Layer of Ionic Liquids on Graphene. ACS NANO 2023; 17:9347-9360. [PMID: 37163519 DOI: 10.1021/acsnano.3c01043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The performance of electrochemical devices using ionic liquids (ILs) as electrolytes can be impaired by water uptake. This work investigates the influence of water on the behavior of hydrophilic and hydrophobic ILs─with ethylsulfate and tris(perfluoroalkyl)trifluorophosphate or bis(trifluoromethyl sulfonyl)imide (TFSI) anions, respectively─on electrified graphene, a promising electrode material. The results show that water uptake slightly reduces the IL electrochemical stability and significantly influences graphene's potential of zero charge, which is justified by the extent of anion depletion from the surface. Experiments confirm the dominant contribution of graphene's quantum capacitance (CQ) to the total interfacial capacitance (Cint) near the PZC, as expected from theory. Combining theory and experiments reveals that the hydrophilic IL efficiently screens surface charge and exhibits the largest double layer capacitance (CIL ∼ 80 μF cm-2), so that CQ governs the charge stored. The hydrophobic ILs are less efficient in charge screening and thus exhibit a smaller capacitance (CIL ∼ 6-9 μF cm-2), which governs Cint already at small potentials. An increase in the total interfacial capacitance is observed at positive voltages for humid TFSI-ILs relative to dry ones, consistent with the presence of a satellite peak. Short-range surface forces reveal the change of the interfacial layering with potential and water uptake owing to reorientation of counterions, counterion binding, co-ion repulsion, and water enrichment. These results are consistent with the charge being mainly stored in a ∼2 nm-thick double layer, which implies that ILs behave as highly concentrated electrolytes. This knowledge will advance the design of IL-graphene-based electrochemical devices.
Collapse
Affiliation(s)
- Qianlu Zheng
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zachary A H Goodwin
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Varun Gopalakrishnan
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Alexis G Hoane
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mengwei Han
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ruixian Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Nathaniel Hawthorne
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - James D Batteas
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Andrew A Gewirth
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Rosa M Espinosa-Marzal
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
Amiri M, Bélanger D. Intermolecular Interactions and Electrochemical Studies on Highly Concentrated Acetate-Based Water-in-Salt and Ionic Liquid Electrolytes. J Phys Chem B 2023; 127:2979-2990. [PMID: 36952601 DOI: 10.1021/acs.jpcb.2c07308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Water-in-salt electrolytes constitute a new class of materials that have distinct properties relative to lower-concentration solutions. A recent approach to further increase the salt concentration and decrease the water content includes the addition of an ionic liquid to a highly concentrated aqueous solution. However, the physicochemical and electrochemical properties of aqueous lithium acetate-1-ethyl-3-methylimidazolium acetate solutions as well as the molecular interactions between electrolyte species have not been characterized. Here, we investigate these properties by evaluation of the ionic conductivity, viscosity, and thermal properties as well as the electrochemical behavior of various electrodes in these electrolytes. The intermolecular interactions are probed by nuclear magnetic resonance and infrared spectroscopies. We find that the addition of the ionic liquid increases the solubility limit of lithium acetate and that with an increase in both acetate salt and ionic liquid concentration in the electrolyte and decrease in water concentration, a strong acetate-water network is formed. The electrochemical stability window increases upon addition of the ionic liquid and reaches a value larger than 5 V for a set of negative Al and positive Ti electrodes in the highest acetate salt/ionic liquid concentration. Preliminary electrochemical charge storage performance measurements of a symmetric device based on two porous carbon electrodes cycled at a current density of 25 mA g-1 delivered a specific capacitance of 20 F g-1 with a Coulombic efficiency higher than 99% using a 1.8 V voltage window.
Collapse
Affiliation(s)
- Mona Amiri
- Département de Chimie, Université du Québec à Montréal, Case Postale 8888, succursale Centre-Ville, Montréal, Québec, Canada H3C 3P8
| | - Daniel Bélanger
- Département de Chimie, Université du Québec à Montréal, Case Postale 8888, succursale Centre-Ville, Montréal, Québec, Canada H3C 3P8
| |
Collapse
|
18
|
Tibbetts CA, Wyatt AB, Luther BM, Rappé AK, Krummel AT. Dicyanamide Anion Reports on Water Induced Local Structural and Dynamic Heterogeneity in Ionic Liquid Mixtures. J Phys Chem B 2023; 127:932-943. [PMID: 36655844 DOI: 10.1021/acs.jpcb.2c07060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The effects of limited amounts (under 21.6% χWater) of water on 1-butyl-3-methylimidazolium tetrafluoroborate (BmimBF4) and 1-butyl-3-methylimidazolium dicyanamide (BmimDCA) room-temperature ionic liquid (RTIL) mixtures were characterized by tracking changes in the linear and two-dimensional infrared (2D IR) vibrational features of the dicyanamide anion (DCA). Peak shifts with increasing water suggest the formation of water-associated and nonwater-associated DCA populations. Further results showed clear differences in the dynamic behavior of these different populations of DCA at low (defined here as below 2.5% χWater), mid (defined here as between 2.5% χWater and 9.6% χWater), and high (defined here as between 11.6% χWater and 21.6% χWater) range water concentrations. Vibrational relaxation is accelerated with increasing water content for water-associated populations of DCA, indicating water facilitates population relaxation, possibly through the provision of additional bath modes. Conversely, spectral diffusion of water-associated populations slowed dramatically with increasing water, suggesting that water drives the formation of distinct and noninterchangeable or very slowly interchangeable local solvent environments.
Collapse
Affiliation(s)
- Clara A Tibbetts
- Department of Chemistry, Colorado State University, Fort Collins, Colorado80523-1972, United States
| | - Autumn B Wyatt
- Department of Chemistry, Colorado State University, Fort Collins, Colorado80523-1972, United States
| | - Bradley M Luther
- Department of Chemistry, Colorado State University, Fort Collins, Colorado80523-1972, United States
| | - Anthony K Rappé
- Department of Chemistry, Colorado State University, Fort Collins, Colorado80523-1972, United States
| | - Amber T Krummel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado80523-1972, United States
| |
Collapse
|
19
|
Chen F, Liu Z, Yu G. Modulating Water Cluster Formation by the Hydrophilicity of Mixed Ionic Liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Wang X, Ham S, Zhou W, Qiao R. Adsorption of rhodamine 6G and choline on gold electrodes: a molecular dynamics study. NANOTECHNOLOGY 2022; 34:025501. [PMID: 36195059 DOI: 10.1088/1361-6528/ac973b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The adsorption of analyte molecules on nano-optoelectrodes (e.g. a combined nanoantenna and nanoelectrode device) significantly affects the signal characteristics in surface-enhanced Raman scattering (SERS) measurements. Understanding how different molecules adsorb on electrodes and their electrical potential modulation helps interpret SERS measurements better. We use molecular dynamics simulations to investigate the adsorption of prototypical analyte molecules (rhodamine 6G and choline) on gold electrodes with negative, neutral, and positive surface charges. We show that both molecules can readily adsorb on gold surfaces at all surface charge densities studied. Nevertheless, the configurations of the adsorbed molecules can differ for different surface charge densities, and adsorption can also change a molecule's conformation. Rhodamine 6G molecules adsorb more strongly than choline molecules, and the adsorption of both molecules is affected by electrode charge in 0.25 M NaCl solutions. The mechanisms of these observations are elucidated, and their implications for voltage-modulated SERS measurements are discussed.
Collapse
Affiliation(s)
- Xin Wang
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Seokgyun Ham
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Wei Zhou
- Department of Electrical and Computer Engineering Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Rui Qiao
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, United States of America
| |
Collapse
|
21
|
Manipulating mechanism of the electrokinetic flow of ionic liquids confined in silica nanochannel. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Peng K, Lin J, Yang D, Fu F, Dai Z, Zhou G, Yang Z. Molecular-Level Insights into Interfacial Interaction–Nanostructure Relationships of Imidazolium-Based Ionic Liquids around Carbon Nanotube Electrodes. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kuilin Peng
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Jie Lin
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Deshuai Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of the Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Fangjia Fu
- School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Zhongyang Dai
- National Supercomputing Center in Shenzhen, Shenzhen 518055, People’s Republic of China
| | - Guobing Zhou
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Zhen Yang
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| |
Collapse
|
23
|
Unconventional interfacial water structure of highly concentrated aqueous electrolytes at negative electrode polarizations. Nat Commun 2022; 13:5330. [PMID: 36088353 PMCID: PMC9464189 DOI: 10.1038/s41467-022-33129-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 09/02/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractWater-in-salt electrolytes are an appealing option for future electrochemical energy storage devices due to their safety and low toxicity. However, the physicochemical interactions occurring at the interface between the electrode and the water-in-salt electrolyte are not yet fully understood. Here, via in situ Raman spectroscopy and molecular dynamics simulations, we investigate the electrical double-layer structure occurring at the interface between a water-in-salt electrolyte and an Au(111) electrode. We demonstrate that most interfacial water molecules are bound with lithium ions and have zero, one, or two hydrogen bonds to feature three hydroxyl stretching bands. Moreover, the accumulation of lithium ions on the electrode surface at large negative polarizations reduces the interfacial field to induce an unusual “hydrogen-up” structure of interfacial water and blue shift of the hydroxyl stretching frequencies. These physicochemical behaviours are quantitatively different from aqueous electrolyte solutions with lower concentrations. This atomistic understanding of the double-layer structure provides key insights for designing future aqueous electrolytes for electrochemical energy storage devices.
Collapse
|
24
|
Zhou M, Bo Z, Ostrikov KK. Challenges and prospects of high-voltage aqueous electrolytes for energy storage applications. Phys Chem Chem Phys 2022; 24:20674-20688. [PMID: 36052687 DOI: 10.1039/d2cp02795j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aqueous electrolytes have attracted widespread attention as they are safe, environmentally benign and cost effective, holding great promise for future low-cost and sustainable energy storage devices. Nonetheless, the narrow electrochemical stability window caused by water electrolysis, as well as the trade-off between the stability window and other properties remain the bottleneck problem for the practical applications of aqueous electrolytes. Deep insights into the correlations between the microscopic physicochemical and electrochemical mechanisms and the macroscopic properties of aqueous electrolyte are essential for the envisaged applications, yet a systematic analysis of the recent progress in this area is still lacking. In this Perspective article, the basic mechanisms and influencing factors of water electrolysis including the hydrogen evolution and oxygen evolution reactions is critically examined. We systematically review the current state-of-the-art on high-voltage aqueous electrolytes focusing on the fundamental mechanisms of ion kinetics leading to dynamic electrolyte restructuring. Recent advances on the optimization of high-voltage aqueous electrolytes are also summarized. The existing challenges are identified and perspectives for exploring and developing future high-voltage aqueous electrolytes are provided.
Collapse
Affiliation(s)
- Meiqi Zhou
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P. R. China.
| | - Zheng Bo
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P. R. China.
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics, Centre for Materials Science, Centre for Clean Energy Technologies and Practices, Centre for Waste-free World, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
25
|
An R, Laaksonen A, Wu M, Zhu Y, Shah FU, Lu X, Ji X. Atomic force microscopy probing interactions and microstructures of ionic liquids at solid surfaces. NANOSCALE 2022; 14:11098-11128. [PMID: 35876154 DOI: 10.1039/d2nr02812c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ionic liquids (ILs) are room temperature molten salts that possess preeminent physicochemical properties and have shown great potential in many applications. However, the use of ILs in surface-dependent processes, e.g. energy storage, is hindered by the lack of a systematic understanding of the IL interfacial microstructure. ILs on the solid surface display rich ordering, arising from coulombic, van der Waals, solvophobic interactions, etc., all giving near-surface ILs distinct microstructures. Therefore, it is highly important to clarify the interactions of ILs with solid surfaces at the nanoscale to understand the microstructure and mechanism, providing quantitative structure-property relationships. Atomic force microscopy (AFM) opens a surface-sensitive way to probe the interaction force of ILs with solid surfaces in the layers from sub-nanometers to micrometers. Herein, this review showcases the recent progress of AFM in probing interactions and microstructures of ILs at solid interfaces, and the influence of IL characteristics, surface properties and external stimuli is thereafter discussed. Finally, a summary and perspectives are established, in which, the necessities of the quantification of IL-solid interactions at the molecular level, the development of in situ techniques closely coupled with AFM for probing IL-solid interfaces, and the combination of experiments and simulations are argued.
Collapse
Affiliation(s)
- Rong An
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Aatto Laaksonen
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden.
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi 700469, Romania
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Muqiu Wu
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yudan Zhu
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Faiz Ullah Shah
- Chemistry of Interfaces, Luleå University of Technology, 97187 Luleå, Sweden
| | - Xiaohua Lu
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoyan Ji
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden.
| |
Collapse
|
26
|
Bresme F, Kornyshev AA, Perkin S, Urbakh M. Electrotunable friction with ionic liquid lubricants. NATURE MATERIALS 2022; 21:848-858. [PMID: 35761059 DOI: 10.1038/s41563-022-01273-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Room-temperature ionic liquids and their mixtures with organic solvents as lubricants open a route to control lubricity at the nanoscale via electrical polarization of the sliding surfaces. Electronanotribology is an emerging field that has a potential to realize in situ control of friction-that is, turning the friction on and off on demand. However, fulfilling its promise needs more research. Here we provide an overview of this emerging research area, from its birth to the current state, reviewing the main achievements in non-equilibrium molecular dynamics simulations and experiments using atomic force microscopes and surface force apparatus. We also present a discussion of the challenges that need to be solved for future applications of electrotunable friction.
Collapse
Affiliation(s)
- Fernando Bresme
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK.
| | - Alexei A Kornyshev
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK.
| | - Susan Perkin
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| | - Michael Urbakh
- Department of Physical Chemistry, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
27
|
Kobayashi T, Smiatek J, Fyta M. Probing the distribution of ionic liquid mixtures at charged and neutral interfaces via simulations and lattice-gas theory. Phys Chem Chem Phys 2022; 24:16471-16483. [PMID: 35766260 DOI: 10.1039/d2cp01346k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Room temperature ionic liquid solutions confined between neutral and charged surfaces are investigated by means of atomistic Molecular Dynamics simulations. We study 1-ethyl-3-methylimidazolium dicyanamide ([EMIm]+[DCA]-) in water or dimethylsulfoxide (DMSO) mixtures in confinement between two interfaces. The analysis is based on the comparison of the molecular species involved and the charged state of the surfaces. Focus is given on the influence of different water/DMSO concentrations on the microstructuring and accumulation of each species. Thermodynamic aspects, such as the entropic contributions in the observed trends are obtained from the simulations using a lattice-gas theory. The results clearly underline the differences in these properties for the water and DMSO mixtures and unravel the underlying mechanisms and inherent details. We were able to pinpoint the importance of the size and the relative permittivity of the molecules in guiding their microstructuring in the vicinity of the surfaces, as well as their interactions with the latter, i.e. the solute-surface interactions. The influence of water and DMSO on the overscreening at charged interfaces is also discussed. The analysis on the molecular accumulation at the interfaces allows us to predict whether the accumulation is entropy or enthalpy driven, which has an impact in the removal of the molecular species from the surfaces. We discuss the impact of this work in providing an essential understanding towards a careful design of electrochemical elements.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany.
| | - Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany.
| | - Maria Fyta
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany.
| |
Collapse
|
28
|
Fu JY, Li XC, Yu Z, Huang-Fu XN, Fan JA, Zhang ZQ, Huang S, Zheng JF, Wang YH, Zhou XS. In Situ Raman Monitoring of Potential-Dependent Adlayer Structures on the Au(111)/Ionic Liquid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6209-6216. [PMID: 35508432 DOI: 10.1021/acs.langmuir.2c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Probing the adlayer structures on an electrode/electrolyte interface is one of the most important tasks in modern electrochemistry for clarifying the electrochemical processes. Herein, we have combined cyclic voltammetry and electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy techniques to explore the potential-dependent adlayer structures on Au(111) in a room-temperature ionic liquid of 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF6) without or with pyridine (Py). It is clearly found that the BMI+ cations strongly adsorb on the negatively charged surface with a flat-lying orientation, leaving a little space for Py adsorption. Upon increasing the potentials of the electrode, the variations of Raman band intensities and frequencies reveal that the interaction between the BMI+ cations and the Au surface becomes weak; meanwhile, the Py adsorption becomes strong, and its geometry turns from flat, tilted to vertical. Finally, BMI+ cations desorb and leave plenty of surface sites for Py adsorption in bulk solution, and a N-bonded compact Py adlayer is formed on the very positively charged surface. This causes obvious anodic peaks in cyclic voltammograms, and the peak currents increase with the square root of the scanning rate. The present work provides a fair molecular-level understanding of electrochemical interfaces and molecular adsorption of Py in ionic liquids.
Collapse
Affiliation(s)
- Jia-Ying Fu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Xiao-Chong Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Zhou Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Xu-Nan Huang-Fu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Jian-Ang Fan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Zhi-Qi Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Sheng Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Ju-Fang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Ya-Hao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Xiao-Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
29
|
Zhao J, Gorbatovski G, Oll O, Anderson E, Lust E. Influence of water on the electrochemical characteristics and nanostructure of Bi(hkl)│Ionic liquid interface. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Liu S, Tan Z, Wu J, Mao B, Yan J. Electrochemical interfaces in ionic liquids/deep eutectic solvents incorporated with water: A review. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Shuai Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| | - Zhuo Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| | - Jiedu Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| | - Bingwei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| | - Jiawei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| |
Collapse
|
31
|
Schlaich A, Jin D, Bocquet L, Coasne B. Electronic screening using a virtual Thomas-Fermi fluid for predicting wetting and phase transitions of ionic liquids at metal surfaces. NATURE MATERIALS 2022; 21:237-245. [PMID: 34764431 DOI: 10.1038/s41563-021-01121-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Of relevance to energy storage, electrochemistry and catalysis, ionic and dipolar liquids display unexpected behaviours-especially in confinement. Beyond adsorption, over-screening and crowding effects, experiments have highlighted novel phenomena, such as unconventional screening and the impact of the electronic nature-metallic versus insulating-of the confining surface. Such behaviours, which challenge existing frameworks, highlight the need for tools to fully embrace the properties of confined liquids. Here we introduce a novel approach that involves electronic screening while capturing molecular aspects of interfacial fluids. Although available strategies consider perfect metal or insulator surfaces, we build on the Thomas-Fermi formalism to develop an effective approach that deals with any imperfect metal between these asymptotes. Our approach describes electrostatic interactions within the metal through a 'virtual' Thomas-Fermi fluid of charged particles, whose Debye length sets the screening length λ. We show that this method captures the electrostatic interaction decay and electrochemical behaviour on varying λ. By applying this strategy to an ionic liquid, we unveil a wetting transition on switching from insulating to metallic conditions.
Collapse
Affiliation(s)
- Alexander Schlaich
- Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France
- Institute for Computational Physics, University of Stuttgart, Stuttgart, Germany
| | - Dongliang Jin
- Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France
| | - Lyderic Bocquet
- Laboratoire de Physique de l'Ecole Normale Supérieure, CNRS, Université PSL, Sorbonne Université, Paris, Paris, France
| | - Benoit Coasne
- Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
| |
Collapse
|
32
|
The Structure of the Electric Double Layer of the Protic Ionic Liquid [Dema][TfO] Analyzed by Atomic Force Spectroscopy. Int J Mol Sci 2021; 22:ijms222312653. [PMID: 34884462 PMCID: PMC8658030 DOI: 10.3390/ijms222312653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/05/2022] Open
Abstract
Protic ionic liquids are promising electrolytes for fuel cell applications. They would allow for an increase in operation temperatures to more than 100 °C, facilitating water and heat management and, thus, increasing overall efficiency. As ionic liquids consist of bulky charged molecules, the structure of the electric double layer significantly differs from that of aqueous electrolytes. In order to elucidate the nanoscale structure of the electrolyte–electrode interface, we employ atomic force spectroscopy, in conjunction with theoretical modeling using molecular dynamics. Investigations of the low-acidic protic ionic liquid diethylmethylammonium triflate, in contact with a platinum (100) single crystal, reveal a layered structure consisting of alternating anion and cation layers at the interface, as already described for aprotic ionic liquids. The structured double layer depends on the applied electrode potential and extends several nanometers into the liquid, whereby the stiffness decreases with increasing distance from the interface. The presence of water distorts the layering, which, in turn, significantly changes the system’s electrochemical performance. Our results indicate that for low-acidic ionic liquids, a careful adjustment of the water content is needed in order to enhance the proton transport to and from the catalytic electrode.
Collapse
|
33
|
Recovering the electrochemical window by forming a localized solvation nanostructure in ionic liquids with trace water. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1111-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Wu J, Zhou R, Radjenovic PM, Liu S, Wu D, Li J, Mao B, Yan J. Electrochemical impedance spectroscopy and Raman spectroscopy studies on electrochemical interface between Au(111) electrode and ethaline deep eutectic solvent. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Marion S, Vučemilović-Alagić N, Špadina M, Radenović A, Smith AS. From Water Solutions to Ionic Liquids with Solid State Nanopores as a Perspective to Study Transport and Translocation Phenomena. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100777. [PMID: 33955694 DOI: 10.1002/smll.202100777] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Solid state nanopores are single-molecular devices governed by nanoscale physics with a broad potential for technological applications. However, the control of translocation speed in these systems is still limited. Ionic liquids are molten salts which are commonly used as alternate solvents enabling the regulation of the chemical and physical interactions on solid-liquid interfaces. While their combination can be challenging to the understanding of nanoscopic processes, there has been limited attempts on bringing these two together. While summarizing the state of the art and open questions in these fields, several major advances are presented with a perspective on the next steps in the investigations of ionic-liquid filled nanopores, both from a theoretical and experimental standpoint. By analogy to aqueous solutions, it is argued that ionic liquids and nanopores can be combined to provide new nanofluidic functionalities, as well as to help resolve some of the pertinent problems in understanding transport phenomena in confined ionic liquids and providing better control of the speed of translocating analytes.
Collapse
Affiliation(s)
- Sanjin Marion
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015, Lausanne, Switzerland
| | - Nataša Vučemilović-Alagić
- Group for Computational Life Sciences, Ruđer Bošković Institute, Division of Physical Chemistry, 10000, Zagreb, Croatia
- PULS Group, Physics Department, Interdisciplinary Center for Nanostructured Films, FAU Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Mario Špadina
- Group for Computational Life Sciences, Ruđer Bošković Institute, Division of Physical Chemistry, 10000, Zagreb, Croatia
| | - Aleksandra Radenović
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015, Lausanne, Switzerland
| | - Ana-Sunčana Smith
- Group for Computational Life Sciences, Ruđer Bošković Institute, Division of Physical Chemistry, 10000, Zagreb, Croatia
- PULS Group, Physics Department, Interdisciplinary Center for Nanostructured Films, FAU Erlangen-Nürnberg, 91058, Erlangen, Germany
| |
Collapse
|
36
|
Tang W, Yu H, Zhao T, Qing L, Xu X, Zhao S. A dynamic reaction density functional theory for interfacial reaction-diffusion coupling at nanoscale. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116513] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Zhang K, Zhou G, Fang T, Jiang K, Liu X. Structural Reorganization of Ionic Liquid Electrolyte by a Rapid Charge/Discharge Circle. J Phys Chem Lett 2021; 12:2273-2278. [PMID: 33645998 DOI: 10.1021/acs.jpclett.1c00156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The behavior of forming layers near the electrode surface is an important topic for the energy storage with ionic liquid (IL) electrolytes. Here, molecular dynamics (MD) simulations were used to study the behavior of surface active ionic liquid (SAIL) electrolytes near positive electrodes. With the increase of electrode surface charge density, a V-type conformation of the anion [AOT]- for energy storage was shown. The V conformation is easier to replace the latent voids, which is like wedging ions into the layer near the electrodes. Meanwhile, after a rapid charge/discharge circle, there would be more V-type anions appearing in this optimized electrolyte. It is a significant point for the mechanism of nanoscale and microscale energy storage, which provides a theoretical basis for the optimization of efficient IL electrolytes and the design of related experimental research.
Collapse
Affiliation(s)
- Kun Zhang
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, China
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, Shandong, China
| | - Guohui Zhou
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, China
| | - Timing Fang
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, China
| | - Kun Jiang
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, China
| | - Xiaomin Liu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, China
| |
Collapse
|
38
|
Gao Q, Zhang Y, Laaksonen A, Zhu Y, Ji X, Zhao S, Chen Y, Lu X. Effect of dimethyl carbonate on the behavior of water confined in carbon nanotube. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.10.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Serva A, Dubouis N, Grimaud A, Salanne M. Confining Water in Ionic and Organic Solvents to Tune Its Adsorption and Reactivity at Electrified Interfaces. Acc Chem Res 2021; 54:1034-1042. [PMID: 33530686 PMCID: PMC7944480 DOI: 10.1021/acs.accounts.0c00795] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Indexed: 12/17/2022]
Abstract
ConspectusThe recent discovery of "water-in-salt" electrolytes has spurred a rebirth of research on aqueous batteries. Most of the attention has been focused on the formulation of salts enabling the electrochemical window to be expanded as much as possible, well beyond the 1.23 V allowed by thermodynamics in water. This approach has led to critical successes, with devices operating at voltages of up to 4 V. These efforts were accompanied by fundamental studies aiming at understanding water speciation and its link with the bulk and interfacial properties of water-in-salt electrolytes. This speciation was found to differ markedly from that in conventional aqueous solutions since most water molecules are involved in the solvation of the cationic species (in general Li+) and thus cannot form their usual hydrogen-bonding network. Instead, it is the anions that tend to self-aggregate in nanodomains and dictate the interfacial and transport properties of the electrolyte. This particular speciation drastically alters the presence and reactivity of the water molecules at electrified interfaces, which enlarges the electrochemical windows of these aqueous electrolytes.Thanks to this fundamental understanding, a second very active lead was recently followed, which consists of using a scarce amount of water in nonaqueous electrolytes in order to control the interfacial properties. Following this path, it was proposed to use an organic solvent such as acetonitrile as a confinement matrix for water. Tuning the salt/water ratio in such systems leads to a whole family of systems that can be used to determine the reactivity of water and control the potential at which the hydrogen evolution reaction occurs. Put together, all of these efforts allow a shift of our view of the water molecule from a passive solvent to a reactant involved in many distinct fields ranging from electrochemical energy storage to (electro)catalysis.Combining spectroscopic and electrochemical techniques with molecular dynamics simulations, we have observed very interesting chemical phenomena such as immiscibility between two aqueous phases, specific adsorption properties of water molecules that strongly affect their reactivity, and complex diffusive mechanisms due to the formation of anionic and aqueous nanodomains.
Collapse
Affiliation(s)
- Alessandra Serva
- Sorbonne
Université, CNRS, Physico-chimie des Electrolytes et Nanosystémes
Interfaciaux, PHENIX, F-75005 Paris, France
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), Amiens, France
| | - Nicolas Dubouis
- Chimie
du Solide et de l’Energie, Collège
de France, 11 Place Marcelin Berthelot, 75231 Paris, France
- Sorbonne
Université, Paris, France
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), Amiens, France
| | - Alexis Grimaud
- Sorbonne
Université, Paris, France
- Chimie
du Solide et de l’Energie, Collège
de France, Paris, France
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), Amiens, France
| | - Mathieu Salanne
- Sorbonne
Université, CNRS, Physico-chimie des Electrolytes et Nanosystémes
Interfaciaux, PHENIX, F-75005 Paris, France
- Institut
Universitaire de France (IUF), 75231 Paris Cedex 05, France
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), Amiens, France
| |
Collapse
|
40
|
Leier J, Michenfelder NC, Unterreiner A. Understanding the Photoexcitation of Room Temperature Ionic Liquids. ChemistryOpen 2021; 10:72-82. [PMID: 33565733 PMCID: PMC7874249 DOI: 10.1002/open.202000278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Photoexcitation of (neat) room temperature ionic liquids (RTILs) leads to the observation of transient species that are reminiscent of the composition of the RTILs themselves. In this minireview, we summarize state-of-the-art in the understanding of the underlying elementary processes. By varying the anion or cation, one aim is to generally predict radiation-induced chemistry and physics of RTILs. One major task is to address the fate of excess electrons (and holes) after photoexcitation, which implies an overview of various formation mechanisms considering structural and dynamical aspects. Therefore, transient studies on time scales from femtoseconds to microseconds can greatly help to elucidate the most relevant steps after photoexcitation. Sometimes, radiation may eventually result in destruction of the RTILs making photostability another important issue to be discussed. Finally, characteristic heterogeneities can be associated with specific physicochemical properties. Influencing these properties by adding conventional solvents, like water, can open a wide field of application, which is briefly summarized.
Collapse
Affiliation(s)
- Julia Leier
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Nadine C. Michenfelder
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Andreas‐Neil Unterreiner
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| |
Collapse
|
41
|
Ivanova N, Esenbaev T. Wetting and dewetting behaviour of hygroscopic liquids: Recent advancements. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2020.101399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Xu DD, Ma RR, Fu AP, Guan Z, Zhong N, Peng H, Xiang PH, Duan CG. Ion adsorption-induced reversible polarization switching of a van der Waals layered ferroelectric. Nat Commun 2021; 12:655. [PMID: 33510155 PMCID: PMC7844287 DOI: 10.1038/s41467-021-20945-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/28/2020] [Indexed: 11/19/2022] Open
Abstract
Solid-liquid interface is a key concept of many research fields, enabling numerous physical phenomena and practical applications. For example, electrode-electrolyte interfaces with electric double layers have been widely used in energy storage and regulating physical properties of functional materials. Creating a specific interface allows emergent functionalities and effects. Here, we show the artificial control of ferroelectric-liquid interfacial structures to switch polarization states reversibly in a van der Waals layered ferroelectric CuInP2S6 (CIPS). We discover that upward and downward polarization states can be induced by spontaneous physical adsorption of dodecylbenzenesulphonate anions and N,N-diethyl-N-methyl-N-(2-methoxyethyl)-ammonium cations, respectively, at the ferroelectric-liquid interface. This distinctive approach circumvents the structural damage of CIPS caused by Cu-ion conductivity during electrical switching process. Moreover, the polarized state features super-long retention time (>1 year). The interplay between ferroelectric dipoles and adsorbed organic ions has been studied systematically by comparative experiments and first-principles calculations. Such ion adsorption-induced reversible polarization switching in a van der Waals ferroelectric enriches the functionalities of solid-liquid interfaces, offering opportunities for liquid-controlled two-dimensional ferroelectric-based devices. Whether it is possible to achieve polarization inversion in a ferroelectric without any energy consumption is an open question. Here, the authors demonstrate an energy-free approach to control the polarization state of CuInP2S6, a typical room-temperature van der Waals layered ferroelectric.
Collapse
Affiliation(s)
- Dong-Dong Xu
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, China
| | - Ru-Ru Ma
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, China
| | - Ai-Ping Fu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Zhao Guan
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, China
| | - Ni Zhong
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, China. .,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China.
| | - Hui Peng
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, China
| | - Ping-Hua Xiang
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, China. .,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China.
| | - Chun-Gang Duan
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
| |
Collapse
|
43
|
Liu S, Li M, Peng J, Chen L, Mao B, Yan J. Water-induced mica/ionic liquid interfacial nanostructure switches revealed by AFM. Chem Commun (Camb) 2020; 56:15064-15067. [PMID: 33196716 DOI: 10.1039/d0cc06587k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glovebox-AFM-based force curve measurements have been employed to investigate the effect of controlled small amounts of water on the interfacial structure of mica/a pyrrolidinium-based ionic liquid. A close examination reveals that with the increase of water content, the long-range monotonic force, which is beyond the region of the short-range oscillatory structure, switches from van der Waals attraction-dominated force to double layer repulsion-dominated force.
Collapse
Affiliation(s)
- Shuai Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
| | | | | | | | | | | |
Collapse
|
44
|
Tan Z, Peng Y, Liu J, Yang Y, Zhang Z, Chen Z, Mao B, Yan J. An In Situ Scanning Tunneling Microscopy Study on the Electrochemical Interface between Au(111) and Ethaline Deep Eutectic Solvent. ChemElectroChem 2020. [DOI: 10.1002/celc.202001264] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Zhuo Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China E-mail: mailto
| | - Yu Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China E-mail: mailto
| | - Jingli Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China E-mail: mailto
| | - Yun Yang
- Research Institute for Biomimetics and Soft Matter Fujian Provincial Key Laboratory for Soft Functional Materials Research Institution College of Physical Science and Technology Xiamen University Xiamen 361005 China
| | - Zhisen Zhang
- Research Institute for Biomimetics and Soft Matter Fujian Provincial Key Laboratory for Soft Functional Materials Research Institution College of Physical Science and Technology Xiamen University Xiamen 361005 China
| | - Zhaobin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China E-mail: mailto
| | - Bingwei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China E-mail: mailto
| | - Jiawei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China E-mail: mailto
| |
Collapse
|
45
|
Chen M, Wu J, Ye T, Ye J, Zhao C, Bi S, Yan J, Mao B, Feng G. Adding salt to expand voltage window of humid ionic liquids. Nat Commun 2020; 11:5809. [PMID: 33199709 PMCID: PMC7670447 DOI: 10.1038/s41467-020-19469-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
Humid hydrophobic ionic liquids-widely used as electrolytes-have narrowed electrochemical windows due to the involvement of water, absorbed on the electrode surface, in electrolysis. In this work, we performed molecular dynamics simulations to explore effects of adding Li salt in humid ionic liquids on the water adsorbed on the electrode surface. Results reveal that most of the water molecules are pushed away from both cathode and anode, by adding salt. The water remaining on the electrode is almost bound with Li+, having significantly lowered activity. The Li+-bonding and re-arrangement of the surface-adsorbed water both facilitate the inhibition of water electrolysis, and thus prevent the reduction of electrochemical windows of humid hydrophobic ionic liquids. This finding is testified by cyclic voltammetry measurements where salt-in-humid ionic liquids exhibit enlarged electrochemical windows. Our work provides the underlying mechanism and a simple but practical approach for protection of humid ionic liquids from electrochemical performance degradation.
Collapse
Affiliation(s)
- Ming Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China
| | - Jiedu Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Ting Ye
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China
| | - Jinyu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Chang Zhao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China
| | - Sheng Bi
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China
| | - Jiawei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Bingwei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Guang Feng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China.
| |
Collapse
|
46
|
Kemna A, Braunschweig B. Potential-Induced Adsorption and Structuring of Water at the Pt(111) Electrode Surface in Contact with an Ionic Liquid. J Phys Chem Lett 2020; 11:7116-7121. [PMID: 32787322 DOI: 10.1021/acs.jpclett.0c02037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Water adsorption is important in many fields from surface electrochemistry to electrocatalysis, where molecular-level information is much needed in order to gain a detailed understanding of the role of interfacial water. Here we report on water at Pt(111) surfaces in contact with an [EIMIM][BF4] ionic liquid, which was spectroscopically resolved by using in situ sum-frequency generation (SFG). O-H modes are used to study water adsorption and water structure as a function of electrode potential, while the analysis of C-H modes is used to infer orientational changes of [EMIM] cations at the interface. Different from the bulk where free water molecules are found, SFG spectra provide evidence that an interfacial layer with an extended network of hydrogen-bonded water molecules exists and grows with increasing absolute potential which is used to identify the potential of zero charge at +0.1 V SHE, where a pronounced minimum in O-H intensity is found.
Collapse
Affiliation(s)
- Andre Kemna
- Institute of Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Björn Braunschweig
- Institute of Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| |
Collapse
|
47
|
Dubouis N, Serva A, Berthin R, Jeanmairet G, Porcheron B, Salager E, Salanne M, Grimaud A. Tuning water reduction through controlled nanoconfinement within an organic liquid matrix. Nat Catal 2020. [DOI: 10.1038/s41929-020-0482-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
48
|
Chen M, Feng G, Qiao R. Water-in-salt electrolytes: An interfacial perspective. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2019.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Watanabe S, Pilkington GA, Oleshkevych A, Pedraz P, Radiom M, Welbourn R, Glavatskih S, Rutland MW. Interfacial structuring of non-halogenated imidazolium ionic liquids at charged surfaces: effect of alkyl chain length. Phys Chem Chem Phys 2020; 22:8450-8460. [DOI: 10.1039/d0cp00360c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Control of the interfacial structures of ionic liquids (ILs) at charged interfaces is important to many of their applications, including in energy storage solutions, sensors and advanced lubrication technologies utilising electric fields.
Collapse
Affiliation(s)
- Seiya Watanabe
- Division of Surface and Corrosion Science
- School of Engineering Sciences in Chemistry
- Biotechnology and Health
- KTH Royal Institute of Technology
- SE-100 44 Stockholm
| | - Georgia A. Pilkington
- Division of Surface and Corrosion Science
- School of Engineering Sciences in Chemistry
- Biotechnology and Health
- KTH Royal Institute of Technology
- SE-100 44 Stockholm
| | - Anna Oleshkevych
- Division of Surface and Corrosion Science
- School of Engineering Sciences in Chemistry
- Biotechnology and Health
- KTH Royal Institute of Technology
- SE-100 44 Stockholm
| | - Patricia Pedraz
- Division of Surface and Corrosion Science
- School of Engineering Sciences in Chemistry
- Biotechnology and Health
- KTH Royal Institute of Technology
- SE-100 44 Stockholm
| | - Milad Radiom
- Division of Surface and Corrosion Science
- School of Engineering Sciences in Chemistry
- Biotechnology and Health
- KTH Royal Institute of Technology
- SE-100 44 Stockholm
| | - Rebecca Welbourn
- ISIS Neutron & Muon Source
- Rutherford Appleton Laboratory
- STFC
- Didcot
- UK
| | - Sergei Glavatskih
- System and Component Design
- Department of Machine Design
- KTH Royal Institute of Technology
- SE-100 44 Stockholm
- Sweden
| | - Mark W. Rutland
- Division of Surface and Corrosion Science
- School of Engineering Sciences in Chemistry
- Biotechnology and Health
- KTH Royal Institute of Technology
- SE-100 44 Stockholm
| |
Collapse
|
50
|
Pivnic K, Bresme F, Kornyshev AA, Urbakh M. Structural Forces in Mixtures of Ionic Liquids with Organic Solvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15410-15420. [PMID: 31657581 DOI: 10.1021/acs.langmuir.9b02121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Using molecular dynamics simulations, we study the impact of electrode charging and addition of solvent (acetonitrile, ACN) on structural forces of the BMIM PF6 ionic liquid (IL) confined by surfaces at nanometer separations. We establish relationships between the structural forces and the microscopic structure of the confined liquid. Depending on the structural arrangements of cations and anions across the nanofilm, the load-induced squeeze-out of liquid layers occurs via one-layer or bilayer steps. The cations confined between charged plates orient with their aliphatic chain perpendicular to the surface planes and link two adjacent IL layers. These structures facilitate the squeeze-out of single layers. For both pure IL and IL-ACN mixtures, we observe a strong dependence of nanofilm structure on the surface charge density, which affects the simulated pressure-displacement curves. Addition of solvent to the IL modifies the layering in the confined film. At high electrode charges and high dilution of IL (below 10% molar fraction), the layered structure of the nanofilm is less well defined. We predict a change in the squeeze-out mechanism under pressure, from a discontinuous squeeze-out (for high IL concentrations) to an almost continuous one (for low IL concentrations). Importantly, our simulations show that charged electrodes are coated with ions even at low IL concentrations. These ion-rich layers adjacent to the charged plate surfaces are not squeezed out even under very high normal pressures of ∼5 GPa. Hence, we demonstrate the high performance of IL-solvent mixtures to protect surfaces from wear and to provide lubrication at high loads.
Collapse
Affiliation(s)
- Karina Pivnic
- School of Chemistry, The Sackler Center for Computational Molecular and Materials Science , Tel Aviv University , Tel Aviv 6997801 , Israel
| | - Fernando Bresme
- Department of Chemistry , Molecular Sciences Research Hub, Imperial College London , W12 0BZ 2AZ London , United Kingdom
- Thomas Young Centre for Theory and Simulation of Materials , Imperial College London , South Kensington Campus , London SW7 2AZ , United Kingdom
| | - Alexei A Kornyshev
- Department of Chemistry , Molecular Sciences Research Hub, Imperial College London , W12 0BZ 2AZ London , United Kingdom
- Thomas Young Centre for Theory and Simulation of Materials , Imperial College London , South Kensington Campus , London SW7 2AZ , United Kingdom
| | - Michael Urbakh
- School of Chemistry, The Sackler Center for Computational Molecular and Materials Science , Tel Aviv University , Tel Aviv 6997801 , Israel
| |
Collapse
|